]> SALOME platform Git repositories - tools/medcoupling.git/blob - src/MEDCoupling_Swig/MEDCouplingCommon.i
Salome HOME
Missing wrap of appendFieldProfileFlatly
[tools/medcoupling.git] / src / MEDCoupling_Swig / MEDCouplingCommon.i
1 // Copyright (C) 2017  CEA/DEN, EDF R&D
2 //
3 // This library is free software; you can redistribute it and/or
4 // modify it under the terms of the GNU Lesser General Public
5 // License as published by the Free Software Foundation; either
6 // version 2.1 of the License, or (at your option) any later version.
7 //
8 // This library is distributed in the hope that it will be useful,
9 // but WITHOUT ANY WARRANTY; without even the implied warranty of
10 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11 // Lesser General Public License for more details.
12 //
13 // You should have received a copy of the GNU Lesser General Public
14 // License along with this library; if not, write to the Free Software
15 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
16 //
17 // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
18 //
19 // Author : Anthony Geay (EDF R&D)
20
21 #ifdef WITH_DOCSTRINGS
22 %include MEDCoupling_doc.i
23 #endif
24
25 %include std_vector.i
26 %include std_string.i
27
28 %{
29 #include "MEDCouplingMemArray.hxx"
30 #include "MEDCouplingUMesh.hxx"
31 #include "MEDCouplingMappedExtrudedMesh.hxx"
32 #include "MEDCouplingCMesh.hxx"
33 #include "MEDCouplingIMesh.hxx"
34 #include "MEDCouplingCurveLinearMesh.hxx"
35 #include "MEDCoupling1GTUMesh.hxx"
36 #include "MEDCouplingField.hxx"
37 #include "MEDCouplingFieldDouble.hxx"
38 #include "MEDCouplingFieldInt.hxx"
39 #include "MEDCouplingFieldFloat.hxx"
40 #include "MEDCouplingFieldTemplate.hxx"
41 #include "MEDCouplingGaussLocalization.hxx"
42 #include "MCAuto.hxx"
43 #include "MEDCouplingMultiFields.hxx"
44 #include "MEDCouplingFieldOverTime.hxx"
45 #include "MEDCouplingDefinitionTime.hxx"
46 #include "MEDCouplingFieldDiscretization.hxx"
47 #include "MEDCouplingCartesianAMRMesh.hxx"
48 #include "MEDCouplingAMRAttribute.hxx"
49 #include "MEDCouplingMatrix.hxx"
50 #include "MEDCouplingPartDefinition.hxx"
51 #include "MEDCouplingSkyLineArray.hxx"
52 #include "MEDCouplingTypemaps.i"
53
54 #include "InterpKernelAutoPtr.hxx"
55 #include "BoxSplittingOptions.hxx"
56
57 using namespace MEDCoupling;
58 using namespace INTERP_KERNEL;
59
60 %}
61
62 %template(ivec) std::vector<int>;
63 %template(dvec) std::vector<double>;
64 %template(svec) std::vector<std::string>;
65
66 ////////////////////
67 %typemap(out) MEDCoupling::MEDCouplingMesh*
68 {
69   $result=convertMesh($1,$owner);
70 }
71
72 %typemap(out) MEDCouplingMesh*
73 {
74   $result=convertMesh($1,$owner);
75 }
76 //$$$$$$$$$$$$$$$$$$
77
78 ////////////////////
79 %typemap(out) MEDCoupling::MEDCouplingPointSet*
80 {
81   $result=convertMesh($1,$owner);
82 }
83
84 %typemap(out) MEDCouplingPointSet*
85 {
86   $result=convertMesh($1,$owner);
87 }
88 //$$$$$$$$$$$$$$$$$$
89
90 ////////////////////
91 %typemap(out) MEDCouplingCartesianAMRPatchGen*
92 {
93   $result=convertCartesianAMRPatch($1,$owner);
94 }
95 //$$$$$$$$$$$$$$$$$$
96
97 ////////////////////
98 %typemap(out) MEDCouplingCartesianAMRMeshGen*
99 {
100   $result=convertCartesianAMRMesh($1,$owner);
101 }
102 //$$$$$$$$$$$$$$$$$$
103
104 ////////////////////
105 %typemap(out) MEDCouplingDataForGodFather*
106 {
107   $result=convertDataForGodFather($1,$owner);
108 }
109 //$$$$$$$$$$$$$$$$$$
110
111 ////////////////////
112 %typemap(out) MEDCoupling::MEDCoupling1GTUMesh*
113 {
114   $result=convertMesh($1,$owner);
115 }
116
117 %typemap(out) MEDCoupling1GTUMesh*
118 {
119   $result=convertMesh($1,$owner);
120 }
121 //$$$$$$$$$$$$$$$$$$
122
123 ////////////////////
124 %typemap(out) MEDCoupling::MEDCouplingStructuredMesh*
125 {
126   $result=convertMesh($1,$owner);
127 }
128
129 %typemap(out) MEDCouplingStructuredMesh*
130 {
131   $result=convertMesh($1,$owner);
132 }
133 //$$$$$$$$$$$$$$$$$$
134
135 ////////////////////
136 %typemap(out) MEDCoupling::MEDCouplingFieldDiscretization*
137 {
138   $result=convertFieldDiscretization($1,$owner);
139 }
140
141 %typemap(out) MEDCouplingFieldDiscretization*
142 {
143   $result=convertFieldDiscretization($1,$owner);
144 }
145 //$$$$$$$$$$$$$$$$$$
146
147 ////////////////////
148 %typemap(out) MEDCoupling::MEDCouplingField*
149 {
150   $result=convertField($1,$owner);
151 }
152
153 %typemap(out) MEDCouplingField*
154 {
155   $result=convertField($1,$owner);
156 }
157 //$$$$$$$$$$$$$$$$$$
158
159 ////////////////////
160 %typemap(out) MEDCoupling::MEDCouplingMultiFields*
161 {
162   $result=convertMultiFields($1,$owner);
163 }
164
165 %typemap(out) MEDCouplingMultiFields*
166 {
167   $result=convertMultiFields($1,$owner);
168 }
169 //$$$$$$$$$$$$$$$$$$
170
171 ////////////////////
172 %typemap(out) MEDCoupling::PartDefinition*
173 {
174   $result=convertPartDefinition($1,$owner);
175 }
176
177 %typemap(out) PartDefinition*
178 {
179   $result=convertPartDefinition($1,$owner);
180 }
181 //$$$$$$$$$$$$$$$$$$
182
183 #ifdef WITH_NUMPY
184 %init %{ import_array(); %}
185 #endif
186
187 %init %{ initializeMe(); %}
188
189 %feature("autodoc", "1");
190 %feature("docstring");
191
192 %newobject MEDCoupling::MEDCouplingField::buildMeasureField;
193 %newobject MEDCoupling::MEDCouplingField::getLocalizationOfDiscr;
194 %newobject MEDCoupling::MEDCouplingField::computeTupleIdsToSelectFromCellIds;
195 %newobject MEDCoupling::MEDCouplingFieldDouble::New;
196 %newobject MEDCoupling::MEDCouplingFieldDouble::getArray;
197 %newobject MEDCoupling::MEDCouplingFieldDouble::getEndArray;
198 %newobject MEDCoupling::MEDCouplingFieldDouble::MergeFields;
199 %newobject MEDCoupling::MEDCouplingFieldDouble::MeldFields;
200 %newobject MEDCoupling::MEDCouplingFieldDouble::convertToIntField;
201 %newobject MEDCoupling::MEDCouplingFieldDouble::convertToFloatField;
202 %newobject MEDCoupling::MEDCouplingFieldDouble::doublyContractedProduct;
203 %newobject MEDCoupling::MEDCouplingFieldDouble::determinant;
204 %newobject MEDCoupling::MEDCouplingFieldDouble::eigenValues;
205 %newobject MEDCoupling::MEDCouplingFieldDouble::eigenVectors;
206 %newobject MEDCoupling::MEDCouplingFieldDouble::inverse;
207 %newobject MEDCoupling::MEDCouplingFieldDouble::trace;
208 %newobject MEDCoupling::MEDCouplingFieldDouble::deviator;
209 %newobject MEDCoupling::MEDCouplingFieldDouble::magnitude;
210 %newobject MEDCoupling::MEDCouplingFieldDouble::maxPerTuple;
211 %newobject MEDCoupling::MEDCouplingFieldDouble::keepSelectedComponents;
212 %newobject MEDCoupling::MEDCouplingFieldDouble::extractSlice3D;
213 %newobject MEDCoupling::MEDCouplingFieldDouble::DotFields;
214 %newobject MEDCoupling::MEDCouplingFieldDouble::dot;
215 %newobject MEDCoupling::MEDCouplingFieldDouble::CrossProductFields;
216 %newobject MEDCoupling::MEDCouplingFieldDouble::crossProduct;
217 %newobject MEDCoupling::MEDCouplingFieldDouble::MaxFields;
218 %newobject MEDCoupling::MEDCouplingFieldDouble::max;
219 %newobject MEDCoupling::MEDCouplingFieldDouble::MinFields;
220 %newobject MEDCoupling::MEDCouplingFieldDouble::AddFields;
221 %newobject MEDCoupling::MEDCouplingFieldDouble::SubstractFields;
222 %newobject MEDCoupling::MEDCouplingFieldDouble::MultiplyFields;
223 %newobject MEDCoupling::MEDCouplingFieldDouble::DivideFields;
224 %newobject MEDCoupling::MEDCouplingFieldDouble::min;
225 %newobject MEDCoupling::MEDCouplingFieldDouble::negate;
226 %newobject MEDCoupling::MEDCouplingFieldDouble::findIdsInRange;
227 %newobject MEDCoupling::MEDCouplingFieldDouble::buildSubPart;
228 %newobject MEDCoupling::MEDCouplingFieldDouble::buildSubPartRange;
229 %newobject MEDCoupling::MEDCouplingFieldDouble::voronoize;
230 %newobject MEDCoupling::MEDCouplingFieldDouble::convertQuadraticCellsToLinear;
231 %newobject MEDCoupling::MEDCouplingFieldDouble::__getitem__;
232 %newobject MEDCoupling::MEDCouplingFieldDouble::__neg__;
233 %newobject MEDCoupling::MEDCouplingFieldDouble::__add__;
234 %newobject MEDCoupling::MEDCouplingFieldDouble::__sub__;
235 %newobject MEDCoupling::MEDCouplingFieldDouble::__mul__;
236 %newobject MEDCoupling::MEDCouplingFieldDouble::__div__;
237 %newobject MEDCoupling::MEDCouplingFieldDouble::__pow__;
238 %newobject MEDCoupling::MEDCouplingFieldDouble::__radd__;
239 %newobject MEDCoupling::MEDCouplingFieldDouble::__rsub__;
240 %newobject MEDCoupling::MEDCouplingFieldDouble::__rmul__;
241 %newobject MEDCoupling::MEDCouplingFieldDouble::__rdiv__;
242 %newobject MEDCoupling::MEDCouplingFieldDouble::clone;
243 %newobject MEDCoupling::MEDCouplingFieldDouble::cloneWithMesh;
244 %newobject MEDCoupling::MEDCouplingFieldDouble::deepCopy;
245 %newobject MEDCoupling::MEDCouplingFieldDouble::buildNewTimeReprFromThis;
246 %newobject MEDCoupling::MEDCouplingFieldDouble::nodeToCellDiscretization;
247 %newobject MEDCoupling::MEDCouplingFieldDouble::cellToNodeDiscretization;
248 %newobject MEDCoupling::MEDCouplingFieldDouble::getValueOnMulti;
249 %newobject MEDCoupling::MEDCouplingFieldDouble::computeVectorFieldCyl;
250 %newobject MEDCoupling::MEDCouplingFieldInt::New;
251 %newobject MEDCoupling::MEDCouplingFieldInt::convertToDblField;
252 %newobject MEDCoupling::MEDCouplingFieldInt::getArray;
253 %newobject MEDCoupling::MEDCouplingFieldInt::deepCopy;
254 %newobject MEDCoupling::MEDCouplingFieldInt::clone;
255 %newobject MEDCoupling::MEDCouplingFieldInt::cloneWithMesh;
256 %newobject MEDCoupling::MEDCouplingFieldInt::buildSubPart;
257 %newobject MEDCoupling::MEDCouplingFieldInt::buildSubPartRange;
258 %newobject MEDCoupling::MEDCouplingFieldInt::__getitem__;
259 %newobject MEDCoupling::MEDCouplingFieldFloat::New;
260 %newobject MEDCoupling::MEDCouplingFieldFloat::convertToDblField;
261 %newobject MEDCoupling::MEDCouplingFieldFloat::getArray;
262 %newobject MEDCoupling::MEDCouplingFieldFloat::deepCopy;
263 %newobject MEDCoupling::MEDCouplingFieldFloat::clone;
264 %newobject MEDCoupling::MEDCouplingFieldFloat::cloneWithMesh;
265 %newobject MEDCoupling::MEDCouplingFieldFloat::buildSubPart;
266 %newobject MEDCoupling::MEDCouplingFieldFloat::buildSubPartRange;
267 %newobject MEDCoupling::MEDCouplingFieldFloat::__getitem__;
268 %newobject MEDCoupling::MEDCouplingFieldTemplate::New;
269 %newobject MEDCoupling::MEDCouplingMesh::deepCopy;
270 %newobject MEDCoupling::MEDCouplingMesh::clone;
271 %newobject MEDCoupling::MEDCouplingMesh::checkDeepEquivalOnSameNodesWith;
272 %newobject MEDCoupling::MEDCouplingMesh::checkTypeConsistencyAndContig;
273 %newobject MEDCoupling::MEDCouplingMesh::computeNbOfNodesPerCell;
274 %newobject MEDCoupling::MEDCouplingMesh::computeNbOfFacesPerCell;
275 %newobject MEDCoupling::MEDCouplingMesh::computeEffectiveNbOfNodesPerCell;
276 %newobject MEDCoupling::MEDCouplingMesh::buildPartRange;
277 %newobject MEDCoupling::MEDCouplingMesh::giveCellsWithType;
278 %newobject MEDCoupling::MEDCouplingMesh::getCoordinatesAndOwner;
279 %newobject MEDCoupling::MEDCouplingMesh::computeCellCenterOfMass;
280 %newobject MEDCoupling::MEDCouplingMesh::computeIsoBarycenterOfNodesPerCell;
281 %newobject MEDCoupling::MEDCouplingMesh::buildOrthogonalField;
282 %newobject MEDCoupling::MEDCouplingMesh::getCellIdsFullyIncludedInNodeIds;
283 %newobject MEDCoupling::MEDCouplingMesh::mergeMyselfWith;
284 %newobject MEDCoupling::MEDCouplingMesh::fillFromAnalytic;
285 %newobject MEDCoupling::MEDCouplingMesh::fillFromAnalyticCompo;
286 %newobject MEDCoupling::MEDCouplingMesh::fillFromAnalyticNamedCompo;
287 %newobject MEDCoupling::MEDCouplingMesh::getMeasureField;
288 %newobject MEDCoupling::MEDCouplingMesh::simplexize;
289 %newobject MEDCoupling::MEDCouplingMesh::buildUnstructured;
290 %newobject MEDCoupling::MEDCouplingMesh::MergeMeshes;
291 %newobject MEDCoupling::MEDCouplingMesh::getDirectAccessOfCoordsArrIfInStructure;
292 %newobject MEDCoupling::MEDCouplingPointSet::zipCoordsTraducer;
293 %newobject MEDCoupling::MEDCouplingPointSet::getCellsInBoundingBox;
294 %newobject MEDCoupling::MEDCouplingPointSet::findBoundaryNodes;
295 %newobject MEDCoupling::MEDCouplingPointSet::buildBoundaryMesh;
296 %newobject MEDCoupling::MEDCouplingPointSet::MergeNodesArray;
297 %newobject MEDCoupling::MEDCouplingPointSet::buildPartOfMySelfSlice;
298 %newobject MEDCoupling::MEDCouplingPointSet::BuildInstanceFromMeshType;
299 %newobject MEDCoupling::MEDCouplingPointSet::zipConnectivityTraducer;
300 %newobject MEDCoupling::MEDCouplingPointSet::mergeMyselfWithOnSameCoords;
301 %newobject MEDCoupling::MEDCouplingPointSet::fillCellIdsToKeepFromNodeIds;
302 %newobject MEDCoupling::MEDCouplingPointSet::getCellIdsLyingOnNodes;
303 %newobject MEDCoupling::MEDCouplingPointSet::deepCopyConnectivityOnly;
304 %newobject MEDCoupling::MEDCouplingPointSet::getBoundingBoxForBBTree;
305 %newobject MEDCoupling::MEDCouplingPointSet::computeFetchedNodeIds;
306 %newobject MEDCoupling::MEDCouplingPointSet::ComputeNbOfInteractionsWithSrcCells;
307 %newobject MEDCoupling::MEDCouplingPointSet::computeDiameterField;
308 %newobject MEDCoupling::MEDCouplingPointSet::__getitem__;
309 %newobject MEDCoupling::MEDCouplingUMesh::New;
310 %newobject MEDCoupling::MEDCouplingUMesh::getNodalConnectivity;
311 %newobject MEDCoupling::MEDCouplingUMesh::getNodalConnectivityIndex;
312 %newobject MEDCoupling::MEDCouplingUMesh::__iter__;
313 %newobject MEDCoupling::MEDCouplingUMesh::cellsByType;
314 %newobject MEDCoupling::MEDCouplingUMesh::buildDescendingConnectivity;
315 %newobject MEDCoupling::MEDCouplingUMesh::buildDescendingConnectivity2;
316 %newobject MEDCoupling::MEDCouplingUMesh::explode3DMeshTo1D;
317 %newobject MEDCoupling::MEDCouplingUMesh::explodeMeshIntoMicroEdges;
318 %newobject MEDCoupling::MEDCouplingUMesh::buildExtrudedMesh;
319 %newobject MEDCoupling::MEDCouplingUMesh::buildSpreadZonesWithPoly;
320 %newobject MEDCoupling::MEDCouplingUMesh::MergeUMeshes;
321 %newobject MEDCoupling::MEDCouplingUMesh::MergeUMeshesOnSameCoords;
322 %newobject MEDCoupling::MEDCouplingUMesh::ComputeSpreadZoneGradually;
323 %newobject MEDCoupling::MEDCouplingUMesh::ComputeSpreadZoneGraduallyFromSeed;
324 %newobject MEDCoupling::MEDCouplingUMesh::buildNewNumberingFromCommNodesFrmt;
325 %newobject MEDCoupling::MEDCouplingUMesh::conformize2D;
326 %newobject MEDCoupling::MEDCouplingUMesh::conformize3D;
327 %newobject MEDCoupling::MEDCouplingUMesh::colinearize2D;
328 %newobject MEDCoupling::MEDCouplingUMesh::rearrange2ConsecutiveCellTypes;
329 %newobject MEDCoupling::MEDCouplingUMesh::sortCellsInMEDFileFrmt;
330 %newobject MEDCoupling::MEDCouplingUMesh::getRenumArrForMEDFileFrmt;
331 %newobject MEDCoupling::MEDCouplingUMesh::convertCellArrayPerGeoType;
332 %newobject MEDCoupling::MEDCouplingUMesh::getRenumArrForConsecutiveCellTypesSpec;
333 %newobject MEDCoupling::MEDCouplingUMesh::buildDirectionVectorField;
334 %newobject MEDCoupling::MEDCouplingUMesh::convertLinearCellsToQuadratic;
335 %newobject MEDCoupling::MEDCouplingUMesh::getEdgeRatioField;
336 %newobject MEDCoupling::MEDCouplingUMesh::getAspectRatioField;
337 %newobject MEDCoupling::MEDCouplingUMesh::getWarpField;
338 %newobject MEDCoupling::MEDCouplingUMesh::getSkewField;
339 %newobject MEDCoupling::MEDCouplingUMesh::getPartBarycenterAndOwner;
340 %newobject MEDCoupling::MEDCouplingUMesh::computePlaneEquationOf3DFaces;
341 %newobject MEDCoupling::MEDCouplingUMesh::getPartMeasureField;
342 %newobject MEDCoupling::MEDCouplingUMesh::buildPartOrthogonalField;
343 %newobject MEDCoupling::MEDCouplingUMesh::keepCellIdsByType;
344 %newobject MEDCoupling::MEDCouplingUMesh::Build0DMeshFromCoords;
345 %newobject MEDCoupling::MEDCouplingUMesh::Build1DMeshFromCoords;
346 %newobject MEDCoupling::MEDCouplingUMesh::findAndCorrectBadOriented3DExtrudedCells;
347 %newobject MEDCoupling::MEDCouplingUMesh::findAndCorrectBadOriented3DCells;
348 %newobject MEDCoupling::MEDCouplingUMesh::convertIntoSingleGeoTypeMesh;
349 %newobject MEDCoupling::MEDCouplingUMesh::convertNodalConnectivityToStaticGeoTypeMesh;
350 %newobject MEDCoupling::MEDCouplingUMesh::findCellIdsOnBoundary;
351 %newobject MEDCoupling::MEDCouplingUMesh::computeSkin;
352 %newobject MEDCoupling::MEDCouplingUMesh::buildSetInstanceFromThis;
353 %newobject MEDCoupling::MEDCouplingUMesh::getCellIdsCrossingPlane;
354 %newobject MEDCoupling::MEDCouplingUMesh::convexEnvelop2D;
355 %newobject MEDCoupling::MEDCouplingUMesh::ComputeRangesFromTypeDistribution;
356 %newobject MEDCoupling::MEDCouplingUMesh::buildUnionOf2DMesh;
357 %newobject MEDCoupling::MEDCouplingUMesh::buildUnionOf3DMesh;
358 %newobject MEDCoupling::MEDCouplingUMesh::generateGraph;
359 %newobject MEDCoupling::MEDCouplingUMesh::orderConsecutiveCells1D;
360 %newobject MEDCoupling::MEDCouplingUMesh::clipSingle3DCellByPlane;
361 %newobject MEDCoupling::MEDCouplingUMesh::getBoundingBoxForBBTreeFast;
362 %newobject MEDCoupling::MEDCouplingUMesh::getBoundingBoxForBBTree2DQuadratic;
363 %newobject MEDCoupling::MEDCouplingUMesh::getBoundingBoxForBBTree1DQuadratic;
364 %newobject MEDCoupling::MEDCouplingUMeshCellByTypeEntry::__iter__;
365 %newobject MEDCoupling::MEDCouplingUMeshCellEntry::__iter__;
366 %newobject MEDCoupling::MEDCoupling1GTUMesh::New;
367 %newobject MEDCoupling::MEDCoupling1GTUMesh::getNodalConnectivity;
368 %newobject MEDCoupling::MEDCoupling1GTUMesh::AggregateOnSameCoordsToUMesh;
369 %newobject MEDCoupling::MEDCoupling1SGTUMesh::New;
370 %newobject MEDCoupling::MEDCoupling1SGTUMesh::buildSetInstanceFromThis;
371 %newobject MEDCoupling::MEDCoupling1SGTUMesh::computeDualMesh;
372 %newobject MEDCoupling::MEDCoupling1SGTUMesh::explodeEachHexa8To6Quad4;
373 %newobject MEDCoupling::MEDCoupling1SGTUMesh::sortHexa8EachOther;
374 %newobject MEDCoupling::MEDCoupling1SGTUMesh::Merge1SGTUMeshes;
375 %newobject MEDCoupling::MEDCoupling1SGTUMesh::Merge1SGTUMeshesOnSameCoords;
376 %newobject MEDCoupling::MEDCoupling1DGTUMesh::New;
377 %newobject MEDCoupling::MEDCoupling1DGTUMesh::getNodalConnectivityIndex;
378 %newobject MEDCoupling::MEDCoupling1DGTUMesh::buildSetInstanceFromThis;
379 %newobject MEDCoupling::MEDCoupling1DGTUMesh::Merge1DGTUMeshes;
380 %newobject MEDCoupling::MEDCoupling1DGTUMesh::Merge1DGTUMeshesOnSameCoords;
381 %newobject MEDCoupling::MEDCouplingMappedExtrudedMesh::New;
382 %newobject MEDCoupling::MEDCouplingMappedExtrudedMesh::build3DUnstructuredMesh;
383 %newobject MEDCoupling::MEDCouplingStructuredMesh::buildStructuredSubPart;
384 %newobject MEDCoupling::MEDCouplingStructuredMesh::build1SGTUnstructured;
385 %newobject MEDCoupling::MEDCouplingStructuredMesh::build1SGTSubLevelMesh;
386 %newobject MEDCoupling::MEDCouplingStructuredMesh::BuildExplicitIdsFrom;
387 %newobject MEDCoupling::MEDCouplingStructuredMesh::ExtractFieldOfDoubleFrom;
388 %newobject MEDCoupling::MEDCouplingStructuredMesh::Build1GTNodalConnectivity;
389 %newobject MEDCoupling::MEDCouplingStructuredMesh::Build1GTNodalConnectivityOfSubLevelMesh;
390 %newobject MEDCoupling::MEDCouplingStructuredMesh::ComputeCornersGhost;
391 %newobject MEDCoupling::MEDCouplingCMesh::New;
392 %newobject MEDCoupling::MEDCouplingCMesh::getCoordsAt;
393 %newobject MEDCoupling::MEDCouplingCMesh::buildCurveLinear;
394 %newobject MEDCoupling::MEDCouplingIMesh::New;
395 %newobject MEDCoupling::MEDCouplingIMesh::asSingleCell;
396 %newobject MEDCoupling::MEDCouplingIMesh::buildWithGhost;
397 %newobject MEDCoupling::MEDCouplingIMesh::convertToCartesian;
398 %newobject MEDCoupling::MEDCouplingCurveLinearMesh::New;
399 %newobject MEDCoupling::MEDCouplingCurveLinearMesh::getCoords;
400 %newobject MEDCoupling::MEDCouplingMultiFields::New;
401 %newobject MEDCoupling::MEDCouplingMultiFields::deepCopy;
402 %newobject MEDCoupling::MEDCouplingFieldOverTime::New;
403 %newobject MEDCoupling::MEDCouplingCartesianAMRPatchGen::getMesh;
404 %newobject MEDCoupling::MEDCouplingCartesianAMRPatchGen::__getitem__;
405 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::deepCopy;
406 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::buildUnstructured;
407 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::extractGhostFrom;
408 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::buildMeshFromPatchEnvelop;
409 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::buildMeshOfDirectChildrenOnly;
410 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::getImageMesh;
411 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::getGodFather;
412 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::getFather;
413 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::getPatch;
414 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::createCellFieldOnPatch;
415 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::findPatchesInTheNeighborhoodOf;
416 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::getPatchAtPosition;
417 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::getMeshAtPosition;
418 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::__getitem__;
419 %newobject MEDCoupling::MEDCouplingCartesianAMRMesh::New;
420 %newobject MEDCoupling::MEDCouplingDataForGodFather::getMyGodFather;
421 %newobject MEDCoupling::MEDCouplingAMRAttribute::New;
422 %newobject MEDCoupling::MEDCouplingAMRAttribute::deepCopy;
423 %newobject MEDCoupling::MEDCouplingAMRAttribute::deepCpyWithoutGodFather;
424 %newobject MEDCoupling::MEDCouplingAMRAttribute::getFieldOn;
425 %newobject MEDCoupling::MEDCouplingAMRAttribute::projectTo;
426 %newobject MEDCoupling::MEDCouplingAMRAttribute::buildCellFieldOnRecurseWithoutOverlapWithoutGhost;
427 %newobject MEDCoupling::MEDCouplingAMRAttribute::buildCellFieldOnWithGhost;
428 %newobject MEDCoupling::MEDCouplingAMRAttribute::buildCellFieldOnWithoutGhost;
429 %newobject MEDCoupling::DenseMatrix::New;
430 %newobject MEDCoupling::DenseMatrix::deepCopy;
431 %newobject MEDCoupling::DenseMatrix::shallowCpy;
432 %newobject MEDCoupling::DenseMatrix::getData;
433 %newobject MEDCoupling::DenseMatrix::matVecMult;
434 %newobject MEDCoupling::DenseMatrix::MatVecMult;
435 %newobject MEDCoupling::DenseMatrix::__add__;
436 %newobject MEDCoupling::DenseMatrix::__sub__;
437 %newobject MEDCoupling::DenseMatrix::__mul__;
438 %newobject MEDCoupling::MEDCouplingGaussLocalization::localizePtsInRefCooForEachCell;
439 %newobject MEDCoupling::MEDCouplingGaussLocalization::buildRefCell;
440 %newobject MEDCoupling::MEDCouplingSkyLineArray::BuildFromPolyhedronConn;
441 %newobject MEDCoupling::MEDCouplingSkyLineArray::getSuperIndexArray;
442 %newobject MEDCoupling::MEDCouplingSkyLineArray::getIndexArray;
443 %newobject MEDCoupling::MEDCouplingSkyLineArray::getValuesArray;
444
445 %feature("unref") MEDCouplingPointSet "$this->decrRef();"
446 %feature("unref") MEDCouplingMesh "$this->decrRef();"
447 %feature("unref") MEDCouplingUMesh "$this->decrRef();"
448 %feature("unref") MEDCoupling1GTUMesh "$this->decrRef();"
449 %feature("unref") MEDCoupling1SGTUMesh "$this->decrRef();"
450 %feature("unref") MEDCoupling1DGTUMesh "$this->decrRef();"
451 %feature("unref") MEDCouplingMappedExtrudedMesh "$this->decrRef();"
452 %feature("unref") MEDCouplingCMesh "$this->decrRef();"
453 %feature("unref") MEDCouplingIMesh "$this->decrRef();"
454 %feature("unref") MEDCouplingCurveLinearMesh "$this->decrRef();"
455 %feature("unref") MEDCouplingField "$this->decrRef();"
456 %feature("unref") MEDCouplingFieldDiscretizationP0 "$this->decrRef();"
457 %feature("unref") MEDCouplingFieldDiscretizationP1 "$this->decrRef();"
458 %feature("unref") MEDCouplingFieldDiscretizationGauss "$this->decrRef();"
459 %feature("unref") MEDCouplingFieldDiscretizationGaussNE "$this->decrRef();"
460 %feature("unref") MEDCouplingFieldDiscretizationKriging "$this->decrRef();"
461 %feature("unref") MEDCouplingFieldDouble "$this->decrRef();"
462 %feature("unref") MEDCouplingFieldFloat "$this->decrRef();"
463 %feature("unref") MEDCouplingFieldInt "$this->decrRef();"
464 %feature("unref") MEDCouplingMultiFields "$this->decrRef();"
465 %feature("unref") MEDCouplingFieldTemplate "$this->decrRef();"
466 %feature("unref") MEDCouplingMultiFields "$this->decrRef();"
467 %feature("unref") MEDCouplingCartesianAMRMeshGen "$this->decrRef();"
468 %feature("unref") MEDCouplingCartesianAMRMesh "$this->decrRef();"
469 %feature("unref") MEDCouplingCartesianAMRMeshSub "$this->decrRef();"
470 %feature("unref") MEDCouplingCartesianAMRPatchGen "$this->decrRef();"
471 %feature("unref") MEDCouplingCartesianAMRPatchGF "$this->decrRef();"
472 %feature("unref") MEDCouplingCartesianAMRPatch "$this->decrRef();"
473 %feature("unref") MEDCouplingDataForGodFather "$this->decrRef();"
474 %feature("unref") MEDCouplingAMRAttribute "$this->decrRef();"
475 %feature("unref") DenseMatrix "$this->decrRef();"
476 %feature("unref") MEDCouplingSkyLineArray "$this->decrRef();"
477
478 %rename(assign) *::operator=;
479 %ignore MEDCoupling::MEDCouplingGaussLocalization::pushTinySerializationIntInfo;
480 %ignore MEDCoupling::MEDCouplingGaussLocalization::pushTinySerializationDblInfo;
481 %ignore MEDCoupling::MEDCouplingGaussLocalization::fillWithValues;
482 %ignore MEDCoupling::MEDCouplingGaussLocalization::buildNewInstanceFromTinyInfo;
483
484 %nodefaultctor;
485
486 %rename (InterpKernelException) INTERP_KERNEL::Exception;
487
488 %include "MEDCouplingRefCountObject.i"
489 %include "MEDCouplingMemArray.i"
490
491 %{
492   void initializeMe()
493   {// AGY : here initialization of C++ traits in MEDCouplingDataArrayTypemaps.i for code factorization. Awful, I know, but no other solutions.
494     SWIGTITraits<double>::TI=SWIGTYPE_p_MEDCoupling__DataArrayDouble;
495     SWIGTITraits<float>::TI=SWIGTYPE_p_MEDCoupling__DataArrayFloat;
496     SWIGTITraits<int>::TI=SWIGTYPE_p_MEDCoupling__DataArrayInt;
497     SWIGTITraits<double>::TI_TUPLE=SWIGTYPE_p_MEDCoupling__DataArrayDoubleTuple;
498     SWIGTITraits<float>::TI_TUPLE=SWIGTYPE_p_MEDCoupling__DataArrayFloatTuple;
499     SWIGTITraits<int>::TI_TUPLE=SWIGTYPE_p_MEDCoupling__DataArrayIntTuple;
500   }
501 %}
502
503 namespace INTERP_KERNEL
504
505   /*!
506    * \class BoxSplittingOptions
507    * Class defining the options for box splitting used for AMR algorithm like creation of patches following a criterion.
508    */
509   class BoxSplittingOptions
510   {
511   public:
512     BoxSplittingOptions();
513     void init() throw(INTERP_KERNEL::Exception);
514     double getEfficiencyGoal() const throw(INTERP_KERNEL::Exception);
515     void setEfficiencyGoal(double efficiency) throw(INTERP_KERNEL::Exception);
516     double getEfficiencyThreshold() const throw(INTERP_KERNEL::Exception);
517     void setEfficiencyThreshold(double efficiencyThreshold) throw(INTERP_KERNEL::Exception);
518     int getMinimumPatchLength() const throw(INTERP_KERNEL::Exception);
519     void setMinimumPatchLength(int minPatchLength) throw(INTERP_KERNEL::Exception);
520     int getMaximumPatchLength() const throw(INTERP_KERNEL::Exception);
521     void setMaximumPatchLength(int maxPatchLength) throw(INTERP_KERNEL::Exception);
522     int getMaximumNbOfCellsInPatch() const throw(INTERP_KERNEL::Exception);
523     void setMaximumNbOfCellsInPatch(int maxNbCellsInPatch) throw(INTERP_KERNEL::Exception);
524     void copyOptions(const BoxSplittingOptions & other) throw(INTERP_KERNEL::Exception);
525     std::string printOptions() const throw(INTERP_KERNEL::Exception);
526     %extend
527     {
528       std::string __str__() const throw(INTERP_KERNEL::Exception)
529       {
530         return self->printOptions();
531       }
532     }
533   };
534 }
535
536 namespace MEDCoupling
537 {
538   typedef enum
539     {
540       ON_CELLS = 0,
541       ON_NODES = 1,
542       ON_GAUSS_PT = 2,
543       ON_GAUSS_NE = 3,
544       ON_NODES_KR = 4
545     } TypeOfField;
546
547   typedef enum
548     {
549       NO_TIME = 4,
550       ONE_TIME = 5,
551       LINEAR_TIME = 6,
552       CONST_ON_TIME_INTERVAL = 7
553     } TypeOfTimeDiscretization;
554
555   typedef enum
556     {
557       UNSTRUCTURED = 5,
558       CARTESIAN = 7,
559       EXTRUDED = 8,
560       CURVE_LINEAR = 9,
561       SINGLE_STATIC_GEO_TYPE_UNSTRUCTURED = 10,
562       SINGLE_DYNAMIC_GEO_TYPE_UNSTRUCTURED = 11,
563       IMAGE_GRID = 12
564     } MEDCouplingMeshType;
565
566   class DataArrayInt;
567   class DataArrayDouble;
568   class MEDCouplingUMesh;
569   class MEDCouplingCMesh;
570   class MEDCouplingFieldDouble;
571
572   %extend RefCountObject
573   {
574     std::string getHiddenCppPointer() const
575     {
576       std::ostringstream oss; oss << "C++ Pointer address is : " << self;
577       return oss.str();
578     }
579   }
580
581   %extend MEDCouplingGaussLocalization
582   {
583     std::string __str__() const throw(INTERP_KERNEL::Exception)
584     {
585       return self->getStringRepr();
586     }
587
588     std::string __repr__() const throw(INTERP_KERNEL::Exception)
589     {
590       std::ostringstream oss; oss << "MEDCouplingGaussLocalization C++ instance at " << self << "." << std::endl;
591       oss << self->getStringRepr();
592       return oss.str();
593     }
594   }
595
596   //== MEDCouplingMesh
597   
598   class MEDCouplingMesh : public RefCountObject, public TimeLabel
599   {
600   public:
601     void setName(const std::string& name);
602     std::string getName() const;
603     void setDescription(const std::string& descr);
604     std::string getDescription() const;
605     void setTime(double val, int iteration, int order);
606     void setTimeUnit(const std::string& unit);
607     std::string getTimeUnit() const;
608     virtual MEDCouplingMeshType getType() const throw(INTERP_KERNEL::Exception);
609     bool isStructured() const throw(INTERP_KERNEL::Exception);
610     virtual MEDCouplingMesh *deepCopy() const throw(INTERP_KERNEL::Exception);
611     virtual MEDCouplingMesh *clone(bool recDeepCpy) const throw(INTERP_KERNEL::Exception);
612     virtual bool isEqual(const MEDCouplingMesh *other, double prec) const throw(INTERP_KERNEL::Exception);
613     virtual bool isEqualWithoutConsideringStr(const MEDCouplingMesh *other, double prec) const throw(INTERP_KERNEL::Exception);
614     virtual void checkFastEquivalWith(const MEDCouplingMesh *other, double prec) const throw(INTERP_KERNEL::Exception);
615     virtual void copyTinyStringsFrom(const MEDCouplingMesh *other) throw(INTERP_KERNEL::Exception);
616     virtual void copyTinyInfoFrom(const MEDCouplingMesh *other) throw(INTERP_KERNEL::Exception);
617     virtual void checkConsistencyLight() const throw(INTERP_KERNEL::Exception);
618     virtual void checkConsistency(double eps=1e-12) const throw(INTERP_KERNEL::Exception);
619     virtual int getNumberOfCells() const throw(INTERP_KERNEL::Exception);
620     virtual int getNumberOfNodes() const throw(INTERP_KERNEL::Exception);
621     virtual int getSpaceDimension() const throw(INTERP_KERNEL::Exception);
622     virtual int getMeshDimension() const throw(INTERP_KERNEL::Exception);
623     virtual DataArrayDouble *getCoordinatesAndOwner() const throw(INTERP_KERNEL::Exception);
624     virtual DataArrayDouble *computeCellCenterOfMass() const throw(INTERP_KERNEL::Exception);
625     virtual DataArrayDouble *computeIsoBarycenterOfNodesPerCell() const throw(INTERP_KERNEL::Exception);
626     virtual DataArrayInt *giveCellsWithType(INTERP_KERNEL::NormalizedCellType type) const throw(INTERP_KERNEL::Exception);
627     virtual DataArrayInt *computeNbOfNodesPerCell() const throw(INTERP_KERNEL::Exception);
628     virtual DataArrayInt *computeNbOfFacesPerCell() const throw(INTERP_KERNEL::Exception);
629     virtual DataArrayInt *computeEffectiveNbOfNodesPerCell() const throw(INTERP_KERNEL::Exception);
630     virtual MEDCouplingMesh *buildPartRange(int beginCellIds, int endCellIds, int stepCellIds) const throw(INTERP_KERNEL::Exception);
631     virtual int getNumberOfCellsWithType(INTERP_KERNEL::NormalizedCellType type) const throw(INTERP_KERNEL::Exception);
632     virtual INTERP_KERNEL::NormalizedCellType getTypeOfCell(int cellId) const throw(INTERP_KERNEL::Exception);
633     virtual std::string simpleRepr() const throw(INTERP_KERNEL::Exception);
634     virtual std::string advancedRepr() const throw(INTERP_KERNEL::Exception);
635     std::string writeVTK(const std::string& fileName, bool isBinary=true) const throw(INTERP_KERNEL::Exception);
636     virtual std::string getVTKFileExtension() const;
637     std::string getVTKFileNameOf(const std::string& fileName) const;
638     // tools
639     virtual MEDCouplingFieldDouble *getMeasureField(bool isAbs) const throw(INTERP_KERNEL::Exception);
640     virtual MEDCouplingFieldDouble *getMeasureFieldOnNode(bool isAbs) const throw(INTERP_KERNEL::Exception);
641     virtual MEDCouplingFieldDouble *fillFromAnalytic(TypeOfField t, int nbOfComp, const std::string& func) const throw(INTERP_KERNEL::Exception);
642     virtual MEDCouplingFieldDouble *fillFromAnalyticCompo(TypeOfField t, int nbOfComp, const std::string& func) const throw(INTERP_KERNEL::Exception);
643     virtual MEDCouplingFieldDouble *fillFromAnalyticNamedCompo(TypeOfField t, int nbOfComp, const std::vector<std::string>& varsOrder, const std::string& func) const throw(INTERP_KERNEL::Exception);
644     virtual MEDCouplingFieldDouble *buildOrthogonalField() const throw(INTERP_KERNEL::Exception);
645     virtual MEDCouplingUMesh *buildUnstructured() const throw(INTERP_KERNEL::Exception);
646     virtual MEDCouplingMesh *mergeMyselfWith(const MEDCouplingMesh *other) const throw(INTERP_KERNEL::Exception);
647     virtual bool areCompatibleForMerge(const MEDCouplingMesh *other) const throw(INTERP_KERNEL::Exception);
648     virtual DataArrayInt *simplexize(int policy) throw(INTERP_KERNEL::Exception);
649     virtual void unserialization(const std::vector<double>& tinyInfoD, const std::vector<int>& tinyInfo, const DataArrayInt *a1, DataArrayDouble *a2, const std::vector<std::string>& littleStrings) throw(INTERP_KERNEL::Exception);
650     static MEDCouplingMesh *MergeMeshes(const MEDCouplingMesh *mesh1, const MEDCouplingMesh *mesh2) throw(INTERP_KERNEL::Exception);
651     static bool IsStaticGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
652     static bool IsLinearGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
653     static INTERP_KERNEL::NormalizedCellType GetCorrespondingPolyType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
654     static int GetNumberOfNodesOfGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
655     static int GetDimensionOfGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
656     static const char *GetReprOfGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
657     %extend
658        {
659          std::string __str__() const throw(INTERP_KERNEL::Exception)
660          {
661            return self->simpleRepr();
662          }
663
664          PyObject *getTime() throw(INTERP_KERNEL::Exception)
665          {
666            int tmp1,tmp2;
667            double tmp0=self->getTime(tmp1,tmp2);
668            PyObject *res = PyList_New(3);
669            PyList_SetItem(res,0,SWIG_From_double(tmp0));
670            PyList_SetItem(res,1,SWIG_From_int(tmp1));
671            PyList_SetItem(res,2,SWIG_From_int(tmp2));
672            return res;
673          }
674
675          DataArrayDouble *getDirectAccessOfCoordsArrIfInStructure() const throw(INTERP_KERNEL::Exception)
676          {
677            const DataArrayDouble *ret(self->getDirectAccessOfCoordsArrIfInStructure());
678            DataArrayDouble *ret2(const_cast<DataArrayDouble *>(ret));
679            if(ret2)
680              ret2->incrRef();
681            return ret2;
682          }
683          
684          int getCellContainingPoint(PyObject *p, double eps) const throw(INTERP_KERNEL::Exception)
685          {
686            double val;
687            DataArrayDouble *a;
688            DataArrayDoubleTuple *aa;
689            std::vector<double> bb;
690            int sw;
691            int spaceDim=self->getSpaceDimension();
692            const char msg[]="Python wrap of MEDCouplingMesh::getCellContainingPoint : ";
693            const double *pos=convertObjToPossibleCpp5_Safe(p,sw,val,a,aa,bb,msg,1,spaceDim,true);
694            return self->getCellContainingPoint(pos,eps);
695          }
696
697          PyObject *getCellsContainingPoints(PyObject *p, int nbOfPoints, double eps) const throw(INTERP_KERNEL::Exception)
698          {
699            double val;
700            DataArrayDouble *a;
701            DataArrayDoubleTuple *aa;
702            std::vector<double> bb;
703            int sw;
704            int spaceDim=self->getSpaceDimension();
705            const char msg[]="Python wrap of MEDCouplingMesh::getCellsContainingPoint : ";
706            const double *pos=convertObjToPossibleCpp5_Safe(p,sw,val,a,aa,bb,msg,nbOfPoints,spaceDim,true);
707            MCAuto<DataArrayInt> elts,eltsIndex;
708            self->getCellsContainingPoints(pos,nbOfPoints,eps,elts,eltsIndex);
709            PyObject *ret=PyTuple_New(2);
710            PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(elts.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
711            PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(eltsIndex.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
712            return ret;
713          }
714
715          PyObject *getCellsContainingPoints(PyObject *p, double eps) const throw(INTERP_KERNEL::Exception)
716          {
717            MCAuto<DataArrayInt> elts,eltsIndex;
718            int spaceDim=self->getSpaceDimension();
719            void *da=0;
720            int res1=SWIG_ConvertPtr(p,&da,SWIGTYPE_p_MEDCoupling__DataArrayDouble, 0 |  0 );
721            if (!SWIG_IsOK(res1))
722              {
723                int size;
724                INTERP_KERNEL::AutoCPtr<double> tmp=convertPyToNewDblArr2(p,&size);
725                int nbOfPoints=size/spaceDim;
726                if(size%spaceDim!=0)
727                  {
728                    throw INTERP_KERNEL::Exception("MEDCouplingMesh::getCellsContainingPoints : Invalid list length ! Must be a multiple of self.getSpaceDimension() !");
729                  }
730                self->getCellsContainingPoints(tmp,nbOfPoints,eps,elts,eltsIndex);
731              }
732            else
733              {
734                DataArrayDouble *da2=reinterpret_cast< DataArrayDouble * >(da);
735                if(!da2)
736                  throw INTERP_KERNEL::Exception("MEDCouplingMesh::getCellsContainingPoints : Not null DataArrayDouble instance expected !");
737                da2->checkAllocated();
738                int size=da2->getNumberOfTuples();
739                int nbOfCompo=da2->getNumberOfComponents();
740                if(nbOfCompo!=spaceDim)
741                  {
742                    throw INTERP_KERNEL::Exception("MEDCouplingMesh::getCellsContainingPoints : Invalid DataArrayDouble nb of components ! Expected same as self.getSpaceDimension() !");
743                  }
744                self->getCellsContainingPoints(da2->getConstPointer(),size,eps,elts,eltsIndex);
745              }
746            PyObject *ret=PyTuple_New(2);
747            PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(elts.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
748            PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(eltsIndex.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
749            return ret;
750          }
751
752          PyObject *getCellsContainingPoint(PyObject *p, double eps) const throw(INTERP_KERNEL::Exception)
753          {
754            double val;
755            DataArrayDouble *a;
756            DataArrayDoubleTuple *aa;
757            std::vector<double> bb;
758            int sw;
759            int spaceDim=self->getSpaceDimension();
760            const char msg[]="Python wrap of MEDCouplingUMesh::getCellsContainingPoint : ";
761            const double *pos=convertObjToPossibleCpp5_Safe(p,sw,val,a,aa,bb,msg,1,spaceDim,true);
762            std::vector<int> elts;
763            self->getCellsContainingPoint(pos,eps,elts);
764            DataArrayInt *ret=DataArrayInt::New();
765            ret->alloc((int)elts.size(),1);
766            std::copy(elts.begin(),elts.end(),ret->getPointer());
767            return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 );
768          }
769          
770          virtual PyObject *getReverseNodalConnectivity() const throw(INTERP_KERNEL::Exception)
771          {
772            MCAuto<DataArrayInt> d0=DataArrayInt::New();
773            MCAuto<DataArrayInt> d1=DataArrayInt::New();
774            self->getReverseNodalConnectivity(d0,d1);
775            PyObject *ret=PyTuple_New(2);
776            PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
777            PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
778            return ret;
779          }
780          
781          void renumberCells(PyObject *li, bool check=true) throw(INTERP_KERNEL::Exception)
782          {
783            int sw,sz(-1);
784            int v0; std::vector<int> v1;
785            const int *ids(convertIntStarLikePyObjToCppIntStar(li,sw,sz,v0,v1));
786            self->renumberCells(ids,check);
787          }
788
789          PyObject *checkGeoEquivalWith(const MEDCouplingMesh *other, int levOfCheck, double prec) const throw(INTERP_KERNEL::Exception)
790          {
791            DataArrayInt *cellCor, *nodeCor;
792            self->checkGeoEquivalWith(other,levOfCheck,prec,cellCor,nodeCor);
793            PyObject *res = PyList_New(2);
794            PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(cellCor),SWIGTYPE_p_MEDCoupling__DataArrayInt, cellCor?SWIG_POINTER_OWN | 0:0 ));
795            PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(nodeCor),SWIGTYPE_p_MEDCoupling__DataArrayInt, nodeCor?SWIG_POINTER_OWN | 0:0 ));
796            return res;
797          }
798
799          PyObject *checkDeepEquivalWith(const MEDCouplingMesh *other, int cellCompPol, double prec) const throw(INTERP_KERNEL::Exception)
800          {
801            DataArrayInt *cellCor=0,*nodeCor=0;
802            self->checkDeepEquivalWith(other,cellCompPol,prec,cellCor,nodeCor);
803            PyObject *res = PyList_New(2);
804            PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(cellCor),SWIGTYPE_p_MEDCoupling__DataArrayInt, cellCor?SWIG_POINTER_OWN | 0:0 ));
805            PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(nodeCor),SWIGTYPE_p_MEDCoupling__DataArrayInt, nodeCor?SWIG_POINTER_OWN | 0:0 ));
806            return res;
807          }
808          
809          DataArrayInt *checkDeepEquivalOnSameNodesWith(const MEDCouplingMesh *other, int cellCompPol, double prec) const throw(INTERP_KERNEL::Exception)
810          {
811            DataArrayInt *cellCor=0;
812            self->checkDeepEquivalOnSameNodesWith(other,cellCompPol,prec,cellCor);
813            return cellCor;
814          }
815
816          DataArrayInt *getCellIdsFullyIncludedInNodeIds(PyObject *li) const throw(INTERP_KERNEL::Exception)
817          {
818            void *da=0;
819            int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_MEDCoupling__DataArrayInt, 0 |  0 );
820            if (!SWIG_IsOK(res1))
821              {
822                int size;
823                INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
824                return self->getCellIdsFullyIncludedInNodeIds(tmp,((const int *)tmp)+size);
825              }
826            else
827              {
828                DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
829                if(!da2)
830                  throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
831                da2->checkAllocated();
832                return self->getCellIdsFullyIncludedInNodeIds(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems());
833              }
834          }
835          PyObject *getNodeIdsOfCell(int cellId) const throw(INTERP_KERNEL::Exception)
836          {
837            std::vector<int> conn;
838            self->getNodeIdsOfCell(cellId,conn);
839            return convertIntArrToPyList2(conn);
840          }
841
842          PyObject *getCoordinatesOfNode(int nodeId) const throw(INTERP_KERNEL::Exception)
843          {
844            std::vector<double> coo;
845            self->getCoordinatesOfNode(nodeId,coo);
846            return convertDblArrToPyList2(coo);
847          }
848
849          void scale(PyObject *point, double factor) throw(INTERP_KERNEL::Exception)
850          {
851            double val;
852            DataArrayDouble *a;
853            DataArrayDoubleTuple *aa;
854            std::vector<double> bb;
855            int sw;
856            int spaceDim=self->getSpaceDimension();
857            const char msg[]="Python wrap of MEDCouplingPointSet::scale : ";
858            const double *pointPtr=convertObjToPossibleCpp5_Safe(point,sw,val,a,aa,bb,msg,1,spaceDim,true);
859            self->scale(pointPtr,factor);
860          }
861
862          PyObject *getBoundingBox() const throw(INTERP_KERNEL::Exception)
863          {
864            int spaceDim=self->getSpaceDimension();
865            INTERP_KERNEL::AutoPtr<double> tmp=new double[2*spaceDim];
866            self->getBoundingBox(tmp);
867            PyObject *ret=convertDblArrToPyListOfTuple<double>(tmp,2,spaceDim);
868            return ret;
869          }
870
871          PyObject *isEqualIfNotWhy(const MEDCouplingMesh *other, double prec) const throw(INTERP_KERNEL::Exception)
872          {
873            std::string ret1;
874            bool ret0=self->isEqualIfNotWhy(other,prec,ret1);
875            PyObject *ret=PyTuple_New(2);
876            PyObject *ret0Py=ret0?Py_True:Py_False;
877            Py_XINCREF(ret0Py);
878            PyTuple_SetItem(ret,0,ret0Py);
879            PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
880            return ret;
881          }
882
883          PyObject *buildPart(PyObject *li) const throw(INTERP_KERNEL::Exception)
884          {
885            int szArr,sw,iTypppArr;
886            std::vector<int> stdvecTyyppArr;
887            const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
888            MEDCouplingMesh *ret=self->buildPart(tmp,tmp+szArr);
889            if(sw==3)//DataArrayInt
890              { 
891                void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_MEDCoupling__DataArrayInt,0|0);
892                DataArrayInt *argpt=reinterpret_cast< MEDCoupling::DataArrayInt * >(argp);
893                std::string name=argpt->getName();
894                if(!name.empty())
895                  ret->setName(name.c_str());
896              }
897            return convertMesh(ret, SWIG_POINTER_OWN | 0 );
898          }
899         
900          PyObject *buildPartAndReduceNodes(PyObject *li) const throw(INTERP_KERNEL::Exception)
901          {
902            int szArr,sw,iTypppArr;
903            std::vector<int> stdvecTyyppArr;
904            DataArrayInt *arr=0;
905            const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
906            MEDCouplingMesh *ret=self->buildPartAndReduceNodes(tmp,tmp+szArr,arr);
907            if(sw==3)//DataArrayInt
908              { 
909                void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_MEDCoupling__DataArrayInt,0|0);
910                DataArrayInt *argpt=reinterpret_cast< MEDCoupling::DataArrayInt * >(argp);
911                std::string name=argpt->getName();
912                if(!name.empty())
913                  ret->setName(name.c_str());
914              }
915            //
916            PyObject *res = PyList_New(2);
917            PyObject *obj0=convertMesh(ret, SWIG_POINTER_OWN | 0 );
918            PyObject *obj1=SWIG_NewPointerObj(SWIG_as_voidptr(arr),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 );
919            PyList_SetItem(res,0,obj0);
920            PyList_SetItem(res,1,obj1);
921            return res;
922          }
923
924          PyObject *buildPartRangeAndReduceNodes(int beginCellIds, int endCellIds, int stepCellIds) const throw(INTERP_KERNEL::Exception)
925          {
926            int a,b,c;
927            DataArrayInt *arr=0;
928            MEDCouplingMesh *ret=self->buildPartRangeAndReduceNodes(beginCellIds,endCellIds,stepCellIds,a,b,c,arr);
929            PyObject *res = PyTuple_New(2);
930            PyObject *obj0=convertMesh(ret, SWIG_POINTER_OWN | 0 );
931            PyObject *obj1=0;
932            if(arr)
933              obj1=SWIG_NewPointerObj(SWIG_as_voidptr(arr),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 );
934            else
935              obj1=PySlice_New(PyInt_FromLong(a),PyInt_FromLong(b),PyInt_FromLong(b));
936            PyTuple_SetItem(res,0,obj0);
937            PyTuple_SetItem(res,1,obj1);
938            return res;
939          }
940
941         PyObject *getDistributionOfTypes() const throw(INTERP_KERNEL::Exception)
942         {
943           std::vector<int> vals=self->getDistributionOfTypes();
944           if(vals.size()%3!=0)
945             throw INTERP_KERNEL::Exception("Internal Error detected in wrap python ! code returned by MEDCouplingMesh::getDistributionOfTypes is not so that %3==0 !");
946           PyObject *ret=PyList_New((int)vals.size()/3);
947           for(int j=0;j<(int)vals.size()/3;j++)
948              {
949                PyObject *ret1=PyList_New(3);
950                PyList_SetItem(ret1,0,SWIG_From_int(vals[3*j]));
951                PyList_SetItem(ret1,1,SWIG_From_int(vals[3*j+1]));
952                PyList_SetItem(ret1,2,SWIG_From_int(vals[3*j+2]));
953                PyList_SetItem(ret,j,ret1);
954              }
955           return ret;
956         }
957
958         DataArrayInt *checkTypeConsistencyAndContig(PyObject *li, PyObject *li2) const throw(INTERP_KERNEL::Exception)
959         {
960           std::vector<int> code;
961           std::vector<const DataArrayInt *> idsPerType;
962           convertFromPyObjVectorOfObj<const MEDCoupling::DataArrayInt *>(li2,SWIGTYPE_p_MEDCoupling__DataArrayInt,"DataArrayInt",idsPerType);
963           convertPyToNewIntArr4(li,1,3,code);
964           return self->checkTypeConsistencyAndContig(code,idsPerType);
965         }
966
967         PyObject *splitProfilePerType(const DataArrayInt *profile, bool smartPflKiller=true) const throw(INTERP_KERNEL::Exception)
968         {
969           std::vector<int> code;
970           std::vector<DataArrayInt *> idsInPflPerType;
971           std::vector<DataArrayInt *> idsPerType;
972           self->splitProfilePerType(profile,code,idsInPflPerType,idsPerType,smartPflKiller);
973           PyObject *ret=PyTuple_New(3);
974           //
975           if(code.size()%3!=0)
976             throw INTERP_KERNEL::Exception("Internal Error detected in wrap python ! code returned by MEDCouplingMesh::splitProfilePerType is not so that %3==0 !");
977           PyObject *ret0=PyList_New((int)code.size()/3);
978           for(int j=0;j<(int)code.size()/3;j++)
979              {
980                PyObject *ret00=PyList_New(3);
981                PyList_SetItem(ret00,0,SWIG_From_int(code[3*j]));
982                PyList_SetItem(ret00,1,SWIG_From_int(code[3*j+1]));
983                PyList_SetItem(ret00,2,SWIG_From_int(code[3*j+2]));
984                PyList_SetItem(ret0,j,ret00);
985              }
986           PyTuple_SetItem(ret,0,ret0);
987           //
988           PyObject *ret1=PyList_New(idsInPflPerType.size());
989           for(std::size_t j=0;j<idsInPflPerType.size();j++)
990             PyList_SetItem(ret1,j,SWIG_NewPointerObj(SWIG_as_voidptr(idsInPflPerType[j]),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
991           PyTuple_SetItem(ret,1,ret1);
992           int n=idsPerType.size();
993           PyObject *ret2=PyList_New(n);
994           for(int i=0;i<n;i++)
995             PyList_SetItem(ret2,i,SWIG_NewPointerObj(SWIG_as_voidptr(idsPerType[i]),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
996           PyTuple_SetItem(ret,2,ret2);
997           return ret;
998         }
999
1000         void translate(PyObject *vector) throw(INTERP_KERNEL::Exception)
1001         {
1002           double val;
1003           DataArrayDouble *a;
1004           DataArrayDoubleTuple *aa;
1005           std::vector<double> bb;
1006           int sw;
1007           int spaceDim=self->getSpaceDimension();
1008           const char msg[]="Python wrap of MEDCouplingPointSet::translate : ";
1009           const double *vectorPtr=convertObjToPossibleCpp5_Safe(vector,sw,val,a,aa,bb,msg,1,spaceDim,true);
1010           self->translate(vectorPtr);
1011         }
1012
1013          void rotate(PyObject *center, double alpha) throw(INTERP_KERNEL::Exception)
1014          {
1015            const char msg[]="Python wrap of MEDCouplingPointSet::rotate : ";
1016            double val;
1017            DataArrayDouble *a;
1018            DataArrayDoubleTuple *aa;
1019            std::vector<double> bb;
1020            int sw;
1021            int spaceDim=self->getSpaceDimension();
1022            const double *centerPtr=convertObjToPossibleCpp5_Safe(center,sw,val,a,aa,bb,msg,1,spaceDim,true);
1023            self->rotate(centerPtr,0,alpha);
1024          }
1025
1026          void rotate(PyObject *center, PyObject *vector, double alpha) throw(INTERP_KERNEL::Exception)
1027          {
1028            const char msg[]="Python wrap of MEDCouplingPointSet::rotate : ";
1029            double val,val2;
1030            DataArrayDouble *a,*a2;
1031            DataArrayDoubleTuple *aa,*aa2;
1032            std::vector<double> bb,bb2;
1033            int sw;
1034            int spaceDim=self->getSpaceDimension();
1035            const double *centerPtr=convertObjToPossibleCpp5_Safe(center,sw,val,a,aa,bb,msg,1,spaceDim,true);
1036            const double *vectorPtr=convertObjToPossibleCpp5_Safe(vector,sw,val2,a2,aa2,bb2,msg,1,spaceDim,false);//vectorPtr can be null in case of space dim 2
1037            self->rotate(centerPtr,vectorPtr,alpha);
1038          }
1039
1040          PyObject *getAllGeoTypes() const throw(INTERP_KERNEL::Exception)
1041          {
1042            std::set<INTERP_KERNEL::NormalizedCellType> result=self->getAllGeoTypes();
1043            std::set<INTERP_KERNEL::NormalizedCellType>::const_iterator iL=result.begin();
1044            PyObject *res=PyList_New(result.size());
1045            for(int i=0;iL!=result.end(); i++, iL++)
1046              PyList_SetItem(res,i,PyInt_FromLong(*iL));
1047            return res;
1048          }
1049
1050          virtual PyObject *getTinySerializationInformation() const throw(INTERP_KERNEL::Exception)
1051          {
1052            std::vector<double> a0;
1053            std::vector<int> a1;
1054            std::vector<std::string> a2;
1055            self->getTinySerializationInformation(a0,a1,a2);
1056            PyObject *ret(PyTuple_New(3));
1057            PyTuple_SetItem(ret,0,convertDblArrToPyList2(a0));
1058            PyTuple_SetItem(ret,1,convertIntArrToPyList2(a1));
1059            int sz(a2.size());
1060            PyObject *ret2(PyList_New(sz));
1061            {
1062              for(int i=0;i<sz;i++)
1063                PyList_SetItem(ret2,i,PyString_FromString(a2[i].c_str()));
1064            }
1065            PyTuple_SetItem(ret,2,ret2);
1066            return ret;
1067          }
1068
1069          virtual PyObject *serialize() const throw(INTERP_KERNEL::Exception)
1070          {
1071            DataArrayInt *a0Tmp(0);
1072            DataArrayDouble *a1Tmp(0);
1073            self->serialize(a0Tmp,a1Tmp);
1074            PyObject *ret(PyTuple_New(2));
1075            PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(a0Tmp),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1076            PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(a1Tmp),SWIGTYPE_p_MEDCoupling__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
1077            return ret;
1078          }
1079
1080          void resizeForUnserialization(const std::vector<int>& tinyInfo, DataArrayInt *a1, DataArrayDouble *a2) const throw(INTERP_KERNEL::Exception)
1081          {
1082            std::vector<std::string> littleStrings;
1083            self->resizeForUnserialization(tinyInfo,a1,a2,littleStrings);
1084          }
1085          
1086          PyObject *__getstate__() const throw(INTERP_KERNEL::Exception)
1087          {
1088            PyObject *ret0(MEDCoupling_MEDCouplingMesh_getTinySerializationInformation(self));
1089            PyObject *ret1(MEDCoupling_MEDCouplingMesh_serialize(self));
1090            PyObject *ret(PyTuple_New(2));
1091            PyTuple_SetItem(ret,0,ret0);
1092            PyTuple_SetItem(ret,1,ret1);
1093            return ret;
1094          }
1095
1096          void __setstate__(PyObject *inp) throw(INTERP_KERNEL::Exception)
1097          {
1098            static const char MSG[]="MEDCouplingMesh.__setstate__ : expected input is a tuple of size 2 !";
1099            if(!PyTuple_Check(inp))
1100              throw INTERP_KERNEL::Exception(MSG);
1101            int sz(PyTuple_Size(inp));
1102            if(sz!=2)
1103              throw INTERP_KERNEL::Exception(MSG);
1104            PyObject *elt0(PyTuple_GetItem(inp,0));
1105            PyObject *elt1(PyTuple_GetItem(inp,1));
1106            std::vector<double> a0;
1107            std::vector<int> a1;
1108            std::vector<std::string> a2;
1109            DataArrayInt *b0(0);
1110            DataArrayDouble *b1(0);
1111            {
1112              if(!PyTuple_Check(elt0) && PyTuple_Size(elt0)!=3)
1113                throw INTERP_KERNEL::Exception(MSG);
1114              PyObject *a0py(PyTuple_GetItem(elt0,0)),*a1py(PyTuple_GetItem(elt0,1)),*a2py(PyTuple_GetItem(elt0,2));
1115              int tmp(-1);
1116              fillArrayWithPyListDbl3(a0py,tmp,a0);
1117              convertPyToNewIntArr3(a1py,a1);
1118              fillStringVector(a2py,a2);
1119            }
1120            {
1121              if(!PyTuple_Check(elt1) && PyTuple_Size(elt1)!=2)
1122                throw INTERP_KERNEL::Exception(MSG);
1123              PyObject *b0py(PyTuple_GetItem(elt1,0)),*b1py(PyTuple_GetItem(elt1,1));
1124              void *argp(0);
1125              int status(SWIG_ConvertPtr(b0py,&argp,SWIGTYPE_p_MEDCoupling__DataArrayInt,0|0));
1126              if(!SWIG_IsOK(status))
1127                throw INTERP_KERNEL::Exception(MSG);
1128              b0=reinterpret_cast<DataArrayInt *>(argp);
1129              status=SWIG_ConvertPtr(b1py,&argp,SWIGTYPE_p_MEDCoupling__DataArrayDouble,0|0);
1130              if(!SWIG_IsOK(status))
1131                throw INTERP_KERNEL::Exception(MSG);
1132              b1=reinterpret_cast<DataArrayDouble *>(argp);
1133            }
1134            // useless here to call resizeForUnserialization because arrays are well resized.
1135            self->unserialization(a0,a1,b0,b1,a2);
1136          }
1137          
1138          static MEDCouplingMesh *MergeMeshes(PyObject *li) throw(INTERP_KERNEL::Exception)
1139          {
1140             std::vector<const MEDCoupling::MEDCouplingMesh *> tmp;
1141             convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingMesh *>(li,SWIGTYPE_p_MEDCoupling__MEDCouplingMesh,"MEDCouplingMesh",tmp);
1142             return MEDCouplingMesh::MergeMeshes(tmp);
1143          }
1144        }
1145   };
1146 }
1147
1148 //== MEDCouplingMesh End
1149
1150 %include "NormalizedGeometricTypes"
1151 %include "MEDCouplingNatureOfFieldEnum"
1152 //
1153 namespace MEDCoupling
1154 {
1155   class MEDCouplingNatureOfField
1156   {
1157   public:
1158     static const char *GetRepr(NatureOfField nat) throw(INTERP_KERNEL::Exception);
1159     static std::string GetReprNoThrow(NatureOfField nat);
1160     static std::string GetAllPossibilitiesStr();
1161   };
1162 }
1163
1164 // the MEDCouplingTimeDiscretization classes are not swigged : in case the file can help
1165 // include "MEDCouplingTimeDiscretization.i"
1166
1167 namespace MEDCoupling
1168 {
1169   class MEDCouplingGaussLocalization
1170   {
1171   public:
1172     MEDCouplingGaussLocalization(INTERP_KERNEL::NormalizedCellType type, const std::vector<double>& refCoo,
1173                                  const std::vector<double>& gsCoo, const std::vector<double>& w) throw(INTERP_KERNEL::Exception);
1174     MEDCouplingGaussLocalization(INTERP_KERNEL::NormalizedCellType typ) throw(INTERP_KERNEL::Exception);
1175     INTERP_KERNEL::NormalizedCellType getType() const throw(INTERP_KERNEL::Exception);
1176     void setType(INTERP_KERNEL::NormalizedCellType typ) throw(INTERP_KERNEL::Exception);
1177     int getNumberOfGaussPt() const throw(INTERP_KERNEL::Exception);
1178     int getDimension() const throw(INTERP_KERNEL::Exception);
1179     int getNumberOfPtsInRefCell() const throw(INTERP_KERNEL::Exception);
1180     std::string getStringRepr() const throw(INTERP_KERNEL::Exception);
1181     void checkConsistencyLight() const throw(INTERP_KERNEL::Exception);
1182     bool isEqual(const MEDCouplingGaussLocalization& other, double eps) const throw(INTERP_KERNEL::Exception);
1183     //
1184     const std::vector<double>& getRefCoords() const throw(INTERP_KERNEL::Exception);
1185     double getRefCoord(int ptIdInCell, int comp) const throw(INTERP_KERNEL::Exception);
1186     const std::vector<double>& getGaussCoords() const throw(INTERP_KERNEL::Exception);
1187     double getGaussCoord(int gaussPtIdInCell, int comp) const throw(INTERP_KERNEL::Exception);
1188     const std::vector<double>& getWeights() const throw(INTERP_KERNEL::Exception);
1189     double getWeight(int gaussPtIdInCell, double newVal) const throw(INTERP_KERNEL::Exception);
1190     void setRefCoord(int ptIdInCell, int comp, double newVal) throw(INTERP_KERNEL::Exception);
1191     void setGaussCoord(int gaussPtIdInCell, int comp, double newVal) throw(INTERP_KERNEL::Exception);
1192     void setWeight(int gaussPtIdInCell, double newVal) throw(INTERP_KERNEL::Exception);
1193     void setRefCoords(const std::vector<double>& refCoo) throw(INTERP_KERNEL::Exception);
1194     void setGaussCoords(const std::vector<double>& gsCoo) throw(INTERP_KERNEL::Exception);
1195     void setWeights(const std::vector<double>& w) throw(INTERP_KERNEL::Exception);
1196     //
1197     static bool AreAlmostEqual(const std::vector<double>& v1, const std::vector<double>& v2, double eps);
1198     //
1199     %extend 
1200     {
1201       DataArrayDouble *localizePtsInRefCooForEachCell(const DataArrayDouble *ptsInRefCoo, const MEDCouplingUMesh *mesh) const throw(INTERP_KERNEL::Exception)
1202       {
1203         MCAuto<DataArrayDouble> ret(self->localizePtsInRefCooForEachCell(ptsInRefCoo,mesh));
1204         return ret.retn();
1205       }
1206
1207       MEDCouplingUMesh *buildRefCell() const throw(INTERP_KERNEL::Exception)
1208       {
1209         MCAuto<MEDCouplingUMesh> ret(self->buildRefCell());
1210         return ret.retn();
1211       }
1212     }
1213   };
1214
1215   class MEDCouplingSkyLineArray
1216   {
1217   public:  
1218     static MEDCouplingSkyLineArray *BuildFromPolyhedronConn( const DataArrayInt* c, const DataArrayInt* cI ) throw(INTERP_KERNEL::Exception);
1219   
1220     void set( DataArrayInt* index, DataArrayInt* value );
1221     void set3( DataArrayInt* superIndex, DataArrayInt* index, DataArrayInt* value );
1222     
1223     int getSuperNumberOf() const;
1224     int getNumberOf() const;
1225     int getLength() const;
1226     
1227     void deletePack(const int i, const int j) throw(INTERP_KERNEL::Exception);
1228     
1229     void deleteSimplePack(const int i) throw(INTERP_KERNEL::Exception);
1230     void deleteSimplePacks(const DataArrayInt* idx) throw(INTERP_KERNEL::Exception);
1231     
1232     %extend 
1233     {
1234       MEDCouplingSkyLineArray() throw(INTERP_KERNEL::Exception)
1235       {
1236         return MEDCouplingSkyLineArray::New();
1237       }
1238
1239       MEDCouplingSkyLineArray( const std::vector<int>& index, const std::vector<int>& value) throw(INTERP_KERNEL::Exception)
1240       {
1241         return MEDCouplingSkyLineArray::New(index, value);
1242       }
1243
1244       MEDCouplingSkyLineArray( DataArrayInt* index, DataArrayInt* value ) throw(INTERP_KERNEL::Exception)
1245       {
1246         return MEDCouplingSkyLineArray::New(index, value);
1247       }
1248
1249       MEDCouplingSkyLineArray( const MEDCouplingSkyLineArray & other ) throw(INTERP_KERNEL::Exception)
1250       {
1251         return MEDCouplingSkyLineArray::New(other);
1252       }
1253
1254       std::string __str__() const throw(INTERP_KERNEL::Exception)
1255       {
1256         return self->simpleRepr();
1257       }
1258       
1259       DataArrayInt *getSuperIndexArray() const
1260       {
1261         DataArrayInt *ret(self->getSuperIndexArray());
1262         if(ret)
1263           ret->incrRef();
1264         return ret;
1265       }
1266       
1267       DataArrayInt *getIndexArray() const
1268       {
1269         DataArrayInt *ret(self->getIndexArray());
1270         if(ret)
1271           ret->incrRef();
1272         return ret;
1273       }
1274       
1275       DataArrayInt *getValuesArray() const
1276       {
1277         DataArrayInt *ret(self->getValuesArray());
1278         if(ret)
1279           ret->incrRef();
1280         return ret;
1281       }
1282      
1283       PyObject *getSimplePackSafe(int absolutePackId) const throw(INTERP_KERNEL::Exception)
1284       {
1285         std::vector<int> ret;
1286         self->getSimplePackSafe(absolutePackId,ret);
1287         return convertIntArrToPyList2(ret);
1288       }
1289
1290       PyObject *findPackIds(PyObject *superPackIndices, PyObject *pack) const throw(INTERP_KERNEL::Exception)
1291       {
1292           std::vector<int> vpack, vspIdx, out;
1293           
1294           convertPyToNewIntArr3(superPackIndices,vspIdx);
1295           convertPyToNewIntArr3(pack,vpack);
1296           
1297           self->findPackIds(vspIdx, vpack.data(), vpack.data()+vpack.size(), out);
1298           return convertIntArrToPyList2(out);
1299       }
1300       
1301       void pushBackPack(const int i, PyObject *pack) throw(INTERP_KERNEL::Exception)
1302         {
1303           std::vector<int> vpack;
1304           convertPyToNewIntArr3(pack,vpack);
1305           self->pushBackPack(i,vpack.data(), vpack.data()+vpack.size());
1306         }
1307         
1308       void replaceSimplePack(const int idx, PyObject *pack) throw(INTERP_KERNEL::Exception)
1309         {
1310           std::vector<int> vpack;
1311           convertPyToNewIntArr3(pack,vpack);
1312           self->replaceSimplePack(idx, vpack.data(), vpack.data()+vpack.size());
1313         }
1314         
1315       void replaceSimplePacks(const DataArrayInt* idx, PyObject *listePacks) throw(INTERP_KERNEL::Exception)
1316         {
1317           std::vector<const DataArrayInt*> packs;
1318           convertFromPyObjVectorOfObj<const MEDCoupling::DataArrayInt*>(listePacks,SWIGTYPE_p_MEDCoupling__DataArrayInt,"DataArrayInt",packs);
1319           self->replaceSimplePacks(idx, packs);
1320         }
1321         
1322       void replacePack(const int superIdx, const int idx, PyObject *pack) throw(INTERP_KERNEL::Exception)
1323         {
1324           std::vector<int> vpack;
1325           convertPyToNewIntArr3(pack,vpack);
1326           self->replacePack(superIdx, idx, vpack.data(), vpack.data()+vpack.size());
1327         }
1328
1329       PyObject *convertToPolyhedronConn() const throw(INTERP_KERNEL::Exception)
1330          {
1331            MCAuto<DataArrayInt> d0=DataArrayInt::New();
1332            MCAuto<DataArrayInt> d1=DataArrayInt::New();
1333            self->convertToPolyhedronConn(d0,d1);
1334            PyObject *ret=PyTuple_New(2);
1335            PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1336            PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1337            return ret;
1338          } 
1339     }
1340   };
1341 }
1342
1343 %include "MEDCouplingFieldDiscretization.i"
1344
1345 //== MEDCouplingPointSet
1346
1347 namespace MEDCoupling
1348 {
1349   class MEDCouplingPointSet : public MEDCoupling::MEDCouplingMesh
1350     {
1351     public:
1352       void setCoords(const DataArrayDouble *coords) throw(INTERP_KERNEL::Exception);
1353       DataArrayDouble *getCoordinatesAndOwner() const throw(INTERP_KERNEL::Exception);
1354       bool areCoordsEqual(const MEDCouplingPointSet& other, double prec) const throw(INTERP_KERNEL::Exception);
1355       void zipCoords() throw(INTERP_KERNEL::Exception);
1356       double getCaracteristicDimension() const throw(INTERP_KERNEL::Exception);
1357       void recenterForMaxPrecision(double eps) throw(INTERP_KERNEL::Exception);
1358       void changeSpaceDimension(int newSpaceDim, double dftVal=0.) throw(INTERP_KERNEL::Exception);
1359       void tryToShareSameCoords(const MEDCouplingPointSet& other, double epsilon) throw(INTERP_KERNEL::Exception);
1360       virtual void shallowCopyConnectivityFrom(const MEDCouplingPointSet *other) throw(INTERP_KERNEL::Exception);
1361       virtual MEDCouplingPointSet *buildPartOfMySelfSlice(int start, int end, int step) const throw(INTERP_KERNEL::Exception);
1362       virtual void tryToShareSameCoordsPermute(const MEDCouplingPointSet& other, double epsilon) throw(INTERP_KERNEL::Exception);
1363       static DataArrayDouble *MergeNodesArray(const MEDCouplingPointSet *m1, const MEDCouplingPointSet *m2) throw(INTERP_KERNEL::Exception);
1364       static MEDCouplingPointSet *BuildInstanceFromMeshType(MEDCouplingMeshType type) throw(INTERP_KERNEL::Exception);
1365       static DataArrayInt *ComputeNbOfInteractionsWithSrcCells(const MEDCouplingPointSet *srcMesh, const MEDCouplingPointSet *trgMesh, double eps) throw(INTERP_KERNEL::Exception);
1366       virtual DataArrayInt *computeFetchedNodeIds() const throw(INTERP_KERNEL::Exception);
1367       virtual int getNumberOfNodesInCell(int cellId) const throw(INTERP_KERNEL::Exception);
1368       virtual MEDCouplingPointSet *buildBoundaryMesh(bool keepCoords) const throw(INTERP_KERNEL::Exception);
1369       virtual DataArrayInt *getCellsInBoundingBox(const INTERP_KERNEL::DirectedBoundingBox& bbox, double eps) throw(INTERP_KERNEL::Exception);
1370       virtual DataArrayInt *zipCoordsTraducer() throw(INTERP_KERNEL::Exception);
1371       virtual DataArrayInt *findBoundaryNodes() const;
1372       virtual DataArrayInt *zipConnectivityTraducer(int compType, int startCellId=0) throw(INTERP_KERNEL::Exception);
1373       virtual MEDCouplingPointSet *mergeMyselfWithOnSameCoords(const MEDCouplingPointSet *other) const throw(INTERP_KERNEL::Exception);
1374       virtual void checkFullyDefined() const throw(INTERP_KERNEL::Exception);
1375       virtual bool isEmptyMesh(const std::vector<int>& tinyInfo) const throw(INTERP_KERNEL::Exception);
1376       virtual MEDCouplingPointSet *deepCopyConnectivityOnly() const throw(INTERP_KERNEL::Exception);
1377       virtual DataArrayDouble *getBoundingBoxForBBTree(double arcDetEps=1e-12) const throw(INTERP_KERNEL::Exception);
1378       virtual void renumberNodesWithOffsetInConn(int offset) throw(INTERP_KERNEL::Exception);
1379       virtual bool areAllNodesFetched() const throw(INTERP_KERNEL::Exception);
1380       virtual MEDCouplingFieldDouble *computeDiameterField() const throw(INTERP_KERNEL::Exception);
1381       virtual void invertOrientationOfAllCells() throw(INTERP_KERNEL::Exception);
1382       %extend 
1383          {
1384            std::string __str__() const throw(INTERP_KERNEL::Exception)
1385            {
1386              return self->simpleRepr();
1387            }
1388            
1389            PyObject *buildNewNumberingFromCommonNodesFormat(const DataArrayInt *comm, const DataArrayInt *commIndex) const throw(INTERP_KERNEL::Exception)
1390            {
1391              int newNbOfNodes;
1392              DataArrayInt *ret0=self->buildNewNumberingFromCommonNodesFormat(comm,commIndex,newNbOfNodes);
1393              PyObject *res = PyList_New(2);
1394              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1395              PyList_SetItem(res,1,SWIG_From_int(newNbOfNodes));
1396              return res;
1397            }
1398            
1399            PyObject *findCommonNodes(double prec, int limitTupleId=-1) const throw(INTERP_KERNEL::Exception)
1400            {
1401              DataArrayInt *comm, *commIndex;
1402              self->findCommonNodes(prec,limitTupleId,comm,commIndex);
1403              PyObject *res = PyList_New(2);
1404              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(comm),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1405              PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(commIndex),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1406              return res;
1407            }
1408            
1409            PyObject *getCoords() throw(INTERP_KERNEL::Exception)
1410            {
1411              DataArrayDouble *ret1=self->getCoords();
1412              if (ret1)
1413                 ret1->incrRef();
1414              return SWIG_NewPointerObj((void*)ret1,SWIGTYPE_p_MEDCoupling__DataArrayDouble,SWIG_POINTER_OWN | 0);
1415            }
1416            
1417            PyObject *buildPartOfMySelf(PyObject *li, bool keepCoords=true) const throw(INTERP_KERNEL::Exception)
1418            {
1419              int szArr,sw,iTypppArr;
1420              std::vector<int> stdvecTyyppArr;
1421              const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1422              MEDCouplingPointSet *ret=self->buildPartOfMySelf(tmp,tmp+szArr,keepCoords);
1423              if(sw==3)//DataArrayInt
1424                { 
1425                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_MEDCoupling__DataArrayInt,0|0);
1426                  DataArrayInt *argpt=reinterpret_cast< MEDCoupling::DataArrayInt * >(argp);
1427                  std::string name=argpt->getName();
1428                  if(!name.empty())
1429                    ret->setName(name.c_str());
1430                }
1431              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1432            }
1433            
1434            PyObject *buildPartOfMySelfNode(PyObject *li, bool fullyIn) const throw(INTERP_KERNEL::Exception)
1435            {
1436              int szArr,sw,iTypppArr;
1437              std::vector<int> stdvecTyyppArr;
1438              const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1439              MEDCouplingPointSet *ret=self->buildPartOfMySelfNode(tmp,tmp+szArr,fullyIn);
1440              if(sw==3)//DataArrayInt
1441                { 
1442                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_MEDCoupling__DataArrayInt,0|0);
1443                  DataArrayInt *argpt=reinterpret_cast< MEDCoupling::DataArrayInt * >(argp);
1444                  std::string name=argpt->getName();
1445                  if(!name.empty())
1446                    ret->setName(name.c_str());
1447                }
1448              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1449            }
1450
1451            virtual PyObject *buildPartOfMySelfKeepCoords(PyObject *li) const throw(INTERP_KERNEL::Exception)
1452            {
1453              int szArr,sw,iTypppArr;
1454              std::vector<int> stdvecTyyppArr;
1455              const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1456              MEDCouplingPointSet *ret=self->buildPartOfMySelfKeepCoords(tmp,tmp+szArr);
1457              if(sw==3)//DataArrayInt
1458                { 
1459                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_MEDCoupling__DataArrayInt,0|0);
1460                  DataArrayInt *argpt=reinterpret_cast< MEDCoupling::DataArrayInt * >(argp);
1461                  std::string name=argpt->getName();
1462                  if(!name.empty())
1463                    ret->setName(name.c_str());
1464                }
1465              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1466            }
1467
1468            virtual PyObject *buildPartOfMySelfKeepCoordsSlice(int start, int end, int step) const throw(INTERP_KERNEL::Exception)
1469            {
1470              MEDCouplingPointSet *ret=self->buildPartOfMySelfKeepCoordsSlice(start,end,step);
1471              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1472            }
1473
1474            PyObject *buildFacePartOfMySelfNode(PyObject *li, bool fullyIn) const throw(INTERP_KERNEL::Exception)
1475            {
1476              int szArr,sw,iTypppArr;
1477              std::vector<int> stdvecTyyppArr;
1478              const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1479              MEDCouplingPointSet *ret=self->buildFacePartOfMySelfNode(tmp,tmp+szArr,fullyIn);
1480              if(sw==3)//DataArrayInt
1481                { 
1482                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_MEDCoupling__DataArrayInt,0|0);
1483                  DataArrayInt *argpt=reinterpret_cast< MEDCoupling::DataArrayInt * >(argp);
1484                  std::string name=argpt->getName();
1485                  if(!name.empty())
1486                    ret->setName(name.c_str());
1487                }
1488              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1489            }
1490
1491            void renumberNodes(PyObject *li, int newNbOfNodes) throw(INTERP_KERNEL::Exception)
1492            {
1493              int szArr,sw,iTypppArr;
1494              std::vector<int> stdvecTyyppArr;
1495              const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1496              self->renumberNodes(tmp,newNbOfNodes);
1497            }
1498
1499            void renumberNodesCenter(PyObject *li, int newNbOfNodes) throw(INTERP_KERNEL::Exception)
1500            {
1501              int szArr,sw,iTypppArr;
1502              std::vector<int> stdvecTyyppArr;
1503              const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1504              self->renumberNodesCenter(tmp,newNbOfNodes);
1505            }
1506
1507            PyObject *findNodesOnLine(PyObject *pt, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
1508              {
1509                int spaceDim=self->getSpaceDimension();
1510                double val,val2;
1511                DataArrayDouble *a,*a2;
1512                DataArrayDoubleTuple *aa,*aa2;
1513                std::vector<double> bb,bb2;
1514                int sw;
1515                const char msg[]="Python wrap of MEDCouplingPointSet::findNodesOnLine : 1st parameter for point.";
1516                const char msg2[]="Python wrap of MEDCouplingPointSet::findNodesOnLine : 2nd parameter for vector.";
1517                const double *p=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,1,spaceDim,true);
1518                const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
1519                std::vector<int> nodes;
1520                self->findNodesOnLine(p,v,eps,nodes);
1521                DataArrayInt *ret=DataArrayInt::New();
1522                ret->alloc((int)nodes.size(),1);
1523                std::copy(nodes.begin(),nodes.end(),ret->getPointer());
1524                return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 );
1525              }
1526            PyObject *findNodesOnPlane(PyObject *pt, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
1527              {
1528                int spaceDim=self->getSpaceDimension();
1529                double val,val2;
1530                DataArrayDouble *a,*a2;
1531                DataArrayDoubleTuple *aa,*aa2;
1532                std::vector<double> bb,bb2;
1533                int sw;
1534                const char msg[]="Python wrap of MEDCouplingPointSet::findNodesOnPlane : 1st parameter for point.";
1535                const char msg2[]="Python wrap of MEDCouplingPointSet::findNodesOnPlane : 2nd parameter for vector.";
1536                const double *p=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,1,spaceDim,true);
1537                const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
1538                std::vector<int> nodes;
1539                self->findNodesOnPlane(p,v,eps,nodes);
1540                DataArrayInt *ret=DataArrayInt::New();
1541                ret->alloc((int)nodes.size(),1);
1542                std::copy(nodes.begin(),nodes.end(),ret->getPointer());
1543                return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 );
1544              }
1545            
1546            PyObject *getNodeIdsNearPoint(PyObject *pt, double eps) const throw(INTERP_KERNEL::Exception)
1547            {
1548              double val;
1549              DataArrayDouble *a;
1550              DataArrayDoubleTuple *aa;
1551              std::vector<double> bb;
1552              int sw;
1553              int spaceDim=self->getSpaceDimension();
1554              const char msg[]="Python wrap of MEDCouplingPointSet::getNodeIdsNearPoint : ";
1555              const double *pos=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,1,spaceDim,true);
1556              DataArrayInt *ret=self->getNodeIdsNearPoint(pos,eps);
1557              return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 );
1558            }
1559
1560            PyObject *getNodeIdsNearPoints(PyObject *pt, int nbOfPoints, double eps) const throw(INTERP_KERNEL::Exception)
1561            {
1562              DataArrayInt *c=0,*cI=0;
1563              //
1564              double val;
1565              DataArrayDouble *a;
1566              DataArrayDoubleTuple *aa;
1567              std::vector<double> bb;
1568              int sw;
1569              int spaceDim=self->getSpaceDimension();
1570              const char msg[]="Python wrap of MEDCouplingPointSet::getNodeIdsNearPoints : ";
1571              const double *pos=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,nbOfPoints,spaceDim,true);
1572              self->getNodeIdsNearPoints(pos,nbOfPoints,eps,c,cI);
1573              PyObject *ret=PyTuple_New(2);
1574              PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(c),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1575              PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cI),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1576              return ret;
1577            }
1578
1579            PyObject *getNodeIdsNearPoints(PyObject *pt, double eps) const throw(INTERP_KERNEL::Exception)
1580            {
1581              DataArrayInt *c=0,*cI=0;
1582              int spaceDim=self->getSpaceDimension();
1583              double val;
1584              DataArrayDouble *a;
1585              DataArrayDoubleTuple *aa;
1586              std::vector<double> bb;
1587              int sw;
1588              int nbOfTuples=-1;
1589              const double *ptPtr=convertObjToPossibleCpp5_Safe2(pt,sw,val,a,aa,bb,"Python wrap of MEDCouplingUMesh::getNodeIdsNearPoints",spaceDim,true,nbOfTuples);
1590              self->getNodeIdsNearPoints(ptPtr,nbOfTuples,eps,c,cI);
1591              //
1592              PyObject *ret=PyTuple_New(2);
1593              PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(c),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1594              PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cI),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1595              return ret;
1596            }
1597
1598            PyObject *getCellsInBoundingBox(PyObject *bbox, double eps) const throw(INTERP_KERNEL::Exception)
1599            {
1600              double val;
1601              DataArrayDouble *a;
1602              DataArrayDoubleTuple *aa;
1603              std::vector<double> bb;
1604              int sw;
1605              int spaceDim=self->getSpaceDimension();
1606              const char msg[]="Python wrap of MEDCouplingPointSet::getCellsInBoundingBox : ";
1607              const double *tmp=convertObjToPossibleCpp5_Safe(bbox,sw,val,a,aa,bb,msg,spaceDim,2,true);
1608              //
1609              DataArrayInt *elems=self->getCellsInBoundingBox(tmp,eps);
1610              return SWIG_NewPointerObj(SWIG_as_voidptr(elems),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 );
1611            }
1612
1613            void duplicateNodesInCoords(PyObject *li) throw(INTERP_KERNEL::Exception)
1614            {
1615              int sw;
1616              int singleVal;
1617              std::vector<int> multiVal;
1618              std::pair<int, std::pair<int,int> > slic;
1619              MEDCoupling::DataArrayInt *daIntTyypp=0;
1620              convertIntStarOrSliceLikePyObjToCpp(li,self->getNumberOfNodes(),sw,singleVal,multiVal,slic,daIntTyypp);
1621              switch(sw)
1622                {
1623                case 1:
1624                  return self->duplicateNodesInCoords(&singleVal,&singleVal+1);
1625                case 2:
1626                  return self->duplicateNodesInCoords(&multiVal[0],&multiVal[0]+multiVal.size());
1627                case 4:
1628                  return self->duplicateNodesInCoords(daIntTyypp->begin(),daIntTyypp->end());
1629                default:
1630                  throw INTERP_KERNEL::Exception("MEDCouplingPointSet::duplicateNodesInCoords : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
1631                }
1632            }
1633
1634            virtual PyObject *findCommonCells(int compType, int startCellId=0) const throw(INTERP_KERNEL::Exception)
1635            {
1636              DataArrayInt *v0=0,*v1=0;
1637              self->findCommonCells(compType,startCellId,v0,v1);
1638              PyObject *res = PyList_New(2);
1639              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(v0),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1640              PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(v1),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1641              return res;
1642            }
1643
1644       
1645            virtual void renumberNodesInConn(PyObject *li) throw(INTERP_KERNEL::Exception)
1646            {
1647              void *da=0;
1648              int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_MEDCoupling__DataArrayInt, 0 | 0 );
1649              if (!SWIG_IsOK(res1))
1650                {
1651                  int size;
1652                  INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
1653                  self->renumberNodesInConn(tmp);
1654                }
1655              else
1656                {
1657                  DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
1658                  if(!da2)
1659                    throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
1660                  da2->checkAllocated();
1661                  self->renumberNodesInConn(da2->getConstPointer());
1662                }
1663            }
1664
1665            virtual PyObject *getNodeIdsInUse() const throw(INTERP_KERNEL::Exception)
1666            {
1667              int ret1=-1;
1668              DataArrayInt *ret0=self->getNodeIdsInUse(ret1);
1669              PyObject *ret=PyTuple_New(2);
1670              PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1671              PyTuple_SetItem(ret,1,PyInt_FromLong(ret1));
1672              return ret;
1673            }
1674
1675            virtual DataArrayInt *fillCellIdsToKeepFromNodeIds(PyObject *li, bool fullyIn) const
1676            {
1677              DataArrayInt *ret=0;
1678              //
1679              int szArr,sw,iTypppArr;
1680              std::vector<int> stdvecTyyppArr;
1681              const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1682              self->fillCellIdsToKeepFromNodeIds(tmp,tmp+szArr,fullyIn,ret);
1683              return ret;
1684            }
1685
1686            virtual PyObject *mergeNodes(double precision) throw(INTERP_KERNEL::Exception)
1687            {
1688              bool ret1;
1689              int ret2;
1690              DataArrayInt *ret0=self->mergeNodes(precision,ret1,ret2);
1691              PyObject *res = PyList_New(3);
1692              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1693              PyList_SetItem(res,1,SWIG_From_bool(ret1));
1694              PyList_SetItem(res,2,SWIG_From_int(ret2));
1695              return res;
1696            }
1697            
1698            virtual PyObject *mergeNodesCenter(double precision) throw(INTERP_KERNEL::Exception)
1699            {
1700              bool ret1;
1701              int ret2;
1702              DataArrayInt *ret0=self->mergeNodesCenter(precision,ret1,ret2);
1703              PyObject *res = PyList_New(3);
1704              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1705              PyList_SetItem(res,1,SWIG_From_bool(ret1));
1706              PyList_SetItem(res,2,SWIG_From_int(ret2));
1707              return res;
1708            }
1709            
1710            DataArrayInt *getCellIdsLyingOnNodes(PyObject *li, bool fullyIn) const throw(INTERP_KERNEL::Exception)
1711            {
1712              void *da=0;
1713              int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_MEDCoupling__DataArrayInt, 0 |  0 );
1714              if (!SWIG_IsOK(res1))
1715                {
1716                  int size;
1717                  INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
1718                  return self->getCellIdsLyingOnNodes(tmp,((const int *)tmp)+size,fullyIn);
1719                }
1720              else
1721                {
1722                  DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
1723                  if(!da2)
1724                    throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
1725                  da2->checkAllocated();
1726                  return self->getCellIdsLyingOnNodes(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems(),fullyIn);
1727                }
1728            }
1729
1730            MEDCouplingPointSet *__getitem__(PyObject *listOrDataArrI) throw(INTERP_KERNEL::Exception)
1731            {
1732              int sw;
1733              int singleVal;
1734              std::vector<int> multiVal;
1735              std::pair<int, std::pair<int,int> > slic;
1736              MEDCoupling::DataArrayInt *daIntTyypp=0;
1737              int nbc=self->getNumberOfCells();
1738              convertIntStarOrSliceLikePyObjToCpp(listOrDataArrI,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
1739              switch(sw)
1740                {
1741                case 1:
1742                  {
1743                    if(singleVal>=nbc)
1744                      {
1745                        std::ostringstream oss;
1746                        oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1747                        throw INTERP_KERNEL::Exception(oss.str().c_str());
1748                      }
1749                    if(singleVal>=0)
1750                      return self->buildPartOfMySelf(&singleVal,&singleVal+1,true);
1751                    else
1752                      {
1753                        if(nbc+singleVal>0)
1754                          {
1755                            int tmp=nbc+singleVal;
1756                            return self->buildPartOfMySelf(&tmp,&tmp+1,true);
1757                          }
1758                        else
1759                          {
1760                            std::ostringstream oss;
1761                            oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1762                            throw INTERP_KERNEL::Exception(oss.str().c_str());
1763                          }
1764                      }
1765                  }
1766                case 2:
1767                  {
1768                    return static_cast<MEDCouplingPointSet *>(self->buildPartOfMySelf(&multiVal[0],&multiVal[0]+multiVal.size(),true));
1769                  }
1770                case 3:
1771                  {
1772                    return self->buildPartOfMySelfSlice(slic.first,slic.second.first,slic.second.second,true);
1773                  }
1774                case 4:
1775                  {
1776                    if(!daIntTyypp)
1777                      throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__getitem__ : null instance has been given in input !");
1778                    daIntTyypp->checkAllocated();
1779                    return self->buildPartOfMySelf(daIntTyypp->begin(),daIntTyypp->end(),true);
1780                  }
1781                default:
1782                  throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__getitem__ : unrecognized type in input ! Possibilities are : int, list or tuple of int DataArrayInt instance !");
1783                }
1784            }
1785            
1786            static void Rotate2DAlg(PyObject *center, double angle, int nbNodes, PyObject *coords) throw(INTERP_KERNEL::Exception)
1787            {
1788              int sz;
1789              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1790              INTERP_KERNEL::AutoCPtr<double> coo=convertPyToNewDblArr2(coords,&sz);
1791              MEDCoupling::DataArrayDouble::Rotate2DAlg(c,angle,nbNodes,coo,coo);
1792              for(int i=0;i<sz;i++)
1793                PyList_SetItem(coords,i,PyFloat_FromDouble(coo[i]));
1794            }
1795            
1796            static void Rotate2DAlg(PyObject *center, double angle, PyObject *coords) throw(INTERP_KERNEL::Exception)
1797            {
1798              int sz;
1799              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1800              int sw,nbNodes=0;
1801              double val0;  MEDCoupling::DataArrayDouble *val1=0; MEDCoupling::DataArrayDoubleTuple *val2=0;
1802              std::vector<double> val3;
1803              const double *coo=convertObjToPossibleCpp5_Safe2(coords,sw,val0,val1,val2,val3,
1804                                                             "Rotate2DAlg",2,true,nbNodes);
1805              if(sw!=2 && sw!=3)
1806                throw INTERP_KERNEL::Exception("Invalid call to MEDCouplingPointSet::Rotate2DAlg : try another overload method !");
1807              MEDCoupling::DataArrayDouble::Rotate2DAlg(c,angle,nbNodes,coo,const_cast<double *>(coo));
1808            }
1809            
1810            static void Rotate3DAlg(PyObject *center, PyObject *vect, double angle, int nbNodes, PyObject *coords) throw(INTERP_KERNEL::Exception)
1811            {
1812              int sz,sz2;
1813              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1814              INTERP_KERNEL::AutoCPtr<double> coo=convertPyToNewDblArr2(coords,&sz);
1815              INTERP_KERNEL::AutoCPtr<double> v=convertPyToNewDblArr2(vect,&sz2);
1816              MEDCoupling::DataArrayDouble::Rotate3DAlg(c,v,angle,nbNodes,coo,coo);
1817              for(int i=0;i<sz;i++)
1818                PyList_SetItem(coords,i,PyFloat_FromDouble(coo[i]));
1819            }
1820            
1821            static void Rotate3DAlg(PyObject *center, PyObject *vect, double angle, PyObject *coords) throw(INTERP_KERNEL::Exception)
1822            {
1823              int sz,sz2;
1824              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1825              int sw,nbNodes=0;
1826              double val0;  MEDCoupling::DataArrayDouble *val1=0; MEDCoupling::DataArrayDoubleTuple *val2=0;
1827              std::vector<double> val3;
1828              const double *coo=convertObjToPossibleCpp5_Safe2(coords,sw,val0,val1,val2,val3,
1829                                                             "Rotate3DAlg",3,true,nbNodes);
1830              if(sw!=2 && sw!=3)
1831                throw INTERP_KERNEL::Exception("Invalid call to MEDCouplingPointSet::Rotate3DAlg : try another overload method !");
1832              INTERP_KERNEL::AutoCPtr<double> v=convertPyToNewDblArr2(vect,&sz2);
1833              MEDCoupling::DataArrayDouble::Rotate3DAlg(c,v,angle,nbNodes,coo,const_cast<double *>(coo));
1834            }
1835          }
1836     };
1837
1838   //== MEDCouplingPointSet End
1839
1840   class MEDCouplingUMeshCell
1841   {
1842   public:
1843     INTERP_KERNEL::NormalizedCellType getType() const;
1844     %extend
1845       {
1846         std::string __str__() const throw(INTERP_KERNEL::Exception)
1847         {
1848           return self->repr();
1849         }
1850
1851         PyObject *getAllConn() const throw(INTERP_KERNEL::Exception)
1852         {
1853           int ret2;
1854           const int *r=self->getAllConn(ret2);
1855           PyObject *ret=PyTuple_New(ret2);
1856           for(int i=0;i<ret2;i++)
1857             PyTuple_SetItem(ret,i,PyInt_FromLong(r[i]));
1858           return ret;
1859         }
1860       }
1861   };
1862
1863   class MEDCouplingUMeshCellIterator
1864   {
1865   public:
1866     %extend
1867       {
1868         PyObject *next()
1869         {
1870           MEDCouplingUMeshCell *ret=self->nextt();
1871           if(ret)
1872             return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_MEDCoupling__MEDCouplingUMeshCell,0|0);
1873           else
1874             {
1875               PyErr_SetString(PyExc_StopIteration,"No more data.");
1876               return 0;
1877             }
1878         }
1879       }
1880   };
1881
1882   class MEDCouplingUMeshCellByTypeIterator
1883   {
1884   public:
1885     ~MEDCouplingUMeshCellByTypeIterator();
1886     %extend
1887       {
1888         PyObject *next()
1889         {
1890           MEDCouplingUMeshCellEntry *ret=self->nextt();
1891           if(ret)
1892             return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_MEDCoupling__MEDCouplingUMeshCellEntry,SWIG_POINTER_OWN | 0);
1893           else
1894             {
1895               PyErr_SetString(PyExc_StopIteration,"No more data.");
1896               return 0;
1897             }
1898         }
1899       }
1900   };
1901
1902   class MEDCouplingUMeshCellByTypeEntry
1903   {
1904   public:
1905     ~MEDCouplingUMeshCellByTypeEntry();
1906     %extend
1907       {
1908         MEDCouplingUMeshCellByTypeIterator *__iter__()
1909         {
1910           return self->iterator();
1911         }
1912       }
1913   };
1914
1915   class MEDCouplingUMeshCellEntry
1916   {
1917   public:
1918     INTERP_KERNEL::NormalizedCellType getType() const;
1919     int getNumberOfElems() const;
1920     %extend
1921       {
1922         MEDCouplingUMeshCellIterator *__iter__()
1923         {
1924           return self->iterator();
1925         }
1926       }
1927   };
1928   
1929   //== MEDCouplingUMesh
1930
1931   class MEDCouplingUMesh : public MEDCoupling::MEDCouplingPointSet
1932   {
1933   public:
1934     static MEDCouplingUMesh *New() throw(INTERP_KERNEL::Exception);
1935     static MEDCouplingUMesh *New(const char *meshName, int meshDim) throw(INTERP_KERNEL::Exception);
1936     void checkConsistencyLight() const throw(INTERP_KERNEL::Exception);
1937     void setMeshDimension(int meshDim) throw(INTERP_KERNEL::Exception);
1938     void allocateCells(int nbOfCells=0) throw(INTERP_KERNEL::Exception);
1939     void finishInsertingCells() throw(INTERP_KERNEL::Exception);
1940     MEDCouplingUMeshCellByTypeEntry *cellsByType() throw(INTERP_KERNEL::Exception);
1941     void setConnectivity(DataArrayInt *conn, DataArrayInt *connIndex, bool isComputingTypes=true) throw(INTERP_KERNEL::Exception);
1942     INTERP_KERNEL::NormalizedCellType getTypeOfCell(int cellId) const throw(INTERP_KERNEL::Exception);
1943     void setPartOfMySelfSlice(int start, int end, int step, const MEDCouplingUMesh& otherOnSameCoordsThanThis) throw(INTERP_KERNEL::Exception);
1944     int getNodalConnectivityArrayLen() const throw(INTERP_KERNEL::Exception);
1945     void computeTypes() throw(INTERP_KERNEL::Exception);
1946     std::string reprConnectivityOfThis() const throw(INTERP_KERNEL::Exception);
1947     MEDCouplingUMesh *buildSetInstanceFromThis(int spaceDim) const throw(INTERP_KERNEL::Exception);
1948     //tools
1949     DataArrayInt *conformize2D(double eps) throw(INTERP_KERNEL::Exception);
1950     DataArrayInt *conformize3D(double eps) throw(INTERP_KERNEL::Exception);
1951     DataArrayInt *colinearize2D(double eps) throw(INTERP_KERNEL::Exception);
1952     void shiftNodeNumbersInConn(int delta) throw(INTERP_KERNEL::Exception);
1953     std::vector<bool> getQuadraticStatus() const throw(INTERP_KERNEL::Exception);
1954     DataArrayInt *findCellIdsOnBoundary() const throw(INTERP_KERNEL::Exception);
1955     MEDCouplingUMesh *computeSkin() const throw(INTERP_KERNEL::Exception);
1956     bool checkConsecutiveCellTypes() const throw(INTERP_KERNEL::Exception);
1957     bool checkConsecutiveCellTypesForMEDFileFrmt() const throw(INTERP_KERNEL::Exception);
1958     DataArrayInt *rearrange2ConsecutiveCellTypes() throw(INTERP_KERNEL::Exception);
1959     DataArrayInt *sortCellsInMEDFileFrmt() throw(INTERP_KERNEL::Exception);
1960     DataArrayInt *getRenumArrForMEDFileFrmt() const throw(INTERP_KERNEL::Exception);
1961     DataArrayInt *convertCellArrayPerGeoType(const DataArrayInt *da) const throw(INTERP_KERNEL::Exception);
1962     MEDCouplingUMesh *buildDescendingConnectivity(DataArrayInt *desc, DataArrayInt *descIndx, DataArrayInt *revDesc, DataArrayInt *revDescIndx) const throw(INTERP_KERNEL::Exception);
1963     MEDCouplingUMesh *buildDescendingConnectivity2(DataArrayInt *desc, DataArrayInt *descIndx, DataArrayInt *revDesc, DataArrayInt *revDescIndx) const throw(INTERP_KERNEL::Exception);
1964     MEDCouplingUMesh *explode3DMeshTo1D(DataArrayInt *desc, DataArrayInt *descIndx, DataArrayInt *revDesc, DataArrayInt *revDescIndx) const throw(INTERP_KERNEL::Exception);
1965     MEDCouplingUMesh *explodeMeshIntoMicroEdges(DataArrayInt *desc, DataArrayInt *descIndx, DataArrayInt *revDesc, DataArrayInt *revDescIndx) const throw(INTERP_KERNEL::Exception);
1966     void orientCorrectlyPolyhedrons() throw(INTERP_KERNEL::Exception);
1967     bool isPresenceOfQuadratic() const throw(INTERP_KERNEL::Exception);
1968     bool isFullyQuadratic() const throw(INTERP_KERNEL::Exception);
1969     MEDCouplingFieldDouble *buildDirectionVectorField() const throw(INTERP_KERNEL::Exception);
1970     bool isContiguous1D() const throw(INTERP_KERNEL::Exception);
1971     void tessellate2D(double eps) throw(INTERP_KERNEL::Exception);
1972     void convertQuadraticCellsToLinear() throw(INTERP_KERNEL::Exception);
1973     DataArrayInt *convertLinearCellsToQuadratic(int conversionType=0) throw(INTERP_KERNEL::Exception);
1974     void convertDegeneratedCells() throw(INTERP_KERNEL::Exception);
1975     bool areOnlySimplexCells() const throw(INTERP_KERNEL::Exception);
1976     MEDCouplingFieldDouble *getEdgeRatioField() const throw(INTERP_KERNEL::Exception);
1977     MEDCouplingFieldDouble *getAspectRatioField() const throw(INTERP_KERNEL::Exception);
1978     MEDCouplingFieldDouble *getWarpField() const throw(INTERP_KERNEL::Exception);
1979     MEDCouplingFieldDouble *getSkewField() const throw(INTERP_KERNEL::Exception);
1980     DataArrayDouble *computePlaneEquationOf3DFaces() const throw(INTERP_KERNEL::Exception);
1981     DataArrayInt *convexEnvelop2D() throw(INTERP_KERNEL::Exception);
1982     std::string cppRepr() const throw(INTERP_KERNEL::Exception);
1983     DataArrayInt *findAndCorrectBadOriented3DExtrudedCells() throw(INTERP_KERNEL::Exception);
1984     DataArrayInt *findAndCorrectBadOriented3DCells() throw(INTERP_KERNEL::Exception);
1985     MEDCoupling::MEDCoupling1GTUMesh *convertIntoSingleGeoTypeMesh() const throw(INTERP_KERNEL::Exception);
1986     MEDCouplingSkyLineArray *generateGraph() const throw(INTERP_KERNEL::Exception);
1987     DataArrayInt *convertNodalConnectivityToStaticGeoTypeMesh() const throw(INTERP_KERNEL::Exception);
1988     DataArrayInt *buildUnionOf2DMesh() const throw(INTERP_KERNEL::Exception);
1989     DataArrayInt *buildUnionOf3DMesh() const throw(INTERP_KERNEL::Exception);
1990     DataArrayInt *orderConsecutiveCells1D() const throw(INTERP_KERNEL::Exception);
1991     DataArrayDouble *getBoundingBoxForBBTreeFast() const throw(INTERP_KERNEL::Exception);
1992     DataArrayDouble *getBoundingBoxForBBTree2DQuadratic(double arcDetEps=1e-12) const throw(INTERP_KERNEL::Exception);
1993     DataArrayDouble *getBoundingBoxForBBTree1DQuadratic(double arcDetEps=1e-12) const throw(INTERP_KERNEL::Exception);
1994     void changeOrientationOfCells() throw(INTERP_KERNEL::Exception);
1995     int split2DCells(const DataArrayInt *desc, const DataArrayInt *descI, const DataArrayInt *subNodesInSeg, const DataArrayInt *subNodesInSegI, const DataArrayInt *midOpt=0, const DataArrayInt *midOptI=0) throw(INTERP_KERNEL::Exception);
1996     static MEDCouplingUMesh *Build0DMeshFromCoords(DataArrayDouble *da) throw(INTERP_KERNEL::Exception);
1997     static MEDCouplingUMesh *MergeUMeshes(const MEDCouplingUMesh *mesh1, const MEDCouplingUMesh *mesh2) throw(INTERP_KERNEL::Exception);
1998     static MEDCouplingUMesh *MergeUMeshesOnSameCoords(const MEDCouplingUMesh *mesh1, const MEDCouplingUMesh *mesh2) throw(INTERP_KERNEL::Exception);
1999     static DataArrayInt *ComputeSpreadZoneGradually(const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn) throw(INTERP_KERNEL::Exception);
2000     static DataArrayInt *ComputeRangesFromTypeDistribution(const std::vector<int>& code) throw(INTERP_KERNEL::Exception);
2001     %extend {
2002       MEDCouplingUMesh() throw(INTERP_KERNEL::Exception)
2003       {
2004         return MEDCouplingUMesh::New();
2005       }
2006       
2007       MEDCouplingUMesh(const char *meshName, int meshDim) throw(INTERP_KERNEL::Exception)
2008       {
2009         return MEDCouplingUMesh::New(meshName,meshDim);
2010       }
2011
2012       std::string __str__() const throw(INTERP_KERNEL::Exception)
2013       {
2014         return self->simpleRepr();
2015       }
2016       
2017       std::string __repr__() const throw(INTERP_KERNEL::Exception)
2018       {
2019         std::ostringstream oss;
2020         self->reprQuickOverview(oss);
2021         return oss.str();
2022       }
2023       
2024       MEDCouplingUMeshCellIterator *__iter__() throw(INTERP_KERNEL::Exception)
2025       {
2026         return self->cellIterator();
2027       }
2028
2029       static MEDCouplingUMesh *Build1DMeshFromCoords(DataArrayDouble *da) throw(INTERP_KERNEL::Exception)
2030       {
2031         MCAuto<MEDCouplingUMesh> ret(MEDCouplingUMesh::Build1DMeshFromCoords(da));
2032         return ret.retn();
2033       }
2034       
2035       PyObject *getAllGeoTypesSorted() const throw(INTERP_KERNEL::Exception)
2036       {
2037         std::vector<INTERP_KERNEL::NormalizedCellType> result=self->getAllGeoTypesSorted();
2038         std::vector<INTERP_KERNEL::NormalizedCellType>::const_iterator iL=result.begin();
2039         PyObject *res=PyList_New(result.size());
2040         for(int i=0;iL!=result.end(); i++, iL++)
2041           PyList_SetItem(res,i,PyInt_FromLong(*iL));
2042         return res;
2043       }
2044       
2045       void setPartOfMySelf(PyObject *li, const MEDCouplingUMesh& otherOnSameCoordsThanThis) throw(INTERP_KERNEL::Exception)
2046       {
2047         int sw;
2048         int singleVal;
2049         std::vector<int> multiVal;
2050         std::pair<int, std::pair<int,int> > slic;
2051         MEDCoupling::DataArrayInt *daIntTyypp=0;
2052         int nbc=self->getNumberOfCells();
2053         convertIntStarOrSliceLikePyObjToCpp(li,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
2054         switch(sw)
2055           {
2056           case 1:
2057             {
2058               if(singleVal>=nbc)
2059                 {
2060                   std::ostringstream oss;
2061                   oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
2062                   throw INTERP_KERNEL::Exception(oss.str().c_str());
2063                 }
2064               if(singleVal>=0)
2065                 {
2066                   self->setPartOfMySelf(&singleVal,&singleVal+1,otherOnSameCoordsThanThis);
2067                   break;
2068                 }
2069               else
2070                 {
2071                   if(nbc+singleVal>0)
2072                     {
2073                       int tmp=nbc+singleVal;
2074                       self->setPartOfMySelf(&tmp,&tmp+1,otherOnSameCoordsThanThis);
2075                       break;
2076                     }
2077                   else
2078                     {
2079                       std::ostringstream oss;
2080                       oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
2081                       throw INTERP_KERNEL::Exception(oss.str().c_str());
2082                     }
2083                 }
2084             }
2085           case 2:
2086             {
2087               self->setPartOfMySelf(&multiVal[0],&multiVal[0]+multiVal.size(),otherOnSameCoordsThanThis);
2088               break;
2089             }
2090           case 4:
2091             {
2092               if(!daIntTyypp)
2093                 throw INTERP_KERNEL::Exception("MEDCouplingUMesh::setPartOfMySelf : null instance has been given in input !");
2094               daIntTyypp->checkAllocated();
2095               self->setPartOfMySelf(daIntTyypp->begin(),daIntTyypp->end(),otherOnSameCoordsThanThis);
2096               break;
2097             }
2098           default:
2099             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::setPartOfMySelf : unrecognized type in input ! Possibilities are : int, list or tuple of int DataArrayInt instance !");
2100           }
2101       }
2102
2103       void __setitem__(PyObject *li, const MEDCouplingUMesh& otherOnSameCoordsThanThis) throw(INTERP_KERNEL::Exception)
2104       {
2105         int sw;
2106         int singleVal;
2107         std::vector<int> multiVal;
2108         std::pair<int, std::pair<int,int> > slic;
2109         MEDCoupling::DataArrayInt *daIntTyypp=0;
2110         int nbc=self->getNumberOfCells();
2111         convertIntStarOrSliceLikePyObjToCpp(li,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
2112         switch(sw)
2113           {
2114           case 1:
2115             {
2116               if(singleVal>=nbc)
2117                 {
2118                   std::ostringstream oss;
2119                   oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
2120                   throw INTERP_KERNEL::Exception(oss.str().c_str());
2121                 }
2122               if(singleVal>=0)
2123                 {
2124                   self->setPartOfMySelf(&singleVal,&singleVal+1,otherOnSameCoordsThanThis);
2125                   break;
2126                 }
2127               else
2128                 {
2129                   if(nbc+singleVal>0)
2130                     {
2131                       int tmp=nbc+singleVal;
2132                       self->setPartOfMySelf(&tmp,&tmp+1,otherOnSameCoordsThanThis);
2133                       break;
2134                     }
2135                   else
2136                     {
2137                       std::ostringstream oss;
2138                       oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
2139                       throw INTERP_KERNEL::Exception(oss.str().c_str());
2140                     }
2141                 }
2142             }
2143           case 2:
2144             {
2145               self->setPartOfMySelf(&multiVal[0],&multiVal[0]+multiVal.size(),otherOnSameCoordsThanThis);
2146               break;
2147             }
2148           case 3:
2149             {
2150               self->setPartOfMySelfSlice(slic.first,slic.second.first,slic.second.second,otherOnSameCoordsThanThis);
2151               break;
2152             }
2153           case 4:
2154             {
2155               if(!daIntTyypp)
2156                 throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__setitem__ : null instance has been given in input !");
2157               daIntTyypp->checkAllocated();
2158               self->setPartOfMySelf(daIntTyypp->begin(),daIntTyypp->end(),otherOnSameCoordsThanThis);
2159               break;
2160             }
2161           default:
2162             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__setitem__ : unrecognized type in input ! Possibilities are : int, list or tuple of int, slice, DataArrayInt instance !");
2163           }
2164       }
2165
2166       void insertNextCell(INTERP_KERNEL::NormalizedCellType type, int size, PyObject *li) throw(INTERP_KERNEL::Exception)
2167       {
2168         int szArr,sw,iTypppArr;
2169         std::vector<int> stdvecTyyppArr;
2170         const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
2171         if(size>szArr)
2172           {
2173             std::ostringstream oss; oss << "Wrap of MEDCouplingUMesh::insertNextCell : request of connectivity with length " << size << " whereas the length of input is " << szArr << " !";
2174             throw INTERP_KERNEL::Exception(oss.str().c_str());
2175           }
2176         self->insertNextCell(type,size,tmp);
2177       }
2178
2179       void insertNextCell(INTERP_KERNEL::NormalizedCellType type, PyObject *li) throw(INTERP_KERNEL::Exception)
2180       {
2181         int szArr,sw,iTypppArr;
2182         std::vector<int> stdvecTyyppArr;
2183         const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
2184         self->insertNextCell(type,szArr,tmp);
2185       }
2186       
2187       DataArrayInt *getNodalConnectivity() throw(INTERP_KERNEL::Exception)
2188       {
2189         DataArrayInt *ret=self->getNodalConnectivity();
2190         if(ret)
2191           ret->incrRef();
2192         return ret;
2193       }
2194       DataArrayInt *getNodalConnectivityIndex() throw(INTERP_KERNEL::Exception)
2195       {
2196         DataArrayInt *ret=self->getNodalConnectivityIndex();
2197         if(ret)
2198           ret->incrRef();
2199         return ret;
2200       }
2201       
2202       static PyObject *ComputeSpreadZoneGraduallyFromSeed(PyObject *seed, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn, int nbOfDepthPeeling=-1) throw(INTERP_KERNEL::Exception)
2203       {
2204         int szArr,sw,iTypppArr;
2205         std::vector<int> stdvecTyyppArr;
2206         const int *seedPtr=convertIntStarLikePyObjToCppIntStar(seed,sw,szArr,iTypppArr,stdvecTyyppArr);
2207         int nbOfDepthPeelingPerformed=0;
2208         DataArrayInt *ret0=MEDCouplingUMesh::ComputeSpreadZoneGraduallyFromSeed(seedPtr,seedPtr+szArr,arrIn,arrIndxIn,nbOfDepthPeeling,nbOfDepthPeelingPerformed);
2209         PyObject *res=PyTuple_New(2);
2210         PyTuple_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2211         PyTuple_SetItem(res,1,PyInt_FromLong(nbOfDepthPeelingPerformed));
2212         return res;
2213       }
2214
2215       static PyObject *FindCommonCellsAlg(int compType, int startCellId, const DataArrayInt *nodal, const DataArrayInt *nodalI, const DataArrayInt *revNodal, const DataArrayInt *revNodalI) throw(INTERP_KERNEL::Exception)
2216       {
2217         DataArrayInt *v0=0,*v1=0;
2218         MEDCouplingUMesh::FindCommonCellsAlg(compType,startCellId,nodal,nodalI,revNodal,revNodalI,v0,v1);
2219         PyObject *res = PyList_New(2);
2220         PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(v0),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2221         PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(v1),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2222         return res;
2223       }
2224       
2225       PyObject *distanceToPoint(PyObject *point) const throw(INTERP_KERNEL::Exception)
2226       {
2227         double val;
2228         DataArrayDouble *a;
2229         DataArrayDoubleTuple *aa;
2230         std::vector<double> bb;
2231         int sw;
2232         int nbOfCompo=self->getSpaceDimension();
2233         const double *pt=convertObjToPossibleCpp5_Safe(point,sw,val,a,aa,bb,"Python wrap of MEDCouplingUMesh::distanceToPoint",1,nbOfCompo,true);
2234         //
2235         int cellId=-1;
2236         double ret0=self->distanceToPoint(pt,pt+nbOfCompo,cellId);
2237         PyObject *ret=PyTuple_New(2);
2238         PyTuple_SetItem(ret,0,PyFloat_FromDouble(ret0));
2239         PyTuple_SetItem(ret,1,PyInt_FromLong(cellId));
2240         return ret;
2241       }
2242
2243       PyObject *distanceToPoints(const DataArrayDouble *pts) const throw(INTERP_KERNEL::Exception)
2244       {
2245         DataArrayInt *ret1=0;
2246         DataArrayDouble *ret0=self->distanceToPoints(pts,ret1);
2247         PyObject *ret=PyTuple_New(2);
2248         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
2249         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2250         return ret;
2251       }
2252
2253       PyObject *tetrahedrize(int policy) throw(INTERP_KERNEL::Exception)
2254       {
2255         int ret2(-1);
2256         DataArrayInt *ret1(0);
2257         MEDCoupling1SGTUMesh *ret0(self->tetrahedrize(policy,ret1,ret2));
2258         PyObject *ret=PyTuple_New(3);
2259         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__MEDCoupling1SGTUMesh, SWIG_POINTER_OWN | 0 ));
2260         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2261         PyTuple_SetItem(ret,2,PyInt_FromLong(ret2));
2262         return ret;
2263       }
2264       
2265       PyObject *checkButterflyCells(double eps=1e-12) throw(INTERP_KERNEL::Exception)
2266       {
2267         std::vector<int> cells;
2268         self->checkButterflyCells(cells,eps);
2269         DataArrayInt *ret=DataArrayInt::New();
2270         ret->alloc((int)cells.size(),1);
2271         std::copy(cells.begin(),cells.end(),ret->getPointer());
2272         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 );
2273       }
2274
2275       PyObject *splitByType() const throw(INTERP_KERNEL::Exception)
2276       {
2277         std::vector<MEDCouplingUMesh *> ms=self->splitByType();
2278         int sz=ms.size();
2279         PyObject *ret = PyList_New(sz);
2280         for(int i=0;i<sz;i++)
2281           PyList_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(ms[i]),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2282         return ret;
2283       }
2284
2285       PyObject *partitionBySpreadZone() const throw(INTERP_KERNEL::Exception)
2286       {
2287         std::vector<DataArrayInt *> retCpp=self->partitionBySpreadZone();
2288         int sz=retCpp.size();
2289         PyObject *ret=PyList_New(sz);
2290         for(int i=0;i<sz;i++)
2291           PyList_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(retCpp[i]),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2292         return ret;
2293       }
2294
2295       static PyObject *PartitionBySpreadZone(const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn) throw(INTERP_KERNEL::Exception)
2296       {
2297         std::vector<DataArrayInt *> retCpp(MEDCouplingUMesh::PartitionBySpreadZone(arrIn,arrIndxIn));
2298         int sz=retCpp.size();
2299         PyObject *ret=PyList_New(sz);
2300         for(int i=0;i<sz;i++)
2301           PyList_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(retCpp[i]),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2302         return ret;
2303       }
2304
2305       PyObject *keepSpecifiedCells(INTERP_KERNEL::NormalizedCellType type, PyObject *ids) const throw(INTERP_KERNEL::Exception)
2306       {
2307         int size;
2308         INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(ids,&size);
2309         MEDCouplingUMesh *ret=self->keepSpecifiedCells(type,tmp,tmp+size);
2310         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 );
2311       }
2312
2313       bool checkConsecutiveCellTypesAndOrder(PyObject *li) const throw(INTERP_KERNEL::Exception)
2314       {
2315         int sz;
2316         INTERP_KERNEL::AutoPtr<INTERP_KERNEL::NormalizedCellType> order=(INTERP_KERNEL::NormalizedCellType *)convertPyToNewIntArr2(li,&sz);
2317         bool ret=self->checkConsecutiveCellTypesAndOrder(order,order+sz);
2318         return ret;
2319       }
2320
2321       DataArrayInt *getRenumArrForConsecutiveCellTypesSpec(PyObject *li) const throw(INTERP_KERNEL::Exception)
2322       {
2323         int sz;
2324         INTERP_KERNEL::AutoPtr<INTERP_KERNEL::NormalizedCellType> order=(INTERP_KERNEL::NormalizedCellType *)convertPyToNewIntArr2(li,&sz);
2325         DataArrayInt *ret=self->getRenumArrForConsecutiveCellTypesSpec(order,(INTERP_KERNEL::NormalizedCellType *)order+sz);
2326         return ret;
2327       }
2328
2329       PyObject *findNodesToDuplicate(const MEDCouplingUMesh& otherDimM1OnSameCoords) const throw(INTERP_KERNEL::Exception)
2330       {
2331         DataArrayInt *tmp0=0,*tmp1=0,*tmp2=0;
2332         self->findNodesToDuplicate(otherDimM1OnSameCoords,tmp0,tmp1,tmp2);
2333         PyObject *ret=PyTuple_New(3);
2334         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(tmp0),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2335         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp1),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2336         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(tmp2),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2337         return ret;
2338       }
2339
2340       PyObject *findCellIdsLyingOn(const MEDCouplingUMesh& otherDimM1OnSameCoords) const throw(INTERP_KERNEL::Exception)
2341       {
2342         DataArrayInt *tmp0=0,*tmp1=0;
2343         self->findCellIdsLyingOn(otherDimM1OnSameCoords,tmp0,tmp1);
2344         PyObject *ret=PyTuple_New(2);
2345         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(tmp0),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2346         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp1),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2347         return ret;
2348       }
2349
2350       void duplicateNodes(PyObject *li) throw(INTERP_KERNEL::Exception)
2351       {
2352         int sw;
2353         int singleVal;
2354         std::vector<int> multiVal;
2355         std::pair<int, std::pair<int,int> > slic;
2356         MEDCoupling::DataArrayInt *daIntTyypp=0;
2357         convertIntStarOrSliceLikePyObjToCpp(li,self->getNumberOfNodes(),sw,singleVal,multiVal,slic,daIntTyypp);
2358         switch(sw)
2359           {
2360           case 1:
2361             return self->duplicateNodes(&singleVal,&singleVal+1);
2362           case 2:
2363             return self->duplicateNodes(&multiVal[0],&multiVal[0]+multiVal.size());
2364           case 4:
2365             return self->duplicateNodes(daIntTyypp->begin(),daIntTyypp->end());
2366           default:
2367             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::duplicateNodes : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2368           }
2369       }
2370
2371       void duplicateNodesInConn(PyObject *li, int offset) throw(INTERP_KERNEL::Exception)
2372       {
2373         int sw;
2374         int singleVal;
2375         std::vector<int> multiVal;
2376         std::pair<int, std::pair<int,int> > slic;
2377         MEDCoupling::DataArrayInt *daIntTyypp=0;
2378         convertIntStarOrSliceLikePyObjToCpp(li,self->getNumberOfNodes(),sw,singleVal,multiVal,slic,daIntTyypp);
2379         switch(sw)
2380           {
2381           case 1:
2382             return self->duplicateNodesInConn(&singleVal,&singleVal+1,offset);
2383           case 2:
2384             return self->duplicateNodesInConn(&multiVal[0],&multiVal[0]+multiVal.size(),offset);
2385           case 4:
2386             return self->duplicateNodesInConn(daIntTyypp->begin(),daIntTyypp->end(),offset);
2387           default:
2388             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::duplicateNodesInConn : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2389           }
2390       }
2391
2392       PyObject *getLevArrPerCellTypes(PyObject *li) const throw(INTERP_KERNEL::Exception)
2393       {
2394         int sz;
2395         INTERP_KERNEL::AutoPtr<INTERP_KERNEL::NormalizedCellType> order=(INTERP_KERNEL::NormalizedCellType *)convertPyToNewIntArr2(li,&sz);
2396         DataArrayInt *tmp0,*tmp1=0;
2397         tmp0=self->getLevArrPerCellTypes(order,(INTERP_KERNEL::NormalizedCellType *)order+sz,tmp1);
2398         PyObject *ret=PyTuple_New(2);
2399         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(tmp0),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2400         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp1),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2401         return ret;
2402       }
2403
2404       PyObject *convertNodalConnectivityToDynamicGeoTypeMesh() const throw(INTERP_KERNEL::Exception)
2405       {
2406         DataArrayInt *ret0=0,*ret1=0;
2407         self->convertNodalConnectivityToDynamicGeoTypeMesh(ret0,ret1);
2408         PyObject *ret=PyTuple_New(2);
2409         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2410         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2411         return ret;
2412       }
2413
2414       static PyObject *AggregateSortedByTypeMeshesOnSameCoords(PyObject *ms) throw(INTERP_KERNEL::Exception)
2415       {
2416         std::vector<const MEDCoupling::MEDCouplingUMesh *> meshes;
2417         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingUMesh *>(ms,SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2418         DataArrayInt *ret1=0,*ret2=0;
2419         MEDCouplingUMesh *ret0=MEDCouplingUMesh::AggregateSortedByTypeMeshesOnSameCoords(meshes,ret1,ret2);
2420         PyObject *ret=PyTuple_New(3);
2421         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2422         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2423         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(ret2),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2424         return ret;
2425       }
2426
2427       static PyObject *MergeUMeshesOnSameCoords(PyObject *ms) throw(INTERP_KERNEL::Exception)
2428       {
2429         std::vector<const MEDCoupling::MEDCouplingUMesh *> meshes;
2430         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingUMesh *>(ms,SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2431         MEDCouplingUMesh *ret=MEDCouplingUMesh::MergeUMeshesOnSameCoords(meshes);
2432         return convertMesh(ret, SWIG_POINTER_OWN | 0 );
2433       }
2434
2435       static PyObject *FuseUMeshesOnSameCoords(PyObject *ms, int compType) throw(INTERP_KERNEL::Exception)
2436       {
2437         int sz;
2438         std::vector<const MEDCouplingUMesh *> meshes;
2439         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingUMesh *>(ms,SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2440         std::vector<DataArrayInt *> corr;
2441         MEDCouplingUMesh *um=MEDCouplingUMesh::FuseUMeshesOnSameCoords(meshes,compType,corr);
2442         sz=corr.size();
2443         PyObject *ret1=PyList_New(sz);
2444         for(int i=0;i<sz;i++)
2445           PyList_SetItem(ret1,i,SWIG_NewPointerObj(SWIG_as_voidptr(corr[i]),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2446         PyObject *ret=PyList_New(2);
2447         PyList_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(um),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2448         PyList_SetItem(ret,1,ret1);
2449         return ret;
2450       }
2451
2452       static void PutUMeshesOnSameAggregatedCoords(PyObject *ms) throw(INTERP_KERNEL::Exception)
2453       {
2454         std::vector<MEDCouplingUMesh *> meshes;
2455         convertFromPyObjVectorOfObj<MEDCoupling::MEDCouplingUMesh *>(ms,SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2456         MEDCouplingUMesh::PutUMeshesOnSameAggregatedCoords(meshes);
2457       }
2458
2459       static void MergeNodesOnUMeshesSharingSameCoords(PyObject *ms, double eps) throw(INTERP_KERNEL::Exception)
2460       {
2461         std::vector<MEDCouplingUMesh *> meshes;
2462         convertFromPyObjVectorOfObj<MEDCoupling::MEDCouplingUMesh *>(ms,SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2463         MEDCouplingUMesh::MergeNodesOnUMeshesSharingSameCoords(meshes,eps);
2464       }
2465
2466       static bool RemoveIdsFromIndexedArrays(PyObject *li, DataArrayInt *arr, DataArrayInt *arrIndx, int offsetForRemoval=0) throw(INTERP_KERNEL::Exception)
2467       {
2468         int sw;
2469         int singleVal;
2470         std::vector<int> multiVal;
2471         std::pair<int, std::pair<int,int> > slic;
2472         MEDCoupling::DataArrayInt *daIntTyypp=0;
2473         if(!arrIndx)
2474           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::RemoveIdsFromIndexedArrays : null pointer as arrIndex !");
2475         convertIntStarOrSliceLikePyObjToCpp(li,arrIndx->getNumberOfTuples()-1,sw,singleVal,multiVal,slic,daIntTyypp);
2476         switch(sw)
2477           {
2478           case 1:
2479             return MEDCouplingUMesh::RemoveIdsFromIndexedArrays(&singleVal,&singleVal+1,arr,arrIndx,offsetForRemoval);
2480           case 2:
2481             return MEDCouplingUMesh::RemoveIdsFromIndexedArrays(&multiVal[0],&multiVal[0]+multiVal.size(),arr,arrIndx,offsetForRemoval);
2482           case 4:
2483             return MEDCouplingUMesh::RemoveIdsFromIndexedArrays(daIntTyypp->begin(),daIntTyypp->end(),arr,arrIndx,offsetForRemoval);
2484           default:
2485             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::RemoveIdsFromIndexedArrays : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2486           }
2487       }
2488       
2489       static PyObject *ExtractFromIndexedArrays(PyObject *li, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn) throw(INTERP_KERNEL::Exception)
2490       {
2491         DataArrayInt *arrOut=0,*arrIndexOut=0;
2492         int sw;
2493         int singleVal;
2494         std::vector<int> multiVal;
2495         std::pair<int, std::pair<int,int> > slic;
2496         MEDCoupling::DataArrayInt *daIntTyypp=0;
2497         if(!arrIndxIn)
2498           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::ExtractFromIndexedArrays : null pointer as arrIndxIn !");
2499         convertIntStarOrSliceLikePyObjToCpp(li,arrIndxIn->getNumberOfTuples()-1,sw,singleVal,multiVal,slic,daIntTyypp);
2500         switch(sw)
2501           {
2502           case 1:
2503             {
2504               MEDCouplingUMesh::ExtractFromIndexedArrays(&singleVal,&singleVal+1,arrIn,arrIndxIn,arrOut,arrIndexOut);
2505               break;
2506             }
2507           case 2:
2508             {
2509               MEDCouplingUMesh::ExtractFromIndexedArrays(&multiVal[0],&multiVal[0]+multiVal.size(),arrIn,arrIndxIn,arrOut,arrIndexOut);
2510               break;
2511             }
2512           case 4:
2513             {
2514               MEDCouplingUMesh::ExtractFromIndexedArrays(daIntTyypp->begin(),daIntTyypp->end(),arrIn,arrIndxIn,arrOut,arrIndexOut);
2515               break;
2516             }
2517           default:
2518             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::ExtractFromIndexedArrays : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2519           }
2520         PyObject *ret=PyTuple_New(2);
2521         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(arrOut),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2522         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(arrIndexOut),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2523         return ret;
2524       }
2525
2526       static PyObject *ExtractFromIndexedArraysSlice(int strt, int stp, int step, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn) throw(INTERP_KERNEL::Exception)
2527       {
2528         DataArrayInt *arrOut=0,*arrIndexOut=0;
2529         MEDCouplingUMesh::ExtractFromIndexedArraysSlice(strt,stp,step,arrIn,arrIndxIn,arrOut,arrIndexOut);
2530         PyObject *ret=PyTuple_New(2);
2531         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(arrOut),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2532         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(arrIndexOut),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2533         return ret;
2534       }
2535
2536       static PyObject *ExtractFromIndexedArraysSlice(PyObject *slic, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn) throw(INTERP_KERNEL::Exception)
2537       {
2538         if(!PySlice_Check(slic))
2539           throw INTERP_KERNEL::Exception("ExtractFromIndexedArraysSlice (wrap) : the first param is not a pyslice !");
2540         Py_ssize_t strt=2,stp=2,step=2;
2541         if(!arrIndxIn)
2542           throw INTERP_KERNEL::Exception("ExtractFromIndexedArraysSlice (wrap) : last array is null !");
2543         arrIndxIn->checkAllocated();
2544         if(arrIndxIn->getNumberOfComponents()!=1)
2545           throw INTERP_KERNEL::Exception("ExtractFromIndexedArraysSlice (wrap) : number of components of last argument must be equal to one !");
2546         GetIndicesOfSlice(slic,arrIndxIn->getNumberOfTuples(),&strt,&stp,&step,"ExtractFromIndexedArraysSlice (wrap) : Invalid slice regarding nb of elements !");
2547         DataArrayInt *arrOut=0,*arrIndexOut=0;
2548         MEDCouplingUMesh::ExtractFromIndexedArraysSlice(strt,stp,step,arrIn,arrIndxIn,arrOut,arrIndexOut);
2549         PyObject *ret=PyTuple_New(2);
2550         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(arrOut),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2551         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(arrIndexOut),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2552         return ret;
2553       }
2554
2555       static PyObject *SetPartOfIndexedArrays(PyObject *li,
2556                                               const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn,
2557                                               const DataArrayInt *srcArr, const DataArrayInt *srcArrIndex) throw(INTERP_KERNEL::Exception)
2558       {
2559         DataArrayInt *arrOut=0,*arrIndexOut=0;
2560         int sw;
2561         int singleVal;
2562         std::vector<int> multiVal;
2563         std::pair<int, std::pair<int,int> > slic;
2564         MEDCoupling::DataArrayInt *daIntTyypp=0;
2565         if(!arrIndxIn)
2566           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArrays : null pointer as arrIndex !");
2567         convertIntStarOrSliceLikePyObjToCpp(li,arrIndxIn->getNumberOfTuples()-1,sw,singleVal,multiVal,slic,daIntTyypp);
2568         switch(sw)
2569           {
2570           case 1:
2571             {
2572               MEDCouplingUMesh::SetPartOfIndexedArrays(&singleVal,&singleVal+1,arrIn,arrIndxIn,srcArr,srcArrIndex,arrOut,arrIndexOut);
2573               break;
2574             }
2575           case 2:
2576             {
2577               MEDCouplingUMesh::SetPartOfIndexedArrays(&multiVal[0],&multiVal[0]+multiVal.size(),arrIn,arrIndxIn,srcArr,srcArrIndex,arrOut,arrIndexOut);
2578               break;
2579             }
2580           case 4:
2581             {
2582               MEDCouplingUMesh::SetPartOfIndexedArrays(daIntTyypp->begin(),daIntTyypp->end(),arrIn,arrIndxIn,srcArr,srcArrIndex,arrOut,arrIndexOut);
2583               break;
2584             }
2585           default:
2586             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArrays : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2587           }
2588         PyObject *ret=PyTuple_New(2);
2589         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(arrOut),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2590         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(arrIndexOut),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2591         return ret;
2592       }
2593
2594       static void SetPartOfIndexedArraysSameIdx(PyObject *li, DataArrayInt *arrIn, const DataArrayInt *arrIndxIn,
2595                                                 const DataArrayInt *srcArr, const DataArrayInt *srcArrIndex) throw(INTERP_KERNEL::Exception)
2596       {
2597         int sw;
2598         int singleVal;
2599         std::vector<int> multiVal;
2600         std::pair<int, std::pair<int,int> > slic;
2601         MEDCoupling::DataArrayInt *daIntTyypp=0;
2602         if(!arrIndxIn)
2603           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx : null pointer as arrIndex !");
2604         convertIntStarOrSliceLikePyObjToCpp(li,arrIndxIn->getNumberOfTuples()-1,sw,singleVal,multiVal,slic,daIntTyypp);
2605         switch(sw)
2606           {
2607           case 1:
2608             {
2609               MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx(&singleVal,&singleVal+1,arrIn,arrIndxIn,srcArr,srcArrIndex);
2610               break;
2611             }
2612           case 2:
2613             {
2614               MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx(&multiVal[0],&multiVal[0]+multiVal.size(),arrIn,arrIndxIn,srcArr,srcArrIndex);
2615               break;
2616             }
2617           case 4:
2618             {
2619               MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx(daIntTyypp->begin(),daIntTyypp->end(),arrIn,arrIndxIn,srcArr,srcArrIndex);
2620               break;
2621             }
2622           default:
2623             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2624           }
2625       }
2626
2627       PyObject *are2DCellsNotCorrectlyOriented(PyObject *vec, bool polyOnly) const throw(INTERP_KERNEL::Exception)
2628       {
2629         double val;
2630         DataArrayDouble *a;
2631         DataArrayDoubleTuple *aa;
2632         std::vector<double> bb;
2633         int sw;
2634         int spaceDim=self->getSpaceDimension();
2635         const char msg[]="Python wrap of MEDCouplingUMesh::are2DCellsNotCorrectlyOriented : ";
2636         const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val,a,aa,bb,msg,1,spaceDim,true);
2637         //
2638         std::vector<int> cells;
2639         self->are2DCellsNotCorrectlyOriented(v,polyOnly,cells);
2640         DataArrayInt *ret=DataArrayInt::New();
2641         ret->alloc((int)cells.size(),1);
2642         std::copy(cells.begin(),cells.end(),ret->getPointer());
2643         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 );
2644       }
2645
2646       void orientCorrectly2DCells(PyObject *vec, bool polyOnly) throw(INTERP_KERNEL::Exception)
2647       {
2648         double val;
2649         DataArrayDouble *a;
2650         DataArrayDoubleTuple *aa;
2651         std::vector<double> bb;
2652         int sw;
2653         int spaceDim=self->getSpaceDimension();
2654         const char msg[]="Python wrap of MEDCouplingUMesh::orientCorrectly2DCells : ";
2655         const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val,a,aa,bb,msg,1,spaceDim,true);
2656         self->orientCorrectly2DCells(v,polyOnly);
2657       }
2658       
2659       PyObject *arePolyhedronsNotCorrectlyOriented() const throw(INTERP_KERNEL::Exception)
2660       {
2661         std::vector<int> cells;
2662         self->arePolyhedronsNotCorrectlyOriented(cells);
2663         DataArrayInt *ret=DataArrayInt::New();
2664         ret->alloc((int)cells.size(),1);
2665         std::copy(cells.begin(),cells.end(),ret->getPointer());
2666         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 );
2667       }
2668
2669       PyObject *getFastAveragePlaneOfThis() const throw(INTERP_KERNEL::Exception)
2670       {
2671         double vec[3];
2672         double pos[3];
2673         self->getFastAveragePlaneOfThis(vec,pos);
2674         double vals[6];
2675         std::copy(vec,vec+3,vals);
2676         std::copy(pos,pos+3,vals+3);
2677         return convertDblArrToPyListOfTuple<double>(vals,3,2);
2678       }
2679       
2680       static MEDCouplingUMesh *MergeUMeshes(PyObject *li) throw(INTERP_KERNEL::Exception)
2681       {
2682         std::vector<const MEDCoupling::MEDCouplingUMesh *> tmp;
2683         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingUMesh *>(li,SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh,"MEDCouplingUMesh",tmp);
2684         return MEDCouplingUMesh::MergeUMeshes(tmp);
2685       }
2686
2687       PyObject *areCellsIncludedIn(const MEDCouplingUMesh *other, int compType) const throw(INTERP_KERNEL::Exception)
2688       {
2689         DataArrayInt *ret1;
2690         bool ret0=self->areCellsIncludedIn(other,compType,ret1);
2691         PyObject *ret=PyTuple_New(2);
2692         PyObject *ret0Py=ret0?Py_True:Py_False;
2693         Py_XINCREF(ret0Py);
2694         PyTuple_SetItem(ret,0,ret0Py);
2695         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2696         return ret;
2697       }
2698
2699       PyObject *areCellsIncludedInPolicy7(const MEDCouplingUMesh *other) const throw(INTERP_KERNEL::Exception)
2700       {
2701         DataArrayInt *ret1;
2702         bool ret0=self->areCellsIncludedInPolicy7(other,ret1);
2703         PyObject *ret=PyTuple_New(2);
2704         PyObject *ret0Py=ret0?Py_True:Py_False;
2705         Py_XINCREF(ret0Py);
2706         PyTuple_SetItem(ret,0,ret0Py);
2707         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2708         return ret;
2709       }
2710
2711       PyObject *explode3DMeshTo1D() const throw(INTERP_KERNEL::Exception)
2712       {
2713         MCAuto<DataArrayInt> d0=DataArrayInt::New();
2714         MCAuto<DataArrayInt> d1=DataArrayInt::New();
2715         MCAuto<DataArrayInt> d2=DataArrayInt::New();
2716         MCAuto<DataArrayInt> d3=DataArrayInt::New();
2717         MEDCouplingUMesh *m=self->explode3DMeshTo1D(d0,d1,d2,d3);
2718         PyObject *ret=PyTuple_New(5);
2719         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2720         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2721         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2722         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2723         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2724         return ret;
2725       }
2726
2727       PyObject *explodeIntoEdges() const throw(INTERP_KERNEL::Exception)
2728       {
2729         MCAuto<DataArrayInt> desc,descIndex,revDesc,revDescIndx;
2730         MCAuto<MEDCouplingUMesh> m(self->explodeIntoEdges(desc,descIndex,revDesc,revDescIndx));
2731         PyObject *ret=PyTuple_New(5);
2732         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m.retn()),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2733         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(desc.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2734         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(descIndex.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2735         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(revDesc.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2736         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(revDescIndx.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2737         return ret;
2738       }
2739
2740       PyObject *explodeMeshIntoMicroEdges() const throw(INTERP_KERNEL::Exception)
2741       {
2742         MCAuto<DataArrayInt> d0=DataArrayInt::New();
2743         MCAuto<DataArrayInt> d1=DataArrayInt::New();
2744         MCAuto<DataArrayInt> d2=DataArrayInt::New();
2745         MCAuto<DataArrayInt> d3=DataArrayInt::New();
2746         MEDCouplingUMesh *m=self->explodeMeshIntoMicroEdges(d0,d1,d2,d3);
2747         PyObject *ret=PyTuple_New(5);
2748         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2749         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2750         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2751         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2752         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2753         return ret;
2754       }
2755
2756       PyObject *buildDescendingConnectivity() const throw(INTERP_KERNEL::Exception)
2757       {
2758         MCAuto<DataArrayInt> d0=DataArrayInt::New();
2759         MCAuto<DataArrayInt> d1=DataArrayInt::New();
2760         MCAuto<DataArrayInt> d2=DataArrayInt::New();
2761         MCAuto<DataArrayInt> d3=DataArrayInt::New();
2762         MEDCouplingUMesh *m=self->buildDescendingConnectivity(d0,d1,d2,d3);
2763         PyObject *ret=PyTuple_New(5);
2764         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2765         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2766         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2767         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2768         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2769         return ret;
2770       }
2771
2772       PyObject *buildDescendingConnectivity2() const throw(INTERP_KERNEL::Exception)
2773       {
2774         MCAuto<DataArrayInt> d0=DataArrayInt::New();
2775         MCAuto<DataArrayInt> d1=DataArrayInt::New();
2776         MCAuto<DataArrayInt> d2=DataArrayInt::New();
2777         MCAuto<DataArrayInt> d3=DataArrayInt::New();
2778         MEDCouplingUMesh *m=self->buildDescendingConnectivity2(d0,d1,d2,d3);
2779         PyObject *ret=PyTuple_New(5);
2780         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2781         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2782         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2783         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2784         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2785         return ret;
2786       }
2787       
2788       PyObject *computeNeighborsOfCells() const throw(INTERP_KERNEL::Exception)
2789       {
2790         DataArrayInt *neighbors=0,*neighborsIdx=0;
2791         self->computeNeighborsOfCells(neighbors,neighborsIdx);
2792         PyObject *ret=PyTuple_New(2);
2793         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(neighbors),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2794         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(neighborsIdx),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2795         return ret;
2796       }
2797
2798       PyObject *computeNeighborsOfNodes() const throw(INTERP_KERNEL::Exception)
2799       {
2800         DataArrayInt *neighbors=0,*neighborsIdx=0;
2801         self->computeNeighborsOfNodes(neighbors,neighborsIdx);
2802         PyObject *ret=PyTuple_New(2);
2803         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(neighbors),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2804         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(neighborsIdx),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2805         return ret;
2806       }
2807
2808       PyObject *computeEnlargedNeighborsOfNodes() const throw(INTERP_KERNEL::Exception)
2809       {
2810         MCAuto<DataArrayInt> neighbors,neighborsIdx;
2811         self->computeEnlargedNeighborsOfNodes(neighbors,neighborsIdx);
2812         PyObject *ret=PyTuple_New(2);
2813         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(neighbors.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2814         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(neighborsIdx.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2815         return ret;
2816       }
2817       
2818       PyObject *computeCellNeighborhoodFromNodesOne(const DataArrayInt *nodeNeigh, const DataArrayInt *nodeNeighI) const throw(INTERP_KERNEL::Exception)
2819       {
2820         MCAuto<DataArrayInt> cellNeigh,cellNeighIndex;
2821         self->computeCellNeighborhoodFromNodesOne(nodeNeigh,nodeNeighI,cellNeigh,cellNeighIndex);
2822         PyObject *ret=PyTuple_New(2);
2823         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(cellNeigh.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2824         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellNeighIndex.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2825         return ret;
2826       }
2827       
2828       static PyObject *ComputeNeighborsOfCellsAdv(const DataArrayInt *desc, const DataArrayInt *descI, const DataArrayInt *revDesc, const DataArrayInt *revDescI) throw(INTERP_KERNEL::Exception)
2829       {
2830         DataArrayInt *neighbors=0,*neighborsIdx=0;
2831         MEDCouplingUMesh::ComputeNeighborsOfCellsAdv(desc,descI,revDesc,revDescI,neighbors,neighborsIdx);
2832         PyObject *ret=PyTuple_New(2);
2833         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(neighbors),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2834         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(neighborsIdx),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2835         return ret;
2836       }
2837
2838       PyObject *emulateMEDMEMBDC(const MEDCouplingUMesh *nM1LevMesh)
2839       {
2840         MCAuto<DataArrayInt> d0=DataArrayInt::New();
2841         MCAuto<DataArrayInt> d1=DataArrayInt::New();
2842         DataArrayInt *d2,*d3,*d4,*dd5;
2843         MEDCouplingUMesh *mOut=self->emulateMEDMEMBDC(nM1LevMesh,d0,d1,d2,d3,d4,dd5);
2844         PyObject *ret=PyTuple_New(7);
2845         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(mOut),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2846         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2847         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2848         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2849         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2850         PyTuple_SetItem(ret,5,SWIG_NewPointerObj(SWIG_as_voidptr(d4),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2851         PyTuple_SetItem(ret,6,SWIG_NewPointerObj(SWIG_as_voidptr(dd5),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2852         return ret;
2853       }
2854
2855       DataArrayDouble *getPartBarycenterAndOwner(DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2856       {
2857         if(!da)
2858           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2859         da->checkAllocated();
2860         return self->getPartBarycenterAndOwner(da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2861       }
2862
2863       DataArrayDouble *getPartMeasureField(bool isAbs, DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2864       {
2865         if(!da)
2866           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2867         da->checkAllocated();
2868         return self->getPartMeasureField(isAbs,da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2869       }
2870
2871       MEDCouplingFieldDouble *buildPartOrthogonalField(DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2872       {
2873         if(!da)
2874           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2875         da->checkAllocated();
2876         return self->buildPartOrthogonalField(da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2877       }
2878
2879       PyObject *getTypesOfPart(DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2880       {
2881         if(!da)
2882           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2883         da->checkAllocated();
2884         std::set<INTERP_KERNEL::NormalizedCellType> result=self->getTypesOfPart(da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2885         std::set<INTERP_KERNEL::NormalizedCellType>::const_iterator iL=result.begin();
2886         PyObject *res = PyList_New(result.size());
2887         for (int i=0;iL!=result.end(); i++, iL++)
2888           PyList_SetItem(res,i,PyInt_FromLong(*iL));
2889         return res;
2890       }
2891
2892       DataArrayInt *keepCellIdsByType(INTERP_KERNEL::NormalizedCellType type, DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2893       {
2894         if(!da)
2895           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2896         da->checkAllocated();
2897         DataArrayInt *ret=self->keepCellIdsByType(type,da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2898         ret->setName(da->getName().c_str());
2899         return ret;
2900       }
2901
2902       static PyObject *Intersect2DMeshes(const MEDCouplingUMesh *m1, const MEDCouplingUMesh *m2, double eps) throw(INTERP_KERNEL::Exception)
2903       {
2904         DataArrayInt *cellNb1=0,*cellNb2=0;
2905         MEDCouplingUMesh *mret=MEDCouplingUMesh::Intersect2DMeshes(m1,m2,eps,cellNb1,cellNb2);
2906         PyObject *ret=PyTuple_New(3);
2907         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(mret),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2908         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellNb1),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2909         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(cellNb2),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2910         return ret;
2911       }
2912
2913       static PyObject *Intersect2DMeshWith1DLine(const MEDCouplingUMesh *mesh2D, const MEDCouplingUMesh *mesh1D, double eps) throw(INTERP_KERNEL::Exception)
2914       {
2915         MEDCouplingUMesh *splitMesh2D(0),*splitMesh1D(0);
2916         DataArrayInt *cellIdInMesh2D(0),*cellIdInMesh1D(0);
2917         MEDCouplingUMesh::Intersect2DMeshWith1DLine(mesh2D,mesh1D,eps,splitMesh2D,splitMesh1D,cellIdInMesh2D,cellIdInMesh1D);
2918         PyObject *ret(PyTuple_New(4));
2919         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(splitMesh2D),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2920         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(splitMesh1D),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2921         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(cellIdInMesh2D),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2922         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(cellIdInMesh1D),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2923         return ret;
2924       }
2925
2926       PyObject *buildSlice3D(PyObject *origin, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
2927       {
2928         int spaceDim=self->getSpaceDimension();
2929         if(spaceDim!=3)
2930           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingUMesh::buildSlice3D : works only for spaceDim 3 !");
2931         double val,val2;
2932         DataArrayDouble *a,*a2;
2933         DataArrayDoubleTuple *aa,*aa2;
2934         std::vector<double> bb,bb2;
2935         int sw;
2936         const char msg[]="Python wrap of MEDCouplingUMesh::buildSlice3D : 1st parameter for origin.";
2937         const char msg2[]="Python wrap of MEDCouplingUMesh::buildSlice3D : 2nd parameter for vector.";
2938         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
2939         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
2940         //
2941         DataArrayInt *cellIds=0;
2942         MEDCouplingUMesh *ret0=self->buildSlice3D(orig,vect,eps,cellIds);
2943         PyObject *ret=PyTuple_New(2);
2944         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2945         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellIds),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2946         return ret;
2947       }
2948
2949       PyObject *buildSlice3DSurf(PyObject *origin, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
2950       {
2951         int spaceDim=self->getSpaceDimension();
2952         if(spaceDim!=3)
2953           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingUMesh::buildSlice3DSurf : works only for spaceDim 3 !");
2954         double val,val2;
2955         DataArrayDouble *a,*a2;
2956         DataArrayDoubleTuple *aa,*aa2;
2957         std::vector<double> bb,bb2;
2958         int sw;
2959         const char msg[]="Python wrap of MEDCouplingUMesh::buildSlice3DSurf : 1st parameter for origin.";
2960         const char msg2[]="Python wrap of MEDCouplingUMesh::buildSlice3DSurf : 2nd parameter for vector.";
2961         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
2962         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
2963         //
2964         DataArrayInt *cellIds=0;
2965         MEDCouplingUMesh *ret0=self->buildSlice3DSurf(orig,vect,eps,cellIds);
2966         PyObject *ret=PyTuple_New(2);
2967         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2968         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellIds),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2969         return ret;
2970       }
2971
2972       MEDCouplingUMesh *clipSingle3DCellByPlane(PyObject *origin, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
2973       {
2974         double val,val2;
2975         DataArrayDouble *a,*a2;
2976         DataArrayDoubleTuple *aa,*aa2;
2977         std::vector<double> bb,bb2;
2978         int sw;
2979         const char msg[]="Python wrap of MEDCouplingUMesh::clipSingle3DCellByPlane : 1st parameter for origin.";
2980         const char msg2[]="Python wrap of MEDCouplingUMesh::clipSingle3DCellByPlane : 2nd parameter for vector.";
2981         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,3,true);
2982         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,3,true);
2983         MCAuto<MEDCouplingUMesh> ret(self->clipSingle3DCellByPlane(orig,vect,eps));
2984         return ret.retn();
2985       }
2986
2987       DataArrayInt *getCellIdsCrossingPlane(PyObject *origin, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
2988       {
2989         int spaceDim=self->getSpaceDimension();
2990         if(spaceDim!=3)
2991           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingUMesh::getCellIdsCrossingPlane : works only for spaceDim 3 !");
2992         double val,val2;
2993         DataArrayDouble *a,*a2;
2994         DataArrayDoubleTuple *aa,*aa2;
2995         std::vector<double> bb,bb2;
2996         int sw;
2997         const char msg[]="Python wrap of MEDCouplingUMesh::getCellIdsCrossingPlane : 1st parameter for origin.";
2998         const char msg2[]="Python wrap of MEDCouplingUMesh::getCellIdsCrossingPlane : 2nd parameter for vector.";
2999         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
3000         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
3001         return self->getCellIdsCrossingPlane(orig,vect,eps);
3002       }
3003
3004       void convertToPolyTypes(PyObject *li) throw(INTERP_KERNEL::Exception)
3005       {
3006         int sw;
3007         int pos1;
3008         std::vector<int> pos2;
3009         DataArrayInt *pos3=0;
3010         DataArrayIntTuple *pos4=0;
3011         convertIntStarLikePyObjToCpp(li,sw,pos1,pos2,pos3,pos4);
3012         switch(sw)
3013           {
3014           case 1:
3015             {
3016               self->convertToPolyTypes(&pos1,&pos1+1);
3017               return;
3018             }
3019           case 2:
3020             {
3021               if(pos2.empty())
3022                 return;
3023               self->convertToPolyTypes(&pos2[0],&pos2[0]+pos2.size());
3024               return ;
3025             }
3026           case 3:
3027             {
3028               self->convertToPolyTypes(pos3->begin(),pos3->end());
3029               return ;
3030             }
3031           default:
3032             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::convertToPolyTypes : unexpected input array type recognized !");
3033           }
3034       }      
3035     }
3036     void convertAllToPoly();
3037     void convertExtrudedPolyhedra() throw(INTERP_KERNEL::Exception);
3038     bool unPolyze() throw(INTERP_KERNEL::Exception);
3039     void simplifyPolyhedra(double eps) throw(INTERP_KERNEL::Exception);
3040     MEDCouplingUMesh *buildSpreadZonesWithPoly() const throw(INTERP_KERNEL::Exception);
3041     MEDCouplingUMesh *buildExtrudedMesh(const MEDCouplingUMesh *mesh1D, int policy) throw(INTERP_KERNEL::Exception);
3042   };
3043
3044   //== MEDCouplingUMesh End
3045
3046   //== MEDCouplingMappedExtrudedMesh
3047
3048   class MEDCouplingMappedExtrudedMesh : public MEDCoupling::MEDCouplingMesh
3049   {
3050   public:
3051     static MEDCouplingMappedExtrudedMesh *New(const MEDCouplingUMesh *mesh3D, const MEDCouplingUMesh *mesh2D, int cell2DId) throw(INTERP_KERNEL::Exception);
3052     static MEDCouplingMappedExtrudedMesh *New(const MEDCouplingCMesh *mesh3D) throw(INTERP_KERNEL::Exception);
3053     MEDCouplingUMesh *build3DUnstructuredMesh() const throw(INTERP_KERNEL::Exception);
3054     int get2DCellIdForExtrusion() const;
3055     %extend {
3056       MEDCouplingMappedExtrudedMesh(const MEDCouplingUMesh *mesh3D, const MEDCouplingUMesh *mesh2D, int cell2DId) throw(INTERP_KERNEL::Exception)
3057       {
3058         return MEDCouplingMappedExtrudedMesh::New(mesh3D,mesh2D,cell2DId);
3059       }
3060
3061       MEDCouplingMappedExtrudedMesh(const MEDCouplingCMesh *mesh3D) throw(INTERP_KERNEL::Exception)
3062       {
3063         return MEDCouplingMappedExtrudedMesh::New(mesh3D);
3064       }
3065
3066       MEDCouplingMappedExtrudedMesh()
3067       {
3068         return MEDCouplingMappedExtrudedMesh::New();
3069       }
3070       
3071       std::string __str__() const throw(INTERP_KERNEL::Exception)
3072       {
3073         return self->simpleRepr();
3074       }
3075
3076       std::string __repr__() const throw(INTERP_KERNEL::Exception)
3077       {
3078         std::ostringstream oss;
3079         self->reprQuickOverview(oss);
3080         return oss.str();
3081       }
3082       
3083       PyObject *getMesh2D() const throw(INTERP_KERNEL::Exception)
3084       {
3085         MEDCouplingUMesh *ret=self->getMesh2D();
3086         if(ret)
3087           ret->incrRef();
3088         return convertMesh(ret, SWIG_POINTER_OWN | 0 );
3089       }
3090       PyObject *getMesh1D() const throw(INTERP_KERNEL::Exception)
3091       {
3092         MEDCouplingUMesh *ret=self->getMesh1D();
3093         if(ret)
3094           ret->incrRef();
3095         return convertMesh(ret, SWIG_POINTER_OWN | 0 );
3096       }
3097       PyObject *getMesh3DIds() const throw(INTERP_KERNEL::Exception)
3098       {
3099         DataArrayInt *ret=self->getMesh3DIds();
3100         if(ret)
3101           ret->incrRef();
3102         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 );
3103       } 
3104     }
3105   };
3106
3107   //== MEDCouplingMappedExtrudedMesh End
3108
3109   class MEDCoupling1GTUMesh : public MEDCoupling::MEDCouplingPointSet
3110   {
3111   public:
3112     static MEDCoupling1GTUMesh *New(const std::string& name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
3113     static MEDCoupling1GTUMesh *New(const MEDCouplingUMesh *m) throw(INTERP_KERNEL::Exception);
3114     INTERP_KERNEL::NormalizedCellType getCellModelEnum() const throw(INTERP_KERNEL::Exception);
3115     int getNodalConnectivityLength() const throw(INTERP_KERNEL::Exception);
3116     virtual void allocateCells(int nbOfCells=0) throw(INTERP_KERNEL::Exception);
3117     virtual void checkConsistencyOfConnectivity() const throw(INTERP_KERNEL::Exception);
3118     %extend
3119     {
3120       virtual void insertNextCell(PyObject *li) throw(INTERP_KERNEL::Exception)
3121       {
3122         int szArr,sw,iTypppArr;
3123         std::vector<int> stdvecTyyppArr;
3124         const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3125         self->insertNextCell(tmp,tmp+szArr);
3126       }
3127
3128       virtual DataArrayInt *getNodalConnectivity() const throw(INTERP_KERNEL::Exception)
3129       {
3130         DataArrayInt *ret=self->getNodalConnectivity();
3131         if(ret) ret->incrRef();
3132         return ret;
3133       }
3134       
3135       static MEDCouplingUMesh *AggregateOnSameCoordsToUMesh(PyObject *li) throw(INTERP_KERNEL::Exception)
3136       {
3137         std::vector< const MEDCoupling1GTUMesh *> parts;
3138         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCoupling1GTUMesh *>(li,SWIGTYPE_p_MEDCoupling__MEDCoupling1GTUMesh,"MEDCoupling1GTUMesh",parts);
3139         return MEDCoupling1GTUMesh::AggregateOnSameCoordsToUMesh(parts);
3140       }
3141     }
3142   };
3143
3144   //== MEDCoupling1SGTUMesh
3145
3146   class MEDCoupling1SGTUMesh : public MEDCoupling::MEDCoupling1GTUMesh
3147   {
3148   public:
3149     static MEDCoupling1SGTUMesh *New(const std::string& name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
3150     static MEDCoupling1SGTUMesh *New(const MEDCouplingUMesh *m) throw(INTERP_KERNEL::Exception);
3151     void setNodalConnectivity(DataArrayInt *nodalConn) throw(INTERP_KERNEL::Exception);
3152     int getNumberOfNodesPerCell() const throw(INTERP_KERNEL::Exception);
3153     static MEDCoupling1SGTUMesh *Merge1SGTUMeshes(const MEDCoupling1SGTUMesh *mesh1, const MEDCoupling1SGTUMesh *mesh2) throw(INTERP_KERNEL::Exception);
3154     MEDCoupling1SGTUMesh *buildSetInstanceFromThis(int spaceDim) const throw(INTERP_KERNEL::Exception);
3155     MEDCoupling1GTUMesh *computeDualMesh() const throw(INTERP_KERNEL::Exception);
3156     MEDCoupling1SGTUMesh *explodeEachHexa8To6Quad4() const throw(INTERP_KERNEL::Exception);
3157     DataArrayInt *sortHexa8EachOther() throw(INTERP_KERNEL::Exception);
3158     %extend
3159     {
3160       MEDCoupling1SGTUMesh()
3161       {
3162         return MEDCoupling1SGTUMesh::New();
3163       }
3164
3165       MEDCoupling1SGTUMesh(const std::string& name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception)
3166       {
3167         return MEDCoupling1SGTUMesh::New(name,type);
3168       }
3169
3170       MEDCoupling1SGTUMesh(const MEDCouplingUMesh *m) throw(INTERP_KERNEL::Exception)
3171       {
3172         return MEDCoupling1SGTUMesh::New(m);
3173       }
3174
3175       std::string __str__() const throw(INTERP_KERNEL::Exception)
3176       {
3177         return self->simpleRepr();
3178       }
3179       
3180       std::string __repr__() const throw(INTERP_KERNEL::Exception)
3181       {
3182         std::ostringstream oss;
3183         self->reprQuickOverview(oss);
3184         return oss.str();
3185       }
3186
3187       PyObject *structurizeMe(double eps=1e-12) const throw(INTERP_KERNEL::Exception)
3188       {
3189         DataArrayInt *cellPerm(0),*nodePerm(0);
3190         MEDCouplingCMesh *retCpp(self->structurizeMe(cellPerm,nodePerm,eps));
3191         PyObject *ret(PyTuple_New(3));
3192         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(retCpp),SWIGTYPE_p_MEDCoupling__MEDCouplingCMesh, SWIG_POINTER_OWN | 0 ));
3193         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellPerm),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
3194         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(nodePerm),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
3195         return ret;
3196       }
3197
3198       static MEDCoupling1SGTUMesh *Merge1SGTUMeshes(PyObject *li) throw(INTERP_KERNEL::Exception)
3199       {
3200         std::vector<const MEDCoupling::MEDCoupling1SGTUMesh *> tmp;
3201         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCoupling1SGTUMesh *>(li,SWIGTYPE_p_MEDCoupling__MEDCoupling1SGTUMesh,"MEDCoupling1SGTUMesh",tmp);
3202         return MEDCoupling1SGTUMesh::Merge1SGTUMeshes(tmp);
3203       }
3204       
3205       static MEDCoupling1SGTUMesh *Merge1SGTUMeshesOnSameCoords(PyObject *li) throw(INTERP_KERNEL::Exception)
3206       {
3207         std::vector<const MEDCoupling::MEDCoupling1SGTUMesh *> tmp;
3208         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCoupling1SGTUMesh *>(li,SWIGTYPE_p_MEDCoupling__MEDCoupling1SGTUMesh,"MEDCoupling1SGTUMesh",tmp);
3209         return MEDCoupling1SGTUMesh::Merge1SGTUMeshesOnSameCoords(tmp);
3210       }
3211     }
3212   };
3213   
3214   //== MEDCoupling1SGTUMesh End
3215
3216   //== MEDCoupling1DGTUMesh
3217
3218   class MEDCoupling1DGTUMesh : public MEDCoupling::MEDCoupling1GTUMesh
3219   {
3220   public:
3221     static MEDCoupling1DGTUMesh *New(const std::string& name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
3222     static MEDCoupling1DGTUMesh *New(const MEDCouplingUMesh *m) throw(INTERP_KERNEL::Exception);
3223     void setNodalConnectivity(DataArrayInt *nodalConn, DataArrayInt *nodalConnIndex) throw(INTERP_KERNEL::Exception);
3224     MEDCoupling1DGTUMesh *buildSetInstanceFromThis(int spaceDim) const throw(INTERP_KERNEL::Exception);
3225     bool isPacked() const throw(INTERP_KERNEL::Exception);
3226     %extend
3227     {
3228       MEDCoupling1DGTUMesh()
3229       {
3230         return MEDCoupling1DGTUMesh::New();
3231       }
3232       MEDCoupling1DGTUMesh(const std::string& name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception)
3233       {
3234         return MEDCoupling1DGTUMesh::New(name,type);
3235       }
3236
3237       MEDCoupling1DGTUMesh(const MEDCouplingUMesh *m) throw(INTERP_KERNEL::Exception)
3238       {
3239         return MEDCoupling1DGTUMesh::New(m);
3240       }
3241
3242       std::string __str__() const throw(INTERP_KERNEL::Exception)
3243       {
3244         return self->simpleRepr();
3245       }
3246       
3247       std::string __repr__() const throw(INTERP_KERNEL::Exception)
3248       {
3249         std::ostringstream oss;
3250         self->reprQuickOverview(oss);
3251         return oss.str();
3252       }
3253
3254       DataArrayInt *getNodalConnectivityIndex() const throw(INTERP_KERNEL::Exception)
3255       {
3256         DataArrayInt *ret=self->getNodalConnectivityIndex();
3257         if(ret) ret->incrRef();
3258         return ret;
3259       }
3260
3261       PyObject *retrievePackedNodalConnectivity() const throw(INTERP_KERNEL::Exception)
3262       {
3263         DataArrayInt *ret1=0,*ret2=0;
3264         bool ret0=self->retrievePackedNodalConnectivity(ret1,ret2);
3265         PyObject *ret0Py=ret0?Py_True:Py_False;
3266         Py_XINCREF(ret0Py);
3267         PyObject *ret=PyTuple_New(3);
3268         PyTuple_SetItem(ret,0,ret0Py);
3269         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
3270         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(ret2),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
3271         return ret;
3272       }
3273       
3274       PyObject *copyWithNodalConnectivityPacked() const throw(INTERP_KERNEL::Exception)
3275       {
3276         bool ret1;
3277         MEDCoupling1DGTUMesh *ret0=self->copyWithNodalConnectivityPacked(ret1);
3278         PyObject *ret=PyTuple_New(2);
3279         PyObject *ret1Py=ret1?Py_True:Py_False; Py_XINCREF(ret1Py);
3280         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__MEDCoupling1DGTUMesh, SWIG_POINTER_OWN | 0 ));
3281         PyTuple_SetItem(ret,1,ret1Py);
3282         return ret;
3283       }
3284
3285       static MEDCoupling1DGTUMesh *Merge1DGTUMeshes(PyObject *li) throw(INTERP_KERNEL::Exception)
3286       {
3287         std::vector<const MEDCoupling::MEDCoupling1DGTUMesh *> tmp;
3288         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCoupling1DGTUMesh *>(li,SWIGTYPE_p_MEDCoupling__MEDCoupling1DGTUMesh,"MEDCoupling1DGTUMesh",tmp);
3289         return MEDCoupling1DGTUMesh::Merge1DGTUMeshes(tmp);
3290       }
3291       
3292       static MEDCoupling1DGTUMesh *Merge1DGTUMeshesOnSameCoords(PyObject *li) throw(INTERP_KERNEL::Exception)
3293       {
3294         std::vector<const MEDCoupling::MEDCoupling1DGTUMesh *> tmp;
3295         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCoupling1DGTUMesh *>(li,SWIGTYPE_p_MEDCoupling__MEDCoupling1DGTUMesh,"MEDCoupling1DGTUMesh",tmp);
3296         return MEDCoupling1DGTUMesh::Merge1DGTUMeshesOnSameCoords(tmp);
3297       }
3298       
3299       static DataArrayInt *AggregateNodalConnAndShiftNodeIds(PyObject *li, const std::vector<int>& offsetInNodeIdsPerElt) throw(INTERP_KERNEL::Exception)
3300       {
3301         std::vector<const MEDCoupling::DataArrayInt *> tmp;
3302         convertFromPyObjVectorOfObj<const MEDCoupling::DataArrayInt *>(li,SWIGTYPE_p_MEDCoupling__DataArrayInt,"DataArrayInt",tmp);
3303         return MEDCoupling1DGTUMesh::AggregateNodalConnAndShiftNodeIds(tmp,offsetInNodeIdsPerElt);
3304       }
3305     }
3306   };
3307
3308   //== MEDCoupling1DGTUMeshEnd
3309
3310   class MEDCouplingStructuredMesh : public MEDCoupling::MEDCouplingMesh
3311   {
3312   public:
3313     int getCellIdFromPos(int i, int j, int k) const throw(INTERP_KERNEL::Exception);
3314     int getNodeIdFromPos(int i, int j, int k) const throw(INTERP_KERNEL::Exception);
3315     int getNumberOfCellsOfSubLevelMesh() const throw(INTERP_KERNEL::Exception);
3316     int getSpaceDimensionOnNodeStruct() const throw(INTERP_KERNEL::Exception);
3317     double computeSquareness() const throw(INTERP_KERNEL::Exception);
3318     virtual std::vector<int> getNodeGridStructure() const throw(INTERP_KERNEL::Exception);
3319     std::vector<int> getCellGridStructure() const throw(INTERP_KERNEL::Exception);
3320     MEDCoupling1SGTUMesh *build1SGTUnstructured() const throw(INTERP_KERNEL::Exception);
3321     std::vector<int> getLocationFromCellId(int cellId) const throw(INTERP_KERNEL::Exception);
3322     std::vector<int> getLocationFromNodeId(int cellId) const throw(INTERP_KERNEL::Exception);
3323     static INTERP_KERNEL::NormalizedCellType GetGeoTypeGivenMeshDimension(int meshDim) throw(INTERP_KERNEL::Exception);
3324     MEDCoupling1SGTUMesh *build1SGTSubLevelMesh() const throw(INTERP_KERNEL::Exception);
3325     static int DeduceNumberOfGivenStructure(const std::vector<int>& st) throw(INTERP_KERNEL::Exception);
3326     static DataArrayInt *ComputeCornersGhost(const std::vector<int>& st, int ghostLev) throw(INTERP_KERNEL::Exception);
3327     static std::vector<int> GetSplitVectFromStruct(const std::vector<int>& strct) throw(INTERP_KERNEL::Exception);
3328     %extend
3329     {
3330       virtual MEDCouplingStructuredMesh *buildStructuredSubPart(PyObject *cellPart) const throw(INTERP_KERNEL::Exception)
3331       {
3332         int tmpp1=-1,tmpp2=-1;
3333         std::vector<int> tmp=fillArrayWithPyListInt2(cellPart,tmpp1,tmpp2);
3334         std::vector< std::pair<int,int> > inp;
3335         if(tmpp2==2)
3336           {
3337             inp.resize(tmpp1);
3338             for(int i=0;i<tmpp1;i++)
3339               { inp[i].first=tmp[2*i]; inp[i].second=tmp[2*i+1]; }
3340           }
3341         else if(tmpp2==1)
3342           {
3343             if(tmpp1%2!=0)
3344               throw INTERP_KERNEL::Exception("Wrap of MEDCouplingStructuredMesh.buildStructuredSubPart : invalid input size ! Must be even size !");
3345             inp.resize(tmpp1/2);
3346             for(int i=0;i<tmpp1/2;i++)
3347               { inp[i].first=tmp[2*i]; inp[i].second=tmp[2*i+1]; }
3348           }
3349         else
3350           throw INTERP_KERNEL::Exception("Wrap of MEDCouplingStructuredMesh.buildStructuredSubPart : invalid input size !");
3351         return self->buildStructuredSubPart(inp);
3352       }
3353
3354       static DataArrayInt *BuildExplicitIdsFrom(PyObject *st, PyObject *part) throw(INTERP_KERNEL::Exception)
3355       {
3356         std::vector< std::pair<int,int> > inp;
3357         convertPyToVectorPairInt(part,inp);
3358         //
3359         int szArr,sw,iTypppArr;
3360         std::vector<int> stdvecTyyppArr;
3361         const int *tmp4=convertIntStarLikePyObjToCppIntStar(st,sw,szArr,iTypppArr,stdvecTyyppArr);
3362         std::vector<int> tmp5(tmp4,tmp4+szArr);
3363         //
3364         return MEDCouplingStructuredMesh::BuildExplicitIdsFrom(tmp5,inp);
3365       }
3366
3367       static void MultiplyPartOf(const std::vector<int>& st, PyObject *part, double factor, DataArrayDouble *da) throw(INTERP_KERNEL::Exception)
3368       {
3369         std::vector< std::pair<int,int> > inp;
3370         convertPyToVectorPairInt(part,inp);
3371         MEDCouplingStructuredMesh::MultiplyPartOf(st,inp,factor,da);
3372       }
3373
3374       static void MultiplyPartOfByGhost(const std::vector<int>& st, PyObject *part, int ghostSize, double factor, DataArrayDouble *da) throw(INTERP_KERNEL::Exception)
3375       {
3376         std::vector< std::pair<int,int> > inp;
3377         convertPyToVectorPairInt(part,inp);
3378         MEDCouplingStructuredMesh::MultiplyPartOfByGhost(st,inp,ghostSize,factor,da);
3379       }
3380
3381       static PyObject *PutInGhostFormat(int ghostSize, const std::vector<int>& st, PyObject *part) throw(INTERP_KERNEL::Exception)
3382       {
3383         std::vector< std::pair<int,int> > inp;
3384         convertPyToVectorPairInt(part,inp);
3385         std::vector<int> stWithGhost;
3386         std::vector< std::pair<int,int> > partWithGhost;
3387         MEDCouplingStructuredMesh::PutInGhostFormat(ghostSize,st,inp,stWithGhost,partWithGhost);
3388         PyObject *ret(PyTuple_New(2));
3389         PyTuple_SetItem(ret,0,convertIntArrToPyList2(stWithGhost));
3390         PyTuple_SetItem(ret,1,convertFromVectorPairInt(partWithGhost));
3391         return ret;
3392       }
3393
3394       static DataArrayDouble *ExtractFieldOfDoubleFrom(const std::vector<int>& st, const DataArrayDouble *fieldOfDbl, PyObject *partCompactFormat) throw(INTERP_KERNEL::Exception)
3395       {
3396         std::vector< std::pair<int,int> > inp;
3397         convertPyToVectorPairInt(partCompactFormat,inp);
3398         return MEDCouplingStructuredMesh::ExtractFieldOfDoubleFrom(st,fieldOfDbl,inp);
3399       }
3400
3401       static void AssignPartOfFieldOfDoubleUsing(const std::vector<int>& st, DataArrayDouble *fieldOfDbl, PyObject *partCompactFormat, const DataArrayDouble *other) throw(INTERP_KERNEL::Exception)
3402       {
3403         std::vector< std::pair<int,int> > inp;
3404         convertPyToVectorPairInt(partCompactFormat,inp);
3405         MEDCouplingStructuredMesh::AssignPartOfFieldOfDoubleUsing(st,fieldOfDbl,inp,other);
3406       }
3407
3408       static int DeduceNumberOfGivenRangeInCompactFrmt(PyObject *part) throw(INTERP_KERNEL::Exception)
3409       {
3410         std::vector< std::pair<int,int> > inp;
3411         convertPyToVectorPairInt(part,inp);
3412         return MEDCouplingStructuredMesh::DeduceNumberOfGivenRangeInCompactFrmt(inp);
3413       }
3414
3415       static DataArrayInt *Build1GTNodalConnectivity(PyObject *li) throw(INTERP_KERNEL::Exception)
3416       {
3417         int szArr,sw,iTypppArr;
3418         std::vector<int> stdvecTyyppArr;
3419         const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3420         return MEDCouplingStructuredMesh::Build1GTNodalConnectivity(tmp,tmp+szArr);
3421       }
3422
3423       static DataArrayInt *Build1GTNodalConnectivityOfSubLevelMesh(PyObject *li) throw(INTERP_KERNEL::Exception)
3424       {
3425         int szArr,sw,iTypppArr;
3426         std::vector<int> stdvecTyyppArr;
3427         const int *tmp(convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr));
3428         return MEDCouplingStructuredMesh::Build1GTNodalConnectivityOfSubLevelMesh(tmp,tmp+szArr);
3429       }
3430
3431       static std::vector<int> GetDimensionsFromCompactFrmt(PyObject *partCompactFormat) throw(INTERP_KERNEL::Exception)
3432       {
3433         std::vector< std::pair<int,int> > inp;
3434         convertPyToVectorPairInt(partCompactFormat,inp);
3435         return MEDCouplingStructuredMesh::GetDimensionsFromCompactFrmt(inp);
3436       }
3437
3438       static PyObject *GetCompactFrmtFromDimensions(const std::vector<int>& dims) throw(INTERP_KERNEL::Exception)
3439       {
3440         std::vector< std::pair<int,int> > ret(MEDCouplingStructuredMesh::GetCompactFrmtFromDimensions(dims));
3441         PyObject *retPy=PyList_New(ret.size());
3442         for(std::size_t i=0;i<ret.size();i++)
3443           {
3444             PyObject *tmp=PyTuple_New(2);
3445             PyTuple_SetItem(tmp,0,PyInt_FromLong(ret[i].first));
3446             PyTuple_SetItem(tmp,1,PyInt_FromLong(ret[i].second));
3447             PyList_SetItem(retPy,i,tmp);
3448           }
3449         return retPy;
3450       }
3451
3452       static PyObject *IntersectRanges(PyObject *r1, PyObject *r2) throw(INTERP_KERNEL::Exception)
3453       {
3454         std::vector< std::pair<int,int> > r1Cpp,r2Cpp;
3455         convertPyToVectorPairInt(r1,r1Cpp);
3456         convertPyToVectorPairInt(r2,r2Cpp);
3457         std::vector< std::pair<int,int> > ret(MEDCouplingStructuredMesh::IntersectRanges(r1Cpp,r2Cpp));
3458         PyObject *retPy=PyList_New(ret.size());
3459         for(std::size_t i=0;i<ret.size();i++)
3460           {
3461             PyObject *tmp=PyTuple_New(2);
3462             PyTuple_SetItem(tmp,0,PyInt_FromLong(ret[i].first));
3463             PyTuple_SetItem(tmp,1,PyInt_FromLong(ret[i].second));
3464             PyList_SetItem(retPy,i,tmp);
3465           }
3466         return retPy;
3467       }
3468
3469       static bool AreRangesIntersect(PyObject *r1, PyObject *r2)
3470       {
3471         std::vector< std::pair<int,int> > r1Cpp,r2Cpp;
3472         convertPyToVectorPairInt(r1,r1Cpp);
3473         convertPyToVectorPairInt(r2,r2Cpp);
3474         return MEDCouplingStructuredMesh::AreRangesIntersect(r1Cpp,r2Cpp);
3475       }
3476
3477       static PyObject *IsPartStructured(PyObject *li, PyObject *st) throw(INTERP_KERNEL::Exception)
3478       {
3479         int szArr,sw,iTypppArr;
3480         std::vector<int> stdvecTyyppArr;
3481         const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3482         int szArr2,sw2,iTypppArr2;
3483         std::vector<int> stdvecTyyppArr2;
3484         const int *tmp2=convertIntStarLikePyObjToCppIntStar(st,sw2,szArr2,iTypppArr2,stdvecTyyppArr2);
3485         std::vector<int> tmp3(tmp2,tmp2+szArr2);
3486         std::vector< std::pair<int,int> > partCompactFormat;
3487         bool ret0=MEDCouplingStructuredMesh::IsPartStructured(tmp,tmp+szArr,tmp3,partCompactFormat);
3488         PyObject *ret=PyTuple_New(2);
3489         PyObject *ret0Py=ret0?Py_True:Py_False; Py_XINCREF(ret0Py);
3490         PyTuple_SetItem(ret,0,ret0Py);
3491         PyObject *ret1Py=PyList_New(partCompactFormat.size());
3492         for(std::size_t i=0;i<partCompactFormat.size();i++)
3493           {
3494             PyObject *tmp4=PyTuple_New(2);
3495             PyTuple_SetItem(tmp4,0,PyInt_FromLong(partCompactFormat[i].first));
3496             PyTuple_SetItem(tmp4,1,PyInt_FromLong(partCompactFormat[i].second));
3497             PyList_SetItem(ret1Py,i,tmp4);
3498           }
3499         PyTuple_SetItem(ret,1,ret1Py);
3500         return ret;
3501       }
3502
3503       static PyObject *ChangeReferenceFromGlobalOfCompactFrmt(PyObject *bigInAbs, PyObject *partOfBigInAbs, bool check=true) throw(INTERP_KERNEL::Exception)
3504       {
3505         std::vector< std::pair<int,int> > param0,param1,ret;
3506         convertPyToVectorPairInt(bigInAbs,param0);
3507         convertPyToVectorPairInt(partOfBigInAbs,param1);
3508         MEDCouplingStructuredMesh::ChangeReferenceFromGlobalOfCompactFrmt(param0,param1,ret,check);
3509         PyObject *retPy(PyList_New(ret.size()));
3510         for(std::size_t i=0;i<ret.size();i++)
3511           {
3512             PyObject *tmp(PyTuple_New(2));
3513             PyTuple_SetItem(tmp,0,PyInt_FromLong(ret[i].first));
3514             PyTuple_SetItem(tmp,1,PyInt_FromLong(ret[i].second));
3515             PyList_SetItem(retPy,i,tmp);
3516           }
3517         return retPy;
3518       }
3519
3520       static PyObject *TranslateCompactFrmt(PyObject *part, const std::vector<int>& translation) throw(INTERP_KERNEL::Exception)
3521       {
3522         std::vector< std::pair<int,int> > param0;
3523         convertPyToVectorPairInt(part,param0);
3524         std::vector< std::pair<int,int> > ret(MEDCouplingStructuredMesh::TranslateCompactFrmt(param0,translation));
3525         PyObject *retPy(PyList_New(ret.size()));
3526         for(std::size_t i=0;i<ret.size();i++)
3527           {
3528             PyObject *tmp(PyTuple_New(2));
3529             PyTuple_SetItem(tmp,0,PyInt_FromLong(ret[i].first));
3530             PyTuple_SetItem(tmp,1,PyInt_FromLong(ret[i].second));
3531             PyList_SetItem(retPy,i,tmp);
3532           }
3533         return retPy;
3534       }
3535
3536       static std::vector<int> FindTranslationFrom(PyObject *startingFrom, PyObject *goingTo) throw(INTERP_KERNEL::Exception)
3537       {
3538         std::vector< std::pair<int,int> > param0,param1;
3539         convertPyToVectorPairInt(startingFrom,param0);
3540         convertPyToVectorPairInt(goingTo,param1);
3541         return  MEDCouplingStructuredMesh::FindTranslationFrom(param0,param1);
3542       }
3543
3544       static PyObject *ChangeReferenceToGlobalOfCompactFrmt(PyObject *bigInAbs, PyObject *partOfBigRelativeToBig, bool check=true) throw(INTERP_KERNEL::Exception)
3545       {
3546         std::vector< std::pair<int,int> > param0,param1,ret;
3547         convertPyToVectorPairInt(bigInAbs,param0);
3548         convertPyToVectorPairInt(partOfBigRelativeToBig,param1);
3549         MEDCouplingStructuredMesh::ChangeReferenceToGlobalOfCompactFrmt(param0,param1,ret,check);
3550         PyObject *retPy(PyList_New(ret.size()));
3551         for(std::size_t i=0;i<ret.size();i++)
3552           {
3553             PyObject *tmp(PyTuple_New(2));
3554             PyTuple_SetItem(tmp,0,PyInt_FromLong(ret[i].first));
3555             PyTuple_SetItem(tmp,1,PyInt_FromLong(ret[i].second));
3556             PyList_SetItem(retPy,i,tmp);
3557           }
3558         return retPy;
3559       }
3560     }
3561   };
3562
3563   class MEDCouplingCurveLinearMesh;
3564
3565   //== MEDCouplingCMesh
3566   
3567   class MEDCouplingCMesh : public MEDCoupling::MEDCouplingStructuredMesh
3568   {
3569   public:
3570     static MEDCouplingCMesh *New() throw(INTERP_KERNEL::Exception);
3571     static MEDCouplingCMesh *New(const std::string& meshName) throw(INTERP_KERNEL::Exception);
3572     void setCoords(const DataArrayDouble *coordsX,
3573                    const DataArrayDouble *coordsY=0,
3574                    const DataArrayDouble *coordsZ=0) throw(INTERP_KERNEL::Exception);
3575     void setCoordsAt(int i, const DataArrayDouble *arr) throw(INTERP_KERNEL::Exception);
3576     MEDCouplingCurveLinearMesh *buildCurveLinear() const throw(INTERP_KERNEL::Exception);
3577     %extend {
3578       MEDCouplingCMesh() throw(INTERP_KERNEL::Exception)
3579       {
3580         return MEDCouplingCMesh::New();
3581       }
3582       MEDCouplingCMesh(const std::string& meshName) throw(INTERP_KERNEL::Exception)
3583       {
3584         return MEDCouplingCMesh::New(meshName);
3585       }
3586       std::string __str__() const throw(INTERP_KERNEL::Exception)
3587       {
3588         return self->simpleRepr();
3589       }
3590       std::string __repr__() const throw(INTERP_KERNEL::Exception)
3591       {
3592         std::ostringstream oss;
3593         self->reprQuickOverview(oss);
3594         return oss.str();
3595       }
3596       DataArrayDouble *getCoordsAt(int i) throw(INTERP_KERNEL::Exception)
3597       {
3598         DataArrayDouble *ret=self->getCoordsAt(i);
3599         if(ret)
3600           ret->incrRef();
3601         return ret;
3602       }
3603     }
3604   };
3605
3606   //== MEDCouplingCMesh End
3607
3608   //== MEDCouplingCurveLinearMesh
3609
3610   class MEDCouplingCurveLinearMesh : public MEDCoupling::MEDCouplingStructuredMesh
3611   {
3612   public:
3613     static MEDCouplingCurveLinearMesh *New() throw(INTERP_KERNEL::Exception);
3614     static MEDCouplingCurveLinearMesh *New(const std::string& meshName) throw(INTERP_KERNEL::Exception);
3615     void setCoords(const DataArrayDouble *coords) throw(INTERP_KERNEL::Exception);
3616     %extend {
3617       MEDCouplingCurveLinearMesh() throw(INTERP_KERNEL::Exception)
3618       {
3619         return MEDCouplingCurveLinearMesh::New();
3620       }
3621       MEDCouplingCurveLinearMesh(const std::string& meshName) throw(INTERP_KERNEL::Exception)
3622       {
3623         return MEDCouplingCurveLinearMesh::New(meshName);
3624       }
3625       std::string __str__() const throw(INTERP_KERNEL::Exception) 
3626       {
3627         return self->simpleRepr();
3628       }
3629       std::string __repr__() const throw(INTERP_KERNEL::Exception)
3630       {
3631         std::ostringstream oss;
3632         self->reprQuickOverview(oss);
3633         return oss.str();
3634       }
3635       DataArrayDouble *getCoords() throw(INTERP_KERNEL::Exception)
3636       {
3637         DataArrayDouble *ret=self->getCoords();
3638         if(ret)
3639           ret->incrRef();
3640         return ret;
3641       }
3642       void setNodeGridStructure(PyObject *gridStruct) throw(INTERP_KERNEL::Exception)
3643       {
3644         int szArr,sw,iTypppArr;
3645         std::vector<int> stdvecTyyppArr;
3646         const int *tmp=convertIntStarLikePyObjToCppIntStar(gridStruct,sw,szArr,iTypppArr,stdvecTyyppArr);
3647         self->setNodeGridStructure(tmp,tmp+szArr);
3648       }
3649     }
3650   };
3651
3652   //== MEDCouplingCurveLinearMesh End
3653
3654   //== MEDCouplingIMesh
3655
3656   class MEDCouplingIMesh : public MEDCoupling::MEDCouplingStructuredMesh
3657   {
3658   public:
3659     static MEDCouplingIMesh *New() throw(INTERP_KERNEL::Exception);
3660     //
3661     void setSpaceDimension(int spaceDim) throw(INTERP_KERNEL::Exception);
3662     std::vector<int> getNodeStruct() const throw(INTERP_KERNEL::Exception);
3663     std::vector<double> getOrigin() const throw(INTERP_KERNEL::Exception);
3664     std::vector<double> getDXYZ() const throw(INTERP_KERNEL::Exception);
3665     void setAxisUnit(const std::string& unitName) throw(INTERP_KERNEL::Exception);
3666     std::string getAxisUnit() const throw(INTERP_KERNEL::Exception);
3667     double getMeasureOfAnyCell() const throw(INTERP_KERNEL::Exception);
3668     MEDCouplingCMesh *convertToCartesian() const throw(INTERP_KERNEL::Exception);
3669     void refineWithFactor(const std::vector<int>& factors) throw(INTERP_KERNEL::Exception);
3670     MEDCouplingIMesh *asSingleCell() const throw(INTERP_KERNEL::Exception);
3671     MEDCouplingIMesh *buildWithGhost(int ghostLev) const throw(INTERP_KERNEL::Exception);
3672     %extend
3673     {
3674       MEDCouplingIMesh()
3675       {
3676         return MEDCouplingIMesh::New();
3677       }
3678       static MEDCouplingIMesh *New(const std::string& meshName, int spaceDim, PyObject *nodeStrct, PyObject *origin, PyObject *dxyz) throw(INTERP_KERNEL::Exception)
3679       {
3680         static const char msg0[]="MEDCouplingIMesh::New : error on 'origin' parameter !";
3681         static const char msg1[]="MEDCouplingIMesh::New : error on 'dxyz' parameter !";
3682         const int *nodeStrctPtr(0);
3683         const double *originPtr(0),*dxyzPtr(0);
3684         int sw,sz,val0;
3685         std::vector<int> bb0;
3686         nodeStrctPtr=convertIntStarLikePyObjToCppIntStar(nodeStrct,sw,sz,val0,bb0);
3687         //
3688         double val,val2;
3689         std::vector<double> bb,bb2;
3690         int sz1,sz2;
3691         originPtr=convertObjToPossibleCpp5_SingleCompo(origin,sw,val,bb,msg0,false,sz1);
3692         dxyzPtr=convertObjToPossibleCpp5_SingleCompo(dxyz,sw,val2,bb2,msg1,false,sz2);
3693         //
3694         return MEDCouplingIMesh::New(meshName,spaceDim,nodeStrctPtr,nodeStrctPtr+sz,originPtr,originPtr+sz1,dxyzPtr,dxyzPtr+sz2);
3695       }
3696
3697       MEDCouplingIMesh(const std::string& meshName, int spaceDim, PyObject *nodeStrct, PyObject *origin, PyObject *dxyz) throw(INTERP_KERNEL::Exception)
3698       {
3699         return MEDCoupling_MEDCouplingIMesh_New__SWIG_1(meshName,spaceDim,nodeStrct,origin,dxyz);
3700       }
3701
3702       void setNodeStruct(PyObject *nodeStrct) throw(INTERP_KERNEL::Exception)
3703       {
3704         int sw,sz,val0;
3705         std::vector<int> bb0;
3706         const int *nodeStrctPtr(convertIntStarLikePyObjToCppIntStar(nodeStrct,sw,sz,val0,bb0));
3707         self->setNodeStruct(nodeStrctPtr,nodeStrctPtr+sz);
3708       }
3709
3710       void setOrigin(PyObject *origin) throw(INTERP_KERNEL::Exception)
3711       {
3712         static const char msg[]="MEDCouplingIMesh::setOrigin : invalid input 'origin' parameter ! integer, float, list/tuple of float, DataArrayDouble or DataArrayDoubleTuple supported !";
3713         double val;
3714         DataArrayDouble *a;
3715         DataArrayDoubleTuple *aa;
3716         std::vector<double> bb;
3717         int sw,nbTuples;
3718         const double *originPtr(convertObjToPossibleCpp5_SingleCompo(origin,sw,val,bb,msg,false,nbTuples));
3719         self->setOrigin(originPtr,originPtr+nbTuples);
3720       }
3721       
3722       void setDXYZ(PyObject *dxyz) throw(INTERP_KERNEL::Exception)
3723       {
3724         static const char msg[]="MEDCouplingIMesh::setDXYZ : invalid input 'dxyz' parameter ! integer, float, list/tuple of float, DataArrayDouble or DataArrayDoubleTuple supported !";
3725         double val;
3726         DataArrayDouble *a;
3727         DataArrayDoubleTuple *aa;
3728         std::vector<double> bb;
3729         int sw,nbTuples;
3730         const double *originPtr(convertObjToPossibleCpp5_SingleCompo(dxyz,sw,val,bb,msg,false,nbTuples));
3731         self->setDXYZ(originPtr,originPtr+nbTuples);
3732       }
3733
3734       static void CondenseFineToCoarse(const std::vector<int>& coarseSt, const DataArrayDouble *fineDA, PyObject *fineLocInCoarse, const std::vector<int>& facts, DataArrayDouble *coarseDA) throw(INTERP_KERNEL::Exception)
3735       {
3736         std::vector< std::pair<int,int> > inp;
3737         convertPyToVectorPairInt(fineLocInCoarse,inp);
3738         MEDCouplingIMesh::CondenseFineToCoarse(coarseSt,fineDA,inp,facts,coarseDA);
3739       }
3740
3741       static void CondenseFineToCoarseGhost(const std::vector<int>& coarseSt, const DataArrayDouble *fineDA, PyObject *fineLocInCoarse, const std::vector<int>& facts, DataArrayDouble *coarseDA, int ghostSize) throw(INTERP_KERNEL::Exception)
3742       {
3743         std::vector< std::pair<int,int> > inp;
3744         convertPyToVectorPairInt(fineLocInCoarse,inp);
3745         MEDCouplingIMesh::CondenseFineToCoarseGhost(coarseSt,fineDA,inp,facts,coarseDA,ghostSize);
3746       }
3747
3748       static void SpreadCoarseToFine(const DataArrayDouble *coarseDA, const std::vector<int>& coarseSt, DataArrayDouble *fineDA, PyObject *fineLocInCoarse, const std::vector<int>& facts) throw(INTERP_KERNEL::Exception)
3749       {
3750         std::vector< std::pair<int,int> > inp;
3751         convertPyToVectorPairInt(fineLocInCoarse,inp);
3752         MEDCouplingIMesh::SpreadCoarseToFine(coarseDA,coarseSt,fineDA,inp,facts);
3753       }
3754
3755       static void SpreadCoarseToFineGhost(const DataArrayDouble *coarseDA, const std::vector<int>& coarseSt, DataArrayDouble *fineDA, PyObject *fineLocInCoarse, const std::vector<int>& facts, int ghostSize) throw(INTERP_KERNEL::Exception)
3756       {
3757         std::vector< std::pair<int,int> > inp;
3758         convertPyToVectorPairInt(fineLocInCoarse,inp);
3759         MEDCouplingIMesh::SpreadCoarseToFineGhost(coarseDA,coarseSt,fineDA,inp,facts,ghostSize);
3760       }
3761
3762       static void SpreadCoarseToFineGhostZone(const DataArrayDouble *coarseDA, const std::vector<int>& coarseSt, DataArrayDouble *fineDA, PyObject *fineLocInCoarse, const std::vector<int>& facts, int ghostSize) throw(INTERP_KERNEL::Exception)
3763       {
3764         std::vector< std::pair<int,int> > inp;
3765         convertPyToVectorPairInt(fineLocInCoarse,inp);
3766         MEDCouplingIMesh::SpreadCoarseToFineGhostZone(coarseDA,coarseSt,fineDA,inp,facts,ghostSize);
3767       }
3768
3769       std::string __str__() const throw(INTERP_KERNEL::Exception)
3770       {
3771         return self->simpleRepr();
3772       }
3773       std::string __repr__() const throw(INTERP_KERNEL::Exception)
3774       {
3775         std::ostringstream oss;
3776         self->reprQuickOverview(oss);
3777         return oss.str();
3778       }
3779     }
3780   };
3781
3782   //== MEDCouplingIMesh End
3783
3784 }
3785
3786 namespace MEDCoupling
3787 {
3788   class MEDCouplingField : public MEDCoupling::RefCountObject, public MEDCoupling::TimeLabel
3789   {
3790   public:
3791     virtual void checkConsistencyLight() const throw(INTERP_KERNEL::Exception);
3792     virtual bool areCompatibleForMerge(const MEDCouplingField *other) const throw(INTERP_KERNEL::Exception);
3793     virtual void copyTinyStringsFrom(const MEDCouplingField *other) throw(INTERP_KERNEL::Exception);
3794     void setMesh(const MEDCoupling::MEDCouplingMesh *mesh) throw(INTERP_KERNEL::Exception);
3795     void setName(const char *name) throw(INTERP_KERNEL::Exception);
3796     std::string getDescription() const throw(INTERP_KERNEL::Exception);
3797     void setDescription(const char *desc) throw(INTERP_KERNEL::Exception);
3798     std::string getName() const throw(INTERP_KERNEL::Exception);
3799     TypeOfField getTypeOfField() const throw(INTERP_KERNEL::Exception);
3800     NatureOfField getNature() const throw(INTERP_KERNEL::Exception);
3801     virtual void setNature(NatureOfField nat) throw(INTERP_KERNEL::Exception);
3802     DataArrayDouble *getLocalizationOfDiscr() const throw(INTERP_KERNEL::Exception);
3803     MEDCouplingFieldDouble *buildMeasureField(bool isAbs) const throw(INTERP_KERNEL::Exception);
3804     int getNumberOfTuplesExpected() const throw(INTERP_KERNEL::Exception);
3805     int getNumberOfMeshPlacesExpected() const throw(INTERP_KERNEL::Exception);
3806     void setGaussLocalizationOnType(INTERP_KERNEL::NormalizedCellType type, const std::vector<double>& refCoo,
3807                                     const std::vector<double>& gsCoo, const std::vector<double>& wg) throw(INTERP_KERNEL::Exception);
3808     void clearGaussLocalizations() throw(INTERP_KERNEL::Exception);
3809     MEDCouplingGaussLocalization& getGaussLocalization(int locId) throw(INTERP_KERNEL::Exception);
3810     int getNbOfGaussLocalization() const throw(INTERP_KERNEL::Exception);
3811     int getGaussLocalizationIdOfOneCell(int cellId) const throw(INTERP_KERNEL::Exception);
3812     const MEDCouplingGaussLocalization& getGaussLocalization(int locId) const throw(INTERP_KERNEL::Exception);
3813     int getGaussLocalizationIdOfOneType(INTERP_KERNEL::NormalizedCellType type) const throw(INTERP_KERNEL::Exception);
3814     void setDiscretization(MEDCouplingFieldDiscretization *newDisc);
3815     %extend {
3816       PyObject *getMesh() const throw(INTERP_KERNEL::Exception)
3817       {
3818         MEDCouplingMesh *ret1=const_cast<MEDCouplingMesh *>(self->getMesh());
3819         if(ret1)
3820           ret1->incrRef();
3821         return convertMesh(ret1,SWIG_POINTER_OWN | 0 );
3822       }
3823
3824       PyObject *getDiscretization() throw(INTERP_KERNEL::Exception)
3825       {
3826         MEDCouplingFieldDiscretization *ret=self->getDiscretization();
3827         if(ret)
3828           ret->incrRef();
3829         return convertFieldDiscretization(ret,SWIG_POINTER_OWN | 0 );
3830       }
3831
3832       PyObject *getGaussLocalizationIdsOfOneType(INTERP_KERNEL::NormalizedCellType type) const throw(INTERP_KERNEL::Exception)
3833       {
3834         std::set<int> ret=self->getGaussLocalizationIdsOfOneType(type);
3835         return convertIntArrToPyList3(ret);
3836       }
3837
3838       PyObject *buildSubMeshData(PyObject *li) const throw(INTERP_KERNEL::Exception)
3839       {
3840         DataArrayInt *ret1=0;
3841         MEDCouplingMesh *ret0=0;
3842         void *da=0;
3843         int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_MEDCoupling__DataArrayInt, 0 |  0 );
3844         if (!SWIG_IsOK(res1))
3845           {
3846             int size;
3847             INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
3848             ret0=self->buildSubMeshData(tmp,tmp+size,ret1);
3849           }
3850         else
3851           {
3852             DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
3853             if(!da2)
3854               throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
3855             da2->checkAllocated();
3856             ret0=self->buildSubMeshData(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems(),ret1);
3857           }
3858         PyObject *res = PyList_New(2);
3859         PyList_SetItem(res,0,convertMesh(ret0, SWIG_POINTER_OWN | 0 ));
3860         PyList_SetItem(res,1,SWIG_NewPointerObj((void*)ret1,SWIGTYPE_p_MEDCoupling__DataArrayInt,SWIG_POINTER_OWN | 0));
3861         return res;
3862       }
3863
3864       PyObject *buildSubMeshDataRange(int begin, int end, int step) const throw(INTERP_KERNEL::Exception)
3865       {
3866         DataArrayInt *ret1=0;
3867         int bb,ee,ss;
3868         MEDCouplingMesh *ret0=self->buildSubMeshDataRange(begin,end,step,bb,ee,ss,ret1);
3869         PyObject *res=PyTuple_New(2);
3870         PyTuple_SetItem(res,0,convertMesh(ret0, SWIG_POINTER_OWN | 0 ));
3871         if(ret1)
3872           PyTuple_SetItem(res,1,SWIG_NewPointerObj((void*)ret1,SWIGTYPE_p_MEDCoupling__DataArrayInt,SWIG_POINTER_OWN | 0));
3873         else
3874           {
3875             PyObject *res1=PySlice_New(PyInt_FromLong(bb),PyInt_FromLong(ee),PyInt_FromLong(ss));
3876             PyTuple_SetItem(res,1,res1);
3877           }
3878         return res;
3879       }
3880
3881       DataArrayInt *computeTupleIdsToSelectFromCellIds(PyObject *cellIds) const
3882       {
3883         int sw,sz(-1);
3884         int v0; std::vector<int> v1;
3885         const int *cellIdsBg(convertIntStarLikePyObjToCppIntStar(cellIds,sw,sz,v0,v1));
3886         return self->computeTupleIdsToSelectFromCellIds(cellIdsBg,cellIdsBg+sz);
3887       }
3888
3889       void setGaussLocalizationOnCells(PyObject *li, const std::vector<double>& refCoo,
3890                                        const std::vector<double>& gsCoo, const std::vector<double>& wg) throw(INTERP_KERNEL::Exception)
3891       {
3892         void *da=0;
3893         int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_MEDCoupling__DataArrayInt, 0 |  0 );
3894         if (!SWIG_IsOK(res1))
3895           {
3896             int size;
3897             INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
3898             self->setGaussLocalizationOnCells(tmp,((int *)tmp)+size,refCoo,gsCoo,wg);
3899           }
3900         else
3901           {
3902             DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
3903             if(!da2)
3904               throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
3905             da2->checkAllocated();
3906             self->setGaussLocalizationOnCells(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems(),refCoo,gsCoo,wg);
3907           }
3908       }
3909
3910       PyObject *getCellIdsHavingGaussLocalization(int locId) const throw(INTERP_KERNEL::Exception)
3911       {
3912         std::vector<int> tmp;
3913         self->getCellIdsHavingGaussLocalization(locId,tmp);
3914         DataArrayInt *ret=DataArrayInt::New();
3915         ret->alloc((int)tmp.size(),1);
3916         std::copy(tmp.begin(),tmp.end(),ret->getPointer());
3917         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 );
3918       }
3919       
3920       int getNumberOfTuplesExpectedRegardingCode(PyObject *code, PyObject *idsPerType) const throw(INTERP_KERNEL::Exception)
3921       {
3922         std::vector<int> inp0;
3923         convertPyToNewIntArr4(code,1,3,inp0);
3924         std::vector<const DataArrayInt *> inp1;
3925         convertFromPyObjVectorOfObj<const MEDCoupling::DataArrayInt *>(idsPerType,SWIGTYPE_p_MEDCoupling__DataArrayInt,"DataArrayInt",inp1);
3926         return self->getNumberOfTuplesExpectedRegardingCode(inp0,inp1);
3927       }
3928     }
3929   };
3930   
3931   class MEDCouplingFieldTemplate : public MEDCoupling::MEDCouplingField
3932   {
3933   public:
3934     static MEDCouplingFieldTemplate *New(const MEDCouplingFieldDouble& f) throw(INTERP_KERNEL::Exception);
3935     static MEDCouplingFieldTemplate *New(const MEDCouplingFieldFloat& f) throw(INTERP_KERNEL::Exception);
3936     static MEDCouplingFieldTemplate *New(const MEDCouplingFieldInt& f) throw(INTERP_KERNEL::Exception);
3937     static MEDCouplingFieldTemplate *New(TypeOfField type);
3938     std::string simpleRepr() const throw(INTERP_KERNEL::Exception);
3939     std::string advancedRepr() const throw(INTERP_KERNEL::Exception);
3940     bool isEqual(const MEDCouplingFieldTemplate *other, double meshPrec) const throw(INTERP_KERNEL::Exception);
3941     bool isEqualWithoutConsideringStr(const MEDCouplingFieldTemplate *other, double meshPrec) const throw(INTERP_KERNEL::Exception);
3942     %extend
3943        {
3944          MEDCouplingFieldTemplate(const MEDCouplingFieldDouble& f) throw(INTERP_KERNEL::Exception)
3945          {
3946            return MEDCouplingFieldTemplate::New(f);
3947          }
3948
3949          MEDCouplingFieldTemplate(const MEDCouplingFieldFloat& f) throw(INTERP_KERNEL::Exception)
3950          {
3951            return MEDCouplingFieldTemplate::New(f);
3952          }
3953          
3954          MEDCouplingFieldTemplate(const MEDCouplingFieldInt& f) throw(INTERP_KERNEL::Exception)
3955          {
3956            return MEDCouplingFieldTemplate::New(f);
3957          }
3958          
3959          MEDCouplingFieldTemplate(TypeOfField type) throw(INTERP_KERNEL::Exception)
3960          {
3961            return MEDCouplingFieldTemplate::New(type);
3962          }
3963          
3964          std::string __str__() const throw(INTERP_KERNEL::Exception)
3965          {
3966            return self->simpleRepr();
3967          }
3968          
3969          std::string __repr__() const throw(INTERP_KERNEL::Exception)
3970          {
3971            std::ostringstream oss;
3972            self->reprQuickOverview(oss);
3973            return oss.str();
3974          }
3975
3976          PyObject *isEqualIfNotWhy(const MEDCouplingFieldTemplate *other, double meshPrec) const throw(INTERP_KERNEL::Exception)
3977          {
3978            std::string ret1;
3979            bool ret0=self->isEqualIfNotWhy(other,meshPrec,ret1);
3980            PyObject *ret=PyTuple_New(2);
3981            PyObject *ret0Py=ret0?Py_True:Py_False;
3982            Py_XINCREF(ret0Py);
3983            PyTuple_SetItem(ret,0,ret0Py);
3984            PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
3985            return ret;
3986          }
3987        }
3988   };
3989
3990   template<class T>
3991  class MEDCouplingFieldT : public MEDCoupling::MEDCouplingField
3992   {
3993   public:
3994     TypeOfTimeDiscretization getTimeDiscretization() const throw(INTERP_KERNEL::Exception);
3995   protected:
3996     MEDCouplingFieldT();
3997     ~MEDCouplingFieldT();
3998   };
3999
4000   %template(MEDCouplingFieldTdouble) MEDCoupling::MEDCouplingFieldT<double>;
4001   %template(MEDCouplingFieldTfloat) MEDCoupling::MEDCouplingFieldT<float>;
4002   %template(MEDCouplingFieldTint) MEDCoupling::MEDCouplingFieldT<int>;
4003   
4004   class MEDCouplingFieldInt;
4005   class MEDCouplingFieldFloat;
4006   
4007   class MEDCouplingFieldDouble : public MEDCouplingFieldT<double>
4008   {
4009   public:
4010     static MEDCouplingFieldDouble *New(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME);
4011     static MEDCouplingFieldDouble *New(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME);
4012     bool isEqual(const MEDCouplingFieldDouble *other, double meshPrec, double valsPrec) const throw(INTERP_KERNEL::Exception);
4013     bool isEqualWithoutConsideringStr(const MEDCouplingFieldDouble *other, double meshPrec, double valsPrec) const throw(INTERP_KERNEL::Exception);
4014     void setTimeUnit(const std::string& unit);
4015     std::string getTimeUnit() const;
4016     void synchronizeTimeWithSupport() throw(INTERP_KERNEL::Exception);
4017     void copyTinyAttrFrom(const MEDCouplingFieldDouble *other) throw(INTERP_KERNEL::Exception);
4018     void copyAllTinyAttrFrom(const MEDCouplingFieldDouble *other) throw(INTERP_KERNEL::Exception);
4019     std::string simpleRepr() const throw(INTERP_KERNEL::Exception);
4020     std::string advancedRepr() const throw(INTERP_KERNEL::Exception);
4021     std::string  writeVTK(const std::string& fileName, bool isBinary=true) const throw(INTERP_KERNEL::Exception);
4022     MEDCouplingFieldInt *convertToIntField() const throw(INTERP_KERNEL::Exception);
4023     MEDCouplingFieldFloat *convertToFloatField() const throw(INTERP_KERNEL::Exception);
4024     MEDCouplingFieldDouble *clone(bool recDeepCpy) const;
4025     MEDCouplingFieldDouble *cloneWithMesh(bool recDeepCpy) const;
4026     MEDCouplingFieldDouble *deepCopy() const;
4027     MEDCouplingFieldDouble *buildNewTimeReprFromThis(TypeOfTimeDiscretization td, bool deepCopy) const throw(INTERP_KERNEL::Exception);
4028     MEDCouplingFieldDouble *nodeToCellDiscretization() const throw(INTERP_KERNEL::Exception);
4029     MEDCouplingFieldDouble *cellToNodeDiscretization() const throw(INTERP_KERNEL::Exception);
4030     double getIJ(int tupleId, int compoId) const throw(INTERP_KERNEL::Exception);
4031     double getIJK(int cellId, int nodeIdInCell, int compoId) const throw(INTERP_KERNEL::Exception);
4032     void synchronizeTimeWithMesh() throw(INTERP_KERNEL::Exception);
4033     void setArray(DataArrayDouble *array) throw(INTERP_KERNEL::Exception);
4034     void setEndArray(DataArrayDouble *array) throw(INTERP_KERNEL::Exception);
4035     void setTime(double val, int iteration, int order) throw(INTERP_KERNEL::Exception);
4036     void setStartTime(double val, int iteration, int order) throw(INTERP_KERNEL::Exception);
4037     void setEndTime(double val, int iteration, int order) throw(INTERP_KERNEL::Exception);
4038     void applyLin(double a, double b, int compoId) throw(INTERP_KERNEL::Exception);
4039     void applyLin(double a, double b) throw(INTERP_KERNEL::Exception);
4040     int getNumberOfComponents() const throw(INTERP_KERNEL::Exception);
4041     int getNumberOfTuples() const throw(INTERP_KERNEL::Exception);
4042     int getNumberOfValues() const throw(INTERP_KERNEL::Exception);
4043     void setTimeTolerance(double val) throw(INTERP_KERNEL::Exception);
4044     double getTimeTolerance() const throw(INTERP_KERNEL::Exception);
4045     void setIteration(int it) throw(INTERP_KERNEL::Exception);
4046     void setEndIteration(int it) throw(INTERP_KERNEL::Exception);
4047     void setOrder(int order) throw(INTERP_KERNEL::Exception);
4048     void setEndOrder(int order) throw(INTERP_KERNEL::Exception);
4049     void setTimeValue(double val) throw(INTERP_KERNEL::Exception);
4050     void setEndTimeValue(double val) throw(INTERP_KERNEL::Exception);
4051     void changeUnderlyingMesh(const MEDCouplingMesh *other, int levOfCheck, double precOnMesh, double eps=1e-15) throw(INTERP_KERNEL::Exception);
4052     void substractInPlaceDM(const MEDCouplingFieldDouble *f, int levOfCheck, double precOnMesh, double eps=1e-15) throw(INTERP_KERNEL::Exception);
4053     bool mergeNodes(double eps, double epsOnVals=1e-15) throw(INTERP_KERNEL::Exception);
4054     bool mergeNodesCenter(double eps, double epsOnVals=1e-15) throw(INTERP_KERNEL::Exception);
4055     bool zipCoords(double epsOnVals=1e-15) throw(INTERP_KERNEL::Exception);
4056     bool zipConnectivity(int compType,double epsOnVals=1e-15) throw(INTERP_KERNEL::Exception);
4057     bool simplexize(int policy) throw(INTERP_KERNEL::Exception);
4058     MEDCouplingFieldDouble *doublyContractedProduct() const throw(INTERP_KERNEL::Exception);
4059     MEDCouplingFieldDouble *determinant() const throw(INTERP_KERNEL::Exception);
4060     MEDCouplingFieldDouble *eigenValues() const throw(INTERP_KERNEL::Exception);
4061     MEDCouplingFieldDouble *eigenVectors() const throw(INTERP_KERNEL::Exception);
4062     MEDCouplingFieldDouble *inverse() const throw(INTERP_KERNEL::Exception);
4063     MEDCouplingFieldDouble *trace() const throw(INTERP_KERNEL::Exception);
4064     MEDCouplingFieldDouble *deviator() const throw(INTERP_KERNEL::Exception);
4065     MEDCouplingFieldDouble *magnitude() const throw(INTERP_KERNEL::Exception);
4066     MEDCouplingFieldDouble *maxPerTuple() const throw(INTERP_KERNEL::Exception);
4067     void changeNbOfComponents(int newNbOfComp, double dftValue=0.) throw(INTERP_KERNEL::Exception);
4068     void sortPerTuple(bool asc) throw(INTERP_KERNEL::Exception);
4069     MEDCouplingFieldDouble &operator=(double value) throw(INTERP_KERNEL::Exception);
4070     void fillFromAnalytic(int nbOfComp, const std::string& func) throw(INTERP_KERNEL::Exception);
4071     void fillFromAnalyticCompo(int nbOfComp, const std::string& func) throw(INTERP_KERNEL::Exception);
4072     void fillFromAnalyticNamedCompo(int nbOfComp, const std::vector<std::string>& varsOrder, const std::string& func) throw(INTERP_KERNEL::Exception);
4073     void applyFunc(int nbOfComp, const std::string& func) throw(INTERP_KERNEL::Exception);
4074     void applyFuncCompo(int nbOfComp, const std::string& func) throw(INTERP_KERNEL::Exception);
4075     void applyFuncNamedCompo(int nbOfComp, const std::vector<std::string>& varsOrder, const std::string& func) throw(INTERP_KERNEL::Exception);
4076     void applyFunc(int nbOfComp, double val) throw(INTERP_KERNEL::Exception);
4077     void applyFunc(const std::string& func) throw(INTERP_KERNEL::Exception);
4078     void applyFuncFast32(const std::string& func) throw(INTERP_KERNEL::Exception);
4079     void applyFuncFast64(const std::string& func) throw(INTERP_KERNEL::Exception);
4080     double accumulate(int compId) const throw(INTERP_KERNEL::Exception);
4081     double getMaxValue() const throw(INTERP_KERNEL::Exception);
4082     double getMinValue() const throw(INTERP_KERNEL::Exception);
4083     double getAverageValue() const throw(INTERP_KERNEL::Exception);
4084     double norm2() const throw(INTERP_KERNEL::Exception);
4085     double normMax() const throw(INTERP_KERNEL::Exception);
4086     //do not put a default value to isWAbs because confusion in python with overloaded getWeightedAverageValue method
4087     double getWeightedAverageValue(int compId, bool isWAbs) const throw(INTERP_KERNEL::Exception);
4088     double integral(int compId, bool isWAbs) const throw(INTERP_KERNEL::Exception);
4089     double normL1(int compId) const throw(INTERP_KERNEL::Exception);
4090     double normL2(int compId) const throw(INTERP_KERNEL::Exception);
4091     DataArrayInt *findIdsInRange(double vmin, double vmax) const throw(INTERP_KERNEL::Exception);
4092     MEDCouplingFieldDouble *buildSubPartRange(int begin, int end, int step) const throw(INTERP_KERNEL::Exception);
4093     static MEDCouplingFieldDouble *MergeFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
4094     static MEDCouplingFieldDouble *MeldFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
4095     static MEDCouplingFieldDouble *DotFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
4096     MEDCouplingFieldDouble *dot(const MEDCouplingFieldDouble& other) const throw(INTERP_KERNEL::Exception);
4097     static MEDCouplingFieldDouble *CrossProductFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
4098     MEDCouplingFieldDouble *crossProduct(const MEDCouplingFieldDouble& other) const throw(INTERP_KERNEL::Exception);
4099     static MEDCouplingFieldDouble *MaxFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
4100     MEDCouplingFieldDouble *max(const MEDCouplingFieldDouble& other) const throw(INTERP_KERNEL::Exception);
4101     static MEDCouplingFieldDouble *MinFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
4102     static MEDCouplingFieldDouble *AddFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
4103     static MEDCouplingFieldDouble *SubstractFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
4104     static MEDCouplingFieldDouble *MultiplyFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
4105     static MEDCouplingFieldDouble *DivideFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
4106     MEDCouplingFieldDouble *min(const MEDCouplingFieldDouble& other) const throw(INTERP_KERNEL::Exception);
4107     MEDCouplingFieldDouble *negate() const throw(INTERP_KERNEL::Exception);
4108     %extend {
4109       MEDCouplingFieldDouble(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME)
4110       {
4111         return MEDCouplingFieldDouble::New(type,td);
4112       }
4113
4114       MEDCouplingFieldDouble(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME)
4115       {
4116         return MEDCouplingFieldDouble::New(ft,td);
4117       }
4118
4119       std::string __str__() const throw(INTERP_KERNEL::Exception)
4120       {
4121         return self->simpleRepr();
4122       }
4123
4124       std::string __repr__() const throw(INTERP_KERNEL::Exception)
4125       {
4126         std::ostringstream oss;
4127         self->reprQuickOverview(oss);
4128         return oss.str();
4129       }
4130
4131       PyObject *isEqualIfNotWhy(const MEDCouplingFieldDouble *other, double meshPrec, double valsPrec) const throw(INTERP_KERNEL::Exception)
4132       {
4133         std::string ret1;
4134         bool ret0=self->isEqualIfNotWhy(other,meshPrec,valsPrec,ret1);
4135         PyObject *ret=PyTuple_New(2);
4136         PyObject *ret0Py=ret0?Py_True:Py_False;
4137         Py_XINCREF(ret0Py);
4138         PyTuple_SetItem(ret,0,ret0Py);
4139         PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
4140         return ret;
4141       }
4142       
4143       MEDCouplingFieldDouble *voronoize(double eps) const throw(INTERP_KERNEL::Exception)
4144       {
4145         MCAuto<MEDCouplingFieldDouble> ret(self->voronoize(eps));
4146         return ret.retn();
4147       }
4148
4149       MEDCouplingFieldDouble *convertQuadraticCellsToLinear() const throw(INTERP_KERNEL::Exception)
4150       {
4151         MCAuto<MEDCouplingFieldDouble> ret(self->convertQuadraticCellsToLinear());
4152         return ret.retn();
4153       }
4154       
4155       MEDCouplingFieldDouble *computeVectorFieldCyl(PyObject *center, PyObject *vector) const
4156       {
4157         const char msg[]="Python wrap of MEDCouplingFieldDouble::computeVectorFieldCyl : ";
4158         double val,val2;
4159         DataArrayDouble *a,*a2;
4160         DataArrayDoubleTuple *aa,*aa2;
4161         std::vector<double> bb,bb2;
4162         int sw;
4163         const double *centerPtr=convertObjToPossibleCpp5_Safe(center,sw,val,a,aa,bb,msg,1,3,true);
4164         const double *vectorPtr=convertObjToPossibleCpp5_Safe(vector,sw,val2,a2,aa2,bb2,msg,1,3,true);
4165         return self->computeVectorFieldCyl(centerPtr,vectorPtr);
4166       }
4167
4168       DataArrayDouble *getArray() throw(INTERP_KERNEL::Exception)
4169       {
4170         DataArrayDouble *ret=self->getArray();
4171         if(ret)
4172           ret->incrRef();
4173         return ret;
4174       }
4175
4176       PyObject *getArrays() const throw(INTERP_KERNEL::Exception)
4177       {
4178         std::vector<DataArrayDouble *> arrs=self->getArrays();
4179         for(std::vector<DataArrayDouble *>::iterator it=arrs.begin();it!=arrs.end();it++)
4180           if(*it)
4181             (*it)->incrRef();
4182         int sz=arrs.size();
4183         PyObject *ret=PyTuple_New(sz);
4184         for(int i=0;i<sz;i++)
4185           {
4186             if(arrs[i])
4187               PyTuple_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(arrs[i]),SWIGTYPE_p_MEDCoupling__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
4188             else
4189               PyTuple_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_MEDCoupling__DataArrayDouble, 0 | 0 ));
4190           }
4191         return ret;
4192       }
4193
4194       void setArrays(PyObject *ls) throw(INTERP_KERNEL::Exception)
4195       {
4196         std::vector<const DataArrayDouble *> tmp;
4197         convertFromPyObjVectorOfObj<const DataArrayDouble *>(ls,SWIGTYPE_p_MEDCoupling__DataArrayDouble,"DataArrayDouble",tmp);
4198         int sz=tmp.size();
4199         std::vector<DataArrayDouble *> arrs(sz);
4200         for(int i=0;i<sz;i++)
4201           arrs[i]=const_cast<DataArrayDouble *>(tmp[i]);
4202         self->setArrays(arrs);
4203       }
4204
4205       DataArrayDouble *getEndArray() throw(INTERP_KERNEL::Exception)
4206       {
4207         DataArrayDouble *ret=self->getEndArray();
4208         if(ret)
4209           ret->incrRef();
4210         return ret;
4211       }
4212
4213       PyObject *getValueOn(PyObject *sl) const throw(INTERP_KERNEL::Exception)
4214       {
4215         double val;
4216         DataArrayDouble *a;
4217         DataArrayDoubleTuple *aa;
4218         std::vector<double> bb;
4219         int sw;
4220         const MEDCouplingMesh *mesh=self->getMesh();
4221         if(!mesh)
4222           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingFieldDouble::getValueOn : no underlying mesh !");
4223         int spaceDim=mesh->getSpaceDimension();
4224         const char msg[]="Python wrap of MEDCouplingFieldDouble::getValueOn : ";
4225         const double *spaceLoc=convertObjToPossibleCpp5_Safe(sl,sw,val,a,aa,bb,msg,1,spaceDim,true);
4226         //
4227         int sz=self->getNumberOfComponents();
4228         INTERP_KERNEL::AutoPtr<double> res=new double[sz];
4229         self->getValueOn(spaceLoc,res);
4230         return convertDblArrToPyList<double>(res,sz);
4231       }
4232
4233        PyObject *getValueOnPos(int i, int j, int k) const throw(INTERP_KERNEL::Exception)
4234        {
4235          int sz=self->getNumberOfComponents();
4236          INTERP_KERNEL::AutoPtr<double> res=new double[sz];
4237          self->getValueOnPos(i,j,k,res);
4238          return convertDblArrToPyList<double>(res,sz);
4239        }
4240
4241       DataArrayDouble *getValueOnMulti(PyObject *locs) const throw(INTERP_KERNEL::Exception)
4242       {
4243         const MEDCouplingMesh *mesh(self->getMesh());
4244         if(!mesh)
4245           throw INTERP_KERNEL::Exception("Python wrap MEDCouplingFieldDouble::getValueOnMulti : lying on a null mesh !");
4246         //
4247         int sw,nbPts;
4248         double v0; MEDCoupling::DataArrayDouble *v1(0); MEDCoupling::DataArrayDoubleTuple *v2(0); std::vector<double> v3;
4249         const double *inp=convertObjToPossibleCpp5_Safe2(locs,sw,v0,v1,v2,v3,"wrap of MEDCouplingFieldDouble::getValueOnMulti",
4250                                                          mesh->getSpaceDimension(),true,nbPts);
4251         return self->getValueOnMulti(inp,nbPts);
4252       }
4253
4254       PyObject *getValueOn(PyObject *sl, double time) const throw(INTERP_KERNEL::Exception)
4255       {
4256         double val;
4257         DataArrayDouble *a;
4258         DataArrayDoubleTuple *aa;
4259         std::vector<double> bb;
4260         int sw;
4261         const MEDCouplingMesh *mesh=self->getMesh();
4262         if(!mesh)
4263           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingFieldDouble::getValueOn : no underlying mesh !");
4264         int spaceDim=mesh->getSpaceDimension();
4265         const char msg[]="Python wrap of MEDCouplingFieldDouble::getValueOn : ";
4266         const double *spaceLoc=convertObjToPossibleCpp5_Safe(sl,sw,val,a,aa,bb,msg,1,spaceDim,true);
4267         //
4268         //
4269         int sz=self->getNumberOfComponents();
4270         INTERP_KERNEL::AutoPtr<double> res=new double[sz];
4271         self->getValueOn(spaceLoc,time,res);
4272         return convertDblArrToPyList<double>(res,sz);
4273       }
4274
4275       void setValues(PyObject *li, PyObject *nbOfTuples=0, PyObject *nbOfComp=0) throw(INTERP_KERNEL::Exception)
4276       {
4277         if(self->getArray()!=0)
4278           MEDCoupling_DataArrayDouble_setValues__SWIG_0(self->getArray(),li,nbOfTuples,nbOfComp);
4279         else
4280           {
4281             MCAuto<DataArrayDouble> arr=DataArrayDouble::New();
4282             MEDCoupling_DataArrayDouble_setValues__SWIG_0(arr,li,nbOfTuples,nbOfComp);
4283             self->setArray(arr);
4284           }
4285       }
4286       
4287       PyObject *getTime() throw(INTERP_KERNEL::Exception)
4288       {
4289         int tmp1,tmp2;
4290         double tmp0=self->getTime(tmp1,tmp2);
4291         PyObject *res = PyList_New(3);
4292         PyList_SetItem(res,0,SWIG_From_double(tmp0));
4293         PyList_SetItem(res,1,SWIG_From_int(tmp1));
4294         PyList_SetItem(res,2,SWIG_From_int(tmp2));
4295         return res;
4296       }
4297
4298       PyObject *getStartTime() throw(INTERP_KERNEL::Exception)
4299       {
4300         int tmp1,tmp2;
4301         double tmp0=self->getStartTime(tmp1,tmp2);
4302         PyObject *res = PyList_New(3);
4303         PyList_SetItem(res,0,SWIG_From_double(tmp0));
4304         PyList_SetItem(res,1,SWIG_From_int(tmp1));
4305         PyList_SetItem(res,2,SWIG_From_int(tmp2));
4306         return res;
4307       }
4308
4309       PyObject *getEndTime() throw(INTERP_KERNEL::Exception)
4310       {
4311         int tmp1,tmp2;
4312         double tmp0=self->getEndTime(tmp1,tmp2);
4313         PyObject *res = PyList_New(3);
4314         PyList_SetItem(res,0,SWIG_From_double(tmp0));
4315         PyList_SetItem(res,1,SWIG_From_int(tmp1));
4316         PyList_SetItem(res,2,SWIG_From_int(tmp2));
4317         return res;
4318       }
4319       PyObject *accumulate() const throw(INTERP_KERNEL::Exception)
4320       {
4321         int sz=self->getNumberOfComponents();
4322         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
4323         self->accumulate(tmp);
4324         return convertDblArrToPyList<double>(tmp,sz);
4325       }
4326       PyObject *integral(bool isWAbs) const throw(INTERP_KERNEL::Exception)
4327       {
4328         int sz=self->getNumberOfComponents();
4329         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
4330         self->integral(isWAbs,tmp);
4331         return convertDblArrToPyList<double>(tmp,sz);
4332       }
4333       PyObject *getWeightedAverageValue(bool isWAbs=true) const throw(INTERP_KERNEL::Exception)
4334       {
4335         int sz=self->getNumberOfComponents();
4336         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
4337         self->getWeightedAverageValue(tmp,isWAbs);
4338         return convertDblArrToPyList<double>(tmp,sz);
4339       }
4340       PyObject *normL1() const throw(INTERP_KERNEL::Exception)
4341       {
4342         int sz=self->getNumberOfComponents();
4343         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
4344         self->normL1(tmp);
4345         return convertDblArrToPyList<double>(tmp,sz);
4346       }
4347       PyObject *normL2() const throw(INTERP_KERNEL::Exception)
4348       {
4349         int sz=self->getNumberOfComponents();
4350         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
4351         self->normL2(tmp);
4352         return convertDblArrToPyList<double>(tmp,sz);
4353       }
4354       void renumberCells(PyObject *li, bool check=true) throw(INTERP_KERNEL::Exception)
4355       {
4356         int szArr,sw,iTypppArr;
4357         std::vector<int> stdvecTyyppArr;
4358         const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
4359         self->renumberCells(tmp,check);
4360       }
4361       
4362       void renumberCellsWithoutMesh(PyObject *li, bool check=true) throw(INTERP_KERNEL::Exception)
4363       {
4364         int szArr,sw,iTypppArr;
4365         std::vector<int> stdvecTyyppArr;
4366         const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
4367         self->renumberCellsWithoutMesh(tmp,check);
4368       }
4369       
4370       void renumberNodes(PyObject *li, double eps=1e-15) throw(INTERP_KERNEL::Exception)
4371       {
4372         int szArr,sw,iTypppArr;
4373         std::vector<int> stdvecTyyppArr;
4374         const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
4375         self->renumberNodes(tmp,eps);
4376       }
4377
4378       void renumberNodesWithoutMesh(PyObject *li, int newNbOfNodes, double eps=1e-15) throw(INTERP_KERNEL::Exception)
4379       {
4380         int szArr,sw,iTypppArr;
4381         std::vector<int> stdvecTyyppArr;
4382         const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
4383         self->renumberNodesWithoutMesh(tmp,newNbOfNodes,eps);
4384       }
4385
4386       MEDCouplingFieldDouble *buildSubPart(PyObject *li) const throw(INTERP_KERNEL::Exception)
4387       {
4388         return fieldT_buildSubPart(self,li);
4389       }
4390
4391       MEDCouplingFieldDouble *__getitem__(PyObject *li) const throw(INTERP_KERNEL::Exception)
4392       {
4393         return fieldT__getitem__(self,li);
4394       }
4395
4396       PyObject *getMaxValue2() const throw(INTERP_KERNEL::Exception)
4397       {
4398         DataArrayInt *tmp;
4399         double r1=self->getMaxValue2(tmp);
4400         PyObject *ret=PyTuple_New(2);
4401         PyTuple_SetItem(ret,0,PyFloat_FromDouble(r1));
4402         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
4403         return ret;
4404       }
4405       
4406       PyObject *getMinValue2() const throw(INTERP_KERNEL::Exception)
4407       {
4408         DataArrayInt *tmp;
4409         double r1=self->getMinValue2(tmp);
4410         PyObject *ret=PyTuple_New(2);
4411         PyTuple_SetItem(ret,0,PyFloat_FromDouble(r1));
4412         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
4413         return ret;
4414       }
4415       
4416       MEDCouplingFieldDouble *keepSelectedComponents(PyObject *li) const throw(INTERP_KERNEL::Exception)
4417       {
4418         std::vector<int> tmp;
4419         convertPyToNewIntArr3(li,tmp);
4420         return self->keepSelectedComponents(tmp);
4421       }
4422
4423       void setSelectedComponents(const MEDCouplingFieldDouble *f, PyObject *li) throw(INTERP_KERNEL::Exception)
4424       {
4425         std::vector<int> tmp;
4426         convertPyToNewIntArr3(li,tmp);
4427         self->setSelectedComponents(f,tmp);
4428       }
4429
4430       MEDCouplingFieldDouble *extractSlice3D(PyObject *origin, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
4431       {
4432         double val,val2;
4433         DataArrayDouble *a,*a2;
4434         DataArrayDoubleTuple *aa,*aa2;
4435         std::vector<double> bb,bb2;
4436         int sw;
4437         int spaceDim=3;
4438         const char msg[]="Python wrap of MEDCouplingFieldDouble::extractSlice3D : 1st parameter for origin.";
4439         const char msg2[]="Python wrap of MEDCouplingFieldDouble::extractSlice3D : 2nd parameter for vector.";
4440         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
4441         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
4442         //
4443         return self->extractSlice3D(orig,vect,eps);
4444       }
4445
4446       MEDCouplingFieldDouble *__add__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4447       {
4448         return MEDCoupling_MEDCouplingFieldDouble___add__Impl(self,obj);
4449       }
4450
4451       MEDCouplingFieldDouble *__radd__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4452       {
4453         return MEDCoupling_MEDCouplingFieldDouble___radd__Impl(self,obj);
4454       }
4455
4456       MEDCouplingFieldDouble *__sub__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4457       {
4458         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__sub__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4459         const char msg2[]="in MEDCouplingFieldDouble.__sub__ : self field has no Array of values set !";
4460         void *argp;
4461         //
4462         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,0|0)))
4463           {
4464             MEDCouplingFieldDouble *other=reinterpret_cast< MEDCoupling::MEDCouplingFieldDouble * >(argp);
4465             if(other)
4466               return (*self)-(*other);
4467             else
4468               throw INTERP_KERNEL::Exception(msg);
4469           }
4470         //
4471         double val;
4472         DataArrayDouble *a;
4473         DataArrayDoubleTuple *aa;
4474         std::vector<double> bb;
4475         int sw;
4476         convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb);
4477         switch(sw)
4478           {
4479           case 1:
4480             {
4481               if(!self->getArray())
4482                 throw INTERP_KERNEL::Exception(msg2);
4483               MCAuto<DataArrayDouble> ret=self->getArray()->deepCopy();
4484               ret->applyLin(1.,-val);
4485               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4486               ret2->setArray(ret);
4487               return ret2.retn();
4488             }
4489           case 2:
4490             {
4491               if(!self->getArray())
4492                 throw INTERP_KERNEL::Exception(msg2);
4493               MCAuto<DataArrayDouble> ret=DataArrayDouble::Substract(self->getArray(),a);
4494               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4495               ret2->setArray(ret);
4496               return ret2.retn();
4497             }
4498           case 3:
4499             {
4500               if(!self->getArray())
4501                 throw INTERP_KERNEL::Exception(msg2);
4502               MCAuto<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4503               MCAuto<DataArrayDouble> ret=DataArrayDouble::Substract(self->getArray(),aaa);
4504               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4505               ret2->setArray(ret);
4506               return ret2.retn();
4507             }
4508           case 4:
4509             {
4510               if(!self->getArray())
4511                 throw INTERP_KERNEL::Exception(msg2);
4512               MCAuto<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4513               MCAuto<DataArrayDouble> ret=DataArrayDouble::Substract(self->getArray(),aaa);
4514               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4515               ret2->setArray(ret);
4516               return ret2.retn();
4517             }
4518           default:
4519             { throw INTERP_KERNEL::Exception(msg); }
4520           }
4521       }
4522
4523       MEDCouplingFieldDouble *__rsub__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4524       {
4525         return MEDCoupling_MEDCouplingFieldDouble___rsub__Impl(self,obj);
4526       }
4527
4528       MEDCouplingFieldDouble *__mul__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4529       {
4530         return MEDCoupling_MEDCouplingFieldDouble___mul__Impl(self,obj);
4531       }
4532
4533       MEDCouplingFieldDouble *__rmul__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4534       {
4535         return MEDCoupling_MEDCouplingFieldDouble___rmul__Impl(self,obj);
4536       }
4537
4538       MEDCouplingFieldDouble *__div__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4539       {
4540         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__div__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4541         const char msg2[]="in MEDCouplingFieldDouble.__div__ : self field has no Array of values set !";
4542         void *argp;
4543         //
4544         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,0|0)))
4545           {
4546             MEDCouplingFieldDouble *other=reinterpret_cast< MEDCoupling::MEDCouplingFieldDouble * >(argp);
4547             if(other)
4548               return (*self)/(*other);
4549             else
4550               throw INTERP_KERNEL::Exception(msg);
4551           }
4552         //
4553         double val;
4554         DataArrayDouble *a;
4555         DataArrayDoubleTuple *aa;
4556         std::vector<double> bb;
4557         int sw;
4558         convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb);
4559         switch(sw)
4560           {
4561           case 1:
4562             {
4563               if(val==0.)
4564                 throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble.__div__ : trying to divide by zero !");
4565               if(!self->getArray())
4566                 throw INTERP_KERNEL::Exception(msg2);
4567               MCAuto<DataArrayDouble> ret=self->getArray()->deepCopy();
4568               ret->applyLin(1./val,0);
4569               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4570               ret2->setArray(ret);
4571               return ret2.retn();
4572             }
4573           case 2:
4574             {
4575               if(!self->getArray())
4576                 throw INTERP_KERNEL::Exception(msg2);
4577               MCAuto<DataArrayDouble> ret=DataArrayDouble::Divide(self->getArray(),a);
4578               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4579               ret2->setArray(ret);
4580               return ret2.retn();
4581             }
4582           case 3:
4583             {
4584               if(!self->getArray())
4585                 throw INTERP_KERNEL::Exception(msg2);
4586               MCAuto<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4587               MCAuto<DataArrayDouble> ret=DataArrayDouble::Divide(self->getArray(),aaa);
4588               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4589               ret2->setArray(ret);
4590               return ret2.retn();
4591             }
4592           case 4:
4593             {
4594               if(!self->getArray())
4595                 throw INTERP_KERNEL::Exception(msg2);
4596               MCAuto<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4597               MCAuto<DataArrayDouble> ret=DataArrayDouble::Divide(self->getArray(),aaa);
4598               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4599               ret2->setArray(ret);
4600               return ret2.retn();
4601             }
4602           default:
4603             { throw INTERP_KERNEL::Exception(msg); }
4604           }
4605       }
4606
4607       MEDCouplingFieldDouble *__rdiv__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4608       {
4609         return MEDCoupling_MEDCouplingFieldDouble___rdiv__Impl(self,obj);
4610       }
4611
4612       MEDCouplingFieldDouble *__pow__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4613       {
4614         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__pow__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4615         const char msg2[]="in MEDCouplingFieldDouble.__pow__ : self field has no Array of values set !";
4616         void *argp;
4617         //
4618         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,0|0)))
4619           {
4620             MEDCouplingFieldDouble *other=reinterpret_cast< MEDCoupling::MEDCouplingFieldDouble * >(argp);
4621             if(other)
4622               return (*self)^(*other);
4623             else
4624               throw INTERP_KERNEL::Exception(msg);
4625           }
4626         //
4627         double val;
4628         DataArrayDouble *a;
4629         DataArrayDoubleTuple *aa;
4630         std::vector<double> bb;
4631         int sw;
4632         convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb);
4633         switch(sw)
4634           {
4635           case 1:
4636             {
4637               if(!self->getArray())
4638                 throw INTERP_KERNEL::Exception(msg2);
4639               MCAuto<DataArrayDouble> ret=self->getArray()->deepCopy();
4640               ret->applyPow(val);
4641               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4642               ret2->setArray(ret);
4643               return ret2.retn();
4644             }
4645           case 2:
4646             {
4647               if(!self->getArray())
4648                 throw INTERP_KERNEL::Exception(msg2);
4649               MCAuto<DataArrayDouble> ret=DataArrayDouble::Pow(self->getArray(),a);
4650               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4651               ret2->setArray(ret);
4652               return ret2.retn();
4653             }
4654           case 3:
4655             {
4656               if(!self->getArray())
4657                 throw INTERP_KERNEL::Exception(msg2);
4658               MCAuto<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4659               MCAuto<DataArrayDouble> ret=DataArrayDouble::Pow(self->getArray(),aaa);
4660               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4661               ret2->setArray(ret);
4662               return ret2.retn();
4663             }
4664           case 4:
4665             {
4666               if(!self->getArray())
4667                 throw INTERP_KERNEL::Exception(msg2);
4668               MCAuto<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4669               MCAuto<DataArrayDouble> ret=DataArrayDouble::Pow(self->getArray(),aaa);
4670               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4671               ret2->setArray(ret);
4672               return ret2.retn();
4673             }
4674           default:
4675             { throw INTERP_KERNEL::Exception(msg); }
4676           }
4677       }
4678
4679       MEDCouplingFieldDouble *__neg__() const throw(INTERP_KERNEL::Exception)
4680       {
4681         return self->negate();
4682       }
4683
4684       PyObject *___iadd___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
4685       {
4686         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__iadd__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4687         const char msg2[]="in MEDCouplingFieldDouble.__iadd__ : self field has no Array of values set !";
4688         void *argp;
4689         //
4690         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,0|0)))
4691           {
4692             MEDCouplingFieldDouble *other=reinterpret_cast< MEDCoupling::MEDCouplingFieldDouble * >(argp);
4693             if(other)
4694               {
4695                 *self+=*other;
4696                 Py_XINCREF(trueSelf);
4697                 return trueSelf;
4698               }
4699             else
4700               throw INTERP_KERNEL::Exception(msg);
4701           }
4702         //
4703         double val;
4704         DataArrayDouble *a;
4705         DataArrayDoubleTuple *aa;
4706         std::vector<double> bb;
4707         int sw;
4708         convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb);
4709         switch(sw)
4710           {
4711           case 1:
4712             {
4713               if(!self->getArray())
4714                 throw INTERP_KERNEL::Exception(msg2);
4715               self->getArray()->applyLin(1.,val);
4716               Py_XINCREF(trueSelf);
4717               return trueSelf;
4718             }
4719           case 2:
4720             {
4721               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4722               ret2->setArray(a);
4723               *self+=*ret2;
4724               Py_XINCREF(trueSelf);
4725               return trueSelf;
4726             }
4727           case 3:
4728             {
4729               MCAuto<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4730               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4731               ret2->setArray(aaa);
4732               *self+=*ret2;
4733               Py_XINCREF(trueSelf);
4734               return trueSelf;
4735             }
4736           case 4:
4737             {
4738               if(!self->getArray())
4739                 throw INTERP_KERNEL::Exception(msg2);
4740               MCAuto<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4741               self->getArray()->addEqual(aaa);
4742               Py_XINCREF(trueSelf);
4743               return trueSelf;
4744             }
4745           default:
4746             { throw INTERP_KERNEL::Exception(msg); }
4747           }
4748       }
4749
4750       PyObject *___isub___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
4751       {
4752         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__isub__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4753         const char msg2[]="in MEDCouplingFieldDouble.__isub__ : self field has no Array of values set !";
4754         void *argp;
4755         //
4756         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,0|0)))
4757           {
4758             MEDCouplingFieldDouble *other=reinterpret_cast< MEDCoupling::MEDCouplingFieldDouble * >(argp);
4759             if(other)
4760               {
4761                 *self-=*other;
4762                 Py_XINCREF(trueSelf);
4763                 return trueSelf;
4764               }
4765             else
4766               throw INTERP_KERNEL::Exception(msg);
4767           }
4768         //
4769         double val;
4770         DataArrayDouble *a;
4771         DataArrayDoubleTuple *aa;
4772         std::vector<double> bb;
4773         int sw;
4774         convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb);
4775         switch(sw)
4776           {
4777           case 1:
4778             {
4779               if(!self->getArray())
4780                 throw INTERP_KERNEL::Exception(msg2);
4781               self->getArray()->applyLin(1.,-val);
4782               Py_XINCREF(trueSelf);
4783               return trueSelf;
4784             }
4785           case 2:
4786             {
4787               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4788               ret2->setArray(a);
4789               *self-=*ret2;
4790               Py_XINCREF(trueSelf);
4791               return trueSelf;
4792             }
4793           case 3:
4794             {
4795               MCAuto<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4796               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4797               ret2->setArray(aaa);
4798               *self-=*ret2;
4799               Py_XINCREF(trueSelf);
4800               return trueSelf;
4801             }
4802           case 4:
4803             {
4804               if(!self->getArray())
4805                 throw INTERP_KERNEL::Exception(msg2);
4806               MCAuto<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4807               self->getArray()->substractEqual(aaa);
4808               Py_XINCREF(trueSelf);
4809               return trueSelf;
4810             }
4811           default:
4812             { throw INTERP_KERNEL::Exception(msg); }
4813           }
4814       }
4815
4816       PyObject *___imul___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
4817       {
4818         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__imul__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4819         const char msg2[]="in MEDCouplingFieldDouble.__imul__ : self field has no Array of values set !";
4820         void *argp;
4821         //
4822         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,0|0)))
4823           {
4824             MEDCouplingFieldDouble *other=reinterpret_cast< MEDCoupling::MEDCouplingFieldDouble * >(argp);
4825             if(other)
4826               {
4827                 *self*=*other;
4828                 Py_XINCREF(trueSelf);
4829                 return trueSelf;
4830               }
4831             else
4832               throw INTERP_KERNEL::Exception(msg);
4833           }
4834         //
4835         double val;
4836         DataArrayDouble *a;
4837         DataArrayDoubleTuple *aa;
4838         std::vector<double> bb;
4839         int sw;
4840         convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb);
4841         switch(sw)
4842           {
4843           case 1:
4844             {
4845               if(!self->getArray())
4846                 throw INTERP_KERNEL::Exception(msg2);
4847               self->getArray()->applyLin(val,0);
4848               Py_XINCREF(trueSelf);
4849               return trueSelf;
4850             }
4851           case 2:
4852             {
4853               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4854               ret2->setArray(a);
4855               *self*=*ret2;
4856               Py_XINCREF(trueSelf);
4857               return trueSelf;
4858             }
4859           case 3:
4860             {
4861               MCAuto<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4862               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4863               ret2->setArray(aaa);
4864               *self*=*ret2;
4865               Py_XINCREF(trueSelf);
4866               return trueSelf;
4867             }
4868           case 4:
4869             {
4870               if(!self->getArray())
4871                 throw INTERP_KERNEL::Exception(msg2);
4872               MCAuto<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4873               self->getArray()->multiplyEqual(aaa);
4874               Py_XINCREF(trueSelf);
4875               return trueSelf;
4876             }
4877           default:
4878             { throw INTERP_KERNEL::Exception(msg); }
4879           }
4880       }
4881
4882       PyObject *___idiv___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
4883       {
4884         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__idiv__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4885         const char msg2[]="in MEDCouplingFieldDouble.__idiv__ : self field has no Array of values set !";
4886         void *argp;
4887         //
4888         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,0|0)))
4889           {
4890             MEDCouplingFieldDouble *other=reinterpret_cast< MEDCoupling::MEDCouplingFieldDouble * >(argp);
4891             if(other)
4892               {
4893                 *self/=*other;
4894                 Py_XINCREF(trueSelf);
4895                 return trueSelf;
4896               }
4897             else
4898               throw INTERP_KERNEL::Exception(msg);
4899           }
4900         //
4901         double val;
4902         DataArrayDouble *a;
4903         DataArrayDoubleTuple *aa;
4904         std::vector<double> bb;
4905         int sw;
4906         convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb);
4907         switch(sw)
4908           {
4909           case 1:
4910             {
4911               if(val==0.)
4912                 throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble.__idiv__ : trying to divide by zero !");
4913               if(!self->getArray())
4914                 throw INTERP_KERNEL::Exception(msg2);
4915               self->getArray()->applyLin(1./val,0);
4916               Py_XINCREF(trueSelf);
4917               return trueSelf;
4918             }
4919           case 2:
4920             {
4921               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4922               ret2->setArray(a);
4923               *self/=*ret2;
4924               Py_XINCREF(trueSelf);
4925               return trueSelf;
4926             }
4927           case 3:
4928             {
4929               MCAuto<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4930               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4931               ret2->setArray(aaa);
4932               *self/=*ret2;
4933               Py_XINCREF(trueSelf);
4934               return trueSelf;
4935             }
4936           case 4:
4937             {
4938               if(!self->getArray())
4939                 throw INTERP_KERNEL::Exception(msg2);
4940               MCAuto<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4941               self->getArray()->divideEqual(aaa);
4942               Py_XINCREF(trueSelf);
4943               return trueSelf;
4944             }
4945           default:
4946             { throw INTERP_KERNEL::Exception(msg); }
4947           }
4948       }
4949
4950       PyObject *___ipow___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
4951       {
4952         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__ipow__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4953         const char msg2[]="in MEDCouplingFieldDouble.__ipow__ : self field has no Array of values set !";
4954         void *argp;
4955         //
4956         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,0|0)))
4957           {
4958             MEDCouplingFieldDouble *other=reinterpret_cast< MEDCoupling::MEDCouplingFieldDouble * >(argp);
4959             if(other)
4960               {
4961                 *self^=*other;
4962                 Py_XINCREF(trueSelf);
4963                 return trueSelf;
4964               }
4965             else
4966               throw INTERP_KERNEL::Exception(msg);
4967           }
4968         //
4969         double val;
4970         DataArrayDouble *a;
4971         DataArrayDoubleTuple *aa;
4972         std::vector<double> bb;
4973         int sw;
4974         convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb);
4975         switch(sw)
4976           {
4977           case 1:
4978             {
4979               if(!self->getArray())
4980                 throw INTERP_KERNEL::Exception(msg2);
4981               self->getArray()->applyPow(val);
4982               Py_XINCREF(trueSelf);
4983               return trueSelf;
4984             }
4985           case 2:
4986             {
4987               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4988               ret2->setArray(a);
4989               *self^=*ret2;
4990               Py_XINCREF(trueSelf);
4991               return trueSelf;
4992             }
4993           case 3:
4994             {
4995               MCAuto<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4996               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4997               ret2->setArray(aaa);
4998               *self^=*ret2;
4999               Py_XINCREF(trueSelf);
5000               return trueSelf;
5001             }
5002           case 4:
5003             {
5004               if(!self->getArray())
5005                 throw INTERP_KERNEL::Exception(msg2);
5006               MCAuto<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
5007               self->getArray()->powEqual(aaa);
5008               Py_XINCREF(trueSelf);
5009               return trueSelf;
5010             }
5011           default:
5012             { throw INTERP_KERNEL::Exception(msg); }
5013           }
5014       }
5015
5016       static MEDCouplingFieldDouble *MergeFields(PyObject *li) throw(INTERP_KERNEL::Exception)
5017       {
5018         std::vector<const MEDCouplingFieldDouble *> tmp;
5019         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
5020         return MEDCouplingFieldDouble::MergeFields(tmp);
5021       }
5022
5023       static std::string WriteVTK(const char *fileName, PyObject *li, bool isBinary=true) throw(INTERP_KERNEL::Exception)
5024       {
5025         std::vector<const MEDCouplingFieldDouble *> tmp;
5026         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
5027         return MEDCouplingFieldDouble::WriteVTK(fileName,tmp,isBinary);
5028       }
5029
5030       PyObject *getTinySerializationInformation() const throw(INTERP_KERNEL::Exception)
5031       {
5032         return field_getTinySerializationInformation<MEDCouplingFieldDouble>(self);
5033       }
5034       
5035       PyObject *serialize() const throw(INTERP_KERNEL::Exception)
5036       {
5037         return field_serialize<double>(self);
5038       }
5039
5040       PyObject *__getstate__() const throw(INTERP_KERNEL::Exception)
5041       {
5042         return field__getstate__<MEDCouplingFieldDouble>(self,MEDCoupling_MEDCouplingFieldDouble_getTinySerializationInformation,MEDCoupling_MEDCouplingFieldDouble_serialize);
5043       }
5044       
5045       void __setstate__(PyObject *inp) throw(INTERP_KERNEL::Exception)
5046       {
5047         field__setstate__<double>(self,inp);
5048       }
5049     }
5050   };
5051
5052   class MEDCouplingMultiFields : public RefCountObject, public TimeLabel
5053   {
5054   public:
5055     int getNumberOfFields() const;
5056     MEDCouplingMultiFields *deepCopy() const;
5057     virtual std::string simpleRepr() const throw(INTERP_KERNEL::Exception);
5058     virtual std::string advancedRepr() const throw(INTERP_KERNEL::Exception);
5059     virtual bool isEqual(const MEDCouplingMultiFields *other, double meshPrec, double valsPrec) const;
5060     virtual bool isEqualWithoutConsideringStr(const MEDCouplingMultiFields *other, double meshPrec, double valsPrec) const;
5061     virtual void checkConsistencyLight() const throw(INTERP_KERNEL::Exception);
5062     %extend
5063        {
5064          std::string __str__() const throw(INTERP_KERNEL::Exception)
5065          {
5066            return self->simpleRepr();
5067          }
5068          static MEDCouplingMultiFields *New(PyObject *li) throw(INTERP_KERNEL::Exception)
5069          {
5070            std::vector<const MEDCoupling::MEDCouplingFieldDouble *> tmp;
5071            convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
5072            int sz=tmp.size();
5073            std::vector<MEDCouplingFieldDouble *> fs(sz);
5074            for(int i=0;i<sz;i++)
5075              fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
5076            return MEDCouplingMultiFields::New(fs);
5077          }
5078          MEDCouplingMultiFields(PyObject *li) throw(INTERP_KERNEL::Exception)
5079          {
5080            std::vector<const MEDCoupling::MEDCouplingFieldDouble *> tmp;
5081            convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
5082            int sz=tmp.size();
5083            std::vector<MEDCouplingFieldDouble *> fs(sz);
5084            for(int i=0;i<sz;i++)
5085              fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
5086            return MEDCouplingMultiFields::New(fs);
5087          }
5088          PyObject *getFields() const
5089          {
5090            std::vector<const MEDCouplingFieldDouble *> fields=self->getFields();
5091            int sz=fields.size();
5092            PyObject *res = PyList_New(sz);
5093            for(int i=0;i<sz;i++)
5094              {
5095                if(fields[i])
5096                  {
5097                    fields[i]->incrRef();
5098                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(fields[i]),SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble, SWIG_POINTER_OWN | 0 ));
5099                  }
5100                else
5101                  {
5102                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble, 0 ));
5103                  }
5104              }
5105            return res;
5106          }
5107          PyObject *getFieldAtPos(int id) const throw(INTERP_KERNEL::Exception)
5108          {
5109            const MEDCouplingFieldDouble *ret=self->getFieldAtPos(id);
5110            if(ret)
5111              {
5112                ret->incrRef();
5113                return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble, SWIG_POINTER_OWN | 0 );
5114              }
5115            else
5116              return SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble, 0 );
5117          }
5118          PyObject *getMeshes() const throw(INTERP_KERNEL::Exception)
5119          {
5120            std::vector<MEDCouplingMesh *> ms=self->getMeshes();
5121            int sz=ms.size();
5122            PyObject *res = PyList_New(sz);
5123            for(int i=0;i<sz;i++)
5124              {
5125                if(ms[i])
5126                  {
5127                    ms[i]->incrRef();
5128                    PyList_SetItem(res,i,convertMesh(ms[i], SWIG_POINTER_OWN | 0 ));
5129                  }
5130                else
5131                  {
5132                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, 0 ));
5133                  }
5134              }
5135            return res;
5136          }
5137          PyObject *getDifferentMeshes() const throw(INTERP_KERNEL::Exception)
5138          {
5139            std::vector<int> refs;
5140            std::vector<MEDCouplingMesh *> ms=self->getDifferentMeshes(refs);
5141            int sz=ms.size();
5142            PyObject *res = PyList_New(sz);
5143            for(int i=0;i<sz;i++)
5144              {
5145                if(ms[i])
5146                  {
5147                    ms[i]->incrRef();
5148                    PyList_SetItem(res,i,convertMesh(ms[i], SWIG_POINTER_OWN | 0 ));
5149                  }
5150                else
5151                  {
5152                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, 0 ));
5153                  }
5154              }
5155            //
5156            PyObject *ret=PyTuple_New(2);
5157            PyTuple_SetItem(ret,0,res);
5158            PyTuple_SetItem(ret,1,convertIntArrToPyList2(refs));
5159            return ret;
5160          }
5161          PyObject *getArrays() const throw(INTERP_KERNEL::Exception)
5162          {
5163            std::vector<DataArrayDouble *> ms=self->getArrays();
5164            int sz=ms.size();
5165            PyObject *res = PyList_New(sz);
5166            for(int i=0;i<sz;i++)
5167              {
5168                if(ms[i])
5169                  {
5170                    ms[i]->incrRef();
5171                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(ms[i]),SWIGTYPE_p_MEDCoupling__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
5172                  }
5173                else
5174                  {
5175                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_MEDCoupling__DataArrayDouble, 0 ));
5176                  }
5177              }
5178            return res;
5179          }
5180          PyObject *getDifferentArrays() const throw(INTERP_KERNEL::Exception)
5181          {
5182            std::vector< std::vector<int> > refs;
5183            std::vector<DataArrayDouble *> ms=self->getDifferentArrays(refs);
5184            int sz=ms.size();
5185            PyObject *res = PyList_New(sz);
5186            PyObject *res2 = PyList_New(sz);
5187            for(int i=0;i<sz;i++)
5188              {
5189                if(ms[i])
5190                  {
5191                    ms[i]->incrRef();
5192                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(ms[i]),SWIGTYPE_p_MEDCoupling__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
5193                  }
5194                else
5195                  {
5196                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_MEDCoupling__DataArrayDouble, 0 ));
5197                  }
5198                PyList_SetItem(res2,i,convertIntArrToPyList2(refs[i]));
5199              }
5200            //
5201            PyObject *ret=PyTuple_New(2);
5202            PyTuple_SetItem(ret,0,res);
5203            PyTuple_SetItem(ret,1,res2);
5204            return ret;
5205          }
5206        }
5207   };
5208
5209   class MEDCouplingFieldInt : public MEDCouplingFieldT<int>
5210   {
5211   public:
5212     static MEDCouplingFieldInt *New(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME);
5213     static MEDCouplingFieldInt *New(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME);
5214     bool isEqual(const MEDCouplingFieldInt *other, double meshPrec, int valsPrec) const throw(INTERP_KERNEL::Exception);
5215     bool isEqualWithoutConsideringStr(const MEDCouplingFieldInt *other, double meshPrec, int valsPrec) const throw(INTERP_KERNEL::Exception);
5216     void setTimeUnit(const std::string& unit) throw(INTERP_KERNEL::Exception);
5217     std::string getTimeUnit() const throw(INTERP_KERNEL::Exception);
5218     void setTime(double val, int iteration, int order) throw(INTERP_KERNEL::Exception);
5219     void setArray(DataArrayInt *array) throw(INTERP_KERNEL::Exception);
5220     MEDCouplingFieldInt *deepCopy() const throw(INTERP_KERNEL::Exception);
5221     MEDCouplingFieldInt *clone(bool recDeepCpy) const throw(INTERP_KERNEL::Exception);
5222     MEDCouplingFieldInt *cloneWithMesh(bool recDeepCpy) const throw(INTERP_KERNEL::Exception);
5223     MEDCouplingFieldDouble *convertToDblField() const throw(INTERP_KERNEL::Exception);
5224     MEDCouplingFieldInt *buildSubPartRange(int begin, int end, int step) const throw(INTERP_KERNEL::Exception);
5225     %extend {
5226       MEDCouplingFieldInt(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME)
5227       {
5228         return MEDCouplingFieldInt::New(type,td);
5229       }
5230
5231       MEDCouplingFieldInt(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME)
5232       {
5233         return MEDCouplingFieldInt::New(ft,td);
5234       }
5235
5236       PyObject *isEqualIfNotWhy(const MEDCouplingFieldInt *other, double meshPrec, int valsPrec) const throw(INTERP_KERNEL::Exception)
5237       {
5238         std::string ret1;
5239         bool ret0=self->isEqualIfNotWhy(other,meshPrec,valsPrec,ret1);
5240         PyObject *ret=PyTuple_New(2);
5241         PyObject *ret0Py=ret0?Py_True:Py_False;
5242         Py_XINCREF(ret0Py);
5243         PyTuple_SetItem(ret,0,ret0Py);
5244         PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
5245         return ret;
5246       }
5247       
5248       std::string __str__() const throw(INTERP_KERNEL::Exception)
5249       {
5250         return self->simpleRepr();
5251       }
5252
5253       std::string __repr__() const throw(INTERP_KERNEL::Exception)
5254       {
5255         std::ostringstream oss;
5256         self->reprQuickOverview(oss);
5257         return oss.str();
5258       }
5259
5260       MEDCouplingFieldInt *buildSubPart(PyObject *li) const throw(INTERP_KERNEL::Exception)
5261       {
5262         return fieldT_buildSubPart(self,li);
5263       }
5264
5265       MEDCouplingFieldInt *__getitem__(PyObject *li) const throw(INTERP_KERNEL::Exception)
5266       {
5267         return fieldT__getitem__(self,li);
5268       }
5269
5270       DataArrayInt *getArray() throw(INTERP_KERNEL::Exception)
5271       {
5272         DataArrayInt *ret=self->getArray();
5273         if(ret)
5274           ret->incrRef();
5275         return ret;
5276       }
5277       
5278       PyObject *getTime() throw(INTERP_KERNEL::Exception)
5279         {
5280         int tmp1,tmp2;
5281         double tmp0=self->getTime(tmp1,tmp2);
5282         PyObject *res = PyList_New(3);
5283         PyList_SetItem(res,0,SWIG_From_double(tmp0));
5284         PyList_SetItem(res,1,SWIG_From_int(tmp1));
5285         PyList_SetItem(res,2,SWIG_From_int(tmp2));
5286         return res;
5287         }
5288
5289       PyObject *getTinySerializationInformation() const throw(INTERP_KERNEL::Exception)
5290       {
5291         return field_getTinySerializationInformation<MEDCouplingFieldInt>(self);
5292       }
5293       
5294       PyObject *serialize() const throw(INTERP_KERNEL::Exception)
5295       {
5296         return field_serialize<int>(self);
5297       }
5298
5299       PyObject *__getstate__() const throw(INTERP_KERNEL::Exception)
5300       {
5301         return field__getstate__<MEDCouplingFieldInt>(self,MEDCoupling_MEDCouplingFieldInt_getTinySerializationInformation,MEDCoupling_MEDCouplingFieldInt_serialize);
5302       }
5303       
5304       void __setstate__(PyObject *inp) throw(INTERP_KERNEL::Exception)
5305       {
5306         field__setstate__<int>(self,inp);
5307       }
5308     }
5309   };
5310
5311   class MEDCouplingFieldFloat : public MEDCouplingFieldT<float>
5312   {
5313   public:
5314     static MEDCouplingFieldFloat *New(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME);
5315     static MEDCouplingFieldFloat *New(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME);
5316     bool isEqual(const MEDCouplingFieldFloat *other, double meshPrec, float valsPrec) const throw(INTERP_KERNEL::Exception);
5317     bool isEqualWithoutConsideringStr(const MEDCouplingFieldFloat *other, double meshPrec, float valsPrec) const throw(INTERP_KERNEL::Exception);
5318     void setTimeUnit(const std::string& unit) throw(INTERP_KERNEL::Exception);
5319     std::string getTimeUnit() const throw(INTERP_KERNEL::Exception);
5320     void setTime(double val, int iteration, int order) throw(INTERP_KERNEL::Exception);
5321     void setArray(DataArrayFloat *array) throw(INTERP_KERNEL::Exception);
5322     MEDCouplingFieldFloat *deepCopy() const throw(INTERP_KERNEL::Exception);
5323     MEDCouplingFieldFloat *clone(bool recDeepCpy) const throw(INTERP_KERNEL::Exception);
5324     MEDCouplingFieldFloat *cloneWithMesh(bool recDeepCpy) const throw(INTERP_KERNEL::Exception);
5325     MEDCouplingFieldDouble *convertToDblField() const throw(INTERP_KERNEL::Exception);
5326     MEDCouplingFieldFloat *buildSubPartRange(int begin, int end, int step) const throw(INTERP_KERNEL::Exception);
5327     %extend {
5328       MEDCouplingFieldFloat(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME)
5329       {
5330         return MEDCouplingFieldFloat::New(type,td);
5331       }
5332
5333       MEDCouplingFieldFloat(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME)
5334       {
5335         return MEDCouplingFieldFloat::New(ft,td);
5336       }
5337
5338       PyObject *isEqualIfNotWhy(const MEDCouplingFieldFloat *other, double meshPrec, float valsPrec) const throw(INTERP_KERNEL::Exception)
5339       {
5340         std::string ret1;
5341         bool ret0=self->isEqualIfNotWhy(other,meshPrec,valsPrec,ret1);
5342         PyObject *ret=PyTuple_New(2);
5343         PyObject *ret0Py=ret0?Py_True:Py_False;
5344         Py_XINCREF(ret0Py);
5345         PyTuple_SetItem(ret,0,ret0Py);
5346         PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
5347         return ret;
5348       }
5349
5350       std::string __str__() const throw(INTERP_KERNEL::Exception)
5351       {
5352         return self->simpleRepr();
5353       }
5354
5355       std::string __repr__() const throw(INTERP_KERNEL::Exception)
5356       {
5357         std::ostringstream oss;
5358         self->reprQuickOverview(oss);
5359         return oss.str();
5360       }
5361
5362       MEDCouplingFieldFloat *buildSubPart(PyObject *li) const throw(INTERP_KERNEL::Exception)
5363       {
5364         return fieldT_buildSubPart(self,li);
5365       }
5366
5367       MEDCouplingFieldFloat *__getitem__(PyObject *li) const throw(INTERP_KERNEL::Exception)
5368       {
5369         return fieldT__getitem__(self,li);
5370       }
5371
5372       DataArrayFloat *getArray() throw(INTERP_KERNEL::Exception)
5373       {
5374         DataArrayFloat *ret=self->getArray();
5375         if(ret)
5376           ret->incrRef();
5377         return ret;
5378       }
5379       
5380       PyObject *getTime() throw(INTERP_KERNEL::Exception)
5381       {
5382         int tmp1,tmp2;
5383         double tmp0=self->getTime(tmp1,tmp2);
5384         PyObject *res = PyList_New(3);
5385         PyList_SetItem(res,0,SWIG_From_double(tmp0));
5386         PyList_SetItem(res,1,SWIG_From_int(tmp1));
5387         PyList_SetItem(res,2,SWIG_From_int(tmp2));
5388         return res;
5389       }
5390
5391       PyObject *getTinySerializationInformation() const throw(INTERP_KERNEL::Exception)
5392       {
5393         return field_getTinySerializationInformation<MEDCouplingFieldFloat>(self);
5394       }
5395       
5396       PyObject *serialize() const throw(INTERP_KERNEL::Exception)
5397       {
5398         return field_serialize<float>(self);
5399       }
5400       
5401       PyObject *__getstate__() const throw(INTERP_KERNEL::Exception)
5402       {
5403         return field__getstate__<MEDCouplingFieldFloat>(self,MEDCoupling_MEDCouplingFieldFloat_getTinySerializationInformation,MEDCoupling_MEDCouplingFieldFloat_serialize);
5404       }
5405         
5406       void __setstate__(PyObject *inp) throw(INTERP_KERNEL::Exception)
5407       {
5408         field__setstate__<float>(self,inp);
5409       }
5410     }
5411   };
5412   
5413   class MEDCouplingDefinitionTime
5414   {
5415   public:
5416     MEDCouplingDefinitionTime();
5417     void assign(const MEDCouplingDefinitionTime& other);
5418     bool isEqual(const MEDCouplingDefinitionTime& other) const;
5419     double getTimeResolution() const;
5420     std::vector<double> getHotSpotsTime() const;
5421     %extend
5422       {
5423         std::string __str__() const throw(INTERP_KERNEL::Exception)
5424           {
5425             std::ostringstream oss;
5426             self->appendRepr(oss);
5427             return oss.str();
5428           }
5429
5430         PyObject *getIdsOnTimeRight(double tm) const throw(INTERP_KERNEL::Exception)
5431         {
5432           int meshId,arrId,arrIdInField,fieldId;
5433           self->getIdsOnTimeRight(tm,meshId,arrId,arrIdInField,fieldId);
5434           PyObject *res=PyList_New(4);
5435           PyList_SetItem(res,0,PyInt_FromLong(meshId));
5436           PyList_SetItem(res,1,PyInt_FromLong(arrId));
5437           PyList_SetItem(res,2,PyInt_FromLong(arrIdInField));
5438           PyList_SetItem(res,3,PyInt_FromLong(fieldId));
5439           return res;
5440         }
5441
5442         PyObject *getIdsOnTimeLeft(double tm) const throw(INTERP_KERNEL::Exception)
5443         {
5444           int meshId,arrId,arrIdInField,fieldId;
5445           self->getIdsOnTimeLeft(tm,meshId,arrId,arrIdInField,fieldId);
5446           PyObject *res=PyList_New(4);
5447           PyList_SetItem(res,0,PyInt_FromLong(meshId));
5448           PyList_SetItem(res,1,PyInt_FromLong(arrId));
5449           PyList_SetItem(res,2,PyInt_FromLong(arrIdInField));
5450           PyList_SetItem(res,3,PyInt_FromLong(fieldId));
5451           return res;
5452         }
5453       }
5454   };
5455
5456   class MEDCouplingFieldOverTime : public MEDCouplingMultiFields
5457   {
5458   public:
5459     double getTimeTolerance() const throw(INTERP_KERNEL::Exception);
5460     MEDCouplingDefinitionTime getDefinitionTimeZone() const;
5461     
5462     %extend
5463       {
5464         MEDCouplingFieldOverTime(PyObject *li) throw(INTERP_KERNEL::Exception)
5465           {
5466             std::vector<const MEDCoupling::MEDCouplingFieldDouble *> tmp;
5467             convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
5468             int sz=tmp.size();
5469             std::vector<MEDCouplingFieldDouble *> fs(sz);
5470             for(int i=0;i<sz;i++)
5471               fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
5472             return MEDCouplingFieldOverTime::New(fs);
5473           }
5474         std::string __str__() const throw(INTERP_KERNEL::Exception)
5475           {
5476             return self->simpleRepr();
5477           }
5478         static MEDCouplingFieldOverTime *New(PyObject *li) throw(INTERP_KERNEL::Exception)
5479         {
5480           std::vector<const MEDCoupling::MEDCouplingFieldDouble *> tmp;
5481           convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
5482            int sz=tmp.size();
5483            std::vector<MEDCouplingFieldDouble *> fs(sz);
5484            for(int i=0;i<sz;i++)
5485              fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
5486            return MEDCouplingFieldOverTime::New(fs);
5487          }
5488       }
5489   };
5490
5491   class MEDCouplingCartesianAMRMesh;
5492   
5493   class MEDCouplingCartesianAMRPatchGen : public RefCountObject
5494   {
5495   public:
5496     int getNumberOfCellsRecursiveWithOverlap() const throw(INTERP_KERNEL::Exception);
5497     int getNumberOfCellsRecursiveWithoutOverlap() const throw(INTERP_KERNEL::Exception);
5498     int getMaxNumberOfLevelsRelativeToThis() const throw(INTERP_KERNEL::Exception);
5499     %extend
5500     {
5501       MEDCouplingCartesianAMRMeshGen *getMesh() const throw(INTERP_KERNEL::Exception)
5502       {
5503         MEDCouplingCartesianAMRMeshGen *ret(const_cast<MEDCouplingCartesianAMRMeshGen *>(self->getMesh()));
5504         if(ret)
5505           ret->incrRef();
5506         return ret;
5507       }
5508     }
5509   };
5510
5511   class MEDCouplingCartesianAMRPatch : public MEDCouplingCartesianAMRPatchGen
5512   {
5513   public:
5514     int getNumberOfOverlapedCellsForFather() const throw(INTERP_KERNEL::Exception);
5515     bool isInMyNeighborhood(const MEDCouplingCartesianAMRPatch *other, int ghostLev) const throw(INTERP_KERNEL::Exception);
5516     std::vector<int> computeCellGridSt() const throw(INTERP_KERNEL::Exception);
5517     %extend
5518     {
5519       PyObject *getBLTRRange() const throw(INTERP_KERNEL::Exception)
5520       {
5521         const std::vector< std::pair<int,int> >& ret(self->getBLTRRange());
5522         return convertFromVectorPairInt(ret);
5523       }
5524
5525       PyObject *getBLTRRangeRelativeToGF() const throw(INTERP_KERNEL::Exception)
5526       {
5527         std::vector< std::pair<int,int> > ret(self->getBLTRRangeRelativeToGF());
5528         return convertFromVectorPairInt(ret);
5529       }
5530
5531       void addPatch(PyObject *bottomLeftTopRight, const std::vector<int>& factors) throw(INTERP_KERNEL::Exception)
5532       {
5533         std::vector< std::pair<int,int> > inp;
5534         convertPyToVectorPairInt(bottomLeftTopRight,inp);
5535         self->addPatch(inp,factors);
5536       }
5537
5538       MEDCouplingCartesianAMRPatch *__getitem__(int patchId) const throw(INTERP_KERNEL::Exception)
5539       {
5540         const MEDCouplingCartesianAMRMeshGen *mesh(self->getMesh());
5541         if(!mesh)
5542           throw INTERP_KERNEL::Exception("wrap MEDCouplingCartesianAMRPatchGen.__getitem__ : no underlying mesh !");
5543         if(patchId==mesh->getNumberOfPatches())
5544           {
5545             std::ostringstream oss;
5546             oss << "Requesting for patchId " << patchId << " having only " << mesh->getNumberOfPatches() << " patches !";
5547             PyErr_SetString(PyExc_StopIteration,oss.str().c_str());
5548             return 0;
5549           }
5550         MEDCouplingCartesianAMRPatch *ret(const_cast<MEDCouplingCartesianAMRPatch *>(mesh->getPatch(patchId)));
5551         if(ret)
5552           ret->incrRef();
5553         return ret;
5554       }
5555
5556       void __delitem__(int patchId) throw(INTERP_KERNEL::Exception)
5557       {
5558         MEDCouplingCartesianAMRMeshGen *mesh(const_cast<MEDCouplingCartesianAMRMeshGen *>(self->getMesh()));
5559         if(!mesh)
5560           throw INTERP_KERNEL::Exception("wrap MEDCouplingCartesianAMRPatch.__delitem__ : no underlying mesh !");
5561         mesh->removePatch(patchId);
5562       }
5563
5564       int __len__() const throw(INTERP_KERNEL::Exception)
5565       {
5566         const MEDCouplingCartesianAMRMeshGen *mesh(self->getMesh());
5567         if(!mesh)
5568           throw INTERP_KERNEL::Exception("wrap MEDCouplingCartesianAMRPatch.__len__ : no underlying mesh !");
5569         return mesh->getNumberOfPatches();
5570       }
5571     }
5572   };
5573
5574   class MEDCouplingCartesianAMRPatchGF : public MEDCouplingCartesianAMRPatchGen
5575   {
5576   };
5577   
5578   class MEDCouplingCartesianAMRMeshGen : public RefCountObject, public TimeLabel
5579   {
5580   public:
5581     int getAbsoluteLevel() const throw(INTERP_KERNEL::Exception);
5582     int getAbsoluteLevelRelativeTo(const MEDCouplingCartesianAMRMeshGen *ref) const throw(INTERP_KERNEL::Exception);
5583     std::vector<int> getPositionRelativeTo(const MEDCouplingCartesianAMRMeshGen *ref) const throw(INTERP_KERNEL::Exception);
5584     int getSpaceDimension() const throw(INTERP_KERNEL::Exception);
5585     const std::vector<int>& getFactors() const throw(INTERP_KERNEL::Exception);
5586     void setFactors(const std::vector<int>& newFactors) throw(INTERP_KERNEL::Exception);
5587     int getMaxNumberOfLevelsRelativeToThis() const throw(INTERP_KERNEL::Exception);
5588     int getNumberOfCellsAtCurrentLevel() const throw(INTERP_KERNEL::Exception);
5589     int getNumberOfCellsAtCurrentLevelGhost(int ghostLev) const throw(INTERP_KERNEL::Exception);
5590     int getNumberOfCellsRecursiveWithOverlap() const throw(INTERP_KERNEL::Exception);
5591     int getNumberOfCellsRecursiveWithoutOverlap() const throw(INTERP_KERNEL::Exception);
5592     bool isPatchInNeighborhoodOf(int patchId1, int patchId2, int ghostLev) const throw(INTERP_KERNEL::Exception);
5593    virtual void detachFromFather() throw(INTERP_KERNEL::Exception);
5594     //
5595     int getNumberOfPatches() const throw(INTERP_KERNEL::Exception);
5596     int getPatchIdFromChildMesh(const MEDCouplingCartesianAMRMeshGen *mesh) const throw(INTERP_KERNEL::Exception);
5597     MEDCouplingUMesh *buildUnstructured() const throw(INTERP_KERNEL::Exception);
5598     DataArrayDouble *extractGhostFrom(int ghostSz, const DataArrayDouble *arr) const throw(INTERP_KERNEL::Exception);
5599     std::vector<int> getPatchIdsInTheNeighborhoodOf(int patchId, int ghostLev) const throw(INTERP_KERNEL::Exception);
5600     MEDCoupling1SGTUMesh *buildMeshFromPatchEnvelop() const throw(INTERP_KERNEL::Exception);
5601     MEDCoupling1SGTUMesh *buildMeshOfDirectChildrenOnly() const throw(INTERP_KERNEL::Exception);
5602     void removeAllPatches() throw(INTERP_KERNEL::Exception);
5603     void removePatch(int patchId) throw(INTERP_KERNEL::Exception);
5604     void createPatchesFromCriterion(const INTERP_KERNEL::BoxSplittingOptions& bso, const DataArrayByte *criterion, const std::vector<int>& factors) throw(INTERP_KERNEL::Exception);
5605     void createPatchesFromCriterion(const INTERP_KERNEL::BoxSplittingOptions& bso, const DataArrayDouble *criterion, const std::vector<int>& factors, double eps) throw(INTERP_KERNEL::Exception);
5606     DataArrayDouble *createCellFieldOnPatch(int patchId, const DataArrayDouble *cellFieldOnThis) const throw(INTERP_KERNEL::Exception);
5607     void fillCellFieldOnPatch(int patchId, const DataArrayDouble *cellFieldOnThis, DataArrayDouble *cellFieldOnPatch, bool isConservative=true) const throw(INTERP_KERNEL::Exception);
5608     void fillCellFieldOnPatchGhost(int patchId, const DataArrayDouble *cellFieldOnThis, DataArrayDouble *cellFieldOnPatch, int ghostLev, bool isConservative=true) const throw(INTERP_KERNEL::Exception);
5609     void fillCellFieldOnPatchOnlyOnGhostZone(int patchId, const DataArrayDouble *cellFieldOnThis, DataArrayDouble *cellFieldOnPatch, int ghostLev) const throw(INTERP_KERNEL::Exception);
5610     void fillCellFieldOnPatchOnlyOnGhostZoneWith(int ghostLev, const MEDCouplingCartesianAMRPatch *patchToBeModified, const MEDCouplingCartesianAMRPatch *neighborPatch, DataArrayDouble *cellFieldOnPatch, const DataArrayDouble *cellFieldNeighbor) const;
5611     void fillCellFieldComingFromPatch(int patchId, const DataArrayDouble *cellFieldOnPatch, DataArrayDouble *cellFieldOnThis, bool isConservative=true) const throw(INTERP_KERNEL::Exception);
5612     void fillCellFieldComingFromPatchGhost(int patchId, const DataArrayDouble *cellFieldOnPatch, DataArrayDouble *cellFieldOnThis, int ghostLev, bool isConservative=true) const throw(INTERP_KERNEL::Exception);
5613     DataArrayInt *findPatchesInTheNeighborhoodOf(int patchId, int ghostLev) const throw(INTERP_KERNEL::Exception);
5614     std::string buildPythonDumpOfThis() const throw(INTERP_KERNEL::Exception);
5615     %extend
5616     {
5617       void addPatch(PyObject *bottomLeftTopRight, const std::vector<int>& factors) throw(INTERP_KERNEL::Exception)
5618       {
5619         std::vector< std::pair<int,int> > inp;
5620         convertPyToVectorPairInt(bottomLeftTopRight,inp);
5621         self->addPatch(inp,factors);
5622       }
5623
5624       PyObject *getPatches() const throw(INTERP_KERNEL::Exception)
5625       {
5626         std::vector< const MEDCouplingCartesianAMRPatch *> ps(self->getPatches());
5627         int sz(ps.size());
5628         PyObject *ret = PyList_New(sz);
5629         for(int i=0;i<sz;i++)
5630           {
5631             MEDCouplingCartesianAMRPatch *elt(const_cast<MEDCouplingCartesianAMRPatch *>(ps[i]));
5632             if(elt)
5633               elt->incrRef();
5634             PyList_SetItem(ret,i,convertCartesianAMRPatch(elt, SWIG_POINTER_OWN | 0 ));
5635           }
5636         return ret;
5637       }
5638
5639       // agy : don't know why typemap fails here ??? let it in the extend section
5640       PyObject *deepCopy(MEDCouplingCartesianAMRMeshGen *father) const throw(INTERP_KERNEL::Exception)
5641       {
5642         return convertCartesianAMRMesh(self->deepCopy(father), SWIG_POINTER_OWN | 0 );
5643       }
5644
5645       MEDCouplingCartesianAMRPatch *getPatchAtPosition(const std::vector<int>& pos) const throw(INTERP_KERNEL::Exception)
5646       {
5647         const MEDCouplingCartesianAMRPatch *ret(self->getPatchAtPosition(pos));
5648         MEDCouplingCartesianAMRPatch *ret2(const_cast<MEDCouplingCartesianAMRPatch *>(ret));
5649         if(ret2)
5650           ret2->incrRef();
5651         return ret2;
5652       }
5653
5654       MEDCouplingCartesianAMRMeshGen *getMeshAtPosition(const std::vector<int>& pos) const throw(INTERP_KERNEL::Exception)
5655       {
5656         const MEDCouplingCartesianAMRMeshGen *ret(self->getMeshAtPosition(pos));
5657         MEDCouplingCartesianAMRMeshGen *ret2(const_cast<MEDCouplingCartesianAMRMeshGen *>(ret));
5658         if(ret2)
5659           ret2->incrRef();
5660         return ret2;
5661       }
5662
5663       virtual PyObject *positionRelativeToGodFather() const throw(INTERP_KERNEL::Exception)
5664       {
5665         std::vector<int> out1;
5666         std::vector< std::pair<int,int> > out0(self->positionRelativeToGodFather(out1));
5667         PyObject *ret(PyTuple_New(2));
5668         PyTuple_SetItem(ret,0,convertFromVectorPairInt(out0));
5669         PyTuple_SetItem(ret,1,convertIntArrToPyList2(out1));
5670         return ret;
5671       }
5672
5673       virtual PyObject *retrieveGridsAt(int absoluteLev) const throw(INTERP_KERNEL::Exception)
5674       {
5675         std::vector<MEDCouplingCartesianAMRPatchGen *> ps(self->retrieveGridsAt(absoluteLev));
5676         int sz(ps.size());
5677         PyObject *ret = PyList_New(sz);
5678         for(int i=0;i<sz;i++)
5679           PyList_SetItem(ret,i,convertCartesianAMRPatch(ps[i], SWIG_POINTER_OWN | 0 ));
5680         return ret;
5681       }
5682
5683       MEDCouplingFieldDouble *buildCellFieldOnRecurseWithoutOverlapWithoutGhost(int ghostSz, PyObject *recurseArrs) const
5684       {
5685         std::vector<const DataArrayDouble *> inp;
5686         convertFromPyObjVectorOfObj<const MEDCoupling::DataArrayDouble *>(recurseArrs,SWIGTYPE_p_MEDCoupling__DataArrayDouble,"DataArrayDouble",inp);
5687         return self->buildCellFieldOnRecurseWithoutOverlapWithoutGhost(ghostSz,inp);
5688       }
5689
5690       virtual MEDCouplingCartesianAMRMeshGen *getFather() const throw(INTERP_KERNEL::Exception)
5691       {
5692         MEDCouplingCartesianAMRMeshGen *ret(const_cast<MEDCouplingCartesianAMRMeshGen *>(self->getFather()));
5693         if(ret)
5694           ret->incrRef();
5695         return ret;
5696       }
5697       
5698       virtual MEDCouplingCartesianAMRMeshGen *getGodFather() const throw(INTERP_KERNEL::Exception)
5699       {
5700         MEDCouplingCartesianAMRMeshGen *ret(const_cast<MEDCouplingCartesianAMRMeshGen *>(self->getGodFather()));
5701         if(ret)
5702           ret->incrRef();
5703         return ret;
5704       }
5705
5706       MEDCouplingCartesianAMRPatch *getPatch(int patchId) const throw(INTERP_KERNEL::Exception)
5707       {
5708         MEDCouplingCartesianAMRPatch *ret(const_cast<MEDCouplingCartesianAMRPatch *>(self->getPatch(patchId)));
5709         if(ret)
5710           ret->incrRef();
5711         return ret;
5712       }
5713
5714       MEDCouplingIMesh *getImageMesh() const throw(INTERP_KERNEL::Exception)
5715       {
5716         const MEDCouplingIMesh *ret(self->getImageMesh());
5717         if(ret)
5718           ret->incrRef();
5719         return const_cast<MEDCouplingIMesh *>(ret);
5720       }
5721
5722       MEDCouplingCartesianAMRPatch *__getitem__(int patchId) const throw(INTERP_KERNEL::Exception)
5723       {
5724         if(patchId==self->getNumberOfPatches())
5725           {
5726             std::ostringstream oss;
5727             oss << "Requesting for patchId " << patchId << " having only " << self->getNumberOfPatches() << " patches !";
5728             PyErr_SetString(PyExc_StopIteration,oss.str().c_str());
5729             return 0;
5730           }
5731         MEDCouplingCartesianAMRPatch *ret(const_cast<MEDCouplingCartesianAMRPatch *>(self->getPatch(patchId)));
5732         if(ret)
5733           ret->incrRef();
5734         return ret;
5735       }
5736
5737       void fillCellFieldOnPatchGhostAdv(int patchId, const DataArrayDouble *cellFieldOnThis, int ghostLev, PyObject *arrsOnPatches, bool isConservative=true) const throw(INTERP_KERNEL::Exception)
5738       {
5739         std::vector<const MEDCoupling::DataArrayDouble *> arrsOnPatches2;
5740         convertFromPyObjVectorOfObj<const MEDCoupling::DataArrayDouble *>(arrsOnPatches,SWIGTYPE_p_MEDCoupling__DataArrayDouble,"DataArrayDouble",arrsOnPatches2);
5741         self->fillCellFieldOnPatchGhostAdv(patchId,cellFieldOnThis,ghostLev,arrsOnPatches2,isConservative);
5742       }
5743
5744       void fillCellFieldOnPatchOnlyGhostAdv(int patchId, int ghostLev, PyObject *arrsOnPatches) const
5745       {
5746         std::vector<const MEDCoupling::DataArrayDouble *> arrsOnPatches2;
5747         convertFromPyObjVectorOfObj<const MEDCoupling::DataArrayDouble *>(arrsOnPatches,SWIGTYPE_p_MEDCoupling__DataArrayDouble,"DataArrayDouble",arrsOnPatches2);
5748         self->fillCellFieldOnPatchOnlyGhostAdv(patchId,ghostLev,arrsOnPatches2);
5749       }
5750
5751       void __delitem__(int patchId) throw(INTERP_KERNEL::Exception)
5752       {
5753         self->removePatch(patchId);
5754       }
5755
5756       int __len__() const throw(INTERP_KERNEL::Exception)
5757       {
5758         return self->getNumberOfPatches();
5759       }
5760     }
5761   };
5762
5763   class MEDCouplingCartesianAMRMeshSub : public MEDCouplingCartesianAMRMeshGen
5764   {
5765   };
5766
5767   class MEDCouplingCartesianAMRMesh : public MEDCouplingCartesianAMRMeshGen
5768   {
5769   public:
5770     static MEDCouplingCartesianAMRMesh *New(MEDCouplingIMesh *mesh) throw(INTERP_KERNEL::Exception);
5771     %extend
5772     {
5773       static MEDCouplingCartesianAMRMesh *New(const std::string& meshName, int spaceDim, PyObject *nodeStrct, PyObject *origin, PyObject *dxyz) throw(INTERP_KERNEL::Exception)
5774       {
5775         static const char msg0[]="MEDCouplingCartesianAMRMesh::New : error on 'origin' parameter !";
5776         static const char msg1[]="MEDCouplingCartesianAMRMesh::New : error on 'dxyz' parameter !";
5777         const int *nodeStrctPtr(0);
5778         const double *originPtr(0),*dxyzPtr(0);
5779         int sw,sz,val0;
5780         std::vector<int> bb0;
5781         nodeStrctPtr=convertIntStarLikePyObjToCppIntStar(nodeStrct,sw,sz,val0,bb0);
5782         //
5783         double val,val2;
5784         std::vector<double> bb,bb2;
5785         int sz1,sz2;
5786         originPtr=convertObjToPossibleCpp5_SingleCompo(origin,sw,val,bb,msg0,false,sz1);
5787         dxyzPtr=convertObjToPossibleCpp5_SingleCompo(dxyz,sw,val2,bb2,msg1,false,sz2);
5788         //
5789         return MEDCouplingCartesianAMRMesh::New(meshName,spaceDim,nodeStrctPtr,nodeStrctPtr+sz,originPtr,originPtr+sz1,dxyzPtr,dxyzPtr+sz2);
5790       }
5791
5792       void createPatchesFromCriterionML(PyObject *bso, const DataArrayDouble *criterion, PyObject *factors, double eps) throw(INTERP_KERNEL::Exception)
5793       {
5794         std::vector<const INTERP_KERNEL::BoxSplittingOptions *> inp0;
5795         convertFromPyObjVectorOfObj<const INTERP_KERNEL::BoxSplittingOptions *>(bso,SWIGTYPE_p_INTERP_KERNEL__BoxSplittingOptions,"BoxSplittingOptions",inp0);
5796         std::vector< std::vector<int> > inp2;
5797         convertPyToVectorOfVectorOfInt(factors,inp2);
5798         self->createPatchesFromCriterionML(inp0,criterion,inp2,eps);
5799       }
5800
5801       MEDCouplingCartesianAMRMesh(const std::string& meshName, int spaceDim, PyObject *nodeStrct, PyObject *origin, PyObject *dxyz) throw(INTERP_KERNEL::Exception)
5802       {
5803         return MEDCoupling_MEDCouplingCartesianAMRMesh_New__SWIG_1(meshName,spaceDim,nodeStrct,origin,dxyz);
5804       }
5805
5806       MEDCouplingCartesianAMRMesh(MEDCouplingIMesh *mesh) throw(INTERP_KERNEL::Exception)
5807       {
5808         return MEDCouplingCartesianAMRMesh::New(mesh);
5809       }
5810     }
5811   };
5812
5813   class MEDCouplingDataForGodFather : public RefCountObject
5814   {
5815   public:
5816     virtual void synchronizeFineToCoarse() throw(INTERP_KERNEL::Exception);
5817     virtual void synchronizeFineToCoarseBetween(int fromLev, int toLev) throw(INTERP_KERNEL::Exception);
5818     virtual void synchronizeCoarseToFine() throw(INTERP_KERNEL::Exception);
5819     virtual void synchronizeCoarseToFineBetween(int fromLev, int toLev) throw(INTERP_KERNEL::Exception);
5820     virtual void synchronizeAllGhostZones() throw(INTERP_KERNEL::Exception);
5821     virtual void synchronizeAllGhostZonesOfDirectChidrenOf(const MEDCouplingCartesianAMRMeshGen *mesh) throw(INTERP_KERNEL::Exception);
5822     virtual void synchronizeAllGhostZonesAtASpecifiedLevel(int level) throw(INTERP_KERNEL::Exception);
5823     virtual void synchronizeAllGhostZonesAtASpecifiedLevelUsingOnlyFather(int level) throw(INTERP_KERNEL::Exception);
5824     virtual void alloc() throw(INTERP_KERNEL::Exception);
5825     virtual void dealloc() throw(INTERP_KERNEL::Exception);
5826     %extend
5827     {
5828       MEDCouplingCartesianAMRMesh *getMyGodFather() throw(INTERP_KERNEL::Exception)
5829       {
5830         MEDCouplingCartesianAMRMesh *ret(self->getMyGodFather());
5831         if(ret)
5832           ret->incrRef();
5833         return ret;
5834       }
5835     }
5836   };
5837   
5838   class MEDCouplingAMRAttribute : public MEDCouplingDataForGodFather, public TimeLabel
5839   {
5840   public:
5841     int getNumberOfLevels() const throw(INTERP_KERNEL::Exception);
5842     MEDCouplingAMRAttribute *deepCopy() const throw(INTERP_KERNEL::Exception);
5843     MEDCouplingAMRAttribute *deepCpyWithoutGodFather() const throw(INTERP_KERNEL::Exception);
5844     MEDCouplingFieldDouble *buildCellFieldOnRecurseWithoutOverlapWithoutGhost(MEDCouplingCartesianAMRMeshGen *mesh, const std::string& fieldName) const throw(INTERP_KERNEL::Exception);
5845     MEDCouplingFieldDouble *buildCellFieldOnWithGhost(MEDCouplingCartesianAMRMeshGen *mesh, const std::string& fieldName) const throw(INTERP_KERNEL::Exception);
5846     MEDCouplingFieldDouble *buildCellFieldOnWithoutGhost(MEDCouplingCartesianAMRMeshGen *mesh, const std::string& fieldName) const throw(INTERP_KERNEL::Exception);
5847     bool changeGodFather(MEDCouplingCartesianAMRMesh *gf) throw(INTERP_KERNEL::Exception);
5848     MEDCouplingAMRAttribute *projectTo(MEDCouplingCartesianAMRMesh *targetGF) const throw(INTERP_KERNEL::Exception);
5849     std::string writeVTHB(const std::string& fileName) const throw(INTERP_KERNEL::Exception);
5850     %extend
5851     {
5852       static MEDCouplingAMRAttribute *New(MEDCouplingCartesianAMRMesh *gf, PyObject *fieldNames, int ghostLev) throw(INTERP_KERNEL::Exception)
5853       {
5854         std::vector< std::pair<std::string,int> > fieldNamesCpp0;
5855         std::vector< std::pair<std::string, std::vector<std::string> > > fieldNamesCpp1;
5856         MEDCouplingAMRAttribute *ret(0);
5857         try
5858           {
5859             convertPyToVectorPairStringInt(fieldNames,fieldNamesCpp0);
5860             ret=MEDCouplingAMRAttribute::New(gf,fieldNamesCpp0,ghostLev);
5861           }
5862         catch(INTERP_KERNEL::Exception&)
5863           {
5864             convertPyToVectorPairStringVecString(fieldNames,fieldNamesCpp1);
5865             ret=MEDCouplingAMRAttribute::New(gf,fieldNamesCpp1,ghostLev);
5866           }
5867         return ret;
5868       }
5869
5870       MEDCouplingAMRAttribute(MEDCouplingCartesianAMRMesh *gf, PyObject *fieldNames, int ghostLev) throw(INTERP_KERNEL::Exception)
5871       {
5872         return MEDCoupling_MEDCouplingAMRAttribute_New(gf,fieldNames,ghostLev);
5873       }
5874
5875       DataArrayDouble *getFieldOn(MEDCouplingCartesianAMRMeshGen *mesh, const std::string& fieldName) const throw(INTERP_KERNEL::Exception)
5876       {
5877         const DataArrayDouble *ret(self->getFieldOn(mesh,fieldName));
5878         DataArrayDouble *ret2(const_cast<DataArrayDouble *>(ret));
5879         if(ret2)
5880           ret2->incrRef();
5881         return ret2;
5882       }
5883
5884       void spillInfoOnComponents(PyObject *compNames) throw(INTERP_KERNEL::Exception)
5885       {
5886         std::vector< std::vector<std::string> > compNamesCpp;
5887         convertPyToVectorOfVectorOfString(compNames,compNamesCpp);
5888         self->spillInfoOnComponents(compNamesCpp);
5889       }
5890
5891       void spillNatures(PyObject *nfs) throw(INTERP_KERNEL::Exception)
5892       {
5893         std::vector<int> inp0;
5894         if(!fillIntVector(nfs,inp0))
5895           throw INTERP_KERNEL::Exception("wrap of MEDCouplingAMRAttribute::spillNatures : vector of NatureOfField enum expected !");
5896         std::size_t sz(inp0.size());
5897         std::vector<NatureOfField> inp00(sz);
5898         for(std::size_t i=0;i<sz;i++)
5899           inp00[i]=(NatureOfField)inp0[i];
5900         self->spillNatures(inp00);
5901       }
5902       
5903       PyObject *retrieveFieldsOn(MEDCouplingCartesianAMRMeshGen *mesh) const throw(INTERP_KERNEL::Exception)
5904       {
5905         std::vector<DataArrayDouble *> ret(self->retrieveFieldsOn(mesh));
5906         int sz((int)ret.size());
5907         PyObject *retPy(PyList_New(sz));
5908         for(int i=0;i<sz;i++)
5909           PyList_SetItem(retPy,i,SWIG_NewPointerObj(SWIG_as_voidptr(ret[i]),SWIGTYPE_p_MEDCoupling__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
5910         return retPy;
5911       }
5912     }
5913   };
5914
5915   class DenseMatrix : public RefCountObject, public TimeLabel
5916   {
5917   public:
5918     static DenseMatrix *New(int nbRows, int nbCols) throw(INTERP_KERNEL::Exception);
5919     static DenseMatrix *New(DataArrayDouble *array, int nbRows, int nbCols) throw(INTERP_KERNEL::Exception);
5920     DenseMatrix *deepCopy() const throw(INTERP_KERNEL::Exception);
5921     DenseMatrix *shallowCpy() const throw(INTERP_KERNEL::Exception);
5922     //
5923     int getNumberOfRows() const throw(INTERP_KERNEL::Exception);
5924     int getNumberOfCols() const throw(INTERP_KERNEL::Exception);
5925     int getNbOfElems() const throw(INTERP_KERNEL::Exception);
5926     void reBuild(DataArrayDouble *array, int nbRows=-1, int nbCols=-1) throw(INTERP_KERNEL::Exception);
5927     void reShape(int nbRows, int nbCols) throw(INTERP_KERNEL::Exception);
5928     void transpose() throw(INTERP_KERNEL::Exception);
5929     //
5930     bool isEqual(const DenseMatrix& other, double eps) const throw(INTERP_KERNEL::Exception);
5931     DataArrayDouble *matVecMult(const DataArrayDouble *vec) const throw(INTERP_KERNEL::Exception);
5932     static DataArrayDouble *MatVecMult(const DenseMatrix *mat, const DataArrayDouble *vec) throw(INTERP_KERNEL::Exception);
5933     %extend
5934     {
5935       DenseMatrix(int nbRows, int nbCols) throw(INTERP_KERNEL::Exception)
5936       {
5937         return DenseMatrix::New(nbRows,nbCols);
5938       }
5939
5940       DenseMatrix(DataArrayDouble *array, int nbRows, int nbCols) throw(INTERP_KERNEL::Exception)
5941       {
5942         return DenseMatrix::New(array,nbRows,nbCols);
5943       }
5944
5945       PyObject *isEqualIfNotWhy(const DenseMatrix& other, double eps) const throw(INTERP_KERNEL::Exception)
5946       {
5947         std::string ret1;
5948         bool ret0=self->isEqualIfNotWhy(other,eps,ret1);
5949         PyObject *ret=PyTuple_New(2);
5950         PyObject *ret0Py=ret0?Py_True:Py_False;
5951         Py_XINCREF(ret0Py);
5952         PyTuple_SetItem(ret,0,ret0Py);
5953         PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
5954         return ret;
5955       }
5956
5957       DataArrayDouble *getData() throw(INTERP_KERNEL::Exception)
5958       {
5959         DataArrayDouble *ret(self->getData());
5960         if(ret)
5961           ret->incrRef();
5962         return ret;
5963       }
5964
5965       DenseMatrix *__add__(const DenseMatrix *other) throw(INTERP_KERNEL::Exception)
5966       {
5967         return MEDCoupling::DenseMatrix::Add(self,other);
5968       }
5969
5970       DenseMatrix *__sub__(const DenseMatrix *other) throw(INTERP_KERNEL::Exception)
5971       {
5972         return MEDCoupling::DenseMatrix::Substract(self,other);
5973       }
5974
5975       DenseMatrix *__mul__(const DenseMatrix *other) throw(INTERP_KERNEL::Exception)
5976       {
5977         return MEDCoupling::DenseMatrix::Multiply(self,other);
5978       }
5979
5980       DenseMatrix *__mul__(const DataArrayDouble *other) throw(INTERP_KERNEL::Exception)
5981       {
5982         return MEDCoupling::DenseMatrix::Multiply(self,other);
5983       }
5984
5985       PyObject *___iadd___(PyObject *trueSelf, const DenseMatrix *other) throw(INTERP_KERNEL::Exception)
5986       {
5987         self->addEqual(other);
5988         Py_XINCREF(trueSelf);
5989         return trueSelf;
5990       }
5991
5992       PyObject *___isub___(PyObject *trueSelf, const DenseMatrix *other) throw(INTERP_KERNEL::Exception)
5993       {
5994         self->substractEqual(other);
5995         Py_XINCREF(trueSelf);
5996         return trueSelf;
5997       }
5998 #ifdef WITH_NUMPY
5999       PyObject *toNumPyMatrix() throw(INTERP_KERNEL::Exception) // not const. It is not a bug !
6000       {
6001         PyObject *obj(ToNumPyArrayUnderground<DataArrayDouble,double>(self->getData(),NPY_DOUBLE,"DataArrayDouble",self->getNumberOfRows(),self->getNumberOfCols()));
6002         return obj;
6003       }
6004 #endif
6005     }
6006   };
6007 }
6008
6009 %pythoncode %{
6010 def MEDCouplingUMeshReduce(self):
6011     return MEDCouplingStdReduceFunct,(MEDCouplingUMesh,((),(self.__getstate__()),))
6012 def MEDCouplingCMeshReduce(self):
6013     return MEDCouplingStdReduceFunct,(MEDCouplingCMesh,((),(self.__getstate__()),))
6014 def MEDCouplingIMeshReduce(self):
6015     return MEDCouplingStdReduceFunct,(MEDCouplingIMesh,((),(self.__getstate__()),))
6016 def MEDCouplingMappedExtrudedMeshReduce(self):
6017     return MEDCouplingStdReduceFunct,(MEDCouplingMappedExtrudedMesh,((),(self.__getstate__()),))
6018 def MEDCouplingCurveLinearMeshReduce(self):
6019     return MEDCouplingStdReduceFunct,(MEDCouplingCurveLinearMesh,((),(self.__getstate__()),))
6020 def MEDCoupling1SGTUMeshReduce(self):
6021     return MEDCouplingStdReduceFunct,(MEDCoupling1SGTUMesh,((),(self.__getstate__()),))
6022 def MEDCoupling1DGTUMeshReduce(self):
6023     return MEDCouplingStdReduceFunct,(MEDCoupling1DGTUMesh,((),(self.__getstate__()),))
6024 def MEDCouplingFieldDoubleReduce(self):
6025     self.checkConsistencyLight()
6026     d=(self.getTypeOfField(),self.getTimeDiscretization())
6027     return MEDCouplingStdReduceFunct,(MEDCouplingFieldDouble,(d,(self.__getstate__()),))
6028 def MEDCouplingFieldIntReduce(self):
6029     self.checkConsistencyLight()
6030     d=(self.getTypeOfField(),self.getTimeDiscretization())
6031     return MEDCouplingStdReduceFunct,(MEDCouplingFieldInt,(d,(self.__getstate__()),))
6032 def MEDCouplingFieldFloatReduce(self):
6033     self.checkConsistencyLight()
6034     d=(self.getTypeOfField(),self.getTimeDiscretization())
6035     return MEDCouplingStdReduceFunct,(MEDCouplingFieldFloat,(d,(self.__getstate__()),))
6036 %}
6037
6038 %pythoncode %{
6039 import os
6040 __filename=os.environ.get('PYTHONSTARTUP')
6041 if __filename and os.path.isfile(__filename):
6042   exec(open(__filename).read())
6043   pass
6044 %}