]> SALOME platform Git repositories - tools/medcoupling.git/blob - src/MEDCoupling_Swig/MEDCouplingCommon.i
Salome HOME
getCellsContainingPoints is sensitive to 2D quadratic static cells.
[tools/medcoupling.git] / src / MEDCoupling_Swig / MEDCouplingCommon.i
1 // Copyright (C) 2017  CEA/DEN, EDF R&D
2 //
3 // This library is free software; you can redistribute it and/or
4 // modify it under the terms of the GNU Lesser General Public
5 // License as published by the Free Software Foundation; either
6 // version 2.1 of the License, or (at your option) any later version.
7 //
8 // This library is distributed in the hope that it will be useful,
9 // but WITHOUT ANY WARRANTY; without even the implied warranty of
10 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11 // Lesser General Public License for more details.
12 //
13 // You should have received a copy of the GNU Lesser General Public
14 // License along with this library; if not, write to the Free Software
15 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
16 //
17 // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
18 //
19 // Author : Anthony Geay (EDF R&D)
20
21 #ifdef WITH_DOCSTRINGS
22 %include MEDCoupling_doc.i
23 #endif
24
25 %include std_vector.i
26 %include std_string.i
27
28 %{
29 #include "MEDCouplingMemArray.hxx"
30 #include "MEDCouplingUMesh.hxx"
31 #include "MEDCouplingMappedExtrudedMesh.hxx"
32 #include "MEDCouplingCMesh.hxx"
33 #include "MEDCouplingIMesh.hxx"
34 #include "MEDCouplingCurveLinearMesh.hxx"
35 #include "MEDCoupling1GTUMesh.hxx"
36 #include "MEDCouplingField.hxx"
37 #include "MEDCouplingFieldDouble.hxx"
38 #include "MEDCouplingFieldInt.hxx"
39 #include "MEDCouplingFieldFloat.hxx"
40 #include "MEDCouplingFieldTemplate.hxx"
41 #include "MEDCouplingGaussLocalization.hxx"
42 #include "MCAuto.hxx"
43 #include "MEDCouplingMultiFields.hxx"
44 #include "MEDCouplingFieldOverTime.hxx"
45 #include "MEDCouplingDefinitionTime.hxx"
46 #include "MEDCouplingFieldDiscretization.hxx"
47 #include "MEDCouplingCartesianAMRMesh.hxx"
48 #include "MEDCouplingAMRAttribute.hxx"
49 #include "MEDCouplingMatrix.hxx"
50 #include "MEDCouplingPartDefinition.hxx"
51 #include "MEDCouplingSkyLineArray.hxx"
52 #include "MEDCouplingTypemaps.i"
53
54 #include "InterpKernelAutoPtr.hxx"
55 #include "BoxSplittingOptions.hxx"
56
57 using namespace MEDCoupling;
58 using namespace INTERP_KERNEL;
59
60 %}
61
62 %template(ivec) std::vector<int>;
63 %template(dvec) std::vector<double>;
64 %template(svec) std::vector<std::string>;
65
66 ////////////////////
67 %typemap(out) MEDCoupling::MEDCouplingMesh*
68 {
69   $result=convertMesh($1,$owner);
70 }
71
72 %typemap(out) MEDCouplingMesh*
73 {
74   $result=convertMesh($1,$owner);
75 }
76 //$$$$$$$$$$$$$$$$$$
77
78 ////////////////////
79 %typemap(out) MEDCoupling::MEDCouplingPointSet*
80 {
81   $result=convertMesh($1,$owner);
82 }
83
84 %typemap(out) MEDCouplingPointSet*
85 {
86   $result=convertMesh($1,$owner);
87 }
88 //$$$$$$$$$$$$$$$$$$
89
90 ////////////////////
91 %typemap(out) MEDCouplingCartesianAMRPatchGen*
92 {
93   $result=convertCartesianAMRPatch($1,$owner);
94 }
95 //$$$$$$$$$$$$$$$$$$
96
97 ////////////////////
98 %typemap(out) MEDCouplingCartesianAMRMeshGen*
99 {
100   $result=convertCartesianAMRMesh($1,$owner);
101 }
102 //$$$$$$$$$$$$$$$$$$
103
104 ////////////////////
105 %typemap(out) MEDCouplingDataForGodFather*
106 {
107   $result=convertDataForGodFather($1,$owner);
108 }
109 //$$$$$$$$$$$$$$$$$$
110
111 ////////////////////
112 %typemap(out) MEDCoupling::MEDCoupling1GTUMesh*
113 {
114   $result=convertMesh($1,$owner);
115 }
116
117 %typemap(out) MEDCoupling1GTUMesh*
118 {
119   $result=convertMesh($1,$owner);
120 }
121 //$$$$$$$$$$$$$$$$$$
122
123 ////////////////////
124 %typemap(out) MEDCoupling::MEDCouplingStructuredMesh*
125 {
126   $result=convertMesh($1,$owner);
127 }
128
129 %typemap(out) MEDCouplingStructuredMesh*
130 {
131   $result=convertMesh($1,$owner);
132 }
133 //$$$$$$$$$$$$$$$$$$
134
135 ////////////////////
136 %typemap(out) MEDCoupling::MEDCouplingFieldDiscretization*
137 {
138   $result=convertFieldDiscretization($1,$owner);
139 }
140
141 %typemap(out) MEDCouplingFieldDiscretization*
142 {
143   $result=convertFieldDiscretization($1,$owner);
144 }
145 //$$$$$$$$$$$$$$$$$$
146
147 ////////////////////
148 %typemap(out) MEDCoupling::MEDCouplingField*
149 {
150   $result=convertField($1,$owner);
151 }
152
153 %typemap(out) MEDCouplingField*
154 {
155   $result=convertField($1,$owner);
156 }
157 //$$$$$$$$$$$$$$$$$$
158
159 ////////////////////
160 %typemap(out) MEDCoupling::MEDCouplingMultiFields*
161 {
162   $result=convertMultiFields($1,$owner);
163 }
164
165 %typemap(out) MEDCouplingMultiFields*
166 {
167   $result=convertMultiFields($1,$owner);
168 }
169 //$$$$$$$$$$$$$$$$$$
170
171 ////////////////////
172 %typemap(out) MEDCoupling::PartDefinition*
173 {
174   $result=convertPartDefinition($1,$owner);
175 }
176
177 %typemap(out) PartDefinition*
178 {
179   $result=convertPartDefinition($1,$owner);
180 }
181 //$$$$$$$$$$$$$$$$$$
182
183 #ifdef WITH_NUMPY
184 %init %{ import_array(); %}
185 #endif
186
187 %init %{ initializeMe(); %}
188
189 %feature("autodoc", "1");
190 %feature("docstring");
191
192 %newobject MEDCoupling::MEDCouplingField::buildMeasureField;
193 %newobject MEDCoupling::MEDCouplingField::getLocalizationOfDiscr;
194 %newobject MEDCoupling::MEDCouplingField::computeTupleIdsToSelectFromCellIds;
195 %newobject MEDCoupling::MEDCouplingFieldDouble::New;
196 %newobject MEDCoupling::MEDCouplingFieldDouble::getArray;
197 %newobject MEDCoupling::MEDCouplingFieldDouble::getEndArray;
198 %newobject MEDCoupling::MEDCouplingFieldDouble::MergeFields;
199 %newobject MEDCoupling::MEDCouplingFieldDouble::MeldFields;
200 %newobject MEDCoupling::MEDCouplingFieldDouble::convertToIntField;
201 %newobject MEDCoupling::MEDCouplingFieldDouble::convertToFloatField;
202 %newobject MEDCoupling::MEDCouplingFieldDouble::doublyContractedProduct;
203 %newobject MEDCoupling::MEDCouplingFieldDouble::determinant;
204 %newobject MEDCoupling::MEDCouplingFieldDouble::eigenValues;
205 %newobject MEDCoupling::MEDCouplingFieldDouble::eigenVectors;
206 %newobject MEDCoupling::MEDCouplingFieldDouble::inverse;
207 %newobject MEDCoupling::MEDCouplingFieldDouble::trace;
208 %newobject MEDCoupling::MEDCouplingFieldDouble::deviator;
209 %newobject MEDCoupling::MEDCouplingFieldDouble::magnitude;
210 %newobject MEDCoupling::MEDCouplingFieldDouble::maxPerTuple;
211 %newobject MEDCoupling::MEDCouplingFieldDouble::keepSelectedComponents;
212 %newobject MEDCoupling::MEDCouplingFieldDouble::extractSlice3D;
213 %newobject MEDCoupling::MEDCouplingFieldDouble::DotFields;
214 %newobject MEDCoupling::MEDCouplingFieldDouble::dot;
215 %newobject MEDCoupling::MEDCouplingFieldDouble::CrossProductFields;
216 %newobject MEDCoupling::MEDCouplingFieldDouble::crossProduct;
217 %newobject MEDCoupling::MEDCouplingFieldDouble::MaxFields;
218 %newobject MEDCoupling::MEDCouplingFieldDouble::max;
219 %newobject MEDCoupling::MEDCouplingFieldDouble::MinFields;
220 %newobject MEDCoupling::MEDCouplingFieldDouble::AddFields;
221 %newobject MEDCoupling::MEDCouplingFieldDouble::SubstractFields;
222 %newobject MEDCoupling::MEDCouplingFieldDouble::MultiplyFields;
223 %newobject MEDCoupling::MEDCouplingFieldDouble::DivideFields;
224 %newobject MEDCoupling::MEDCouplingFieldDouble::min;
225 %newobject MEDCoupling::MEDCouplingFieldDouble::negate;
226 %newobject MEDCoupling::MEDCouplingFieldDouble::findIdsInRange;
227 %newobject MEDCoupling::MEDCouplingFieldDouble::buildSubPart;
228 %newobject MEDCoupling::MEDCouplingFieldDouble::buildSubPartRange;
229 %newobject MEDCoupling::MEDCouplingFieldDouble::voronoize;
230 %newobject MEDCoupling::MEDCouplingFieldDouble::convertQuadraticCellsToLinear;
231 %newobject MEDCoupling::MEDCouplingFieldDouble::__getitem__;
232 %newobject MEDCoupling::MEDCouplingFieldDouble::__neg__;
233 %newobject MEDCoupling::MEDCouplingFieldDouble::__add__;
234 %newobject MEDCoupling::MEDCouplingFieldDouble::__sub__;
235 %newobject MEDCoupling::MEDCouplingFieldDouble::__mul__;
236 %newobject MEDCoupling::MEDCouplingFieldDouble::__div__;
237 %newobject MEDCoupling::MEDCouplingFieldDouble::__pow__;
238 %newobject MEDCoupling::MEDCouplingFieldDouble::__radd__;
239 %newobject MEDCoupling::MEDCouplingFieldDouble::__rsub__;
240 %newobject MEDCoupling::MEDCouplingFieldDouble::__rmul__;
241 %newobject MEDCoupling::MEDCouplingFieldDouble::__rdiv__;
242 %newobject MEDCoupling::MEDCouplingFieldDouble::clone;
243 %newobject MEDCoupling::MEDCouplingFieldDouble::cloneWithMesh;
244 %newobject MEDCoupling::MEDCouplingFieldDouble::deepCopy;
245 %newobject MEDCoupling::MEDCouplingFieldDouble::buildNewTimeReprFromThis;
246 %newobject MEDCoupling::MEDCouplingFieldDouble::nodeToCellDiscretization;
247 %newobject MEDCoupling::MEDCouplingFieldDouble::cellToNodeDiscretization;
248 %newobject MEDCoupling::MEDCouplingFieldDouble::getValueOnMulti;
249 %newobject MEDCoupling::MEDCouplingFieldDouble::computeVectorFieldCyl;
250 %newobject MEDCoupling::MEDCouplingFieldInt::New;
251 %newobject MEDCoupling::MEDCouplingFieldInt::convertToDblField;
252 %newobject MEDCoupling::MEDCouplingFieldInt::getArray;
253 %newobject MEDCoupling::MEDCouplingFieldInt::deepCopy;
254 %newobject MEDCoupling::MEDCouplingFieldInt::clone;
255 %newobject MEDCoupling::MEDCouplingFieldInt::cloneWithMesh;
256 %newobject MEDCoupling::MEDCouplingFieldInt::buildSubPart;
257 %newobject MEDCoupling::MEDCouplingFieldInt::buildSubPartRange;
258 %newobject MEDCoupling::MEDCouplingFieldInt::__getitem__;
259 %newobject MEDCoupling::MEDCouplingFieldFloat::New;
260 %newobject MEDCoupling::MEDCouplingFieldFloat::convertToDblField;
261 %newobject MEDCoupling::MEDCouplingFieldFloat::getArray;
262 %newobject MEDCoupling::MEDCouplingFieldFloat::deepCopy;
263 %newobject MEDCoupling::MEDCouplingFieldFloat::clone;
264 %newobject MEDCoupling::MEDCouplingFieldFloat::cloneWithMesh;
265 %newobject MEDCoupling::MEDCouplingFieldFloat::buildSubPart;
266 %newobject MEDCoupling::MEDCouplingFieldFloat::buildSubPartRange;
267 %newobject MEDCoupling::MEDCouplingFieldFloat::__getitem__;
268 %newobject MEDCoupling::MEDCouplingFieldTemplate::New;
269 %newobject MEDCoupling::MEDCouplingMesh::deepCopy;
270 %newobject MEDCoupling::MEDCouplingMesh::clone;
271 %newobject MEDCoupling::MEDCouplingMesh::checkDeepEquivalOnSameNodesWith;
272 %newobject MEDCoupling::MEDCouplingMesh::checkTypeConsistencyAndContig;
273 %newobject MEDCoupling::MEDCouplingMesh::computeNbOfNodesPerCell;
274 %newobject MEDCoupling::MEDCouplingMesh::computeNbOfFacesPerCell;
275 %newobject MEDCoupling::MEDCouplingMesh::computeEffectiveNbOfNodesPerCell;
276 %newobject MEDCoupling::MEDCouplingMesh::buildPartRange;
277 %newobject MEDCoupling::MEDCouplingMesh::giveCellsWithType;
278 %newobject MEDCoupling::MEDCouplingMesh::getCoordinatesAndOwner;
279 %newobject MEDCoupling::MEDCouplingMesh::computeCellCenterOfMass;
280 %newobject MEDCoupling::MEDCouplingMesh::computeIsoBarycenterOfNodesPerCell;
281 %newobject MEDCoupling::MEDCouplingMesh::buildOrthogonalField;
282 %newobject MEDCoupling::MEDCouplingMesh::getCellIdsFullyIncludedInNodeIds;
283 %newobject MEDCoupling::MEDCouplingMesh::mergeMyselfWith;
284 %newobject MEDCoupling::MEDCouplingMesh::fillFromAnalytic;
285 %newobject MEDCoupling::MEDCouplingMesh::fillFromAnalyticCompo;
286 %newobject MEDCoupling::MEDCouplingMesh::fillFromAnalyticNamedCompo;
287 %newobject MEDCoupling::MEDCouplingMesh::getMeasureField;
288 %newobject MEDCoupling::MEDCouplingMesh::simplexize;
289 %newobject MEDCoupling::MEDCouplingMesh::buildUnstructured;
290 %newobject MEDCoupling::MEDCouplingMesh::MergeMeshes;
291 %newobject MEDCoupling::MEDCouplingMesh::getDirectAccessOfCoordsArrIfInStructure;
292 %newobject MEDCoupling::MEDCouplingPointSet::zipCoordsTraducer;
293 %newobject MEDCoupling::MEDCouplingPointSet::getCellsInBoundingBox;
294 %newobject MEDCoupling::MEDCouplingPointSet::findBoundaryNodes;
295 %newobject MEDCoupling::MEDCouplingPointSet::buildBoundaryMesh;
296 %newobject MEDCoupling::MEDCouplingPointSet::MergeNodesArray;
297 %newobject MEDCoupling::MEDCouplingPointSet::buildPartOfMySelfSlice;
298 %newobject MEDCoupling::MEDCouplingPointSet::BuildInstanceFromMeshType;
299 %newobject MEDCoupling::MEDCouplingPointSet::zipConnectivityTraducer;
300 %newobject MEDCoupling::MEDCouplingPointSet::mergeMyselfWithOnSameCoords;
301 %newobject MEDCoupling::MEDCouplingPointSet::fillCellIdsToKeepFromNodeIds;
302 %newobject MEDCoupling::MEDCouplingPointSet::getCellIdsLyingOnNodes;
303 %newobject MEDCoupling::MEDCouplingPointSet::deepCopyConnectivityOnly;
304 %newobject MEDCoupling::MEDCouplingPointSet::getBoundingBoxForBBTree;
305 %newobject MEDCoupling::MEDCouplingPointSet::computeFetchedNodeIds;
306 %newobject MEDCoupling::MEDCouplingPointSet::ComputeNbOfInteractionsWithSrcCells;
307 %newobject MEDCoupling::MEDCouplingPointSet::computeDiameterField;
308 %newobject MEDCoupling::MEDCouplingPointSet::__getitem__;
309 %newobject MEDCoupling::MEDCouplingUMesh::New;
310 %newobject MEDCoupling::MEDCouplingUMesh::getNodalConnectivity;
311 %newobject MEDCoupling::MEDCouplingUMesh::getNodalConnectivityIndex;
312 %newobject MEDCoupling::MEDCouplingUMesh::__iter__;
313 %newobject MEDCoupling::MEDCouplingUMesh::cellsByType;
314 %newobject MEDCoupling::MEDCouplingUMesh::buildDescendingConnectivity;
315 %newobject MEDCoupling::MEDCouplingUMesh::buildDescendingConnectivity2;
316 %newobject MEDCoupling::MEDCouplingUMesh::explode3DMeshTo1D;
317 %newobject MEDCoupling::MEDCouplingUMesh::explodeMeshIntoMicroEdges;
318 %newobject MEDCoupling::MEDCouplingUMesh::buildExtrudedMesh;
319 %newobject MEDCoupling::MEDCouplingUMesh::buildSpreadZonesWithPoly;
320 %newobject MEDCoupling::MEDCouplingUMesh::MergeUMeshes;
321 %newobject MEDCoupling::MEDCouplingUMesh::MergeUMeshesOnSameCoords;
322 %newobject MEDCoupling::MEDCouplingUMesh::ComputeSpreadZoneGradually;
323 %newobject MEDCoupling::MEDCouplingUMesh::ComputeSpreadZoneGraduallyFromSeed;
324 %newobject MEDCoupling::MEDCouplingUMesh::buildNewNumberingFromCommNodesFrmt;
325 %newobject MEDCoupling::MEDCouplingUMesh::conformize2D;
326 %newobject MEDCoupling::MEDCouplingUMesh::conformize3D;
327 %newobject MEDCoupling::MEDCouplingUMesh::colinearize2D;
328 %newobject MEDCoupling::MEDCouplingUMesh::colinearizeKeepingConform2D;
329 %newobject MEDCoupling::MEDCouplingUMesh::rearrange2ConsecutiveCellTypes;
330 %newobject MEDCoupling::MEDCouplingUMesh::sortCellsInMEDFileFrmt;
331 %newobject MEDCoupling::MEDCouplingUMesh::getRenumArrForMEDFileFrmt;
332 %newobject MEDCoupling::MEDCouplingUMesh::convertCellArrayPerGeoType;
333 %newobject MEDCoupling::MEDCouplingUMesh::getRenumArrForConsecutiveCellTypesSpec;
334 %newobject MEDCoupling::MEDCouplingUMesh::buildDirectionVectorField;
335 %newobject MEDCoupling::MEDCouplingUMesh::convertLinearCellsToQuadratic;
336 %newobject MEDCoupling::MEDCouplingUMesh::getEdgeRatioField;
337 %newobject MEDCoupling::MEDCouplingUMesh::getAspectRatioField;
338 %newobject MEDCoupling::MEDCouplingUMesh::getWarpField;
339 %newobject MEDCoupling::MEDCouplingUMesh::getSkewField;
340 %newobject MEDCoupling::MEDCouplingUMesh::getPartBarycenterAndOwner;
341 %newobject MEDCoupling::MEDCouplingUMesh::computePlaneEquationOf3DFaces;
342 %newobject MEDCoupling::MEDCouplingUMesh::getPartMeasureField;
343 %newobject MEDCoupling::MEDCouplingUMesh::buildPartOrthogonalField;
344 %newobject MEDCoupling::MEDCouplingUMesh::keepCellIdsByType;
345 %newobject MEDCoupling::MEDCouplingUMesh::Build0DMeshFromCoords;
346 %newobject MEDCoupling::MEDCouplingUMesh::Build1DMeshFromCoords;
347 %newobject MEDCoupling::MEDCouplingUMesh::findAndCorrectBadOriented3DExtrudedCells;
348 %newobject MEDCoupling::MEDCouplingUMesh::findAndCorrectBadOriented3DCells;
349 %newobject MEDCoupling::MEDCouplingUMesh::convertIntoSingleGeoTypeMesh;
350 %newobject MEDCoupling::MEDCouplingUMesh::convertNodalConnectivityToStaticGeoTypeMesh;
351 %newobject MEDCoupling::MEDCouplingUMesh::findCellIdsOnBoundary;
352 %newobject MEDCoupling::MEDCouplingUMesh::computeSkin;
353 %newobject MEDCoupling::MEDCouplingUMesh::buildSetInstanceFromThis;
354 %newobject MEDCoupling::MEDCouplingUMesh::getCellIdsCrossingPlane;
355 %newobject MEDCoupling::MEDCouplingUMesh::convexEnvelop2D;
356 %newobject MEDCoupling::MEDCouplingUMesh::ComputeRangesFromTypeDistribution;
357 %newobject MEDCoupling::MEDCouplingUMesh::buildUnionOf2DMesh;
358 %newobject MEDCoupling::MEDCouplingUMesh::buildUnionOf3DMesh;
359 %newobject MEDCoupling::MEDCouplingUMesh::generateGraph;
360 %newobject MEDCoupling::MEDCouplingUMesh::orderConsecutiveCells1D;
361 %newobject MEDCoupling::MEDCouplingUMesh::clipSingle3DCellByPlane;
362 %newobject MEDCoupling::MEDCouplingUMesh::getBoundingBoxForBBTreeFast;
363 %newobject MEDCoupling::MEDCouplingUMesh::getBoundingBoxForBBTree2DQuadratic;
364 %newobject MEDCoupling::MEDCouplingUMesh::getBoundingBoxForBBTree1DQuadratic;
365 %newobject MEDCoupling::MEDCouplingUMesh::convertDegeneratedCellsAndRemoveFlatOnes;
366 %newobject MEDCoupling::MEDCouplingUMeshCellByTypeEntry::__iter__;
367 %newobject MEDCoupling::MEDCouplingUMeshCellEntry::__iter__;
368 %newobject MEDCoupling::MEDCoupling1GTUMesh::New;
369 %newobject MEDCoupling::MEDCoupling1GTUMesh::getNodalConnectivity;
370 %newobject MEDCoupling::MEDCoupling1GTUMesh::AggregateOnSameCoordsToUMesh;
371 %newobject MEDCoupling::MEDCoupling1SGTUMesh::New;
372 %newobject MEDCoupling::MEDCoupling1SGTUMesh::buildSetInstanceFromThis;
373 %newobject MEDCoupling::MEDCoupling1SGTUMesh::computeDualMesh;
374 %newobject MEDCoupling::MEDCoupling1SGTUMesh::explodeEachHexa8To6Quad4;
375 %newobject MEDCoupling::MEDCoupling1SGTUMesh::sortHexa8EachOther;
376 %newobject MEDCoupling::MEDCoupling1SGTUMesh::Merge1SGTUMeshes;
377 %newobject MEDCoupling::MEDCoupling1SGTUMesh::Merge1SGTUMeshesOnSameCoords;
378 %newobject MEDCoupling::MEDCoupling1DGTUMesh::New;
379 %newobject MEDCoupling::MEDCoupling1DGTUMesh::getNodalConnectivityIndex;
380 %newobject MEDCoupling::MEDCoupling1DGTUMesh::buildSetInstanceFromThis;
381 %newobject MEDCoupling::MEDCoupling1DGTUMesh::Merge1DGTUMeshes;
382 %newobject MEDCoupling::MEDCoupling1DGTUMesh::Merge1DGTUMeshesOnSameCoords;
383 %newobject MEDCoupling::MEDCouplingMappedExtrudedMesh::New;
384 %newobject MEDCoupling::MEDCouplingMappedExtrudedMesh::build3DUnstructuredMesh;
385 %newobject MEDCoupling::MEDCouplingStructuredMesh::buildStructuredSubPart;
386 %newobject MEDCoupling::MEDCouplingStructuredMesh::build1SGTUnstructured;
387 %newobject MEDCoupling::MEDCouplingStructuredMesh::build1SGTSubLevelMesh;
388 %newobject MEDCoupling::MEDCouplingStructuredMesh::BuildExplicitIdsFrom;
389 %newobject MEDCoupling::MEDCouplingStructuredMesh::ExtractFieldOfDoubleFrom;
390 %newobject MEDCoupling::MEDCouplingStructuredMesh::Build1GTNodalConnectivity;
391 %newobject MEDCoupling::MEDCouplingStructuredMesh::Build1GTNodalConnectivityOfSubLevelMesh;
392 %newobject MEDCoupling::MEDCouplingStructuredMesh::ComputeCornersGhost;
393 %newobject MEDCoupling::MEDCouplingCMesh::New;
394 %newobject MEDCoupling::MEDCouplingCMesh::getCoordsAt;
395 %newobject MEDCoupling::MEDCouplingCMesh::buildCurveLinear;
396 %newobject MEDCoupling::MEDCouplingIMesh::New;
397 %newobject MEDCoupling::MEDCouplingIMesh::asSingleCell;
398 %newobject MEDCoupling::MEDCouplingIMesh::buildWithGhost;
399 %newobject MEDCoupling::MEDCouplingIMesh::convertToCartesian;
400 %newobject MEDCoupling::MEDCouplingCurveLinearMesh::New;
401 %newobject MEDCoupling::MEDCouplingCurveLinearMesh::getCoords;
402 %newobject MEDCoupling::MEDCouplingMultiFields::New;
403 %newobject MEDCoupling::MEDCouplingMultiFields::deepCopy;
404 %newobject MEDCoupling::MEDCouplingFieldOverTime::New;
405 %newobject MEDCoupling::MEDCouplingCartesianAMRPatchGen::getMesh;
406 %newobject MEDCoupling::MEDCouplingCartesianAMRPatchGen::__getitem__;
407 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::deepCopy;
408 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::buildUnstructured;
409 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::extractGhostFrom;
410 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::buildMeshFromPatchEnvelop;
411 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::buildMeshOfDirectChildrenOnly;
412 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::getImageMesh;
413 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::getGodFather;
414 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::getFather;
415 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::getPatch;
416 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::createCellFieldOnPatch;
417 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::findPatchesInTheNeighborhoodOf;
418 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::getPatchAtPosition;
419 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::getMeshAtPosition;
420 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::__getitem__;
421 %newobject MEDCoupling::MEDCouplingCartesianAMRMesh::New;
422 %newobject MEDCoupling::MEDCouplingDataForGodFather::getMyGodFather;
423 %newobject MEDCoupling::MEDCouplingAMRAttribute::New;
424 %newobject MEDCoupling::MEDCouplingAMRAttribute::deepCopy;
425 %newobject MEDCoupling::MEDCouplingAMRAttribute::deepCpyWithoutGodFather;
426 %newobject MEDCoupling::MEDCouplingAMRAttribute::getFieldOn;
427 %newobject MEDCoupling::MEDCouplingAMRAttribute::projectTo;
428 %newobject MEDCoupling::MEDCouplingAMRAttribute::buildCellFieldOnRecurseWithoutOverlapWithoutGhost;
429 %newobject MEDCoupling::MEDCouplingAMRAttribute::buildCellFieldOnWithGhost;
430 %newobject MEDCoupling::MEDCouplingAMRAttribute::buildCellFieldOnWithoutGhost;
431 %newobject MEDCoupling::DenseMatrix::New;
432 %newobject MEDCoupling::DenseMatrix::deepCopy;
433 %newobject MEDCoupling::DenseMatrix::shallowCpy;
434 %newobject MEDCoupling::DenseMatrix::getData;
435 %newobject MEDCoupling::DenseMatrix::matVecMult;
436 %newobject MEDCoupling::DenseMatrix::MatVecMult;
437 %newobject MEDCoupling::DenseMatrix::__add__;
438 %newobject MEDCoupling::DenseMatrix::__sub__;
439 %newobject MEDCoupling::DenseMatrix::__mul__;
440 %newobject MEDCoupling::MEDCouplingGaussLocalization::localizePtsInRefCooForEachCell;
441 %newobject MEDCoupling::MEDCouplingGaussLocalization::buildRefCell;
442 %newobject MEDCoupling::MEDCouplingSkyLineArray::BuildFromPolyhedronConn;
443 %newobject MEDCoupling::MEDCouplingSkyLineArray::getSuperIndexArray;
444 %newobject MEDCoupling::MEDCouplingSkyLineArray::getIndexArray;
445 %newobject MEDCoupling::MEDCouplingSkyLineArray::getValuesArray;
446
447 %feature("unref") MEDCouplingPointSet "$this->decrRef();"
448 %feature("unref") MEDCouplingMesh "$this->decrRef();"
449 %feature("unref") MEDCouplingUMesh "$this->decrRef();"
450 %feature("unref") MEDCoupling1GTUMesh "$this->decrRef();"
451 %feature("unref") MEDCoupling1SGTUMesh "$this->decrRef();"
452 %feature("unref") MEDCoupling1DGTUMesh "$this->decrRef();"
453 %feature("unref") MEDCouplingMappedExtrudedMesh "$this->decrRef();"
454 %feature("unref") MEDCouplingCMesh "$this->decrRef();"
455 %feature("unref") MEDCouplingIMesh "$this->decrRef();"
456 %feature("unref") MEDCouplingCurveLinearMesh "$this->decrRef();"
457 %feature("unref") MEDCouplingField "$this->decrRef();"
458 %feature("unref") MEDCouplingFieldDiscretizationP0 "$this->decrRef();"
459 %feature("unref") MEDCouplingFieldDiscretizationP1 "$this->decrRef();"
460 %feature("unref") MEDCouplingFieldDiscretizationGauss "$this->decrRef();"
461 %feature("unref") MEDCouplingFieldDiscretizationGaussNE "$this->decrRef();"
462 %feature("unref") MEDCouplingFieldDiscretizationKriging "$this->decrRef();"
463 %feature("unref") MEDCouplingFieldDouble "$this->decrRef();"
464 %feature("unref") MEDCouplingFieldFloat "$this->decrRef();"
465 %feature("unref") MEDCouplingFieldInt "$this->decrRef();"
466 %feature("unref") MEDCouplingMultiFields "$this->decrRef();"
467 %feature("unref") MEDCouplingFieldTemplate "$this->decrRef();"
468 %feature("unref") MEDCouplingMultiFields "$this->decrRef();"
469 %feature("unref") MEDCouplingCartesianAMRMeshGen "$this->decrRef();"
470 %feature("unref") MEDCouplingCartesianAMRMesh "$this->decrRef();"
471 %feature("unref") MEDCouplingCartesianAMRMeshSub "$this->decrRef();"
472 %feature("unref") MEDCouplingCartesianAMRPatchGen "$this->decrRef();"
473 %feature("unref") MEDCouplingCartesianAMRPatchGF "$this->decrRef();"
474 %feature("unref") MEDCouplingCartesianAMRPatch "$this->decrRef();"
475 %feature("unref") MEDCouplingDataForGodFather "$this->decrRef();"
476 %feature("unref") MEDCouplingAMRAttribute "$this->decrRef();"
477 %feature("unref") DenseMatrix "$this->decrRef();"
478 %feature("unref") MEDCouplingSkyLineArray "$this->decrRef();"
479
480 %rename(assign) *::operator=;
481 %ignore MEDCoupling::MEDCouplingGaussLocalization::pushTinySerializationIntInfo;
482 %ignore MEDCoupling::MEDCouplingGaussLocalization::pushTinySerializationDblInfo;
483 %ignore MEDCoupling::MEDCouplingGaussLocalization::fillWithValues;
484 %ignore MEDCoupling::MEDCouplingGaussLocalization::buildNewInstanceFromTinyInfo;
485
486 %nodefaultctor;
487
488 %rename (InterpKernelException) INTERP_KERNEL::Exception;
489
490 %include "MEDCouplingRefCountObject.i"
491 %include "MEDCouplingMemArray.i"
492
493 %{
494   void initializeMe()
495   {// AGY : here initialization of C++ traits in MEDCouplingDataArrayTypemaps.i for code factorization. Awful, I know, but no other solutions.
496     SWIGTITraits<double>::TI=SWIGTYPE_p_MEDCoupling__DataArrayDouble;
497     SWIGTITraits<float>::TI=SWIGTYPE_p_MEDCoupling__DataArrayFloat;
498     SWIGTITraits<int>::TI=SWIGTYPE_p_MEDCoupling__DataArrayInt;
499     SWIGTITraits<double>::TI_TUPLE=SWIGTYPE_p_MEDCoupling__DataArrayDoubleTuple;
500     SWIGTITraits<float>::TI_TUPLE=SWIGTYPE_p_MEDCoupling__DataArrayFloatTuple;
501     SWIGTITraits<int>::TI_TUPLE=SWIGTYPE_p_MEDCoupling__DataArrayIntTuple;
502   }
503 %}
504
505 namespace INTERP_KERNEL
506
507   /*!
508    * \class BoxSplittingOptions
509    * Class defining the options for box splitting used for AMR algorithm like creation of patches following a criterion.
510    */
511   class BoxSplittingOptions
512   {
513   public:
514     BoxSplittingOptions();
515     void init() throw(INTERP_KERNEL::Exception);
516     double getEfficiencyGoal() const throw(INTERP_KERNEL::Exception);
517     void setEfficiencyGoal(double efficiency) throw(INTERP_KERNEL::Exception);
518     double getEfficiencyThreshold() const throw(INTERP_KERNEL::Exception);
519     void setEfficiencyThreshold(double efficiencyThreshold) throw(INTERP_KERNEL::Exception);
520     int getMinimumPatchLength() const throw(INTERP_KERNEL::Exception);
521     void setMinimumPatchLength(int minPatchLength) throw(INTERP_KERNEL::Exception);
522     int getMaximumPatchLength() const throw(INTERP_KERNEL::Exception);
523     void setMaximumPatchLength(int maxPatchLength) throw(INTERP_KERNEL::Exception);
524     int getMaximumNbOfCellsInPatch() const throw(INTERP_KERNEL::Exception);
525     void setMaximumNbOfCellsInPatch(int maxNbCellsInPatch) throw(INTERP_KERNEL::Exception);
526     void copyOptions(const BoxSplittingOptions & other) throw(INTERP_KERNEL::Exception);
527     std::string printOptions() const throw(INTERP_KERNEL::Exception);
528     %extend
529     {
530       std::string __str__() const throw(INTERP_KERNEL::Exception)
531       {
532         return self->printOptions();
533       }
534     }
535   };
536 }
537
538 namespace MEDCoupling
539 {
540   typedef enum
541     {
542       ON_CELLS = 0,
543       ON_NODES = 1,
544       ON_GAUSS_PT = 2,
545       ON_GAUSS_NE = 3,
546       ON_NODES_KR = 4
547     } TypeOfField;
548
549   typedef enum
550     {
551       NO_TIME = 4,
552       ONE_TIME = 5,
553       LINEAR_TIME = 6,
554       CONST_ON_TIME_INTERVAL = 7
555     } TypeOfTimeDiscretization;
556
557   typedef enum
558     {
559       UNSTRUCTURED = 5,
560       CARTESIAN = 7,
561       EXTRUDED = 8,
562       CURVE_LINEAR = 9,
563       SINGLE_STATIC_GEO_TYPE_UNSTRUCTURED = 10,
564       SINGLE_DYNAMIC_GEO_TYPE_UNSTRUCTURED = 11,
565       IMAGE_GRID = 12
566     } MEDCouplingMeshType;
567
568   class DataArrayInt;
569   class DataArrayDouble;
570   class MEDCouplingUMesh;
571   class MEDCouplingCMesh;
572   class MEDCouplingFieldDouble;
573
574   %extend RefCountObject
575   {
576     std::string getHiddenCppPointer() const
577     {
578       std::ostringstream oss; oss << "C++ Pointer address is : " << self;
579       return oss.str();
580     }
581   }
582
583   %extend MEDCouplingGaussLocalization
584   {
585     std::string __str__() const throw(INTERP_KERNEL::Exception)
586     {
587       return self->getStringRepr();
588     }
589
590     std::string __repr__() const throw(INTERP_KERNEL::Exception)
591     {
592       std::ostringstream oss; oss << "MEDCouplingGaussLocalization C++ instance at " << self << "." << std::endl;
593       oss << self->getStringRepr();
594       return oss.str();
595     }
596   }
597
598   //== MEDCouplingMesh
599   
600   class MEDCouplingMesh : public RefCountObject, public TimeLabel
601   {
602   public:
603     void setName(const std::string& name);
604     std::string getName() const;
605     void setDescription(const std::string& descr);
606     std::string getDescription() const;
607     void setTime(double val, int iteration, int order);
608     void setTimeUnit(const std::string& unit);
609     std::string getTimeUnit() const;
610     virtual MEDCouplingMeshType getType() const throw(INTERP_KERNEL::Exception);
611     bool isStructured() const throw(INTERP_KERNEL::Exception);
612     virtual MEDCouplingMesh *deepCopy() const throw(INTERP_KERNEL::Exception);
613     virtual MEDCouplingMesh *clone(bool recDeepCpy) const throw(INTERP_KERNEL::Exception);
614     virtual bool isEqual(const MEDCouplingMesh *other, double prec) const throw(INTERP_KERNEL::Exception);
615     virtual bool isEqualWithoutConsideringStr(const MEDCouplingMesh *other, double prec) const throw(INTERP_KERNEL::Exception);
616     virtual void checkFastEquivalWith(const MEDCouplingMesh *other, double prec) const throw(INTERP_KERNEL::Exception);
617     virtual void copyTinyStringsFrom(const MEDCouplingMesh *other) throw(INTERP_KERNEL::Exception);
618     virtual void copyTinyInfoFrom(const MEDCouplingMesh *other) throw(INTERP_KERNEL::Exception);
619     virtual void checkConsistencyLight() const throw(INTERP_KERNEL::Exception);
620     virtual void checkConsistency(double eps=1e-12) const throw(INTERP_KERNEL::Exception);
621     virtual int getNumberOfCells() const throw(INTERP_KERNEL::Exception);
622     virtual int getNumberOfNodes() const throw(INTERP_KERNEL::Exception);
623     virtual int getSpaceDimension() const throw(INTERP_KERNEL::Exception);
624     virtual int getMeshDimension() const throw(INTERP_KERNEL::Exception);
625     virtual DataArrayDouble *getCoordinatesAndOwner() const throw(INTERP_KERNEL::Exception);
626     virtual DataArrayDouble *computeCellCenterOfMass() const throw(INTERP_KERNEL::Exception);
627     virtual DataArrayDouble *computeIsoBarycenterOfNodesPerCell() const throw(INTERP_KERNEL::Exception);
628     virtual DataArrayInt *giveCellsWithType(INTERP_KERNEL::NormalizedCellType type) const throw(INTERP_KERNEL::Exception);
629     virtual DataArrayInt *computeNbOfNodesPerCell() const throw(INTERP_KERNEL::Exception);
630     virtual DataArrayInt *computeNbOfFacesPerCell() const throw(INTERP_KERNEL::Exception);
631     virtual DataArrayInt *computeEffectiveNbOfNodesPerCell() const throw(INTERP_KERNEL::Exception);
632     virtual MEDCouplingMesh *buildPartRange(int beginCellIds, int endCellIds, int stepCellIds) const throw(INTERP_KERNEL::Exception);
633     virtual int getNumberOfCellsWithType(INTERP_KERNEL::NormalizedCellType type) const throw(INTERP_KERNEL::Exception);
634     virtual INTERP_KERNEL::NormalizedCellType getTypeOfCell(int cellId) const throw(INTERP_KERNEL::Exception);
635     virtual std::string simpleRepr() const throw(INTERP_KERNEL::Exception);
636     virtual std::string advancedRepr() const throw(INTERP_KERNEL::Exception);
637     std::string writeVTK(const std::string& fileName, bool isBinary=true) const throw(INTERP_KERNEL::Exception);
638     virtual std::string getVTKFileExtension() const;
639     std::string getVTKFileNameOf(const std::string& fileName) const;
640     // tools
641     virtual MEDCouplingFieldDouble *getMeasureField(bool isAbs) const throw(INTERP_KERNEL::Exception);
642     virtual MEDCouplingFieldDouble *getMeasureFieldOnNode(bool isAbs) const throw(INTERP_KERNEL::Exception);
643     virtual MEDCouplingFieldDouble *fillFromAnalytic(TypeOfField t, int nbOfComp, const std::string& func) const throw(INTERP_KERNEL::Exception);
644     virtual MEDCouplingFieldDouble *fillFromAnalyticCompo(TypeOfField t, int nbOfComp, const std::string& func) const throw(INTERP_KERNEL::Exception);
645     virtual MEDCouplingFieldDouble *fillFromAnalyticNamedCompo(TypeOfField t, int nbOfComp, const std::vector<std::string>& varsOrder, const std::string& func) const throw(INTERP_KERNEL::Exception);
646     virtual MEDCouplingFieldDouble *buildOrthogonalField() const throw(INTERP_KERNEL::Exception);
647     virtual MEDCouplingUMesh *buildUnstructured() const throw(INTERP_KERNEL::Exception);
648     virtual MEDCouplingMesh *mergeMyselfWith(const MEDCouplingMesh *other) const throw(INTERP_KERNEL::Exception);
649     virtual bool areCompatibleForMerge(const MEDCouplingMesh *other) const throw(INTERP_KERNEL::Exception);
650     virtual DataArrayInt *simplexize(int policy) throw(INTERP_KERNEL::Exception);
651     virtual void unserialization(const std::vector<double>& tinyInfoD, const std::vector<int>& tinyInfo, const DataArrayInt *a1, DataArrayDouble *a2, const std::vector<std::string>& littleStrings) throw(INTERP_KERNEL::Exception);
652     static MEDCouplingMesh *MergeMeshes(const MEDCouplingMesh *mesh1, const MEDCouplingMesh *mesh2) throw(INTERP_KERNEL::Exception);
653     static bool IsStaticGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
654     static bool IsLinearGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
655     static INTERP_KERNEL::NormalizedCellType GetCorrespondingPolyType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
656     static int GetNumberOfNodesOfGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
657     static int GetDimensionOfGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
658     static const char *GetReprOfGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
659     %extend
660        {
661          std::string __str__() const throw(INTERP_KERNEL::Exception)
662          {
663            return self->simpleRepr();
664          }
665
666          PyObject *getTime() throw(INTERP_KERNEL::Exception)
667          {
668            int tmp1,tmp2;
669            double tmp0=self->getTime(tmp1,tmp2);
670            PyObject *res = PyList_New(3);
671            PyList_SetItem(res,0,SWIG_From_double(tmp0));
672            PyList_SetItem(res,1,SWIG_From_int(tmp1));
673            PyList_SetItem(res,2,SWIG_From_int(tmp2));
674            return res;
675          }
676
677          DataArrayDouble *getDirectAccessOfCoordsArrIfInStructure() const throw(INTERP_KERNEL::Exception)
678          {
679            const DataArrayDouble *ret(self->getDirectAccessOfCoordsArrIfInStructure());
680            DataArrayDouble *ret2(const_cast<DataArrayDouble *>(ret));
681            if(ret2)
682              ret2->incrRef();
683            return ret2;
684          }
685          
686          int getCellContainingPoint(PyObject *p, double eps) const throw(INTERP_KERNEL::Exception)
687          {
688            double val;
689            DataArrayDouble *a;
690            DataArrayDoubleTuple *aa;
691            std::vector<double> bb;
692            int sw;
693            int spaceDim=self->getSpaceDimension();
694            const char msg[]="Python wrap of MEDCouplingMesh::getCellContainingPoint : ";
695            const double *pos=convertObjToPossibleCpp5_Safe(p,sw,val,a,aa,bb,msg,1,spaceDim,true);
696            return self->getCellContainingPoint(pos,eps);
697          }
698
699          PyObject *getCellsContainingPoints(PyObject *p, int nbOfPoints, double eps) const throw(INTERP_KERNEL::Exception)
700          {
701            double val;
702            DataArrayDouble *a;
703            DataArrayDoubleTuple *aa;
704            std::vector<double> bb;
705            int sw;
706            int spaceDim=self->getSpaceDimension();
707            const char msg[]="Python wrap of MEDCouplingMesh::getCellsContainingPoint : ";
708            const double *pos=convertObjToPossibleCpp5_Safe(p,sw,val,a,aa,bb,msg,nbOfPoints,spaceDim,true);
709            MCAuto<DataArrayInt> elts,eltsIndex;
710            self->getCellsContainingPoints(pos,nbOfPoints,eps,elts,eltsIndex);
711            PyObject *ret=PyTuple_New(2);
712            PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(elts.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
713            PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(eltsIndex.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
714            return ret;
715          }
716
717          PyObject *getCellsContainingPointsLinearPartOnlyOnNonDynType(PyObject *p, int nbOfPoints, double eps) const throw(INTERP_KERNEL::Exception)
718          {
719            double val;
720            DataArrayDouble *a;
721            DataArrayDoubleTuple *aa;
722            std::vector<double> bb;
723            int sw;
724            int spaceDim=self->getSpaceDimension();
725            const char msg[]="Python wrap of MEDCouplingMesh::getCellsContainingPointsLinearPartOnlyOnNonDynType : ";
726            const double *pos=convertObjToPossibleCpp5_Safe(p,sw,val,a,aa,bb,msg,nbOfPoints,spaceDim,true);
727            MCAuto<DataArrayInt> elts,eltsIndex;
728            self->getCellsContainingPointsLinearPartOnlyOnNonDynType(pos,nbOfPoints,eps,elts,eltsIndex);
729            PyObject *ret=PyTuple_New(2);
730            PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(elts.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
731            PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(eltsIndex.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
732            return ret;
733          }
734
735          PyObject *getCellsContainingPoints(PyObject *p, double eps) const throw(INTERP_KERNEL::Exception)
736          {
737            auto getCellsContainingPointsFunc=[self](const double *a, int b,double c, MCAuto<DataArrayInt>& d, MCAuto<DataArrayInt>& e) { self->getCellsContainingPoints(a,b,c,d,e); };
738            return Mesh_getCellsContainingPointsLike(p,eps,self,getCellsContainingPointsFunc);
739          }
740
741          PyObject *getCellsContainingPointsLinearPartOnlyOnNonDynType(PyObject *p, double eps) const throw(INTERP_KERNEL::Exception)
742          {
743            auto getCellsContainingPointsFunc=[self](const double *a, int b,double c, MCAuto<DataArrayInt>& d, MCAuto<DataArrayInt>& e) { self->getCellsContainingPointsLinearPartOnlyOnNonDynType(a,b,c,d,e); };
744            return Mesh_getCellsContainingPointsLike(p,eps,self,getCellsContainingPointsFunc);
745          }
746          
747          PyObject *getCellsContainingPoint(PyObject *p, double eps) const throw(INTERP_KERNEL::Exception)
748          {
749            double val;
750            DataArrayDouble *a;
751            DataArrayDoubleTuple *aa;
752            std::vector<double> bb;
753            int sw;
754            int spaceDim=self->getSpaceDimension();
755            const char msg[]="Python wrap of MEDCouplingUMesh::getCellsContainingPoint : ";
756            const double *pos=convertObjToPossibleCpp5_Safe(p,sw,val,a,aa,bb,msg,1,spaceDim,true);
757            std::vector<int> elts;
758            self->getCellsContainingPoint(pos,eps,elts);
759            DataArrayInt *ret=DataArrayInt::New();
760            ret->alloc((int)elts.size(),1);
761            std::copy(elts.begin(),elts.end(),ret->getPointer());
762            return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 );
763          }
764          
765          virtual PyObject *getReverseNodalConnectivity() const throw(INTERP_KERNEL::Exception)
766          {
767            MCAuto<DataArrayInt> d0=DataArrayInt::New();
768            MCAuto<DataArrayInt> d1=DataArrayInt::New();
769            self->getReverseNodalConnectivity(d0,d1);
770            PyObject *ret=PyTuple_New(2);
771            PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
772            PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
773            return ret;
774          }
775          
776          void renumberCells(PyObject *li, bool check=true) throw(INTERP_KERNEL::Exception)
777          {
778            int sw,sz(-1);
779            int v0; std::vector<int> v1;
780            const int *ids(convertIntStarLikePyObjToCppIntStar(li,sw,sz,v0,v1));
781            self->renumberCells(ids,check);
782          }
783
784          PyObject *checkGeoEquivalWith(const MEDCouplingMesh *other, int levOfCheck, double prec) const throw(INTERP_KERNEL::Exception)
785          {
786            DataArrayInt *cellCor, *nodeCor;
787            self->checkGeoEquivalWith(other,levOfCheck,prec,cellCor,nodeCor);
788            PyObject *res = PyList_New(2);
789            PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(cellCor),SWIGTYPE_p_MEDCoupling__DataArrayInt, cellCor?SWIG_POINTER_OWN | 0:0 ));
790            PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(nodeCor),SWIGTYPE_p_MEDCoupling__DataArrayInt, nodeCor?SWIG_POINTER_OWN | 0:0 ));
791            return res;
792          }
793
794          PyObject *checkDeepEquivalWith(const MEDCouplingMesh *other, int cellCompPol, double prec) const throw(INTERP_KERNEL::Exception)
795          {
796            DataArrayInt *cellCor=0,*nodeCor=0;
797            self->checkDeepEquivalWith(other,cellCompPol,prec,cellCor,nodeCor);
798            PyObject *res = PyList_New(2);
799            PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(cellCor),SWIGTYPE_p_MEDCoupling__DataArrayInt, cellCor?SWIG_POINTER_OWN | 0:0 ));
800            PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(nodeCor),SWIGTYPE_p_MEDCoupling__DataArrayInt, nodeCor?SWIG_POINTER_OWN | 0:0 ));
801            return res;
802          }
803          
804          DataArrayInt *checkDeepEquivalOnSameNodesWith(const MEDCouplingMesh *other, int cellCompPol, double prec) const throw(INTERP_KERNEL::Exception)
805          {
806            DataArrayInt *cellCor=0;
807            self->checkDeepEquivalOnSameNodesWith(other,cellCompPol,prec,cellCor);
808            return cellCor;
809          }
810
811          DataArrayInt *getCellIdsFullyIncludedInNodeIds(PyObject *li) const throw(INTERP_KERNEL::Exception)
812          {
813            void *da=0;
814            int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_MEDCoupling__DataArrayInt, 0 |  0 );
815            if (!SWIG_IsOK(res1))
816              {
817                int size;
818                INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
819                return self->getCellIdsFullyIncludedInNodeIds(tmp,((const int *)tmp)+size);
820              }
821            else
822              {
823                DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
824                if(!da2)
825                  throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
826                da2->checkAllocated();
827                return self->getCellIdsFullyIncludedInNodeIds(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems());
828              }
829          }
830          PyObject *getNodeIdsOfCell(int cellId) const throw(INTERP_KERNEL::Exception)
831          {
832            std::vector<int> conn;
833            self->getNodeIdsOfCell(cellId,conn);
834            return convertIntArrToPyList2(conn);
835          }
836
837          PyObject *getCoordinatesOfNode(int nodeId) const throw(INTERP_KERNEL::Exception)
838          {
839            std::vector<double> coo;
840            self->getCoordinatesOfNode(nodeId,coo);
841            return convertDblArrToPyList2(coo);
842          }
843
844          void scale(PyObject *point, double factor) throw(INTERP_KERNEL::Exception)
845          {
846            double val;
847            DataArrayDouble *a;
848            DataArrayDoubleTuple *aa;
849            std::vector<double> bb;
850            int sw;
851            int spaceDim=self->getSpaceDimension();
852            const char msg[]="Python wrap of MEDCouplingPointSet::scale : ";
853            const double *pointPtr=convertObjToPossibleCpp5_Safe(point,sw,val,a,aa,bb,msg,1,spaceDim,true);
854            self->scale(pointPtr,factor);
855          }
856
857          PyObject *getBoundingBox() const throw(INTERP_KERNEL::Exception)
858          {
859            int spaceDim=self->getSpaceDimension();
860            INTERP_KERNEL::AutoPtr<double> tmp=new double[2*spaceDim];
861            self->getBoundingBox(tmp);
862            PyObject *ret=convertDblArrToPyListOfTuple<double>(tmp,2,spaceDim);
863            return ret;
864          }
865
866          PyObject *isEqualIfNotWhy(const MEDCouplingMesh *other, double prec) const throw(INTERP_KERNEL::Exception)
867          {
868            std::string ret1;
869            bool ret0=self->isEqualIfNotWhy(other,prec,ret1);
870            PyObject *ret=PyTuple_New(2);
871            PyObject *ret0Py=ret0?Py_True:Py_False;
872            Py_XINCREF(ret0Py);
873            PyTuple_SetItem(ret,0,ret0Py);
874            PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
875            return ret;
876          }
877
878          PyObject *buildPart(PyObject *li) const throw(INTERP_KERNEL::Exception)
879          {
880            int szArr,sw,iTypppArr;
881            std::vector<int> stdvecTyyppArr;
882            const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
883            MEDCouplingMesh *ret=self->buildPart(tmp,tmp+szArr);
884            if(sw==3)//DataArrayInt
885              { 
886                void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_MEDCoupling__DataArrayInt,0|0);
887                DataArrayInt *argpt=reinterpret_cast< MEDCoupling::DataArrayInt * >(argp);
888                std::string name=argpt->getName();
889                if(!name.empty())
890                  ret->setName(name.c_str());
891              }
892            return convertMesh(ret, SWIG_POINTER_OWN | 0 );
893          }
894         
895          PyObject *buildPartAndReduceNodes(PyObject *li) const throw(INTERP_KERNEL::Exception)
896          {
897            int szArr,sw,iTypppArr;
898            std::vector<int> stdvecTyyppArr;
899            DataArrayInt *arr=0;
900            const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
901            MEDCouplingMesh *ret=self->buildPartAndReduceNodes(tmp,tmp+szArr,arr);
902            if(sw==3)//DataArrayInt
903              { 
904                void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_MEDCoupling__DataArrayInt,0|0);
905                DataArrayInt *argpt=reinterpret_cast< MEDCoupling::DataArrayInt * >(argp);
906                std::string name=argpt->getName();
907                if(!name.empty())
908                  ret->setName(name.c_str());
909              }
910            //
911            PyObject *res = PyList_New(2);
912            PyObject *obj0=convertMesh(ret, SWIG_POINTER_OWN | 0 );
913            PyObject *obj1=SWIG_NewPointerObj(SWIG_as_voidptr(arr),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 );
914            PyList_SetItem(res,0,obj0);
915            PyList_SetItem(res,1,obj1);
916            return res;
917          }
918
919          PyObject *buildPartRangeAndReduceNodes(int beginCellIds, int endCellIds, int stepCellIds) const throw(INTERP_KERNEL::Exception)
920          {
921            int a,b,c;
922            DataArrayInt *arr=0;
923            MEDCouplingMesh *ret=self->buildPartRangeAndReduceNodes(beginCellIds,endCellIds,stepCellIds,a,b,c,arr);
924            PyObject *res = PyTuple_New(2);
925            PyObject *obj0=convertMesh(ret, SWIG_POINTER_OWN | 0 );
926            PyObject *obj1=0;
927            if(arr)
928              obj1=SWIG_NewPointerObj(SWIG_as_voidptr(arr),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 );
929            else
930              obj1=PySlice_New(PyInt_FromLong(a),PyInt_FromLong(b),PyInt_FromLong(b));
931            PyTuple_SetItem(res,0,obj0);
932            PyTuple_SetItem(res,1,obj1);
933            return res;
934          }
935
936         PyObject *getDistributionOfTypes() const throw(INTERP_KERNEL::Exception)
937         {
938           std::vector<int> vals=self->getDistributionOfTypes();
939           if(vals.size()%3!=0)
940             throw INTERP_KERNEL::Exception("Internal Error detected in wrap python ! code returned by MEDCouplingMesh::getDistributionOfTypes is not so that %3==0 !");
941           PyObject *ret=PyList_New((int)vals.size()/3);
942           for(int j=0;j<(int)vals.size()/3;j++)
943              {
944                PyObject *ret1=PyList_New(3);
945                PyList_SetItem(ret1,0,SWIG_From_int(vals[3*j]));
946                PyList_SetItem(ret1,1,SWIG_From_int(vals[3*j+1]));
947                PyList_SetItem(ret1,2,SWIG_From_int(vals[3*j+2]));
948                PyList_SetItem(ret,j,ret1);
949              }
950           return ret;
951         }
952
953         DataArrayInt *checkTypeConsistencyAndContig(PyObject *li, PyObject *li2) const throw(INTERP_KERNEL::Exception)
954         {
955           std::vector<int> code;
956           std::vector<const DataArrayInt *> idsPerType;
957           convertFromPyObjVectorOfObj<const MEDCoupling::DataArrayInt *>(li2,SWIGTYPE_p_MEDCoupling__DataArrayInt,"DataArrayInt",idsPerType);
958           convertPyToNewIntArr4(li,1,3,code);
959           return self->checkTypeConsistencyAndContig(code,idsPerType);
960         }
961
962         PyObject *splitProfilePerType(const DataArrayInt *profile, bool smartPflKiller=true) const throw(INTERP_KERNEL::Exception)
963         {
964           std::vector<int> code;
965           std::vector<DataArrayInt *> idsInPflPerType;
966           std::vector<DataArrayInt *> idsPerType;
967           self->splitProfilePerType(profile,code,idsInPflPerType,idsPerType,smartPflKiller);
968           PyObject *ret=PyTuple_New(3);
969           //
970           if(code.size()%3!=0)
971             throw INTERP_KERNEL::Exception("Internal Error detected in wrap python ! code returned by MEDCouplingMesh::splitProfilePerType is not so that %3==0 !");
972           PyObject *ret0=PyList_New((int)code.size()/3);
973           for(int j=0;j<(int)code.size()/3;j++)
974              {
975                PyObject *ret00=PyList_New(3);
976                PyList_SetItem(ret00,0,SWIG_From_int(code[3*j]));
977                PyList_SetItem(ret00,1,SWIG_From_int(code[3*j+1]));
978                PyList_SetItem(ret00,2,SWIG_From_int(code[3*j+2]));
979                PyList_SetItem(ret0,j,ret00);
980              }
981           PyTuple_SetItem(ret,0,ret0);
982           //
983           PyObject *ret1=PyList_New(idsInPflPerType.size());
984           for(std::size_t j=0;j<idsInPflPerType.size();j++)
985             PyList_SetItem(ret1,j,SWIG_NewPointerObj(SWIG_as_voidptr(idsInPflPerType[j]),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
986           PyTuple_SetItem(ret,1,ret1);
987           int n=idsPerType.size();
988           PyObject *ret2=PyList_New(n);
989           for(int i=0;i<n;i++)
990             PyList_SetItem(ret2,i,SWIG_NewPointerObj(SWIG_as_voidptr(idsPerType[i]),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
991           PyTuple_SetItem(ret,2,ret2);
992           return ret;
993         }
994
995         void translate(PyObject *vector) throw(INTERP_KERNEL::Exception)
996         {
997           double val;
998           DataArrayDouble *a;
999           DataArrayDoubleTuple *aa;
1000           std::vector<double> bb;
1001           int sw;
1002           int spaceDim=self->getSpaceDimension();
1003           const char msg[]="Python wrap of MEDCouplingPointSet::translate : ";
1004           const double *vectorPtr=convertObjToPossibleCpp5_Safe(vector,sw,val,a,aa,bb,msg,1,spaceDim,true);
1005           self->translate(vectorPtr);
1006         }
1007
1008          void rotate(PyObject *center, double alpha) throw(INTERP_KERNEL::Exception)
1009          {
1010            const char msg[]="Python wrap of MEDCouplingPointSet::rotate : ";
1011            double val;
1012            DataArrayDouble *a;
1013            DataArrayDoubleTuple *aa;
1014            std::vector<double> bb;
1015            int sw;
1016            int spaceDim=self->getSpaceDimension();
1017            const double *centerPtr=convertObjToPossibleCpp5_Safe(center,sw,val,a,aa,bb,msg,1,spaceDim,true);
1018            self->rotate(centerPtr,0,alpha);
1019          }
1020
1021          void rotate(PyObject *center, PyObject *vector, double alpha) throw(INTERP_KERNEL::Exception)
1022          {
1023            const char msg[]="Python wrap of MEDCouplingPointSet::rotate : ";
1024            double val,val2;
1025            DataArrayDouble *a,*a2;
1026            DataArrayDoubleTuple *aa,*aa2;
1027            std::vector<double> bb,bb2;
1028            int sw;
1029            int spaceDim=self->getSpaceDimension();
1030            const double *centerPtr=convertObjToPossibleCpp5_Safe(center,sw,val,a,aa,bb,msg,1,spaceDim,true);
1031            const double *vectorPtr=convertObjToPossibleCpp5_Safe(vector,sw,val2,a2,aa2,bb2,msg,1,spaceDim,false);//vectorPtr can be null in case of space dim 2
1032            self->rotate(centerPtr,vectorPtr,alpha);
1033          }
1034
1035          PyObject *getAllGeoTypes() const throw(INTERP_KERNEL::Exception)
1036          {
1037            std::set<INTERP_KERNEL::NormalizedCellType> result=self->getAllGeoTypes();
1038            std::set<INTERP_KERNEL::NormalizedCellType>::const_iterator iL=result.begin();
1039            PyObject *res=PyList_New(result.size());
1040            for(int i=0;iL!=result.end(); i++, iL++)
1041              PyList_SetItem(res,i,PyInt_FromLong(*iL));
1042            return res;
1043          }
1044
1045          virtual PyObject *getTinySerializationInformation() const throw(INTERP_KERNEL::Exception)
1046          {
1047            std::vector<double> a0;
1048            std::vector<int> a1;
1049            std::vector<std::string> a2;
1050            self->getTinySerializationInformation(a0,a1,a2);
1051            PyObject *ret(PyTuple_New(3));
1052            PyTuple_SetItem(ret,0,convertDblArrToPyList2(a0));
1053            PyTuple_SetItem(ret,1,convertIntArrToPyList2(a1));
1054            int sz(a2.size());
1055            PyObject *ret2(PyList_New(sz));
1056            {
1057              for(int i=0;i<sz;i++)
1058                PyList_SetItem(ret2,i,PyString_FromString(a2[i].c_str()));
1059            }
1060            PyTuple_SetItem(ret,2,ret2);
1061            return ret;
1062          }
1063
1064          virtual PyObject *serialize() const throw(INTERP_KERNEL::Exception)
1065          {
1066            DataArrayInt *a0Tmp(0);
1067            DataArrayDouble *a1Tmp(0);
1068            self->serialize(a0Tmp,a1Tmp);
1069            PyObject *ret(PyTuple_New(2));
1070            PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(a0Tmp),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1071            PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(a1Tmp),SWIGTYPE_p_MEDCoupling__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
1072            return ret;
1073          }
1074
1075          void resizeForUnserialization(const std::vector<int>& tinyInfo, DataArrayInt *a1, DataArrayDouble *a2) const throw(INTERP_KERNEL::Exception)
1076          {
1077            std::vector<std::string> littleStrings;
1078            self->resizeForUnserialization(tinyInfo,a1,a2,littleStrings);
1079          }
1080          
1081          PyObject *__getstate__() const throw(INTERP_KERNEL::Exception)
1082          {
1083            PyObject *ret0(MEDCoupling_MEDCouplingMesh_getTinySerializationInformation(self));
1084            PyObject *ret1(MEDCoupling_MEDCouplingMesh_serialize(self));
1085            PyObject *ret(PyTuple_New(2));
1086            PyTuple_SetItem(ret,0,ret0);
1087            PyTuple_SetItem(ret,1,ret1);
1088            return ret;
1089          }
1090
1091          void __setstate__(PyObject *inp) throw(INTERP_KERNEL::Exception)
1092          {
1093            static const char MSG[]="MEDCouplingMesh.__setstate__ : expected input is a tuple of size 2 !";
1094            if(!PyTuple_Check(inp))
1095              throw INTERP_KERNEL::Exception(MSG);
1096            int sz(PyTuple_Size(inp));
1097            if(sz!=2)
1098              throw INTERP_KERNEL::Exception(MSG);
1099            PyObject *elt0(PyTuple_GetItem(inp,0));
1100            PyObject *elt1(PyTuple_GetItem(inp,1));
1101            std::vector<double> a0;
1102            std::vector<int> a1;
1103            std::vector<std::string> a2;
1104            DataArrayInt *b0(0);
1105            DataArrayDouble *b1(0);
1106            {
1107              if(!PyTuple_Check(elt0) && PyTuple_Size(elt0)!=3)
1108                throw INTERP_KERNEL::Exception(MSG);
1109              PyObject *a0py(PyTuple_GetItem(elt0,0)),*a1py(PyTuple_GetItem(elt0,1)),*a2py(PyTuple_GetItem(elt0,2));
1110              int tmp(-1);
1111              fillArrayWithPyListDbl3(a0py,tmp,a0);
1112              convertPyToNewIntArr3(a1py,a1);
1113              fillStringVector(a2py,a2);
1114            }
1115            {
1116              if(!PyTuple_Check(elt1) && PyTuple_Size(elt1)!=2)
1117                throw INTERP_KERNEL::Exception(MSG);
1118              PyObject *b0py(PyTuple_GetItem(elt1,0)),*b1py(PyTuple_GetItem(elt1,1));
1119              void *argp(0);
1120              int status(SWIG_ConvertPtr(b0py,&argp,SWIGTYPE_p_MEDCoupling__DataArrayInt,0|0));
1121              if(!SWIG_IsOK(status))
1122                throw INTERP_KERNEL::Exception(MSG);
1123              b0=reinterpret_cast<DataArrayInt *>(argp);
1124              status=SWIG_ConvertPtr(b1py,&argp,SWIGTYPE_p_MEDCoupling__DataArrayDouble,0|0);
1125              if(!SWIG_IsOK(status))
1126                throw INTERP_KERNEL::Exception(MSG);
1127              b1=reinterpret_cast<DataArrayDouble *>(argp);
1128            }
1129            // useless here to call resizeForUnserialization because arrays are well resized.
1130            self->unserialization(a0,a1,b0,b1,a2);
1131          }
1132          
1133          static MEDCouplingMesh *MergeMeshes(PyObject *li) throw(INTERP_KERNEL::Exception)
1134          {
1135             std::vector<const MEDCoupling::MEDCouplingMesh *> tmp;
1136             convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingMesh *>(li,SWIGTYPE_p_MEDCoupling__MEDCouplingMesh,"MEDCouplingMesh",tmp);
1137             return MEDCouplingMesh::MergeMeshes(tmp);
1138          }
1139        }
1140   };
1141 }
1142
1143 //== MEDCouplingMesh End
1144
1145 %include "NormalizedGeometricTypes"
1146 %include "MEDCouplingNatureOfFieldEnum"
1147 //
1148 namespace MEDCoupling
1149 {
1150   class MEDCouplingNatureOfField
1151   {
1152   public:
1153     static const char *GetRepr(NatureOfField nat) throw(INTERP_KERNEL::Exception);
1154     static std::string GetReprNoThrow(NatureOfField nat);
1155     static std::string GetAllPossibilitiesStr();
1156   };
1157 }
1158
1159 // the MEDCouplingTimeDiscretization classes are not swigged : in case the file can help
1160 // include "MEDCouplingTimeDiscretization.i"
1161
1162 namespace MEDCoupling
1163 {
1164   class MEDCouplingGaussLocalization
1165   {
1166   public:
1167     MEDCouplingGaussLocalization(INTERP_KERNEL::NormalizedCellType type, const std::vector<double>& refCoo,
1168                                  const std::vector<double>& gsCoo, const std::vector<double>& w) throw(INTERP_KERNEL::Exception);
1169     MEDCouplingGaussLocalization(INTERP_KERNEL::NormalizedCellType typ) throw(INTERP_KERNEL::Exception);
1170     INTERP_KERNEL::NormalizedCellType getType() const throw(INTERP_KERNEL::Exception);
1171     void setType(INTERP_KERNEL::NormalizedCellType typ) throw(INTERP_KERNEL::Exception);
1172     int getNumberOfGaussPt() const throw(INTERP_KERNEL::Exception);
1173     int getDimension() const throw(INTERP_KERNEL::Exception);
1174     int getNumberOfPtsInRefCell() const throw(INTERP_KERNEL::Exception);
1175     std::string getStringRepr() const throw(INTERP_KERNEL::Exception);
1176     void checkConsistencyLight() const throw(INTERP_KERNEL::Exception);
1177     bool isEqual(const MEDCouplingGaussLocalization& other, double eps) const throw(INTERP_KERNEL::Exception);
1178     //
1179     const std::vector<double>& getRefCoords() const throw(INTERP_KERNEL::Exception);
1180     double getRefCoord(int ptIdInCell, int comp) const throw(INTERP_KERNEL::Exception);
1181     const std::vector<double>& getGaussCoords() const throw(INTERP_KERNEL::Exception);
1182     double getGaussCoord(int gaussPtIdInCell, int comp) const throw(INTERP_KERNEL::Exception);
1183     const std::vector<double>& getWeights() const throw(INTERP_KERNEL::Exception);
1184     double getWeight(int gaussPtIdInCell, double newVal) const throw(INTERP_KERNEL::Exception);
1185     void setRefCoord(int ptIdInCell, int comp, double newVal) throw(INTERP_KERNEL::Exception);
1186     void setGaussCoord(int gaussPtIdInCell, int comp, double newVal) throw(INTERP_KERNEL::Exception);
1187     void setWeight(int gaussPtIdInCell, double newVal) throw(INTERP_KERNEL::Exception);
1188     void setRefCoords(const std::vector<double>& refCoo) throw(INTERP_KERNEL::Exception);
1189     void setGaussCoords(const std::vector<double>& gsCoo) throw(INTERP_KERNEL::Exception);
1190     void setWeights(const std::vector<double>& w) throw(INTERP_KERNEL::Exception);
1191     //
1192     static bool AreAlmostEqual(const std::vector<double>& v1, const std::vector<double>& v2, double eps);
1193     //
1194     %extend 
1195     {
1196       DataArrayDouble *localizePtsInRefCooForEachCell(const DataArrayDouble *ptsInRefCoo, const MEDCouplingUMesh *mesh) const throw(INTERP_KERNEL::Exception)
1197       {
1198         MCAuto<DataArrayDouble> ret(self->localizePtsInRefCooForEachCell(ptsInRefCoo,mesh));
1199         return ret.retn();
1200       }
1201
1202       MEDCouplingUMesh *buildRefCell() const throw(INTERP_KERNEL::Exception)
1203       {
1204         MCAuto<MEDCouplingUMesh> ret(self->buildRefCell());
1205         return ret.retn();
1206       }
1207     }
1208   };
1209
1210   class MEDCouplingSkyLineArray
1211   {
1212   public:  
1213     static MEDCouplingSkyLineArray *BuildFromPolyhedronConn( const DataArrayInt* c, const DataArrayInt* cI ) throw(INTERP_KERNEL::Exception);
1214   
1215     void set( DataArrayInt* index, DataArrayInt* value );
1216     void set3( DataArrayInt* superIndex, DataArrayInt* index, DataArrayInt* value );
1217     
1218     int getSuperNumberOf() const;
1219     int getNumberOf() const;
1220     int getLength() const;
1221     
1222     void deletePack(const int i, const int j) throw(INTERP_KERNEL::Exception);
1223     
1224     void deleteSimplePack(const int i) throw(INTERP_KERNEL::Exception);
1225     void deleteSimplePacks(const DataArrayInt* idx) throw(INTERP_KERNEL::Exception);
1226     
1227     %extend 
1228     {
1229       MEDCouplingSkyLineArray() throw(INTERP_KERNEL::Exception)
1230       {
1231         return MEDCouplingSkyLineArray::New();
1232       }
1233
1234       MEDCouplingSkyLineArray( const std::vector<int>& index, const std::vector<int>& value) throw(INTERP_KERNEL::Exception)
1235       {
1236         return MEDCouplingSkyLineArray::New(index, value);
1237       }
1238
1239       MEDCouplingSkyLineArray( DataArrayInt* index, DataArrayInt* value ) throw(INTERP_KERNEL::Exception)
1240       {
1241         return MEDCouplingSkyLineArray::New(index, value);
1242       }
1243
1244       MEDCouplingSkyLineArray( const MEDCouplingSkyLineArray & other ) throw(INTERP_KERNEL::Exception)
1245       {
1246         return MEDCouplingSkyLineArray::New(other);
1247       }
1248
1249       std::string __str__() const throw(INTERP_KERNEL::Exception)
1250       {
1251         return self->simpleRepr();
1252       }
1253       
1254       DataArrayInt *getSuperIndexArray() const
1255       {
1256         DataArrayInt *ret(self->getSuperIndexArray());
1257         if(ret)
1258           ret->incrRef();
1259         return ret;
1260       }
1261       
1262       DataArrayInt *getIndexArray() const
1263       {
1264         DataArrayInt *ret(self->getIndexArray());
1265         if(ret)
1266           ret->incrRef();
1267         return ret;
1268       }
1269       
1270       DataArrayInt *getValuesArray() const
1271       {
1272         DataArrayInt *ret(self->getValuesArray());
1273         if(ret)
1274           ret->incrRef();
1275         return ret;
1276       }
1277      
1278       PyObject *getSimplePackSafe(int absolutePackId) const throw(INTERP_KERNEL::Exception)
1279       {
1280         std::vector<int> ret;
1281         self->getSimplePackSafe(absolutePackId,ret);
1282         return convertIntArrToPyList2(ret);
1283       }
1284
1285       PyObject *findPackIds(PyObject *superPackIndices, PyObject *pack) const throw(INTERP_KERNEL::Exception)
1286       {
1287           std::vector<int> vpack, vspIdx, out;
1288           
1289           convertPyToNewIntArr3(superPackIndices,vspIdx);
1290           convertPyToNewIntArr3(pack,vpack);
1291           
1292           self->findPackIds(vspIdx, vpack.data(), vpack.data()+vpack.size(), out);
1293           return convertIntArrToPyList2(out);
1294       }
1295       
1296       void pushBackPack(const int i, PyObject *pack) throw(INTERP_KERNEL::Exception)
1297         {
1298           std::vector<int> vpack;
1299           convertPyToNewIntArr3(pack,vpack);
1300           self->pushBackPack(i,vpack.data(), vpack.data()+vpack.size());
1301         }
1302         
1303       void replaceSimplePack(const int idx, PyObject *pack) throw(INTERP_KERNEL::Exception)
1304         {
1305           std::vector<int> vpack;
1306           convertPyToNewIntArr3(pack,vpack);
1307           self->replaceSimplePack(idx, vpack.data(), vpack.data()+vpack.size());
1308         }
1309         
1310       void replaceSimplePacks(const DataArrayInt* idx, PyObject *listePacks) throw(INTERP_KERNEL::Exception)
1311         {
1312           std::vector<const DataArrayInt*> packs;
1313           convertFromPyObjVectorOfObj<const MEDCoupling::DataArrayInt*>(listePacks,SWIGTYPE_p_MEDCoupling__DataArrayInt,"DataArrayInt",packs);
1314           self->replaceSimplePacks(idx, packs);
1315         }
1316         
1317       void replacePack(const int superIdx, const int idx, PyObject *pack) throw(INTERP_KERNEL::Exception)
1318         {
1319           std::vector<int> vpack;
1320           convertPyToNewIntArr3(pack,vpack);
1321           self->replacePack(superIdx, idx, vpack.data(), vpack.data()+vpack.size());
1322         }
1323
1324       PyObject *convertToPolyhedronConn() const throw(INTERP_KERNEL::Exception)
1325          {
1326            MCAuto<DataArrayInt> d0=DataArrayInt::New();
1327            MCAuto<DataArrayInt> d1=DataArrayInt::New();
1328            self->convertToPolyhedronConn(d0,d1);
1329            PyObject *ret=PyTuple_New(2);
1330            PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1331            PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1332            return ret;
1333          } 
1334     }
1335   };
1336 }
1337
1338 %include "MEDCouplingFieldDiscretization.i"
1339
1340 //== MEDCouplingPointSet
1341
1342 namespace MEDCoupling
1343 {
1344   class MEDCouplingPointSet : public MEDCoupling::MEDCouplingMesh
1345     {
1346     public:
1347       void setCoords(const DataArrayDouble *coords) throw(INTERP_KERNEL::Exception);
1348       DataArrayDouble *getCoordinatesAndOwner() const throw(INTERP_KERNEL::Exception);
1349       bool areCoordsEqual(const MEDCouplingPointSet& other, double prec) const throw(INTERP_KERNEL::Exception);
1350       void zipCoords() throw(INTERP_KERNEL::Exception);
1351       double getCaracteristicDimension() const throw(INTERP_KERNEL::Exception);
1352       void recenterForMaxPrecision(double eps) throw(INTERP_KERNEL::Exception);
1353       void changeSpaceDimension(int newSpaceDim, double dftVal=0.) throw(INTERP_KERNEL::Exception);
1354       void tryToShareSameCoords(const MEDCouplingPointSet& other, double epsilon) throw(INTERP_KERNEL::Exception);
1355       virtual void shallowCopyConnectivityFrom(const MEDCouplingPointSet *other) throw(INTERP_KERNEL::Exception);
1356       virtual MEDCouplingPointSet *buildPartOfMySelfSlice(int start, int end, int step) const throw(INTERP_KERNEL::Exception);
1357       virtual void tryToShareSameCoordsPermute(const MEDCouplingPointSet& other, double epsilon) throw(INTERP_KERNEL::Exception);
1358       static DataArrayDouble *MergeNodesArray(const MEDCouplingPointSet *m1, const MEDCouplingPointSet *m2) throw(INTERP_KERNEL::Exception);
1359       static MEDCouplingPointSet *BuildInstanceFromMeshType(MEDCouplingMeshType type) throw(INTERP_KERNEL::Exception);
1360       static DataArrayInt *ComputeNbOfInteractionsWithSrcCells(const MEDCouplingPointSet *srcMesh, const MEDCouplingPointSet *trgMesh, double eps) throw(INTERP_KERNEL::Exception);
1361       virtual DataArrayInt *computeFetchedNodeIds() const throw(INTERP_KERNEL::Exception);
1362       virtual int getNumberOfNodesInCell(int cellId) const throw(INTERP_KERNEL::Exception);
1363       virtual MEDCouplingPointSet *buildBoundaryMesh(bool keepCoords) const throw(INTERP_KERNEL::Exception);
1364       virtual DataArrayInt *getCellsInBoundingBox(const INTERP_KERNEL::DirectedBoundingBox& bbox, double eps) throw(INTERP_KERNEL::Exception);
1365       virtual DataArrayInt *zipCoordsTraducer() throw(INTERP_KERNEL::Exception);
1366       virtual DataArrayInt *findBoundaryNodes() const;
1367       virtual DataArrayInt *zipConnectivityTraducer(int compType, int startCellId=0) throw(INTERP_KERNEL::Exception);
1368       virtual MEDCouplingPointSet *mergeMyselfWithOnSameCoords(const MEDCouplingPointSet *other) const throw(INTERP_KERNEL::Exception);
1369       virtual void checkFullyDefined() const throw(INTERP_KERNEL::Exception);
1370       virtual bool isEmptyMesh(const std::vector<int>& tinyInfo) const throw(INTERP_KERNEL::Exception);
1371       virtual MEDCouplingPointSet *deepCopyConnectivityOnly() const throw(INTERP_KERNEL::Exception);
1372       virtual DataArrayDouble *getBoundingBoxForBBTree(double arcDetEps=1e-12) const throw(INTERP_KERNEL::Exception);
1373       virtual void renumberNodesWithOffsetInConn(int offset) throw(INTERP_KERNEL::Exception);
1374       virtual bool areAllNodesFetched() const throw(INTERP_KERNEL::Exception);
1375       virtual MEDCouplingFieldDouble *computeDiameterField() const throw(INTERP_KERNEL::Exception);
1376       virtual void invertOrientationOfAllCells() throw(INTERP_KERNEL::Exception);
1377       %extend 
1378          {
1379            std::string __str__() const throw(INTERP_KERNEL::Exception)
1380            {
1381              return self->simpleRepr();
1382            }
1383            
1384            PyObject *buildNewNumberingFromCommonNodesFormat(const DataArrayInt *comm, const DataArrayInt *commIndex) const throw(INTERP_KERNEL::Exception)
1385            {
1386              int newNbOfNodes;
1387              DataArrayInt *ret0=self->buildNewNumberingFromCommonNodesFormat(comm,commIndex,newNbOfNodes);
1388              PyObject *res = PyList_New(2);
1389              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1390              PyList_SetItem(res,1,SWIG_From_int(newNbOfNodes));
1391              return res;
1392            }
1393            
1394            PyObject *findCommonNodes(double prec, int limitTupleId=-1) const throw(INTERP_KERNEL::Exception)
1395            {
1396              DataArrayInt *comm, *commIndex;
1397              self->findCommonNodes(prec,limitTupleId,comm,commIndex);
1398              PyObject *res = PyList_New(2);
1399              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(comm),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1400              PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(commIndex),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1401              return res;
1402            }
1403            
1404            PyObject *getCoords() throw(INTERP_KERNEL::Exception)
1405            {
1406              DataArrayDouble *ret1=self->getCoords();
1407              if (ret1)
1408                 ret1->incrRef();
1409              return SWIG_NewPointerObj((void*)ret1,SWIGTYPE_p_MEDCoupling__DataArrayDouble,SWIG_POINTER_OWN | 0);
1410            }
1411            
1412            PyObject *buildPartOfMySelf(PyObject *li, bool keepCoords=true) const throw(INTERP_KERNEL::Exception)
1413            {
1414              int szArr,sw,iTypppArr;
1415              std::vector<int> stdvecTyyppArr;
1416              const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1417              MEDCouplingPointSet *ret=self->buildPartOfMySelf(tmp,tmp+szArr,keepCoords);
1418              if(sw==3)//DataArrayInt
1419                { 
1420                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_MEDCoupling__DataArrayInt,0|0);
1421                  DataArrayInt *argpt=reinterpret_cast< MEDCoupling::DataArrayInt * >(argp);
1422                  std::string name=argpt->getName();
1423                  if(!name.empty())
1424                    ret->setName(name.c_str());
1425                }
1426              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1427            }
1428            
1429            PyObject *buildPartOfMySelfNode(PyObject *li, bool fullyIn) const throw(INTERP_KERNEL::Exception)
1430            {
1431              int szArr,sw,iTypppArr;
1432              std::vector<int> stdvecTyyppArr;
1433              const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1434              MEDCouplingPointSet *ret=self->buildPartOfMySelfNode(tmp,tmp+szArr,fullyIn);
1435              if(sw==3)//DataArrayInt
1436                { 
1437                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_MEDCoupling__DataArrayInt,0|0);
1438                  DataArrayInt *argpt=reinterpret_cast< MEDCoupling::DataArrayInt * >(argp);
1439                  std::string name=argpt->getName();
1440                  if(!name.empty())
1441                    ret->setName(name.c_str());
1442                }
1443              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1444            }
1445
1446            virtual PyObject *buildPartOfMySelfKeepCoords(PyObject *li) const throw(INTERP_KERNEL::Exception)
1447            {
1448              int szArr,sw,iTypppArr;
1449              std::vector<int> stdvecTyyppArr;
1450              const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1451              MEDCouplingPointSet *ret=self->buildPartOfMySelfKeepCoords(tmp,tmp+szArr);
1452              if(sw==3)//DataArrayInt
1453                { 
1454                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_MEDCoupling__DataArrayInt,0|0);
1455                  DataArrayInt *argpt=reinterpret_cast< MEDCoupling::DataArrayInt * >(argp);
1456                  std::string name=argpt->getName();
1457                  if(!name.empty())
1458                    ret->setName(name.c_str());
1459                }
1460              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1461            }
1462
1463            virtual PyObject *buildPartOfMySelfKeepCoordsSlice(int start, int end, int step) const throw(INTERP_KERNEL::Exception)
1464            {
1465              MEDCouplingPointSet *ret=self->buildPartOfMySelfKeepCoordsSlice(start,end,step);
1466              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1467            }
1468
1469            PyObject *buildFacePartOfMySelfNode(PyObject *li, bool fullyIn) const throw(INTERP_KERNEL::Exception)
1470            {
1471              int szArr,sw,iTypppArr;
1472              std::vector<int> stdvecTyyppArr;
1473              const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1474              MEDCouplingPointSet *ret=self->buildFacePartOfMySelfNode(tmp,tmp+szArr,fullyIn);
1475              if(sw==3)//DataArrayInt
1476                { 
1477                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_MEDCoupling__DataArrayInt,0|0);
1478                  DataArrayInt *argpt=reinterpret_cast< MEDCoupling::DataArrayInt * >(argp);
1479                  std::string name=argpt->getName();
1480                  if(!name.empty())
1481                    ret->setName(name.c_str());
1482                }
1483              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1484            }
1485
1486            void renumberNodes(PyObject *li, int newNbOfNodes) throw(INTERP_KERNEL::Exception)
1487            {
1488              int szArr,sw,iTypppArr;
1489              std::vector<int> stdvecTyyppArr;
1490              const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1491              self->renumberNodes(tmp,newNbOfNodes);
1492            }
1493
1494            void renumberNodesCenter(PyObject *li, int newNbOfNodes) throw(INTERP_KERNEL::Exception)
1495            {
1496              int szArr,sw,iTypppArr;
1497              std::vector<int> stdvecTyyppArr;
1498              const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1499              self->renumberNodesCenter(tmp,newNbOfNodes);
1500            }
1501
1502            PyObject *findNodesOnLine(PyObject *pt, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
1503              {
1504                int spaceDim=self->getSpaceDimension();
1505                double val,val2;
1506                DataArrayDouble *a,*a2;
1507                DataArrayDoubleTuple *aa,*aa2;
1508                std::vector<double> bb,bb2;
1509                int sw;
1510                const char msg[]="Python wrap of MEDCouplingPointSet::findNodesOnLine : 1st parameter for point.";
1511                const char msg2[]="Python wrap of MEDCouplingPointSet::findNodesOnLine : 2nd parameter for vector.";
1512                const double *p=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,1,spaceDim,true);
1513                const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
1514                std::vector<int> nodes;
1515                self->findNodesOnLine(p,v,eps,nodes);
1516                DataArrayInt *ret=DataArrayInt::New();
1517                ret->alloc((int)nodes.size(),1);
1518                std::copy(nodes.begin(),nodes.end(),ret->getPointer());
1519                return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 );
1520              }
1521            PyObject *findNodesOnPlane(PyObject *pt, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
1522              {
1523                int spaceDim=self->getSpaceDimension();
1524                double val,val2;
1525                DataArrayDouble *a,*a2;
1526                DataArrayDoubleTuple *aa,*aa2;
1527                std::vector<double> bb,bb2;
1528                int sw;
1529                const char msg[]="Python wrap of MEDCouplingPointSet::findNodesOnPlane : 1st parameter for point.";
1530                const char msg2[]="Python wrap of MEDCouplingPointSet::findNodesOnPlane : 2nd parameter for vector.";
1531                const double *p=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,1,spaceDim,true);
1532                const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
1533                std::vector<int> nodes;
1534                self->findNodesOnPlane(p,v,eps,nodes);
1535                DataArrayInt *ret=DataArrayInt::New();
1536                ret->alloc((int)nodes.size(),1);
1537                std::copy(nodes.begin(),nodes.end(),ret->getPointer());
1538                return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 );
1539              }
1540            
1541            PyObject *getNodeIdsNearPoint(PyObject *pt, double eps) const throw(INTERP_KERNEL::Exception)
1542            {
1543              double val;
1544              DataArrayDouble *a;
1545              DataArrayDoubleTuple *aa;
1546              std::vector<double> bb;
1547              int sw;
1548              int spaceDim=self->getSpaceDimension();
1549              const char msg[]="Python wrap of MEDCouplingPointSet::getNodeIdsNearPoint : ";
1550              const double *pos=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,1,spaceDim,true);
1551              DataArrayInt *ret=self->getNodeIdsNearPoint(pos,eps);
1552              return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 );
1553            }
1554
1555            PyObject *getNodeIdsNearPoints(PyObject *pt, int nbOfPoints, double eps) const throw(INTERP_KERNEL::Exception)
1556            {
1557              DataArrayInt *c=0,*cI=0;
1558              //
1559              double val;
1560              DataArrayDouble *a;
1561              DataArrayDoubleTuple *aa;
1562              std::vector<double> bb;
1563              int sw;
1564              int spaceDim=self->getSpaceDimension();
1565              const char msg[]="Python wrap of MEDCouplingPointSet::getNodeIdsNearPoints : ";
1566              const double *pos=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,nbOfPoints,spaceDim,true);
1567              self->getNodeIdsNearPoints(pos,nbOfPoints,eps,c,cI);
1568              PyObject *ret=PyTuple_New(2);
1569              PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(c),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1570              PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cI),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1571              return ret;
1572            }
1573
1574            PyObject *getNodeIdsNearPoints(PyObject *pt, double eps) const throw(INTERP_KERNEL::Exception)
1575            {
1576              DataArrayInt *c=0,*cI=0;
1577              int spaceDim=self->getSpaceDimension();
1578              double val;
1579              DataArrayDouble *a;
1580              DataArrayDoubleTuple *aa;
1581              std::vector<double> bb;
1582              int sw;
1583              int nbOfTuples=-1;
1584              const double *ptPtr=convertObjToPossibleCpp5_Safe2(pt,sw,val,a,aa,bb,"Python wrap of MEDCouplingUMesh::getNodeIdsNearPoints",spaceDim,true,nbOfTuples);
1585              self->getNodeIdsNearPoints(ptPtr,nbOfTuples,eps,c,cI);
1586              //
1587              PyObject *ret=PyTuple_New(2);
1588              PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(c),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1589              PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cI),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1590              return ret;
1591            }
1592
1593            PyObject *getCellsInBoundingBox(PyObject *bbox, double eps) const throw(INTERP_KERNEL::Exception)
1594            {
1595              double val;
1596              DataArrayDouble *a;
1597              DataArrayDoubleTuple *aa;
1598              std::vector<double> bb;
1599              int sw;
1600              int spaceDim=self->getSpaceDimension();
1601              const char msg[]="Python wrap of MEDCouplingPointSet::getCellsInBoundingBox : ";
1602              const double *tmp=convertObjToPossibleCpp5_Safe(bbox,sw,val,a,aa,bb,msg,spaceDim,2,true);
1603              //
1604              DataArrayInt *elems=self->getCellsInBoundingBox(tmp,eps);
1605              return SWIG_NewPointerObj(SWIG_as_voidptr(elems),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 );
1606            }
1607
1608            void duplicateNodesInCoords(PyObject *li) throw(INTERP_KERNEL::Exception)
1609            {
1610              int sw;
1611              int singleVal;
1612              std::vector<int> multiVal;
1613              std::pair<int, std::pair<int,int> > slic;
1614              MEDCoupling::DataArrayInt *daIntTyypp=0;
1615              convertIntStarOrSliceLikePyObjToCpp(li,self->getNumberOfNodes(),sw,singleVal,multiVal,slic,daIntTyypp);
1616              switch(sw)
1617                {
1618                case 1:
1619                  return self->duplicateNodesInCoords(&singleVal,&singleVal+1);
1620                case 2:
1621                  return self->duplicateNodesInCoords(&multiVal[0],&multiVal[0]+multiVal.size());
1622                case 4:
1623                  return self->duplicateNodesInCoords(daIntTyypp->begin(),daIntTyypp->end());
1624                default:
1625                  throw INTERP_KERNEL::Exception("MEDCouplingPointSet::duplicateNodesInCoords : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
1626                }
1627            }
1628
1629            virtual PyObject *findCommonCells(int compType, int startCellId=0) const throw(INTERP_KERNEL::Exception)
1630            {
1631              DataArrayInt *v0=0,*v1=0;
1632              self->findCommonCells(compType,startCellId,v0,v1);
1633              PyObject *res = PyList_New(2);
1634              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(v0),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1635              PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(v1),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1636              return res;
1637            }
1638
1639       
1640            virtual void renumberNodesInConn(PyObject *li) throw(INTERP_KERNEL::Exception)
1641            {
1642              void *da=0;
1643              int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_MEDCoupling__DataArrayInt, 0 | 0 );
1644              if (!SWIG_IsOK(res1))
1645                {
1646                  int size;
1647                  INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
1648                  self->renumberNodesInConn(tmp);
1649                }
1650              else
1651                {
1652                  DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
1653                  if(!da2)
1654                    throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
1655                  da2->checkAllocated();
1656                  self->renumberNodesInConn(da2->getConstPointer());
1657                }
1658            }
1659
1660            virtual PyObject *getNodeIdsInUse() const throw(INTERP_KERNEL::Exception)
1661            {
1662              int ret1=-1;
1663              DataArrayInt *ret0=self->getNodeIdsInUse(ret1);
1664              PyObject *ret=PyTuple_New(2);
1665              PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1666              PyTuple_SetItem(ret,1,PyInt_FromLong(ret1));
1667              return ret;
1668            }
1669
1670            virtual DataArrayInt *fillCellIdsToKeepFromNodeIds(PyObject *li, bool fullyIn) const
1671            {
1672              DataArrayInt *ret=0;
1673              //
1674              int szArr,sw,iTypppArr;
1675              std::vector<int> stdvecTyyppArr;
1676              const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1677              self->fillCellIdsToKeepFromNodeIds(tmp,tmp+szArr,fullyIn,ret);
1678              return ret;
1679            }
1680
1681            virtual PyObject *mergeNodes(double precision) throw(INTERP_KERNEL::Exception)
1682            {
1683              bool ret1;
1684              int ret2;
1685              DataArrayInt *ret0=self->mergeNodes(precision,ret1,ret2);
1686              PyObject *res = PyList_New(3);
1687              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1688              PyList_SetItem(res,1,SWIG_From_bool(ret1));
1689              PyList_SetItem(res,2,SWIG_From_int(ret2));
1690              return res;
1691            }
1692            
1693            virtual PyObject *mergeNodesCenter(double precision) throw(INTERP_KERNEL::Exception)
1694            {
1695              bool ret1;
1696              int ret2;
1697              DataArrayInt *ret0=self->mergeNodesCenter(precision,ret1,ret2);
1698              PyObject *res = PyList_New(3);
1699              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1700              PyList_SetItem(res,1,SWIG_From_bool(ret1));
1701              PyList_SetItem(res,2,SWIG_From_int(ret2));
1702              return res;
1703            }
1704            
1705            DataArrayInt *getCellIdsLyingOnNodes(PyObject *li, bool fullyIn) const throw(INTERP_KERNEL::Exception)
1706            {
1707              void *da=0;
1708              int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_MEDCoupling__DataArrayInt, 0 |  0 );
1709              if (!SWIG_IsOK(res1))
1710                {
1711                  int size;
1712                  INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
1713                  return self->getCellIdsLyingOnNodes(tmp,((const int *)tmp)+size,fullyIn);
1714                }
1715              else
1716                {
1717                  DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
1718                  if(!da2)
1719                    throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
1720                  da2->checkAllocated();
1721                  return self->getCellIdsLyingOnNodes(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems(),fullyIn);
1722                }
1723            }
1724
1725            MEDCouplingPointSet *__getitem__(PyObject *listOrDataArrI) throw(INTERP_KERNEL::Exception)
1726            {
1727              int sw;
1728              int singleVal;
1729              std::vector<int> multiVal;
1730              std::pair<int, std::pair<int,int> > slic;
1731              MEDCoupling::DataArrayInt *daIntTyypp=0;
1732              int nbc=self->getNumberOfCells();
1733              convertIntStarOrSliceLikePyObjToCpp(listOrDataArrI,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
1734              switch(sw)
1735                {
1736                case 1:
1737                  {
1738                    if(singleVal>=nbc)
1739                      {
1740                        std::ostringstream oss;
1741                        oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1742                        throw INTERP_KERNEL::Exception(oss.str().c_str());
1743                      }
1744                    if(singleVal>=0)
1745                      return self->buildPartOfMySelf(&singleVal,&singleVal+1,true);
1746                    else
1747                      {
1748                        if(nbc+singleVal>0)
1749                          {
1750                            int tmp=nbc+singleVal;
1751                            return self->buildPartOfMySelf(&tmp,&tmp+1,true);
1752                          }
1753                        else
1754                          {
1755                            std::ostringstream oss;
1756                            oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1757                            throw INTERP_KERNEL::Exception(oss.str().c_str());
1758                          }
1759                      }
1760                  }
1761                case 2:
1762                  {
1763                    return static_cast<MEDCouplingPointSet *>(self->buildPartOfMySelf(&multiVal[0],&multiVal[0]+multiVal.size(),true));
1764                  }
1765                case 3:
1766                  {
1767                    return self->buildPartOfMySelfSlice(slic.first,slic.second.first,slic.second.second,true);
1768                  }
1769                case 4:
1770                  {
1771                    if(!daIntTyypp)
1772                      throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__getitem__ : null instance has been given in input !");
1773                    daIntTyypp->checkAllocated();
1774                    return self->buildPartOfMySelf(daIntTyypp->begin(),daIntTyypp->end(),true);
1775                  }
1776                default:
1777                  throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__getitem__ : unrecognized type in input ! Possibilities are : int, list or tuple of int DataArrayInt instance !");
1778                }
1779            }
1780            
1781            static void Rotate2DAlg(PyObject *center, double angle, int nbNodes, PyObject *coords) throw(INTERP_KERNEL::Exception)
1782            {
1783              int sz;
1784              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1785              INTERP_KERNEL::AutoCPtr<double> coo=convertPyToNewDblArr2(coords,&sz);
1786              MEDCoupling::DataArrayDouble::Rotate2DAlg(c,angle,nbNodes,coo,coo);
1787              for(int i=0;i<sz;i++)
1788                PyList_SetItem(coords,i,PyFloat_FromDouble(coo[i]));
1789            }
1790            
1791            static void Rotate2DAlg(PyObject *center, double angle, PyObject *coords) throw(INTERP_KERNEL::Exception)
1792            {
1793              int sz;
1794              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1795              int sw,nbNodes=0;
1796              double val0;  MEDCoupling::DataArrayDouble *val1=0; MEDCoupling::DataArrayDoubleTuple *val2=0;
1797              std::vector<double> val3;
1798              const double *coo=convertObjToPossibleCpp5_Safe2(coords,sw,val0,val1,val2,val3,
1799                                                             "Rotate2DAlg",2,true,nbNodes);
1800              if(sw!=2 && sw!=3)
1801                throw INTERP_KERNEL::Exception("Invalid call to MEDCouplingPointSet::Rotate2DAlg : try another overload method !");
1802              MEDCoupling::DataArrayDouble::Rotate2DAlg(c,angle,nbNodes,coo,const_cast<double *>(coo));
1803            }
1804            
1805            static void Rotate3DAlg(PyObject *center, PyObject *vect, double angle, int nbNodes, PyObject *coords) throw(INTERP_KERNEL::Exception)
1806            {
1807              int sz,sz2;
1808              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1809              INTERP_KERNEL::AutoCPtr<double> coo=convertPyToNewDblArr2(coords,&sz);
1810              INTERP_KERNEL::AutoCPtr<double> v=convertPyToNewDblArr2(vect,&sz2);
1811              MEDCoupling::DataArrayDouble::Rotate3DAlg(c,v,angle,nbNodes,coo,coo);
1812              for(int i=0;i<sz;i++)
1813                PyList_SetItem(coords,i,PyFloat_FromDouble(coo[i]));
1814            }
1815            
1816            static void Rotate3DAlg(PyObject *center, PyObject *vect, double angle, PyObject *coords) throw(INTERP_KERNEL::Exception)
1817            {
1818              int sz,sz2;
1819              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1820              int sw,nbNodes=0;
1821              double val0;  MEDCoupling::DataArrayDouble *val1=0; MEDCoupling::DataArrayDoubleTuple *val2=0;
1822              std::vector<double> val3;
1823              const double *coo=convertObjToPossibleCpp5_Safe2(coords,sw,val0,val1,val2,val3,
1824                                                             "Rotate3DAlg",3,true,nbNodes);
1825              if(sw!=2 && sw!=3)
1826                throw INTERP_KERNEL::Exception("Invalid call to MEDCouplingPointSet::Rotate3DAlg : try another overload method !");
1827              INTERP_KERNEL::AutoCPtr<double> v=convertPyToNewDblArr2(vect,&sz2);
1828              MEDCoupling::DataArrayDouble::Rotate3DAlg(c,v,angle,nbNodes,coo,const_cast<double *>(coo));
1829            }
1830          }
1831     };
1832
1833   //== MEDCouplingPointSet End
1834
1835   class MEDCouplingUMeshCell
1836   {
1837   public:
1838     INTERP_KERNEL::NormalizedCellType getType() const;
1839     %extend
1840       {
1841         std::string __str__() const throw(INTERP_KERNEL::Exception)
1842         {
1843           return self->repr();
1844         }
1845
1846         PyObject *getAllConn() const throw(INTERP_KERNEL::Exception)
1847         {
1848           int ret2;
1849           const int *r=self->getAllConn(ret2);
1850           PyObject *ret=PyTuple_New(ret2);
1851           for(int i=0;i<ret2;i++)
1852             PyTuple_SetItem(ret,i,PyInt_FromLong(r[i]));
1853           return ret;
1854         }
1855       }
1856   };
1857
1858   class MEDCouplingUMeshCellIterator
1859   {
1860   public:
1861     %extend
1862       {
1863         PyObject *next()
1864         {
1865           MEDCouplingUMeshCell *ret=self->nextt();
1866           if(ret)
1867             return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_MEDCoupling__MEDCouplingUMeshCell,0|0);
1868           else
1869             {
1870               PyErr_SetString(PyExc_StopIteration,"No more data.");
1871               return 0;
1872             }
1873         }
1874       }
1875   };
1876
1877   class MEDCouplingUMeshCellByTypeIterator
1878   {
1879   public:
1880     ~MEDCouplingUMeshCellByTypeIterator();
1881     %extend
1882       {
1883         PyObject *next()
1884         {
1885           MEDCouplingUMeshCellEntry *ret=self->nextt();
1886           if(ret)
1887             return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_MEDCoupling__MEDCouplingUMeshCellEntry,SWIG_POINTER_OWN | 0);
1888           else
1889             {
1890               PyErr_SetString(PyExc_StopIteration,"No more data.");
1891               return 0;
1892             }
1893         }
1894       }
1895   };
1896
1897   class MEDCouplingUMeshCellByTypeEntry
1898   {
1899   public:
1900     ~MEDCouplingUMeshCellByTypeEntry();
1901     %extend
1902       {
1903         MEDCouplingUMeshCellByTypeIterator *__iter__()
1904         {
1905           return self->iterator();
1906         }
1907       }
1908   };
1909
1910   class MEDCouplingUMeshCellEntry
1911   {
1912   public:
1913     INTERP_KERNEL::NormalizedCellType getType() const;
1914     int getNumberOfElems() const;
1915     %extend
1916       {
1917         MEDCouplingUMeshCellIterator *__iter__()
1918         {
1919           return self->iterator();
1920         }
1921       }
1922   };
1923   
1924   //== MEDCouplingUMesh
1925
1926   class MEDCouplingUMesh : public MEDCoupling::MEDCouplingPointSet
1927   {
1928   public:
1929     static MEDCouplingUMesh *New() throw(INTERP_KERNEL::Exception);
1930     static MEDCouplingUMesh *New(const char *meshName, int meshDim) throw(INTERP_KERNEL::Exception);
1931     void checkConsistencyLight() const throw(INTERP_KERNEL::Exception);
1932     void setMeshDimension(int meshDim) throw(INTERP_KERNEL::Exception);
1933     void allocateCells(int nbOfCells=0) throw(INTERP_KERNEL::Exception);
1934     void finishInsertingCells() throw(INTERP_KERNEL::Exception);
1935     MEDCouplingUMeshCellByTypeEntry *cellsByType() throw(INTERP_KERNEL::Exception);
1936     void setConnectivity(DataArrayInt *conn, DataArrayInt *connIndex, bool isComputingTypes=true) throw(INTERP_KERNEL::Exception);
1937     INTERP_KERNEL::NormalizedCellType getTypeOfCell(int cellId) const throw(INTERP_KERNEL::Exception);
1938     void setPartOfMySelfSlice(int start, int end, int step, const MEDCouplingUMesh& otherOnSameCoordsThanThis) throw(INTERP_KERNEL::Exception);
1939     int getNodalConnectivityArrayLen() const throw(INTERP_KERNEL::Exception);
1940     void computeTypes() throw(INTERP_KERNEL::Exception);
1941     std::string reprConnectivityOfThis() const throw(INTERP_KERNEL::Exception);
1942     MEDCouplingUMesh *buildSetInstanceFromThis(int spaceDim) const throw(INTERP_KERNEL::Exception);
1943     //tools
1944     DataArrayInt *conformize2D(double eps) throw(INTERP_KERNEL::Exception);
1945     DataArrayInt *conformize3D(double eps) throw(INTERP_KERNEL::Exception);
1946     DataArrayInt *colinearize2D(double eps) throw(INTERP_KERNEL::Exception);
1947     DataArrayInt *colinearizeKeepingConform2D(double eps) throw(INTERP_KERNEL::Exception);
1948     void shiftNodeNumbersInConn(int delta) throw(INTERP_KERNEL::Exception);
1949     std::vector<bool> getQuadraticStatus() const throw(INTERP_KERNEL::Exception);
1950     DataArrayInt *findCellIdsOnBoundary() const throw(INTERP_KERNEL::Exception);
1951     MEDCouplingUMesh *computeSkin() const throw(INTERP_KERNEL::Exception);
1952     bool checkConsecutiveCellTypes() const throw(INTERP_KERNEL::Exception);
1953     bool checkConsecutiveCellTypesForMEDFileFrmt() const throw(INTERP_KERNEL::Exception);
1954     DataArrayInt *rearrange2ConsecutiveCellTypes() throw(INTERP_KERNEL::Exception);
1955     DataArrayInt *sortCellsInMEDFileFrmt() throw(INTERP_KERNEL::Exception);
1956     DataArrayInt *getRenumArrForMEDFileFrmt() const throw(INTERP_KERNEL::Exception);
1957     DataArrayInt *convertCellArrayPerGeoType(const DataArrayInt *da) const throw(INTERP_KERNEL::Exception);
1958     MEDCouplingUMesh *buildDescendingConnectivity(DataArrayInt *desc, DataArrayInt *descIndx, DataArrayInt *revDesc, DataArrayInt *revDescIndx) const throw(INTERP_KERNEL::Exception);
1959     MEDCouplingUMesh *buildDescendingConnectivity2(DataArrayInt *desc, DataArrayInt *descIndx, DataArrayInt *revDesc, DataArrayInt *revDescIndx) const throw(INTERP_KERNEL::Exception);
1960     MEDCouplingUMesh *explode3DMeshTo1D(DataArrayInt *desc, DataArrayInt *descIndx, DataArrayInt *revDesc, DataArrayInt *revDescIndx) const throw(INTERP_KERNEL::Exception);
1961     MEDCouplingUMesh *explodeMeshIntoMicroEdges(DataArrayInt *desc, DataArrayInt *descIndx, DataArrayInt *revDesc, DataArrayInt *revDescIndx) const throw(INTERP_KERNEL::Exception);
1962     void orientCorrectlyPolyhedrons() throw(INTERP_KERNEL::Exception);
1963     bool isPresenceOfQuadratic() const throw(INTERP_KERNEL::Exception);
1964     bool isFullyQuadratic() const throw(INTERP_KERNEL::Exception);
1965     MEDCouplingFieldDouble *buildDirectionVectorField() const throw(INTERP_KERNEL::Exception);
1966     bool isContiguous1D() const throw(INTERP_KERNEL::Exception);
1967     void tessellate2D(double eps) throw(INTERP_KERNEL::Exception);
1968     void convertQuadraticCellsToLinear() throw(INTERP_KERNEL::Exception);
1969     DataArrayInt *convertLinearCellsToQuadratic(int conversionType=0) throw(INTERP_KERNEL::Exception);
1970     void convertDegeneratedCells() throw(INTERP_KERNEL::Exception);
1971     DataArrayInt *convertDegeneratedCellsAndRemoveFlatOnes() throw(INTERP_KERNEL::Exception);
1972     bool areOnlySimplexCells() const throw(INTERP_KERNEL::Exception);
1973     MEDCouplingFieldDouble *getEdgeRatioField() const throw(INTERP_KERNEL::Exception);
1974     MEDCouplingFieldDouble *getAspectRatioField() const throw(INTERP_KERNEL::Exception);
1975     MEDCouplingFieldDouble *getWarpField() const throw(INTERP_KERNEL::Exception);
1976     MEDCouplingFieldDouble *getSkewField() const throw(INTERP_KERNEL::Exception);
1977     DataArrayDouble *computePlaneEquationOf3DFaces() const throw(INTERP_KERNEL::Exception);
1978     DataArrayInt *convexEnvelop2D() throw(INTERP_KERNEL::Exception);
1979     std::string cppRepr() const throw(INTERP_KERNEL::Exception);
1980     DataArrayInt *findAndCorrectBadOriented3DExtrudedCells() throw(INTERP_KERNEL::Exception);
1981     DataArrayInt *findAndCorrectBadOriented3DCells() throw(INTERP_KERNEL::Exception);
1982     MEDCoupling::MEDCoupling1GTUMesh *convertIntoSingleGeoTypeMesh() const throw(INTERP_KERNEL::Exception);
1983     MEDCouplingSkyLineArray *generateGraph() const throw(INTERP_KERNEL::Exception);
1984     DataArrayInt *convertNodalConnectivityToStaticGeoTypeMesh() const throw(INTERP_KERNEL::Exception);
1985     DataArrayInt *buildUnionOf2DMesh() const throw(INTERP_KERNEL::Exception);
1986     DataArrayInt *buildUnionOf3DMesh() const throw(INTERP_KERNEL::Exception);
1987     DataArrayInt *orderConsecutiveCells1D() const throw(INTERP_KERNEL::Exception);
1988     DataArrayDouble *getBoundingBoxForBBTreeFast() const throw(INTERP_KERNEL::Exception);
1989     DataArrayDouble *getBoundingBoxForBBTree2DQuadratic(double arcDetEps=1e-12) const throw(INTERP_KERNEL::Exception);
1990     DataArrayDouble *getBoundingBoxForBBTree1DQuadratic(double arcDetEps=1e-12) const throw(INTERP_KERNEL::Exception);
1991     void changeOrientationOfCells() throw(INTERP_KERNEL::Exception);
1992     int split2DCells(const DataArrayInt *desc, const DataArrayInt *descI, const DataArrayInt *subNodesInSeg, const DataArrayInt *subNodesInSegI, const DataArrayInt *midOpt=0, const DataArrayInt *midOptI=0) throw(INTERP_KERNEL::Exception);
1993     static MEDCouplingUMesh *Build0DMeshFromCoords(DataArrayDouble *da) throw(INTERP_KERNEL::Exception);
1994     static MEDCouplingUMesh *MergeUMeshes(const MEDCouplingUMesh *mesh1, const MEDCouplingUMesh *mesh2) throw(INTERP_KERNEL::Exception);
1995     static MEDCouplingUMesh *MergeUMeshesOnSameCoords(const MEDCouplingUMesh *mesh1, const MEDCouplingUMesh *mesh2) throw(INTERP_KERNEL::Exception);
1996     static DataArrayInt *ComputeSpreadZoneGradually(const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn) throw(INTERP_KERNEL::Exception);
1997     static DataArrayInt *ComputeRangesFromTypeDistribution(const std::vector<int>& code) throw(INTERP_KERNEL::Exception);
1998     %extend {
1999       MEDCouplingUMesh() throw(INTERP_KERNEL::Exception)
2000       {
2001         return MEDCouplingUMesh::New();
2002       }
2003       
2004       MEDCouplingUMesh(const char *meshName, int meshDim) throw(INTERP_KERNEL::Exception)
2005       {
2006         return MEDCouplingUMesh::New(meshName,meshDim);
2007       }
2008
2009       std::string __str__() const throw(INTERP_KERNEL::Exception)
2010       {
2011         return self->simpleRepr();
2012       }
2013       
2014       std::string __repr__() const throw(INTERP_KERNEL::Exception)
2015       {
2016         std::ostringstream oss;
2017         self->reprQuickOverview(oss);
2018         return oss.str();
2019       }
2020       
2021       MEDCouplingUMeshCellIterator *__iter__() throw(INTERP_KERNEL::Exception)
2022       {
2023         return self->cellIterator();
2024       }
2025
2026       static MEDCouplingUMesh *Build1DMeshFromCoords(DataArrayDouble *da) throw(INTERP_KERNEL::Exception)
2027       {
2028         MCAuto<MEDCouplingUMesh> ret(MEDCouplingUMesh::Build1DMeshFromCoords(da));
2029         return ret.retn();
2030       }
2031       
2032       PyObject *getAllGeoTypesSorted() const throw(INTERP_KERNEL::Exception)
2033       {
2034         std::vector<INTERP_KERNEL::NormalizedCellType> result=self->getAllGeoTypesSorted();
2035         std::vector<INTERP_KERNEL::NormalizedCellType>::const_iterator iL=result.begin();
2036         PyObject *res=PyList_New(result.size());
2037         for(int i=0;iL!=result.end(); i++, iL++)
2038           PyList_SetItem(res,i,PyInt_FromLong(*iL));
2039         return res;
2040       }
2041       
2042       void setPartOfMySelf(PyObject *li, const MEDCouplingUMesh& otherOnSameCoordsThanThis) throw(INTERP_KERNEL::Exception)
2043       {
2044         int sw;
2045         int singleVal;
2046         std::vector<int> multiVal;
2047         std::pair<int, std::pair<int,int> > slic;
2048         MEDCoupling::DataArrayInt *daIntTyypp=0;
2049         int nbc=self->getNumberOfCells();
2050         convertIntStarOrSliceLikePyObjToCpp(li,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
2051         switch(sw)
2052           {
2053           case 1:
2054             {
2055               if(singleVal>=nbc)
2056                 {
2057                   std::ostringstream oss;
2058                   oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
2059                   throw INTERP_KERNEL::Exception(oss.str().c_str());
2060                 }
2061               if(singleVal>=0)
2062                 {
2063                   self->setPartOfMySelf(&singleVal,&singleVal+1,otherOnSameCoordsThanThis);
2064                   break;
2065                 }
2066               else
2067                 {
2068                   if(nbc+singleVal>0)
2069                     {
2070                       int tmp=nbc+singleVal;
2071                       self->setPartOfMySelf(&tmp,&tmp+1,otherOnSameCoordsThanThis);
2072                       break;
2073                     }
2074                   else
2075                     {
2076                       std::ostringstream oss;
2077                       oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
2078                       throw INTERP_KERNEL::Exception(oss.str().c_str());
2079                     }
2080                 }
2081             }
2082           case 2:
2083             {
2084               self->setPartOfMySelf(&multiVal[0],&multiVal[0]+multiVal.size(),otherOnSameCoordsThanThis);
2085               break;
2086             }
2087           case 4:
2088             {
2089               if(!daIntTyypp)
2090                 throw INTERP_KERNEL::Exception("MEDCouplingUMesh::setPartOfMySelf : null instance has been given in input !");
2091               daIntTyypp->checkAllocated();
2092               self->setPartOfMySelf(daIntTyypp->begin(),daIntTyypp->end(),otherOnSameCoordsThanThis);
2093               break;
2094             }
2095           default:
2096             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::setPartOfMySelf : unrecognized type in input ! Possibilities are : int, list or tuple of int DataArrayInt instance !");
2097           }
2098       }
2099
2100       void __setitem__(PyObject *li, const MEDCouplingUMesh& otherOnSameCoordsThanThis) throw(INTERP_KERNEL::Exception)
2101       {
2102         int sw;
2103         int singleVal;
2104         std::vector<int> multiVal;
2105         std::pair<int, std::pair<int,int> > slic;
2106         MEDCoupling::DataArrayInt *daIntTyypp=0;
2107         int nbc=self->getNumberOfCells();
2108         convertIntStarOrSliceLikePyObjToCpp(li,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
2109         switch(sw)
2110           {
2111           case 1:
2112             {
2113               if(singleVal>=nbc)
2114                 {
2115                   std::ostringstream oss;
2116                   oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
2117                   throw INTERP_KERNEL::Exception(oss.str().c_str());
2118                 }
2119               if(singleVal>=0)
2120                 {
2121                   self->setPartOfMySelf(&singleVal,&singleVal+1,otherOnSameCoordsThanThis);
2122                   break;
2123                 }
2124               else
2125                 {
2126                   if(nbc+singleVal>0)
2127                     {
2128                       int tmp=nbc+singleVal;
2129                       self->setPartOfMySelf(&tmp,&tmp+1,otherOnSameCoordsThanThis);
2130                       break;
2131                     }
2132                   else
2133                     {
2134                       std::ostringstream oss;
2135                       oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
2136                       throw INTERP_KERNEL::Exception(oss.str().c_str());
2137                     }
2138                 }
2139             }
2140           case 2:
2141             {
2142               self->setPartOfMySelf(&multiVal[0],&multiVal[0]+multiVal.size(),otherOnSameCoordsThanThis);
2143               break;
2144             }
2145           case 3:
2146             {
2147               self->setPartOfMySelfSlice(slic.first,slic.second.first,slic.second.second,otherOnSameCoordsThanThis);
2148               break;
2149             }
2150           case 4:
2151             {
2152               if(!daIntTyypp)
2153                 throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__setitem__ : null instance has been given in input !");
2154               daIntTyypp->checkAllocated();
2155               self->setPartOfMySelf(daIntTyypp->begin(),daIntTyypp->end(),otherOnSameCoordsThanThis);
2156               break;
2157             }
2158           default:
2159             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__setitem__ : unrecognized type in input ! Possibilities are : int, list or tuple of int, slice, DataArrayInt instance !");
2160           }
2161       }
2162
2163       void insertNextCell(INTERP_KERNEL::NormalizedCellType type, int size, PyObject *li) throw(INTERP_KERNEL::Exception)
2164       {
2165         int szArr,sw,iTypppArr;
2166         std::vector<int> stdvecTyyppArr;
2167         const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
2168         if(size>szArr)
2169           {
2170             std::ostringstream oss; oss << "Wrap of MEDCouplingUMesh::insertNextCell : request of connectivity with length " << size << " whereas the length of input is " << szArr << " !";
2171             throw INTERP_KERNEL::Exception(oss.str().c_str());
2172           }
2173         self->insertNextCell(type,size,tmp);
2174       }
2175
2176       void insertNextCell(INTERP_KERNEL::NormalizedCellType type, PyObject *li) throw(INTERP_KERNEL::Exception)
2177       {
2178         int szArr,sw,iTypppArr;
2179         std::vector<int> stdvecTyyppArr;
2180         const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
2181         self->insertNextCell(type,szArr,tmp);
2182       }
2183       
2184       DataArrayInt *getNodalConnectivity() throw(INTERP_KERNEL::Exception)
2185       {
2186         DataArrayInt *ret=self->getNodalConnectivity();
2187         if(ret)
2188           ret->incrRef();
2189         return ret;
2190       }
2191       DataArrayInt *getNodalConnectivityIndex() throw(INTERP_KERNEL::Exception)
2192       {
2193         DataArrayInt *ret=self->getNodalConnectivityIndex();
2194         if(ret)
2195           ret->incrRef();
2196         return ret;
2197       }
2198       
2199       static PyObject *ComputeSpreadZoneGraduallyFromSeed(PyObject *seed, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn, int nbOfDepthPeeling=-1) throw(INTERP_KERNEL::Exception)
2200       {
2201         int szArr,sw,iTypppArr;
2202         std::vector<int> stdvecTyyppArr;
2203         const int *seedPtr=convertIntStarLikePyObjToCppIntStar(seed,sw,szArr,iTypppArr,stdvecTyyppArr);
2204         int nbOfDepthPeelingPerformed=0;
2205         DataArrayInt *ret0=MEDCouplingUMesh::ComputeSpreadZoneGraduallyFromSeed(seedPtr,seedPtr+szArr,arrIn,arrIndxIn,nbOfDepthPeeling,nbOfDepthPeelingPerformed);
2206         PyObject *res=PyTuple_New(2);
2207         PyTuple_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2208         PyTuple_SetItem(res,1,PyInt_FromLong(nbOfDepthPeelingPerformed));
2209         return res;
2210       }
2211
2212       static PyObject *FindCommonCellsAlg(int compType, int startCellId, const DataArrayInt *nodal, const DataArrayInt *nodalI, const DataArrayInt *revNodal, const DataArrayInt *revNodalI) throw(INTERP_KERNEL::Exception)
2213       {
2214         DataArrayInt *v0=0,*v1=0;
2215         MEDCouplingUMesh::FindCommonCellsAlg(compType,startCellId,nodal,nodalI,revNodal,revNodalI,v0,v1);
2216         PyObject *res = PyList_New(2);
2217         PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(v0),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2218         PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(v1),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2219         return res;
2220       }
2221       
2222       PyObject *distanceToPoint(PyObject *point) const throw(INTERP_KERNEL::Exception)
2223       {
2224         double val;
2225         DataArrayDouble *a;
2226         DataArrayDoubleTuple *aa;
2227         std::vector<double> bb;
2228         int sw;
2229         int nbOfCompo=self->getSpaceDimension();
2230         const double *pt=convertObjToPossibleCpp5_Safe(point,sw,val,a,aa,bb,"Python wrap of MEDCouplingUMesh::distanceToPoint",1,nbOfCompo,true);
2231         //
2232         int cellId=-1;
2233         double ret0=self->distanceToPoint(pt,pt+nbOfCompo,cellId);
2234         PyObject *ret=PyTuple_New(2);
2235         PyTuple_SetItem(ret,0,PyFloat_FromDouble(ret0));
2236         PyTuple_SetItem(ret,1,PyInt_FromLong(cellId));
2237         return ret;
2238       }
2239
2240       PyObject *distanceToPoints(const DataArrayDouble *pts) const throw(INTERP_KERNEL::Exception)
2241       {
2242         DataArrayInt *ret1=0;
2243         DataArrayDouble *ret0=self->distanceToPoints(pts,ret1);
2244         PyObject *ret=PyTuple_New(2);
2245         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
2246         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2247         return ret;
2248       }
2249
2250       PyObject *tetrahedrize(int policy) throw(INTERP_KERNEL::Exception)
2251       {
2252         int ret2(-1);
2253         DataArrayInt *ret1(0);
2254         MEDCoupling1SGTUMesh *ret0(self->tetrahedrize(policy,ret1,ret2));
2255         PyObject *ret=PyTuple_New(3);
2256         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__MEDCoupling1SGTUMesh, SWIG_POINTER_OWN | 0 ));
2257         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2258         PyTuple_SetItem(ret,2,PyInt_FromLong(ret2));
2259         return ret;
2260       }
2261       
2262       PyObject *checkButterflyCells(double eps=1e-12) throw(INTERP_KERNEL::Exception)
2263       {
2264         std::vector<int> cells;
2265         self->checkButterflyCells(cells,eps);
2266         DataArrayInt *ret=DataArrayInt::New();
2267         ret->alloc((int)cells.size(),1);
2268         std::copy(cells.begin(),cells.end(),ret->getPointer());
2269         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 );
2270       }
2271
2272       PyObject *splitByType() const throw(INTERP_KERNEL::Exception)
2273       {
2274         std::vector<MEDCouplingUMesh *> ms=self->splitByType();
2275         int sz=ms.size();
2276         PyObject *ret = PyList_New(sz);
2277         for(int i=0;i<sz;i++)
2278           PyList_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(ms[i]),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2279         return ret;
2280       }
2281
2282       PyObject *partitionBySpreadZone() const throw(INTERP_KERNEL::Exception)
2283       {
2284         std::vector<DataArrayInt *> retCpp=self->partitionBySpreadZone();
2285         int sz=retCpp.size();
2286         PyObject *ret=PyList_New(sz);
2287         for(int i=0;i<sz;i++)
2288           PyList_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(retCpp[i]),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2289         return ret;
2290       }
2291
2292       static PyObject *PartitionBySpreadZone(const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn) throw(INTERP_KERNEL::Exception)
2293       {
2294         std::vector<DataArrayInt *> retCpp(MEDCouplingUMesh::PartitionBySpreadZone(arrIn,arrIndxIn));
2295         int sz=retCpp.size();
2296         PyObject *ret=PyList_New(sz);
2297         for(int i=0;i<sz;i++)
2298           PyList_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(retCpp[i]),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2299         return ret;
2300       }
2301
2302       PyObject *keepSpecifiedCells(INTERP_KERNEL::NormalizedCellType type, PyObject *ids) const throw(INTERP_KERNEL::Exception)
2303       {
2304         int size;
2305         INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(ids,&size);
2306         MEDCouplingUMesh *ret=self->keepSpecifiedCells(type,tmp,tmp+size);
2307         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 );
2308       }
2309
2310       bool checkConsecutiveCellTypesAndOrder(PyObject *li) const throw(INTERP_KERNEL::Exception)
2311       {
2312         int sz;
2313         INTERP_KERNEL::AutoPtr<INTERP_KERNEL::NormalizedCellType> order=(INTERP_KERNEL::NormalizedCellType *)convertPyToNewIntArr2(li,&sz);
2314         bool ret=self->checkConsecutiveCellTypesAndOrder(order,order+sz);
2315         return ret;
2316       }
2317
2318       DataArrayInt *getRenumArrForConsecutiveCellTypesSpec(PyObject *li) const throw(INTERP_KERNEL::Exception)
2319       {
2320         int sz;
2321         INTERP_KERNEL::AutoPtr<INTERP_KERNEL::NormalizedCellType> order=(INTERP_KERNEL::NormalizedCellType *)convertPyToNewIntArr2(li,&sz);
2322         DataArrayInt *ret=self->getRenumArrForConsecutiveCellTypesSpec(order,(INTERP_KERNEL::NormalizedCellType *)order+sz);
2323         return ret;
2324       }
2325
2326       PyObject *findNodesToDuplicate(const MEDCouplingUMesh& otherDimM1OnSameCoords) const throw(INTERP_KERNEL::Exception)
2327       {
2328         DataArrayInt *tmp0=0,*tmp1=0,*tmp2=0;
2329         self->findNodesToDuplicate(otherDimM1OnSameCoords,tmp0,tmp1,tmp2);
2330         PyObject *ret=PyTuple_New(3);
2331         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(tmp0),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2332         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp1),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2333         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(tmp2),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2334         return ret;
2335       }
2336
2337       PyObject *findCellIdsLyingOn(const MEDCouplingUMesh& otherDimM1OnSameCoords) const throw(INTERP_KERNEL::Exception)
2338       {
2339         DataArrayInt *tmp0=0,*tmp1=0;
2340         self->findCellIdsLyingOn(otherDimM1OnSameCoords,tmp0,tmp1);
2341         PyObject *ret=PyTuple_New(2);
2342         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(tmp0),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2343         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp1),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2344         return ret;
2345       }
2346
2347       void duplicateNodes(PyObject *li) throw(INTERP_KERNEL::Exception)
2348       {
2349         int sw;
2350         int singleVal;
2351         std::vector<int> multiVal;
2352         std::pair<int, std::pair<int,int> > slic;
2353         MEDCoupling::DataArrayInt *daIntTyypp=0;
2354         convertIntStarOrSliceLikePyObjToCpp(li,self->getNumberOfNodes(),sw,singleVal,multiVal,slic,daIntTyypp);
2355         switch(sw)
2356           {
2357           case 1:
2358             return self->duplicateNodes(&singleVal,&singleVal+1);
2359           case 2:
2360             return self->duplicateNodes(&multiVal[0],&multiVal[0]+multiVal.size());
2361           case 4:
2362             return self->duplicateNodes(daIntTyypp->begin(),daIntTyypp->end());
2363           default:
2364             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::duplicateNodes : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2365           }
2366       }
2367
2368       void duplicateNodesInConn(PyObject *li, int offset) throw(INTERP_KERNEL::Exception)
2369       {
2370         int sw;
2371         int singleVal;
2372         std::vector<int> multiVal;
2373         std::pair<int, std::pair<int,int> > slic;
2374         MEDCoupling::DataArrayInt *daIntTyypp=0;
2375         convertIntStarOrSliceLikePyObjToCpp(li,self->getNumberOfNodes(),sw,singleVal,multiVal,slic,daIntTyypp);
2376         switch(sw)
2377           {
2378           case 1:
2379             return self->duplicateNodesInConn(&singleVal,&singleVal+1,offset);
2380           case 2:
2381             return self->duplicateNodesInConn(&multiVal[0],&multiVal[0]+multiVal.size(),offset);
2382           case 4:
2383             return self->duplicateNodesInConn(daIntTyypp->begin(),daIntTyypp->end(),offset);
2384           default:
2385             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::duplicateNodesInConn : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2386           }
2387       }
2388
2389       void attractSeg3MidPtsAroundNodes(double ratio, PyObject *nodeIds) throw(INTERP_KERNEL::Exception)
2390       {
2391         int szArr,sw,iTypppArr;
2392         std::vector<int> stdvecTyyppArr;
2393         const int *nodeIdsPtr(convertIntStarLikePyObjToCppIntStar(nodeIds,sw,szArr,iTypppArr,stdvecTyyppArr));
2394         self->attractSeg3MidPtsAroundNodes(ratio,nodeIdsPtr,nodeIdsPtr+szArr);
2395       }
2396
2397       PyObject *getLevArrPerCellTypes(PyObject *li) const throw(INTERP_KERNEL::Exception)
2398       {
2399         int sz;
2400         INTERP_KERNEL::AutoPtr<INTERP_KERNEL::NormalizedCellType> order=(INTERP_KERNEL::NormalizedCellType *)convertPyToNewIntArr2(li,&sz);
2401         DataArrayInt *tmp0,*tmp1=0;
2402         tmp0=self->getLevArrPerCellTypes(order,(INTERP_KERNEL::NormalizedCellType *)order+sz,tmp1);
2403         PyObject *ret=PyTuple_New(2);
2404         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(tmp0),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2405         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp1),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2406         return ret;
2407       }
2408
2409       PyObject *convertNodalConnectivityToDynamicGeoTypeMesh() const throw(INTERP_KERNEL::Exception)
2410       {
2411         DataArrayInt *ret0=0,*ret1=0;
2412         self->convertNodalConnectivityToDynamicGeoTypeMesh(ret0,ret1);
2413         PyObject *ret=PyTuple_New(2);
2414         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2415         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2416         return ret;
2417       }
2418
2419       static PyObject *AggregateSortedByTypeMeshesOnSameCoords(PyObject *ms) throw(INTERP_KERNEL::Exception)
2420       {
2421         std::vector<const MEDCoupling::MEDCouplingUMesh *> meshes;
2422         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingUMesh *>(ms,SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2423         DataArrayInt *ret1=0,*ret2=0;
2424         MEDCouplingUMesh *ret0=MEDCouplingUMesh::AggregateSortedByTypeMeshesOnSameCoords(meshes,ret1,ret2);
2425         PyObject *ret=PyTuple_New(3);
2426         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2427         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2428         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(ret2),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2429         return ret;
2430       }
2431
2432       static PyObject *MergeUMeshesOnSameCoords(PyObject *ms) throw(INTERP_KERNEL::Exception)
2433       {
2434         std::vector<const MEDCoupling::MEDCouplingUMesh *> meshes;
2435         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingUMesh *>(ms,SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2436         MEDCouplingUMesh *ret=MEDCouplingUMesh::MergeUMeshesOnSameCoords(meshes);
2437         return convertMesh(ret, SWIG_POINTER_OWN | 0 );
2438       }
2439
2440       static PyObject *FuseUMeshesOnSameCoords(PyObject *ms, int compType) throw(INTERP_KERNEL::Exception)
2441       {
2442         int sz;
2443         std::vector<const MEDCouplingUMesh *> meshes;
2444         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingUMesh *>(ms,SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2445         std::vector<DataArrayInt *> corr;
2446         MEDCouplingUMesh *um=MEDCouplingUMesh::FuseUMeshesOnSameCoords(meshes,compType,corr);
2447         sz=corr.size();
2448         PyObject *ret1=PyList_New(sz);
2449         for(int i=0;i<sz;i++)
2450           PyList_SetItem(ret1,i,SWIG_NewPointerObj(SWIG_as_voidptr(corr[i]),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2451         PyObject *ret=PyList_New(2);
2452         PyList_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(um),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2453         PyList_SetItem(ret,1,ret1);
2454         return ret;
2455       }
2456
2457       static void PutUMeshesOnSameAggregatedCoords(PyObject *ms) throw(INTERP_KERNEL::Exception)
2458       {
2459         std::vector<MEDCouplingUMesh *> meshes;
2460         convertFromPyObjVectorOfObj<MEDCoupling::MEDCouplingUMesh *>(ms,SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2461         MEDCouplingUMesh::PutUMeshesOnSameAggregatedCoords(meshes);
2462       }
2463
2464       static void MergeNodesOnUMeshesSharingSameCoords(PyObject *ms, double eps) throw(INTERP_KERNEL::Exception)
2465       {
2466         std::vector<MEDCouplingUMesh *> meshes;
2467         convertFromPyObjVectorOfObj<MEDCoupling::MEDCouplingUMesh *>(ms,SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2468         MEDCouplingUMesh::MergeNodesOnUMeshesSharingSameCoords(meshes,eps);
2469       }
2470
2471       static bool RemoveIdsFromIndexedArrays(PyObject *li, DataArrayInt *arr, DataArrayInt *arrIndx, int offsetForRemoval=0) throw(INTERP_KERNEL::Exception)
2472       {
2473         int sw;
2474         int singleVal;
2475         std::vector<int> multiVal;
2476         std::pair<int, std::pair<int,int> > slic;
2477         MEDCoupling::DataArrayInt *daIntTyypp=0;
2478         if(!arrIndx)
2479           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::RemoveIdsFromIndexedArrays : null pointer as arrIndex !");
2480         convertIntStarOrSliceLikePyObjToCpp(li,arrIndx->getNumberOfTuples()-1,sw,singleVal,multiVal,slic,daIntTyypp);
2481         switch(sw)
2482           {
2483           case 1:
2484             return MEDCouplingUMesh::RemoveIdsFromIndexedArrays(&singleVal,&singleVal+1,arr,arrIndx,offsetForRemoval);
2485           case 2:
2486             return MEDCouplingUMesh::RemoveIdsFromIndexedArrays(&multiVal[0],&multiVal[0]+multiVal.size(),arr,arrIndx,offsetForRemoval);
2487           case 4:
2488             return MEDCouplingUMesh::RemoveIdsFromIndexedArrays(daIntTyypp->begin(),daIntTyypp->end(),arr,arrIndx,offsetForRemoval);
2489           default:
2490             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::RemoveIdsFromIndexedArrays : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2491           }
2492       }
2493       
2494       static PyObject *ExtractFromIndexedArrays(PyObject *li, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn) throw(INTERP_KERNEL::Exception)
2495       {
2496         DataArrayInt *arrOut=0,*arrIndexOut=0;
2497         int sw;
2498         int singleVal;
2499         std::vector<int> multiVal;
2500         std::pair<int, std::pair<int,int> > slic;
2501         MEDCoupling::DataArrayInt *daIntTyypp=0;
2502         if(!arrIndxIn)
2503           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::ExtractFromIndexedArrays : null pointer as arrIndxIn !");
2504         convertIntStarOrSliceLikePyObjToCpp(li,arrIndxIn->getNumberOfTuples()-1,sw,singleVal,multiVal,slic,daIntTyypp);
2505         switch(sw)
2506           {
2507           case 1:
2508             {
2509               MEDCouplingUMesh::ExtractFromIndexedArrays(&singleVal,&singleVal+1,arrIn,arrIndxIn,arrOut,arrIndexOut);
2510               break;
2511             }
2512           case 2:
2513             {
2514               MEDCouplingUMesh::ExtractFromIndexedArrays(&multiVal[0],&multiVal[0]+multiVal.size(),arrIn,arrIndxIn,arrOut,arrIndexOut);
2515               break;
2516             }
2517           case 4:
2518             {
2519               MEDCouplingUMesh::ExtractFromIndexedArrays(daIntTyypp->begin(),daIntTyypp->end(),arrIn,arrIndxIn,arrOut,arrIndexOut);
2520               break;
2521             }
2522           default:
2523             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::ExtractFromIndexedArrays : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2524           }
2525         PyObject *ret=PyTuple_New(2);
2526         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(arrOut),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2527         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(arrIndexOut),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2528         return ret;
2529       }
2530
2531       static PyObject *ExtractFromIndexedArraysSlice(int strt, int stp, int step, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn) throw(INTERP_KERNEL::Exception)
2532       {
2533         DataArrayInt *arrOut=0,*arrIndexOut=0;
2534         MEDCouplingUMesh::ExtractFromIndexedArraysSlice(strt,stp,step,arrIn,arrIndxIn,arrOut,arrIndexOut);
2535         PyObject *ret=PyTuple_New(2);
2536         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(arrOut),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2537         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(arrIndexOut),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2538         return ret;
2539       }
2540
2541       static PyObject *ExtractFromIndexedArraysSlice(PyObject *slic, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn) throw(INTERP_KERNEL::Exception)
2542       {
2543         if(!PySlice_Check(slic))
2544           throw INTERP_KERNEL::Exception("ExtractFromIndexedArraysSlice (wrap) : the first param is not a pyslice !");
2545         Py_ssize_t strt=2,stp=2,step=2;
2546         if(!arrIndxIn)
2547           throw INTERP_KERNEL::Exception("ExtractFromIndexedArraysSlice (wrap) : last array is null !");
2548         arrIndxIn->checkAllocated();
2549         if(arrIndxIn->getNumberOfComponents()!=1)
2550           throw INTERP_KERNEL::Exception("ExtractFromIndexedArraysSlice (wrap) : number of components of last argument must be equal to one !");
2551         GetIndicesOfSlice(slic,arrIndxIn->getNumberOfTuples(),&strt,&stp,&step,"ExtractFromIndexedArraysSlice (wrap) : Invalid slice regarding nb of elements !");
2552         DataArrayInt *arrOut=0,*arrIndexOut=0;
2553         MEDCouplingUMesh::ExtractFromIndexedArraysSlice(strt,stp,step,arrIn,arrIndxIn,arrOut,arrIndexOut);
2554         PyObject *ret=PyTuple_New(2);
2555         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(arrOut),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2556         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(arrIndexOut),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2557         return ret;
2558       }
2559
2560       static PyObject *SetPartOfIndexedArrays(PyObject *li,
2561                                               const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn,
2562                                               const DataArrayInt *srcArr, const DataArrayInt *srcArrIndex) throw(INTERP_KERNEL::Exception)
2563       {
2564         DataArrayInt *arrOut=0,*arrIndexOut=0;
2565         int sw;
2566         int singleVal;
2567         std::vector<int> multiVal;
2568         std::pair<int, std::pair<int,int> > slic;
2569         MEDCoupling::DataArrayInt *daIntTyypp=0;
2570         if(!arrIndxIn)
2571           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArrays : null pointer as arrIndex !");
2572         convertIntStarOrSliceLikePyObjToCpp(li,arrIndxIn->getNumberOfTuples()-1,sw,singleVal,multiVal,slic,daIntTyypp);
2573         switch(sw)
2574           {
2575           case 1:
2576             {
2577               MEDCouplingUMesh::SetPartOfIndexedArrays(&singleVal,&singleVal+1,arrIn,arrIndxIn,srcArr,srcArrIndex,arrOut,arrIndexOut);
2578               break;
2579             }
2580           case 2:
2581             {
2582               MEDCouplingUMesh::SetPartOfIndexedArrays(&multiVal[0],&multiVal[0]+multiVal.size(),arrIn,arrIndxIn,srcArr,srcArrIndex,arrOut,arrIndexOut);
2583               break;
2584             }
2585           case 4:
2586             {
2587               MEDCouplingUMesh::SetPartOfIndexedArrays(daIntTyypp->begin(),daIntTyypp->end(),arrIn,arrIndxIn,srcArr,srcArrIndex,arrOut,arrIndexOut);
2588               break;
2589             }
2590           default:
2591             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArrays : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2592           }
2593         PyObject *ret=PyTuple_New(2);
2594         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(arrOut),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2595         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(arrIndexOut),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2596         return ret;
2597       }
2598
2599       static void SetPartOfIndexedArraysSameIdx(PyObject *li, DataArrayInt *arrIn, const DataArrayInt *arrIndxIn,
2600                                                 const DataArrayInt *srcArr, const DataArrayInt *srcArrIndex) throw(INTERP_KERNEL::Exception)
2601       {
2602         int sw;
2603         int singleVal;
2604         std::vector<int> multiVal;
2605         std::pair<int, std::pair<int,int> > slic;
2606         MEDCoupling::DataArrayInt *daIntTyypp=0;
2607         if(!arrIndxIn)
2608           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx : null pointer as arrIndex !");
2609         convertIntStarOrSliceLikePyObjToCpp(li,arrIndxIn->getNumberOfTuples()-1,sw,singleVal,multiVal,slic,daIntTyypp);
2610         switch(sw)
2611           {
2612           case 1:
2613             {
2614               MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx(&singleVal,&singleVal+1,arrIn,arrIndxIn,srcArr,srcArrIndex);
2615               break;
2616             }
2617           case 2:
2618             {
2619               MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx(&multiVal[0],&multiVal[0]+multiVal.size(),arrIn,arrIndxIn,srcArr,srcArrIndex);
2620               break;
2621             }
2622           case 4:
2623             {
2624               MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx(daIntTyypp->begin(),daIntTyypp->end(),arrIn,arrIndxIn,srcArr,srcArrIndex);
2625               break;
2626             }
2627           default:
2628             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2629           }
2630       }
2631
2632       PyObject *are2DCellsNotCorrectlyOriented(PyObject *vec, bool polyOnly) const throw(INTERP_KERNEL::Exception)
2633       {
2634         double val;
2635         DataArrayDouble *a;
2636         DataArrayDoubleTuple *aa;
2637         std::vector<double> bb;
2638         int sw;
2639         int spaceDim=self->getSpaceDimension();
2640         const char msg[]="Python wrap of MEDCouplingUMesh::are2DCellsNotCorrectlyOriented : ";
2641         const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val,a,aa,bb,msg,1,spaceDim,true);
2642         //
2643         std::vector<int> cells;
2644         self->are2DCellsNotCorrectlyOriented(v,polyOnly,cells);
2645         DataArrayInt *ret=DataArrayInt::New();
2646         ret->alloc((int)cells.size(),1);
2647         std::copy(cells.begin(),cells.end(),ret->getPointer());
2648         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 );
2649       }
2650
2651       void orientCorrectly2DCells(PyObject *vec, bool polyOnly) throw(INTERP_KERNEL::Exception)
2652       {
2653         double val;
2654         DataArrayDouble *a;
2655         DataArrayDoubleTuple *aa;
2656         std::vector<double> bb;
2657         int sw;
2658         int spaceDim=self->getSpaceDimension();
2659         const char msg[]="Python wrap of MEDCouplingUMesh::orientCorrectly2DCells : ";
2660         const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val,a,aa,bb,msg,1,spaceDim,true);
2661         self->orientCorrectly2DCells(v,polyOnly);
2662       }
2663       
2664       PyObject *arePolyhedronsNotCorrectlyOriented() const throw(INTERP_KERNEL::Exception)
2665       {
2666         std::vector<int> cells;
2667         self->arePolyhedronsNotCorrectlyOriented(cells);
2668         DataArrayInt *ret=DataArrayInt::New();
2669         ret->alloc((int)cells.size(),1);
2670         std::copy(cells.begin(),cells.end(),ret->getPointer());
2671         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 );
2672       }
2673
2674       PyObject *getFastAveragePlaneOfThis() const throw(INTERP_KERNEL::Exception)
2675       {
2676         double vec[3];
2677         double pos[3];
2678         self->getFastAveragePlaneOfThis(vec,pos);
2679         double vals[6];
2680         std::copy(vec,vec+3,vals);
2681         std::copy(pos,pos+3,vals+3);
2682         return convertDblArrToPyListOfTuple<double>(vals,3,2);
2683       }
2684       
2685       static MEDCouplingUMesh *MergeUMeshes(PyObject *li) throw(INTERP_KERNEL::Exception)
2686       {
2687         std::vector<const MEDCoupling::MEDCouplingUMesh *> tmp;
2688         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingUMesh *>(li,SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh,"MEDCouplingUMesh",tmp);
2689         return MEDCouplingUMesh::MergeUMeshes(tmp);
2690       }
2691
2692       PyObject *areCellsIncludedIn(const MEDCouplingUMesh *other, int compType) const throw(INTERP_KERNEL::Exception)
2693       {
2694         DataArrayInt *ret1;
2695         bool ret0=self->areCellsIncludedIn(other,compType,ret1);
2696         PyObject *ret=PyTuple_New(2);
2697         PyObject *ret0Py=ret0?Py_True:Py_False;
2698         Py_XINCREF(ret0Py);
2699         PyTuple_SetItem(ret,0,ret0Py);
2700         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2701         return ret;
2702       }
2703
2704       PyObject *areCellsIncludedInPolicy7(const MEDCouplingUMesh *other) const throw(INTERP_KERNEL::Exception)
2705       {
2706         DataArrayInt *ret1;
2707         bool ret0=self->areCellsIncludedInPolicy7(other,ret1);
2708         PyObject *ret=PyTuple_New(2);
2709         PyObject *ret0Py=ret0?Py_True:Py_False;
2710         Py_XINCREF(ret0Py);
2711         PyTuple_SetItem(ret,0,ret0Py);
2712         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2713         return ret;
2714       }
2715
2716       PyObject *explode3DMeshTo1D() const throw(INTERP_KERNEL::Exception)
2717       {
2718         MCAuto<DataArrayInt> d0=DataArrayInt::New();
2719         MCAuto<DataArrayInt> d1=DataArrayInt::New();
2720         MCAuto<DataArrayInt> d2=DataArrayInt::New();
2721         MCAuto<DataArrayInt> d3=DataArrayInt::New();
2722         MEDCouplingUMesh *m=self->explode3DMeshTo1D(d0,d1,d2,d3);
2723         PyObject *ret=PyTuple_New(5);
2724         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2725         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2726         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2727         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2728         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2729         return ret;
2730       }
2731
2732       PyObject *explodeIntoEdges() const throw(INTERP_KERNEL::Exception)
2733       {
2734         MCAuto<DataArrayInt> desc,descIndex,revDesc,revDescIndx;
2735         MCAuto<MEDCouplingUMesh> m(self->explodeIntoEdges(desc,descIndex,revDesc,revDescIndx));
2736         PyObject *ret=PyTuple_New(5);
2737         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m.retn()),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2738         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(desc.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2739         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(descIndex.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2740         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(revDesc.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2741         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(revDescIndx.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2742         return ret;
2743       }
2744
2745       PyObject *explodeMeshIntoMicroEdges() const throw(INTERP_KERNEL::Exception)
2746       {
2747         MCAuto<DataArrayInt> d0=DataArrayInt::New();
2748         MCAuto<DataArrayInt> d1=DataArrayInt::New();
2749         MCAuto<DataArrayInt> d2=DataArrayInt::New();
2750         MCAuto<DataArrayInt> d3=DataArrayInt::New();
2751         MEDCouplingUMesh *m=self->explodeMeshIntoMicroEdges(d0,d1,d2,d3);
2752         PyObject *ret=PyTuple_New(5);
2753         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2754         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2755         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2756         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2757         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2758         return ret;
2759       }
2760
2761       PyObject *buildDescendingConnectivity() const throw(INTERP_KERNEL::Exception)
2762       {
2763         MCAuto<DataArrayInt> d0=DataArrayInt::New();
2764         MCAuto<DataArrayInt> d1=DataArrayInt::New();
2765         MCAuto<DataArrayInt> d2=DataArrayInt::New();
2766         MCAuto<DataArrayInt> d3=DataArrayInt::New();
2767         MEDCouplingUMesh *m=self->buildDescendingConnectivity(d0,d1,d2,d3);
2768         PyObject *ret=PyTuple_New(5);
2769         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2770         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2771         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2772         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2773         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2774         return ret;
2775       }
2776
2777       PyObject *buildDescendingConnectivity2() const throw(INTERP_KERNEL::Exception)
2778       {
2779         MCAuto<DataArrayInt> d0=DataArrayInt::New();
2780         MCAuto<DataArrayInt> d1=DataArrayInt::New();
2781         MCAuto<DataArrayInt> d2=DataArrayInt::New();
2782         MCAuto<DataArrayInt> d3=DataArrayInt::New();
2783         MEDCouplingUMesh *m=self->buildDescendingConnectivity2(d0,d1,d2,d3);
2784         PyObject *ret=PyTuple_New(5);
2785         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2786         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2787         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2788         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2789         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2790         return ret;
2791       }
2792       
2793       PyObject *computeNeighborsOfCells() const throw(INTERP_KERNEL::Exception)
2794       {
2795         DataArrayInt *neighbors=0,*neighborsIdx=0;
2796         self->computeNeighborsOfCells(neighbors,neighborsIdx);
2797         PyObject *ret=PyTuple_New(2);
2798         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(neighbors),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2799         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(neighborsIdx),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2800         return ret;
2801       }
2802
2803       PyObject *computeNeighborsOfNodes() const throw(INTERP_KERNEL::Exception)
2804       {
2805         DataArrayInt *neighbors=0,*neighborsIdx=0;
2806         self->computeNeighborsOfNodes(neighbors,neighborsIdx);
2807         PyObject *ret=PyTuple_New(2);
2808         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(neighbors),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2809         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(neighborsIdx),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2810         return ret;
2811       }
2812
2813       PyObject *computeEnlargedNeighborsOfNodes() const throw(INTERP_KERNEL::Exception)
2814       {
2815         MCAuto<DataArrayInt> neighbors,neighborsIdx;
2816         self->computeEnlargedNeighborsOfNodes(neighbors,neighborsIdx);
2817         PyObject *ret=PyTuple_New(2);
2818         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(neighbors.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2819         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(neighborsIdx.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2820         return ret;
2821       }
2822       
2823       PyObject *computeCellNeighborhoodFromNodesOne(const DataArrayInt *nodeNeigh, const DataArrayInt *nodeNeighI) const throw(INTERP_KERNEL::Exception)
2824       {
2825         MCAuto<DataArrayInt> cellNeigh,cellNeighIndex;
2826         self->computeCellNeighborhoodFromNodesOne(nodeNeigh,nodeNeighI,cellNeigh,cellNeighIndex);
2827         PyObject *ret=PyTuple_New(2);
2828         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(cellNeigh.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2829         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellNeighIndex.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2830         return ret;
2831       }
2832       
2833       static PyObject *ComputeNeighborsOfCellsAdv(const DataArrayInt *desc, const DataArrayInt *descI, const DataArrayInt *revDesc, const DataArrayInt *revDescI) throw(INTERP_KERNEL::Exception)
2834       {
2835         DataArrayInt *neighbors=0,*neighborsIdx=0;
2836         MEDCouplingUMesh::ComputeNeighborsOfCellsAdv(desc,descI,revDesc,revDescI,neighbors,neighborsIdx);
2837         PyObject *ret=PyTuple_New(2);
2838         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(neighbors),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2839         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(neighborsIdx),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2840         return ret;
2841       }
2842
2843       PyObject *emulateMEDMEMBDC(const MEDCouplingUMesh *nM1LevMesh)
2844       {
2845         MCAuto<DataArrayInt> d0=DataArrayInt::New();
2846         MCAuto<DataArrayInt> d1=DataArrayInt::New();
2847         DataArrayInt *d2,*d3,*d4,*dd5;
2848         MEDCouplingUMesh *mOut=self->emulateMEDMEMBDC(nM1LevMesh,d0,d1,d2,d3,d4,dd5);
2849         PyObject *ret=PyTuple_New(7);
2850         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(mOut),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2851         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2852         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2853         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2854         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2855         PyTuple_SetItem(ret,5,SWIG_NewPointerObj(SWIG_as_voidptr(d4),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2856         PyTuple_SetItem(ret,6,SWIG_NewPointerObj(SWIG_as_voidptr(dd5),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2857         return ret;
2858       }
2859
2860       DataArrayDouble *getPartBarycenterAndOwner(DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2861       {
2862         if(!da)
2863           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2864         da->checkAllocated();
2865         return self->getPartBarycenterAndOwner(da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2866       }
2867
2868       DataArrayDouble *getPartMeasureField(bool isAbs, DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2869       {
2870         if(!da)
2871           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2872         da->checkAllocated();
2873         return self->getPartMeasureField(isAbs,da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2874       }
2875
2876       MEDCouplingFieldDouble *buildPartOrthogonalField(DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2877       {
2878         if(!da)
2879           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2880         da->checkAllocated();
2881         return self->buildPartOrthogonalField(da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2882       }
2883
2884       PyObject *getTypesOfPart(DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2885       {
2886         if(!da)
2887           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2888         da->checkAllocated();
2889         std::set<INTERP_KERNEL::NormalizedCellType> result=self->getTypesOfPart(da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2890         std::set<INTERP_KERNEL::NormalizedCellType>::const_iterator iL=result.begin();
2891         PyObject *res = PyList_New(result.size());
2892         for (int i=0;iL!=result.end(); i++, iL++)
2893           PyList_SetItem(res,i,PyInt_FromLong(*iL));
2894         return res;
2895       }
2896
2897       DataArrayInt *keepCellIdsByType(INTERP_KERNEL::NormalizedCellType type, DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2898       {
2899         if(!da)
2900           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2901         da->checkAllocated();
2902         DataArrayInt *ret=self->keepCellIdsByType(type,da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2903         ret->setName(da->getName().c_str());
2904         return ret;
2905       }
2906
2907       static PyObject *Intersect2DMeshes(const MEDCouplingUMesh *m1, const MEDCouplingUMesh *m2, double eps) throw(INTERP_KERNEL::Exception)
2908       {
2909         DataArrayInt *cellNb1=0,*cellNb2=0;
2910         MEDCouplingUMesh *mret=MEDCouplingUMesh::Intersect2DMeshes(m1,m2,eps,cellNb1,cellNb2);
2911         PyObject *ret=PyTuple_New(3);
2912         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(mret),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2913         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellNb1),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2914         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(cellNb2),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2915         return ret;
2916       }
2917
2918       static PyObject *Intersect2DMeshWith1DLine(const MEDCouplingUMesh *mesh2D, const MEDCouplingUMesh *mesh1D, double eps) throw(INTERP_KERNEL::Exception)
2919       {
2920         MEDCouplingUMesh *splitMesh2D(0),*splitMesh1D(0);
2921         DataArrayInt *cellIdInMesh2D(0),*cellIdInMesh1D(0);
2922         MEDCouplingUMesh::Intersect2DMeshWith1DLine(mesh2D,mesh1D,eps,splitMesh2D,splitMesh1D,cellIdInMesh2D,cellIdInMesh1D);
2923         PyObject *ret(PyTuple_New(4));
2924         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(splitMesh2D),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2925         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(splitMesh1D),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2926         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(cellIdInMesh2D),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2927         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(cellIdInMesh1D),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2928         return ret;
2929       }
2930
2931       PyObject *buildSlice3D(PyObject *origin, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
2932       {
2933         int spaceDim=self->getSpaceDimension();
2934         if(spaceDim!=3)
2935           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingUMesh::buildSlice3D : works only for spaceDim 3 !");
2936         double val,val2;
2937         DataArrayDouble *a,*a2;
2938         DataArrayDoubleTuple *aa,*aa2;
2939         std::vector<double> bb,bb2;
2940         int sw;
2941         const char msg[]="Python wrap of MEDCouplingUMesh::buildSlice3D : 1st parameter for origin.";
2942         const char msg2[]="Python wrap of MEDCouplingUMesh::buildSlice3D : 2nd parameter for vector.";
2943         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
2944         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
2945         //
2946         DataArrayInt *cellIds=0;
2947         MEDCouplingUMesh *ret0=self->buildSlice3D(orig,vect,eps,cellIds);
2948         PyObject *ret=PyTuple_New(2);
2949         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2950         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellIds),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2951         return ret;
2952       }
2953
2954       PyObject *buildSlice3DSurf(PyObject *origin, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
2955       {
2956         int spaceDim=self->getSpaceDimension();
2957         if(spaceDim!=3)
2958           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingUMesh::buildSlice3DSurf : works only for spaceDim 3 !");
2959         double val,val2;
2960         DataArrayDouble *a,*a2;
2961         DataArrayDoubleTuple *aa,*aa2;
2962         std::vector<double> bb,bb2;
2963         int sw;
2964         const char msg[]="Python wrap of MEDCouplingUMesh::buildSlice3DSurf : 1st parameter for origin.";
2965         const char msg2[]="Python wrap of MEDCouplingUMesh::buildSlice3DSurf : 2nd parameter for vector.";
2966         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
2967         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
2968         //
2969         DataArrayInt *cellIds=0;
2970         MEDCouplingUMesh *ret0=self->buildSlice3DSurf(orig,vect,eps,cellIds);
2971         PyObject *ret=PyTuple_New(2);
2972         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2973         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellIds),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2974         return ret;
2975       }
2976
2977       MEDCouplingUMesh *clipSingle3DCellByPlane(PyObject *origin, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
2978       {
2979         double val,val2;
2980         DataArrayDouble *a,*a2;
2981         DataArrayDoubleTuple *aa,*aa2;
2982         std::vector<double> bb,bb2;
2983         int sw;
2984         const char msg[]="Python wrap of MEDCouplingUMesh::clipSingle3DCellByPlane : 1st parameter for origin.";
2985         const char msg2[]="Python wrap of MEDCouplingUMesh::clipSingle3DCellByPlane : 2nd parameter for vector.";
2986         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,3,true);
2987         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,3,true);
2988         MCAuto<MEDCouplingUMesh> ret(self->clipSingle3DCellByPlane(orig,vect,eps));
2989         return ret.retn();
2990       }
2991
2992       DataArrayInt *getCellIdsCrossingPlane(PyObject *origin, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
2993       {
2994         int spaceDim=self->getSpaceDimension();
2995         if(spaceDim!=3)
2996           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingUMesh::getCellIdsCrossingPlane : works only for spaceDim 3 !");
2997         double val,val2;
2998         DataArrayDouble *a,*a2;
2999         DataArrayDoubleTuple *aa,*aa2;
3000         std::vector<double> bb,bb2;
3001         int sw;
3002         const char msg[]="Python wrap of MEDCouplingUMesh::getCellIdsCrossingPlane : 1st parameter for origin.";
3003         const char msg2[]="Python wrap of MEDCouplingUMesh::getCellIdsCrossingPlane : 2nd parameter for vector.";
3004         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
3005         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
3006         return self->getCellIdsCrossingPlane(orig,vect,eps);
3007       }
3008
3009       void convertToPolyTypes(PyObject *li) throw(INTERP_KERNEL::Exception)
3010       {
3011         int sw;
3012         int pos1;
3013         std::vector<int> pos2;
3014         DataArrayInt *pos3=0;
3015         DataArrayIntTuple *pos4=0;
3016         convertIntStarLikePyObjToCpp(li,sw,pos1,pos2,pos3,pos4);
3017         switch(sw)
3018           {
3019           case 1:
3020             {
3021               self->convertToPolyTypes(&pos1,&pos1+1);
3022               return;
3023             }
3024           case 2:
3025             {
3026               if(pos2.empty())
3027                 return;
3028               self->convertToPolyTypes(&pos2[0],&pos2[0]+pos2.size());
3029               return ;
3030             }
3031           case 3:
3032             {
3033               self->convertToPolyTypes(pos3->begin(),pos3->end());
3034               return ;
3035             }
3036           default:
3037             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::convertToPolyTypes : unexpected input array type recognized !");
3038           }
3039       }      
3040     }
3041     void convertAllToPoly();
3042     void convertExtrudedPolyhedra() throw(INTERP_KERNEL::Exception);
3043     bool unPolyze() throw(INTERP_KERNEL::Exception);
3044     void simplifyPolyhedra(double eps) throw(INTERP_KERNEL::Exception);
3045     MEDCouplingUMesh *buildSpreadZonesWithPoly() const throw(INTERP_KERNEL::Exception);
3046     MEDCouplingUMesh *buildExtrudedMesh(const MEDCouplingUMesh *mesh1D, int policy) throw(INTERP_KERNEL::Exception);
3047   };
3048
3049   //== MEDCouplingUMesh End
3050
3051   //== MEDCouplingMappedExtrudedMesh
3052
3053   class MEDCouplingMappedExtrudedMesh : public MEDCoupling::MEDCouplingMesh
3054   {
3055   public:
3056     static MEDCouplingMappedExtrudedMesh *New(const MEDCouplingUMesh *mesh3D, const MEDCouplingUMesh *mesh2D, int cell2DId) throw(INTERP_KERNEL::Exception);
3057     static MEDCouplingMappedExtrudedMesh *New(const MEDCouplingCMesh *mesh3D) throw(INTERP_KERNEL::Exception);
3058     MEDCouplingUMesh *build3DUnstructuredMesh() const throw(INTERP_KERNEL::Exception);
3059     int get2DCellIdForExtrusion() const;
3060     %extend {
3061       MEDCouplingMappedExtrudedMesh(const MEDCouplingUMesh *mesh3D, const MEDCouplingUMesh *mesh2D, int cell2DId) throw(INTERP_KERNEL::Exception)
3062       {
3063         return MEDCouplingMappedExtrudedMesh::New(mesh3D,mesh2D,cell2DId);
3064       }
3065
3066       MEDCouplingMappedExtrudedMesh(const MEDCouplingCMesh *mesh3D) throw(INTERP_KERNEL::Exception)
3067       {
3068         return MEDCouplingMappedExtrudedMesh::New(mesh3D);
3069       }
3070
3071       MEDCouplingMappedExtrudedMesh()
3072       {
3073         return MEDCouplingMappedExtrudedMesh::New();
3074       }
3075       
3076       std::string __str__() const throw(INTERP_KERNEL::Exception)
3077       {
3078         return self->simpleRepr();
3079       }
3080
3081       std::string __repr__() const throw(INTERP_KERNEL::Exception)
3082       {
3083         std::ostringstream oss;
3084         self->reprQuickOverview(oss);
3085         return oss.str();
3086       }
3087       
3088       PyObject *getMesh2D() const throw(INTERP_KERNEL::Exception)
3089       {
3090         MEDCouplingUMesh *ret=self->getMesh2D();
3091         if(ret)
3092           ret->incrRef();
3093         return convertMesh(ret, SWIG_POINTER_OWN | 0 );
3094       }
3095       PyObject *getMesh1D() const throw(INTERP_KERNEL::Exception)
3096       {
3097         MEDCouplingUMesh *ret=self->getMesh1D();
3098         if(ret)
3099           ret->incrRef();
3100         return convertMesh(ret, SWIG_POINTER_OWN | 0 );
3101       }
3102       PyObject *getMesh3DIds() const throw(INTERP_KERNEL::Exception)
3103       {
3104         DataArrayInt *ret=self->getMesh3DIds();
3105         if(ret)
3106           ret->incrRef();
3107         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 );
3108       } 
3109     }
3110   };
3111
3112   //== MEDCouplingMappedExtrudedMesh End
3113
3114   class MEDCoupling1GTUMesh : public MEDCoupling::MEDCouplingPointSet
3115   {
3116   public:
3117     static MEDCoupling1GTUMesh *New(const std::string& name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
3118     static MEDCoupling1GTUMesh *New(const MEDCouplingUMesh *m) throw(INTERP_KERNEL::Exception);
3119     INTERP_KERNEL::NormalizedCellType getCellModelEnum() const throw(INTERP_KERNEL::Exception);
3120     int getNodalConnectivityLength() const throw(INTERP_KERNEL::Exception);
3121     virtual void allocateCells(int nbOfCells=0) throw(INTERP_KERNEL::Exception);
3122     virtual void checkConsistencyOfConnectivity() const throw(INTERP_KERNEL::Exception);
3123     %extend
3124     {
3125       virtual void insertNextCell(PyObject *li) throw(INTERP_KERNEL::Exception)
3126       {
3127         int szArr,sw,iTypppArr;
3128         std::vector<int> stdvecTyyppArr;
3129         const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3130         self->insertNextCell(tmp,tmp+szArr);
3131       }
3132
3133       virtual DataArrayInt *getNodalConnectivity() const throw(INTERP_KERNEL::Exception)
3134       {
3135         DataArrayInt *ret=self->getNodalConnectivity();
3136         if(ret) ret->incrRef();
3137         return ret;
3138       }
3139       
3140       static MEDCouplingUMesh *AggregateOnSameCoordsToUMesh(PyObject *li) throw(INTERP_KERNEL::Exception)
3141       {
3142         std::vector< const MEDCoupling1GTUMesh *> parts;
3143         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCoupling1GTUMesh *>(li,SWIGTYPE_p_MEDCoupling__MEDCoupling1GTUMesh,"MEDCoupling1GTUMesh",parts);
3144         return MEDCoupling1GTUMesh::AggregateOnSameCoordsToUMesh(parts);
3145       }
3146     }
3147   };
3148
3149   //== MEDCoupling1SGTUMesh
3150
3151   class MEDCoupling1SGTUMesh : public MEDCoupling::MEDCoupling1GTUMesh
3152   {
3153   public:
3154     static MEDCoupling1SGTUMesh *New(const std::string& name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
3155     static MEDCoupling1SGTUMesh *New(const MEDCouplingUMesh *m) throw(INTERP_KERNEL::Exception);
3156     void setNodalConnectivity(DataArrayInt *nodalConn) throw(INTERP_KERNEL::Exception);
3157     int getNumberOfNodesPerCell() const throw(INTERP_KERNEL::Exception);
3158     static MEDCoupling1SGTUMesh *Merge1SGTUMeshes(const MEDCoupling1SGTUMesh *mesh1, const MEDCoupling1SGTUMesh *mesh2) throw(INTERP_KERNEL::Exception);
3159     MEDCoupling1SGTUMesh *buildSetInstanceFromThis(int spaceDim) const throw(INTERP_KERNEL::Exception);
3160     MEDCoupling1GTUMesh *computeDualMesh() const throw(INTERP_KERNEL::Exception);
3161     MEDCoupling1SGTUMesh *explodeEachHexa8To6Quad4() const throw(INTERP_KERNEL::Exception);
3162     DataArrayInt *sortHexa8EachOther() throw(INTERP_KERNEL::Exception);
3163     %extend
3164     {
3165       MEDCoupling1SGTUMesh()
3166       {
3167         return MEDCoupling1SGTUMesh::New();
3168       }
3169
3170       MEDCoupling1SGTUMesh(const std::string& name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception)
3171       {
3172         return MEDCoupling1SGTUMesh::New(name,type);
3173       }
3174
3175       MEDCoupling1SGTUMesh(const MEDCouplingUMesh *m) throw(INTERP_KERNEL::Exception)
3176       {
3177         return MEDCoupling1SGTUMesh::New(m);
3178       }
3179
3180       std::string __str__() const throw(INTERP_KERNEL::Exception)
3181       {
3182         return self->simpleRepr();
3183       }
3184       
3185       std::string __repr__() const throw(INTERP_KERNEL::Exception)
3186       {
3187         std::ostringstream oss;
3188         self->reprQuickOverview(oss);
3189         return oss.str();
3190       }
3191
3192       PyObject *structurizeMe(double eps=1e-12) const throw(INTERP_KERNEL::Exception)
3193       {
3194         DataArrayInt *cellPerm(0),*nodePerm(0);
3195         MEDCouplingCMesh *retCpp(self->structurizeMe(cellPerm,nodePerm,eps));
3196         PyObject *ret(PyTuple_New(3));
3197         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(retCpp),SWIGTYPE_p_MEDCoupling__MEDCouplingCMesh, SWIG_POINTER_OWN | 0 ));
3198         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellPerm),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
3199         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(nodePerm),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
3200         return ret;
3201       }
3202
3203       static MEDCoupling1SGTUMesh *Merge1SGTUMeshes(PyObject *li) throw(INTERP_KERNEL::Exception)
3204       {
3205         std::vector<const MEDCoupling::MEDCoupling1SGTUMesh *> tmp;
3206         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCoupling1SGTUMesh *>(li,SWIGTYPE_p_MEDCoupling__MEDCoupling1SGTUMesh,"MEDCoupling1SGTUMesh",tmp);
3207         return MEDCoupling1SGTUMesh::Merge1SGTUMeshes(tmp);
3208       }
3209       
3210       static MEDCoupling1SGTUMesh *Merge1SGTUMeshesOnSameCoords(PyObject *li) throw(INTERP_KERNEL::Exception)
3211       {
3212         std::vector<const MEDCoupling::MEDCoupling1SGTUMesh *> tmp;
3213         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCoupling1SGTUMesh *>(li,SWIGTYPE_p_MEDCoupling__MEDCoupling1SGTUMesh,"MEDCoupling1SGTUMesh",tmp);
3214         return MEDCoupling1SGTUMesh::Merge1SGTUMeshesOnSameCoords(tmp);
3215       }
3216     }
3217   };
3218   
3219   //== MEDCoupling1SGTUMesh End
3220
3221   //== MEDCoupling1DGTUMesh
3222
3223   class MEDCoupling1DGTUMesh : public MEDCoupling::MEDCoupling1GTUMesh
3224   {
3225   public:
3226     static MEDCoupling1DGTUMesh *New(const std::string& name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
3227     static MEDCoupling1DGTUMesh *New(const MEDCouplingUMesh *m) throw(INTERP_KERNEL::Exception);
3228     void setNodalConnectivity(DataArrayInt *nodalConn, DataArrayInt *nodalConnIndex) throw(INTERP_KERNEL::Exception);
3229     MEDCoupling1DGTUMesh *buildSetInstanceFromThis(int spaceDim) const throw(INTERP_KERNEL::Exception);
3230     bool isPacked() const throw(INTERP_KERNEL::Exception);
3231     %extend
3232     {
3233       MEDCoupling1DGTUMesh()
3234       {
3235         return MEDCoupling1DGTUMesh::New();
3236       }
3237       MEDCoupling1DGTUMesh(const std::string& name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception)
3238       {
3239         return MEDCoupling1DGTUMesh::New(name,type);
3240       }
3241
3242       MEDCoupling1DGTUMesh(const MEDCouplingUMesh *m) throw(INTERP_KERNEL::Exception)
3243       {
3244         return MEDCoupling1DGTUMesh::New(m);
3245       }
3246
3247       std::string __str__() const throw(INTERP_KERNEL::Exception)
3248       {
3249         return self->simpleRepr();
3250       }
3251       
3252       std::string __repr__() const throw(INTERP_KERNEL::Exception)
3253       {
3254         std::ostringstream oss;
3255         self->reprQuickOverview(oss);
3256         return oss.str();
3257       }
3258
3259       DataArrayInt *getNodalConnectivityIndex() const throw(INTERP_KERNEL::Exception)
3260       {
3261         DataArrayInt *ret=self->getNodalConnectivityIndex();
3262         if(ret) ret->incrRef();
3263         return ret;
3264       }
3265
3266       PyObject *retrievePackedNodalConnectivity() const throw(INTERP_KERNEL::Exception)
3267       {
3268         DataArrayInt *ret1=0,*ret2=0;
3269         bool ret0=self->retrievePackedNodalConnectivity(ret1,ret2);
3270         PyObject *ret0Py=ret0?Py_True:Py_False;
3271         Py_XINCREF(ret0Py);
3272         PyObject *ret=PyTuple_New(3);
3273         PyTuple_SetItem(ret,0,ret0Py);
3274         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
3275         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(ret2),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
3276         return ret;
3277       }
3278       
3279       PyObject *copyWithNodalConnectivityPacked() const throw(INTERP_KERNEL::Exception)
3280       {
3281         bool ret1;
3282         MEDCoupling1DGTUMesh *ret0=self->copyWithNodalConnectivityPacked(ret1);
3283         PyObject *ret=PyTuple_New(2);
3284         PyObject *ret1Py=ret1?Py_True:Py_False; Py_XINCREF(ret1Py);
3285         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__MEDCoupling1DGTUMesh, SWIG_POINTER_OWN | 0 ));
3286         PyTuple_SetItem(ret,1,ret1Py);
3287         return ret;
3288       }
3289
3290       static MEDCoupling1DGTUMesh *Merge1DGTUMeshes(PyObject *li) throw(INTERP_KERNEL::Exception)
3291       {
3292         std::vector<const MEDCoupling::MEDCoupling1DGTUMesh *> tmp;
3293         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCoupling1DGTUMesh *>(li,SWIGTYPE_p_MEDCoupling__MEDCoupling1DGTUMesh,"MEDCoupling1DGTUMesh",tmp);
3294         return MEDCoupling1DGTUMesh::Merge1DGTUMeshes(tmp);
3295       }
3296       
3297       static MEDCoupling1DGTUMesh *Merge1DGTUMeshesOnSameCoords(PyObject *li) throw(INTERP_KERNEL::Exception)
3298       {
3299         std::vector<const MEDCoupling::MEDCoupling1DGTUMesh *> tmp;
3300         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCoupling1DGTUMesh *>(li,SWIGTYPE_p_MEDCoupling__MEDCoupling1DGTUMesh,"MEDCoupling1DGTUMesh",tmp);
3301         return MEDCoupling1DGTUMesh::Merge1DGTUMeshesOnSameCoords(tmp);
3302       }
3303       
3304       static DataArrayInt *AggregateNodalConnAndShiftNodeIds(PyObject *li, const std::vector<int>& offsetInNodeIdsPerElt) throw(INTERP_KERNEL::Exception)
3305       {
3306         std::vector<const MEDCoupling::DataArrayInt *> tmp;
3307         convertFromPyObjVectorOfObj<const MEDCoupling::DataArrayInt *>(li,SWIGTYPE_p_MEDCoupling__DataArrayInt,"DataArrayInt",tmp);
3308         return MEDCoupling1DGTUMesh::AggregateNodalConnAndShiftNodeIds(tmp,offsetInNodeIdsPerElt);
3309       }
3310     }
3311   };
3312
3313   //== MEDCoupling1DGTUMeshEnd
3314
3315   class MEDCouplingStructuredMesh : public MEDCoupling::MEDCouplingMesh
3316   {
3317   public:
3318     int getCellIdFromPos(int i, int j, int k) const throw(INTERP_KERNEL::Exception);
3319     int getNodeIdFromPos(int i, int j, int k) const throw(INTERP_KERNEL::Exception);
3320     int getNumberOfCellsOfSubLevelMesh() const throw(INTERP_KERNEL::Exception);
3321     int getSpaceDimensionOnNodeStruct() const throw(INTERP_KERNEL::Exception);
3322     double computeSquareness() const throw(INTERP_KERNEL::Exception);
3323     virtual std::vector<int> getNodeGridStructure() const throw(INTERP_KERNEL::Exception);
3324     std::vector<int> getCellGridStructure() const throw(INTERP_KERNEL::Exception);
3325     MEDCoupling1SGTUMesh *build1SGTUnstructured() const throw(INTERP_KERNEL::Exception);
3326     std::vector<int> getLocationFromCellId(int cellId) const throw(INTERP_KERNEL::Exception);
3327     std::vector<int> getLocationFromNodeId(int cellId) const throw(INTERP_KERNEL::Exception);
3328     static INTERP_KERNEL::NormalizedCellType GetGeoTypeGivenMeshDimension(int meshDim) throw(INTERP_KERNEL::Exception);
3329     MEDCoupling1SGTUMesh *build1SGTSubLevelMesh() const throw(INTERP_KERNEL::Exception);
3330     static int DeduceNumberOfGivenStructure(const std::vector<int>& st) throw(INTERP_KERNEL::Exception);
3331     static DataArrayInt *ComputeCornersGhost(const std::vector<int>& st, int ghostLev) throw(INTERP_KERNEL::Exception);
3332     static std::vector<int> GetSplitVectFromStruct(const std::vector<int>& strct) throw(INTERP_KERNEL::Exception);
3333     %extend
3334     {
3335       virtual MEDCouplingStructuredMesh *buildStructuredSubPart(PyObject *cellPart) const throw(INTERP_KERNEL::Exception)
3336       {
3337         int tmpp1=-1,tmpp2=-1;
3338         std::vector<int> tmp=fillArrayWithPyListInt2(cellPart,tmpp1,tmpp2);
3339         std::vector< std::pair<int,int> > inp;
3340         if(tmpp2==2)
3341           {
3342             inp.resize(tmpp1);
3343             for(int i=0;i<tmpp1;i++)
3344               { inp[i].first=tmp[2*i]; inp[i].second=tmp[2*i+1]; }
3345           }
3346         else if(tmpp2==1)
3347           {
3348             if(tmpp1%2!=0)
3349               throw INTERP_KERNEL::Exception("Wrap of MEDCouplingStructuredMesh.buildStructuredSubPart : invalid input size ! Must be even size !");
3350             inp.resize(tmpp1/2);
3351             for(int i=0;i<tmpp1/2;i++)
3352               { inp[i].first=tmp[2*i]; inp[i].second=tmp[2*i+1]; }
3353           }
3354         else
3355           throw INTERP_KERNEL::Exception("Wrap of MEDCouplingStructuredMesh.buildStructuredSubPart : invalid input size !");
3356         return self->buildStructuredSubPart(inp);
3357       }
3358
3359       static DataArrayInt *BuildExplicitIdsFrom(PyObject *st, PyObject *part) throw(INTERP_KERNEL::Exception)
3360       {
3361         std::vector< std::pair<int,int> > inp;
3362         convertPyToVectorPairInt(part,inp);
3363         //
3364         int szArr,sw,iTypppArr;
3365         std::vector<int> stdvecTyyppArr;
3366         const int *tmp4=convertIntStarLikePyObjToCppIntStar(st,sw,szArr,iTypppArr,stdvecTyyppArr);
3367         std::vector<int> tmp5(tmp4,tmp4+szArr);
3368         //
3369         return MEDCouplingStructuredMesh::BuildExplicitIdsFrom(tmp5,inp);
3370       }
3371
3372       static void MultiplyPartOf(const std::vector<int>& st, PyObject *part, double factor, DataArrayDouble *da) throw(INTERP_KERNEL::Exception)
3373       {
3374         std::vector< std::pair<int,int> > inp;
3375         convertPyToVectorPairInt(part,inp);
3376         MEDCouplingStructuredMesh::MultiplyPartOf(st,inp,factor,da);
3377       }
3378
3379       static void MultiplyPartOfByGhost(const std::vector<int>& st, PyObject *part, int ghostSize, double factor, DataArrayDouble *da) throw(INTERP_KERNEL::Exception)
3380       {
3381         std::vector< std::pair<int,int> > inp;
3382         convertPyToVectorPairInt(part,inp);
3383         MEDCouplingStructuredMesh::MultiplyPartOfByGhost(st,inp,ghostSize,factor,da);
3384       }
3385
3386       static PyObject *PutInGhostFormat(int ghostSize, const std::vector<int>& st, PyObject *part) throw(INTERP_KERNEL::Exception)
3387       {
3388         std::vector< std::pair<int,int> > inp;
3389         convertPyToVectorPairInt(part,inp);
3390         std::vector<int> stWithGhost;
3391         std::vector< std::pair<int,int> > partWithGhost;
3392         MEDCouplingStructuredMesh::PutInGhostFormat(ghostSize,st,inp,stWithGhost,partWithGhost);
3393         PyObject *ret(PyTuple_New(2));
3394         PyTuple_SetItem(ret,0,convertIntArrToPyList2(stWithGhost));
3395         PyTuple_SetItem(ret,1,convertFromVectorPairInt(partWithGhost));
3396         return ret;
3397       }
3398
3399       static DataArrayDouble *ExtractFieldOfDoubleFrom(const std::vector<int>& st, const DataArrayDouble *fieldOfDbl, PyObject *partCompactFormat) throw(INTERP_KERNEL::Exception)
3400       {
3401         std::vector< std::pair<int,int> > inp;
3402         convertPyToVectorPairInt(partCompactFormat,inp);
3403         return MEDCouplingStructuredMesh::ExtractFieldOfDoubleFrom(st,fieldOfDbl,inp);
3404       }
3405
3406       static void AssignPartOfFieldOfDoubleUsing(const std::vector<int>& st, DataArrayDouble *fieldOfDbl, PyObject *partCompactFormat, const DataArrayDouble *other) throw(INTERP_KERNEL::Exception)
3407       {
3408         std::vector< std::pair<int,int> > inp;
3409         convertPyToVectorPairInt(partCompactFormat,inp);
3410         MEDCouplingStructuredMesh::AssignPartOfFieldOfDoubleUsing(st,fieldOfDbl,inp,other);
3411       }
3412
3413       static int DeduceNumberOfGivenRangeInCompactFrmt(PyObject *part) throw(INTERP_KERNEL::Exception)
3414       {
3415         std::vector< std::pair<int,int> > inp;
3416         convertPyToVectorPairInt(part,inp);
3417         return MEDCouplingStructuredMesh::DeduceNumberOfGivenRangeInCompactFrmt(inp);
3418       }
3419
3420       static DataArrayInt *Build1GTNodalConnectivity(PyObject *li) throw(INTERP_KERNEL::Exception)
3421       {
3422         int szArr,sw,iTypppArr;
3423         std::vector<int> stdvecTyyppArr;
3424         const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3425         return MEDCouplingStructuredMesh::Build1GTNodalConnectivity(tmp,tmp+szArr);
3426       }
3427
3428       static DataArrayInt *Build1GTNodalConnectivityOfSubLevelMesh(PyObject *li) throw(INTERP_KERNEL::Exception)
3429       {
3430         int szArr,sw,iTypppArr;
3431         std::vector<int> stdvecTyyppArr;
3432         const int *tmp(convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr));
3433         return MEDCouplingStructuredMesh::Build1GTNodalConnectivityOfSubLevelMesh(tmp,tmp+szArr);
3434       }
3435
3436       static std::vector<int> GetDimensionsFromCompactFrmt(PyObject *partCompactFormat) throw(INTERP_KERNEL::Exception)
3437       {
3438         std::vector< std::pair<int,int> > inp;
3439         convertPyToVectorPairInt(partCompactFormat,inp);
3440         return MEDCouplingStructuredMesh::GetDimensionsFromCompactFrmt(inp);
3441       }
3442
3443       static PyObject *GetCompactFrmtFromDimensions(const std::vector<int>& dims) throw(INTERP_KERNEL::Exception)
3444       {
3445         std::vector< std::pair<int,int> > ret(MEDCouplingStructuredMesh::GetCompactFrmtFromDimensions(dims));
3446         PyObject *retPy=PyList_New(ret.size());
3447         for(std::size_t i=0;i<ret.size();i++)
3448           {
3449             PyObject *tmp=PyTuple_New(2);
3450             PyTuple_SetItem(tmp,0,PyInt_FromLong(ret[i].first));
3451             PyTuple_SetItem(tmp,1,PyInt_FromLong(ret[i].second));
3452             PyList_SetItem(retPy,i,tmp);
3453           }
3454         return retPy;
3455       }
3456
3457       static PyObject *IntersectRanges(PyObject *r1, PyObject *r2) throw(INTERP_KERNEL::Exception)
3458       {
3459         std::vector< std::pair<int,int> > r1Cpp,r2Cpp;
3460         convertPyToVectorPairInt(r1,r1Cpp);
3461         convertPyToVectorPairInt(r2,r2Cpp);
3462         std::vector< std::pair<int,int> > ret(MEDCouplingStructuredMesh::IntersectRanges(r1Cpp,r2Cpp));
3463         PyObject *retPy=PyList_New(ret.size());
3464         for(std::size_t i=0;i<ret.size();i++)
3465           {
3466             PyObject *tmp=PyTuple_New(2);
3467             PyTuple_SetItem(tmp,0,PyInt_FromLong(ret[i].first));
3468             PyTuple_SetItem(tmp,1,PyInt_FromLong(ret[i].second));
3469             PyList_SetItem(retPy,i,tmp);
3470           }
3471         return retPy;
3472       }
3473
3474       static bool AreRangesIntersect(PyObject *r1, PyObject *r2)
3475       {
3476         std::vector< std::pair<int,int> > r1Cpp,r2Cpp;
3477         convertPyToVectorPairInt(r1,r1Cpp);
3478         convertPyToVectorPairInt(r2,r2Cpp);
3479         return MEDCouplingStructuredMesh::AreRangesIntersect(r1Cpp,r2Cpp);
3480       }
3481
3482       static PyObject *IsPartStructured(PyObject *li, PyObject *st) throw(INTERP_KERNEL::Exception)
3483       {
3484         int szArr,sw,iTypppArr;
3485         std::vector<int> stdvecTyyppArr;
3486         const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3487         int szArr2,sw2,iTypppArr2;
3488         std::vector<int> stdvecTyyppArr2;
3489         const int *tmp2=convertIntStarLikePyObjToCppIntStar(st,sw2,szArr2,iTypppArr2,stdvecTyyppArr2);
3490         std::vector<int> tmp3(tmp2,tmp2+szArr2);
3491         std::vector< std::pair<int,int> > partCompactFormat;
3492         bool ret0=MEDCouplingStructuredMesh::IsPartStructured(tmp,tmp+szArr,tmp3,partCompactFormat);
3493         PyObject *ret=PyTuple_New(2);
3494         PyObject *ret0Py=ret0?Py_True:Py_False; Py_XINCREF(ret0Py);
3495         PyTuple_SetItem(ret,0,ret0Py);
3496         PyObject *ret1Py=PyList_New(partCompactFormat.size());
3497         for(std::size_t i=0;i<partCompactFormat.size();i++)
3498           {
3499             PyObject *tmp4=PyTuple_New(2);
3500             PyTuple_SetItem(tmp4,0,PyInt_FromLong(partCompactFormat[i].first));
3501             PyTuple_SetItem(tmp4,1,PyInt_FromLong(partCompactFormat[i].second));
3502             PyList_SetItem(ret1Py,i,tmp4);
3503           }
3504         PyTuple_SetItem(ret,1,ret1Py);
3505         return ret;
3506       }
3507
3508       static PyObject *ChangeReferenceFromGlobalOfCompactFrmt(PyObject *bigInAbs, PyObject *partOfBigInAbs, bool check=true) throw(INTERP_KERNEL::Exception)
3509       {
3510         std::vector< std::pair<int,int> > param0,param1,ret;
3511         convertPyToVectorPairInt(bigInAbs,param0);
3512         convertPyToVectorPairInt(partOfBigInAbs,param1);
3513         MEDCouplingStructuredMesh::ChangeReferenceFromGlobalOfCompactFrmt(param0,param1,ret,check);
3514         PyObject *retPy(PyList_New(ret.size()));
3515         for(std::size_t i=0;i<ret.size();i++)
3516           {
3517             PyObject *tmp(PyTuple_New(2));
3518             PyTuple_SetItem(tmp,0,PyInt_FromLong(ret[i].first));
3519             PyTuple_SetItem(tmp,1,PyInt_FromLong(ret[i].second));
3520             PyList_SetItem(retPy,i,tmp);
3521           }
3522         return retPy;
3523       }
3524
3525       static PyObject *TranslateCompactFrmt(PyObject *part, const std::vector<int>& translation) throw(INTERP_KERNEL::Exception)
3526       {
3527         std::vector< std::pair<int,int> > param0;
3528         convertPyToVectorPairInt(part,param0);
3529         std::vector< std::pair<int,int> > ret(MEDCouplingStructuredMesh::TranslateCompactFrmt(param0,translation));
3530         PyObject *retPy(PyList_New(ret.size()));
3531         for(std::size_t i=0;i<ret.size();i++)
3532           {
3533             PyObject *tmp(PyTuple_New(2));
3534             PyTuple_SetItem(tmp,0,PyInt_FromLong(ret[i].first));
3535             PyTuple_SetItem(tmp,1,PyInt_FromLong(ret[i].second));
3536             PyList_SetItem(retPy,i,tmp);
3537           }
3538         return retPy;
3539       }
3540
3541       static std::vector<int> FindTranslationFrom(PyObject *startingFrom, PyObject *goingTo) throw(INTERP_KERNEL::Exception)
3542       {
3543         std::vector< std::pair<int,int> > param0,param1;
3544         convertPyToVectorPairInt(startingFrom,param0);
3545         convertPyToVectorPairInt(goingTo,param1);
3546         return  MEDCouplingStructuredMesh::FindTranslationFrom(param0,param1);
3547       }
3548
3549       static PyObject *ChangeReferenceToGlobalOfCompactFrmt(PyObject *bigInAbs, PyObject *partOfBigRelativeToBig, bool check=true) throw(INTERP_KERNEL::Exception)
3550       {
3551         std::vector< std::pair<int,int> > param0,param1,ret;
3552         convertPyToVectorPairInt(bigInAbs,param0);
3553         convertPyToVectorPairInt(partOfBigRelativeToBig,param1);
3554         MEDCouplingStructuredMesh::ChangeReferenceToGlobalOfCompactFrmt(param0,param1,ret,check);
3555         PyObject *retPy(PyList_New(ret.size()));
3556         for(std::size_t i=0;i<ret.size();i++)
3557           {
3558             PyObject *tmp(PyTuple_New(2));
3559             PyTuple_SetItem(tmp,0,PyInt_FromLong(ret[i].first));
3560             PyTuple_SetItem(tmp,1,PyInt_FromLong(ret[i].second));
3561             PyList_SetItem(retPy,i,tmp);
3562           }
3563         return retPy;
3564       }
3565     }
3566   };
3567
3568   class MEDCouplingCurveLinearMesh;
3569
3570   //== MEDCouplingCMesh
3571   
3572   class MEDCouplingCMesh : public MEDCoupling::MEDCouplingStructuredMesh
3573   {
3574   public:
3575     static MEDCouplingCMesh *New() throw(INTERP_KERNEL::Exception);
3576     static MEDCouplingCMesh *New(const std::string& meshName) throw(INTERP_KERNEL::Exception);
3577     void setCoords(const DataArrayDouble *coordsX,
3578                    const DataArrayDouble *coordsY=0,
3579                    const DataArrayDouble *coordsZ=0) throw(INTERP_KERNEL::Exception);
3580     void setCoordsAt(int i, const DataArrayDouble *arr) throw(INTERP_KERNEL::Exception);
3581     MEDCouplingCurveLinearMesh *buildCurveLinear() const throw(INTERP_KERNEL::Exception);
3582     %extend {
3583       MEDCouplingCMesh() throw(INTERP_KERNEL::Exception)
3584       {
3585         return MEDCouplingCMesh::New();
3586       }
3587       MEDCouplingCMesh(const std::string& meshName) throw(INTERP_KERNEL::Exception)
3588       {
3589         return MEDCouplingCMesh::New(meshName);
3590       }
3591       std::string __str__() const throw(INTERP_KERNEL::Exception)
3592       {
3593         return self->simpleRepr();
3594       }
3595       std::string __repr__() const throw(INTERP_KERNEL::Exception)
3596       {
3597         std::ostringstream oss;
3598         self->reprQuickOverview(oss);
3599         return oss.str();
3600       }
3601       DataArrayDouble *getCoordsAt(int i) throw(INTERP_KERNEL::Exception)
3602       {
3603         DataArrayDouble *ret=self->getCoordsAt(i);
3604         if(ret)
3605           ret->incrRef();
3606         return ret;
3607       }
3608     }
3609   };
3610
3611   //== MEDCouplingCMesh End
3612
3613   //== MEDCouplingCurveLinearMesh
3614
3615   class MEDCouplingCurveLinearMesh : public MEDCoupling::MEDCouplingStructuredMesh
3616   {
3617   public:
3618     static MEDCouplingCurveLinearMesh *New() throw(INTERP_KERNEL::Exception);
3619     static MEDCouplingCurveLinearMesh *New(const std::string& meshName) throw(INTERP_KERNEL::Exception);
3620     void setCoords(const DataArrayDouble *coords) throw(INTERP_KERNEL::Exception);
3621     %extend {
3622       MEDCouplingCurveLinearMesh() throw(INTERP_KERNEL::Exception)
3623       {
3624         return MEDCouplingCurveLinearMesh::New();
3625       }
3626       MEDCouplingCurveLinearMesh(const std::string& meshName) throw(INTERP_KERNEL::Exception)
3627       {
3628         return MEDCouplingCurveLinearMesh::New(meshName);
3629       }
3630       std::string __str__() const throw(INTERP_KERNEL::Exception) 
3631       {
3632         return self->simpleRepr();
3633       }
3634       std::string __repr__() const throw(INTERP_KERNEL::Exception)
3635       {
3636         std::ostringstream oss;
3637         self->reprQuickOverview(oss);
3638         return oss.str();
3639       }
3640       DataArrayDouble *getCoords() throw(INTERP_KERNEL::Exception)
3641       {
3642         DataArrayDouble *ret=self->getCoords();
3643         if(ret)
3644           ret->incrRef();
3645         return ret;
3646       }
3647       void setNodeGridStructure(PyObject *gridStruct) throw(INTERP_KERNEL::Exception)
3648       {
3649         int szArr,sw,iTypppArr;
3650         std::vector<int> stdvecTyyppArr;
3651         const int *tmp=convertIntStarLikePyObjToCppIntStar(gridStruct,sw,szArr,iTypppArr,stdvecTyyppArr);
3652         self->setNodeGridStructure(tmp,tmp+szArr);
3653       }
3654     }
3655   };
3656
3657   //== MEDCouplingCurveLinearMesh End
3658
3659   //== MEDCouplingIMesh
3660
3661   class MEDCouplingIMesh : public MEDCoupling::MEDCouplingStructuredMesh
3662   {
3663   public:
3664     static MEDCouplingIMesh *New() throw(INTERP_KERNEL::Exception);
3665     //
3666     void setSpaceDimension(int spaceDim) throw(INTERP_KERNEL::Exception);
3667     std::vector<int> getNodeStruct() const throw(INTERP_KERNEL::Exception);
3668     std::vector<double> getOrigin() const throw(INTERP_KERNEL::Exception);
3669     std::vector<double> getDXYZ() const throw(INTERP_KERNEL::Exception);
3670     void setAxisUnit(const std::string& unitName) throw(INTERP_KERNEL::Exception);
3671     std::string getAxisUnit() const throw(INTERP_KERNEL::Exception);
3672     double getMeasureOfAnyCell() const throw(INTERP_KERNEL::Exception);
3673     MEDCouplingCMesh *convertToCartesian() const throw(INTERP_KERNEL::Exception);
3674     void refineWithFactor(const std::vector<int>& factors) throw(INTERP_KERNEL::Exception);
3675     MEDCouplingIMesh *asSingleCell() const throw(INTERP_KERNEL::Exception);
3676     MEDCouplingIMesh *buildWithGhost(int ghostLev) const throw(INTERP_KERNEL::Exception);
3677     %extend
3678     {
3679       MEDCouplingIMesh()
3680       {
3681         return MEDCouplingIMesh::New();
3682       }
3683       static MEDCouplingIMesh *New(const std::string& meshName, int spaceDim, PyObject *nodeStrct, PyObject *origin, PyObject *dxyz) throw(INTERP_KERNEL::Exception)
3684       {
3685         static const char msg0[]="MEDCouplingIMesh::New : error on 'origin' parameter !";
3686         static const char msg1[]="MEDCouplingIMesh::New : error on 'dxyz' parameter !";
3687         const int *nodeStrctPtr(0);
3688         const double *originPtr(0),*dxyzPtr(0);
3689         int sw,sz,val0;
3690         std::vector<int> bb0;
3691         nodeStrctPtr=convertIntStarLikePyObjToCppIntStar(nodeStrct,sw,sz,val0,bb0);
3692         //
3693         double val,val2;
3694         std::vector<double> bb,bb2;
3695         int sz1,sz2;
3696         originPtr=convertObjToPossibleCpp5_SingleCompo(origin,sw,val,bb,msg0,false,sz1);
3697         dxyzPtr=convertObjToPossibleCpp5_SingleCompo(dxyz,sw,val2,bb2,msg1,false,sz2);
3698         //
3699         return MEDCouplingIMesh::New(meshName,spaceDim,nodeStrctPtr,nodeStrctPtr+sz,originPtr,originPtr+sz1,dxyzPtr,dxyzPtr+sz2);
3700       }
3701
3702       MEDCouplingIMesh(const std::string& meshName, int spaceDim, PyObject *nodeStrct, PyObject *origin, PyObject *dxyz) throw(INTERP_KERNEL::Exception)
3703       {
3704         return MEDCoupling_MEDCouplingIMesh_New__SWIG_1(meshName,spaceDim,nodeStrct,origin,dxyz);
3705       }
3706
3707       void setNodeStruct(PyObject *nodeStrct) throw(INTERP_KERNEL::Exception)
3708       {
3709         int sw,sz,val0;
3710         std::vector<int> bb0;
3711         const int *nodeStrctPtr(convertIntStarLikePyObjToCppIntStar(nodeStrct,sw,sz,val0,bb0));
3712         self->setNodeStruct(nodeStrctPtr,nodeStrctPtr+sz);
3713       }
3714
3715       void setOrigin(PyObject *origin) throw(INTERP_KERNEL::Exception)
3716       {
3717         static const char msg[]="MEDCouplingIMesh::setOrigin : invalid input 'origin' parameter ! integer, float, list/tuple of float, DataArrayDouble or DataArrayDoubleTuple supported !";
3718         double val;
3719         DataArrayDouble *a;
3720         DataArrayDoubleTuple *aa;
3721         std::vector<double> bb;
3722         int sw,nbTuples;
3723         const double *originPtr(convertObjToPossibleCpp5_SingleCompo(origin,sw,val,bb,msg,false,nbTuples));
3724         self->setOrigin(originPtr,originPtr+nbTuples);
3725       }
3726       
3727       void setDXYZ(PyObject *dxyz) throw(INTERP_KERNEL::Exception)
3728       {
3729         static const char msg[]="MEDCouplingIMesh::setDXYZ : invalid input 'dxyz' parameter ! integer, float, list/tuple of float, DataArrayDouble or DataArrayDoubleTuple supported !";
3730         double val;
3731         DataArrayDouble *a;
3732         DataArrayDoubleTuple *aa;
3733         std::vector<double> bb;
3734         int sw,nbTuples;
3735         const double *originPtr(convertObjToPossibleCpp5_SingleCompo(dxyz,sw,val,bb,msg,false,nbTuples));
3736         self->setDXYZ(originPtr,originPtr+nbTuples);
3737       }
3738
3739       static void CondenseFineToCoarse(const std::vector<int>& coarseSt, const DataArrayDouble *fineDA, PyObject *fineLocInCoarse, const std::vector<int>& facts, DataArrayDouble *coarseDA) throw(INTERP_KERNEL::Exception)
3740       {
3741         std::vector< std::pair<int,int> > inp;
3742         convertPyToVectorPairInt(fineLocInCoarse,inp);
3743         MEDCouplingIMesh::CondenseFineToCoarse(coarseSt,fineDA,inp,facts,coarseDA);
3744       }
3745
3746       static void CondenseFineToCoarseGhost(const std::vector<int>& coarseSt, const DataArrayDouble *fineDA, PyObject *fineLocInCoarse, const std::vector<int>& facts, DataArrayDouble *coarseDA, int ghostSize) throw(INTERP_KERNEL::Exception)
3747       {
3748         std::vector< std::pair<int,int> > inp;
3749         convertPyToVectorPairInt(fineLocInCoarse,inp);
3750         MEDCouplingIMesh::CondenseFineToCoarseGhost(coarseSt,fineDA,inp,facts,coarseDA,ghostSize);
3751       }
3752
3753       static void SpreadCoarseToFine(const DataArrayDouble *coarseDA, const std::vector<int>& coarseSt, DataArrayDouble *fineDA, PyObject *fineLocInCoarse, const std::vector<int>& facts) throw(INTERP_KERNEL::Exception)
3754       {
3755         std::vector< std::pair<int,int> > inp;
3756         convertPyToVectorPairInt(fineLocInCoarse,inp);
3757         MEDCouplingIMesh::SpreadCoarseToFine(coarseDA,coarseSt,fineDA,inp,facts);
3758       }
3759
3760       static void SpreadCoarseToFineGhost(const DataArrayDouble *coarseDA, const std::vector<int>& coarseSt, DataArrayDouble *fineDA, PyObject *fineLocInCoarse, const std::vector<int>& facts, int ghostSize) throw(INTERP_KERNEL::Exception)
3761       {
3762         std::vector< std::pair<int,int> > inp;
3763         convertPyToVectorPairInt(fineLocInCoarse,inp);
3764         MEDCouplingIMesh::SpreadCoarseToFineGhost(coarseDA,coarseSt,fineDA,inp,facts,ghostSize);
3765       }
3766
3767       static void SpreadCoarseToFineGhostZone(const DataArrayDouble *coarseDA, const std::vector<int>& coarseSt, DataArrayDouble *fineDA, PyObject *fineLocInCoarse, const std::vector<int>& facts, int ghostSize) throw(INTERP_KERNEL::Exception)
3768       {
3769         std::vector< std::pair<int,int> > inp;
3770         convertPyToVectorPairInt(fineLocInCoarse,inp);
3771         MEDCouplingIMesh::SpreadCoarseToFineGhostZone(coarseDA,coarseSt,fineDA,inp,facts,ghostSize);
3772       }
3773
3774       std::string __str__() const throw(INTERP_KERNEL::Exception)
3775       {
3776         return self->simpleRepr();
3777       }
3778       std::string __repr__() const throw(INTERP_KERNEL::Exception)
3779       {
3780         std::ostringstream oss;
3781         self->reprQuickOverview(oss);
3782         return oss.str();
3783       }
3784     }
3785   };
3786
3787   //== MEDCouplingIMesh End
3788
3789 }
3790
3791 namespace MEDCoupling
3792 {
3793   class MEDCouplingField : public MEDCoupling::RefCountObject, public MEDCoupling::TimeLabel
3794   {
3795   public:
3796     virtual void checkConsistencyLight() const throw(INTERP_KERNEL::Exception);
3797     virtual bool areCompatibleForMerge(const MEDCouplingField *other) const throw(INTERP_KERNEL::Exception);
3798     virtual void copyTinyStringsFrom(const MEDCouplingField *other) throw(INTERP_KERNEL::Exception);
3799     void setMesh(const MEDCoupling::MEDCouplingMesh *mesh) throw(INTERP_KERNEL::Exception);
3800     void setName(const char *name) throw(INTERP_KERNEL::Exception);
3801     std::string getDescription() const throw(INTERP_KERNEL::Exception);
3802     void setDescription(const char *desc) throw(INTERP_KERNEL::Exception);
3803     std::string getName() const throw(INTERP_KERNEL::Exception);
3804     TypeOfField getTypeOfField() const throw(INTERP_KERNEL::Exception);
3805     NatureOfField getNature() const throw(INTERP_KERNEL::Exception);
3806     virtual void setNature(NatureOfField nat) throw(INTERP_KERNEL::Exception);
3807     DataArrayDouble *getLocalizationOfDiscr() const throw(INTERP_KERNEL::Exception);
3808     MEDCouplingFieldDouble *buildMeasureField(bool isAbs) const throw(INTERP_KERNEL::Exception);
3809     int getNumberOfTuplesExpected() const throw(INTERP_KERNEL::Exception);
3810     int getNumberOfMeshPlacesExpected() const throw(INTERP_KERNEL::Exception);
3811     void setGaussLocalizationOnType(INTERP_KERNEL::NormalizedCellType type, const std::vector<double>& refCoo,
3812                                     const std::vector<double>& gsCoo, const std::vector<double>& wg) throw(INTERP_KERNEL::Exception);
3813     void clearGaussLocalizations() throw(INTERP_KERNEL::Exception);
3814     MEDCouplingGaussLocalization& getGaussLocalization(int locId) throw(INTERP_KERNEL::Exception);
3815     int getNbOfGaussLocalization() const throw(INTERP_KERNEL::Exception);
3816     int getGaussLocalizationIdOfOneCell(int cellId) const throw(INTERP_KERNEL::Exception);
3817     const MEDCouplingGaussLocalization& getGaussLocalization(int locId) const throw(INTERP_KERNEL::Exception);
3818     int getGaussLocalizationIdOfOneType(INTERP_KERNEL::NormalizedCellType type) const throw(INTERP_KERNEL::Exception);
3819     void setDiscretization(MEDCouplingFieldDiscretization *newDisc);
3820     %extend {
3821       PyObject *getMesh() const throw(INTERP_KERNEL::Exception)
3822       {
3823         MEDCouplingMesh *ret1=const_cast<MEDCouplingMesh *>(self->getMesh());
3824         if(ret1)
3825           ret1->incrRef();
3826         return convertMesh(ret1,SWIG_POINTER_OWN | 0 );
3827       }
3828
3829       PyObject *getDiscretization() throw(INTERP_KERNEL::Exception)
3830       {
3831         MEDCouplingFieldDiscretization *ret=self->getDiscretization();
3832         if(ret)
3833           ret->incrRef();
3834         return convertFieldDiscretization(ret,SWIG_POINTER_OWN | 0 );
3835       }
3836
3837       PyObject *getGaussLocalizationIdsOfOneType(INTERP_KERNEL::NormalizedCellType type) const throw(INTERP_KERNEL::Exception)
3838       {
3839         std::set<int> ret=self->getGaussLocalizationIdsOfOneType(type);
3840         return convertIntArrToPyList3(ret);
3841       }
3842
3843       PyObject *buildSubMeshData(PyObject *li) const throw(INTERP_KERNEL::Exception)
3844       {
3845         DataArrayInt *ret1=0;
3846         MEDCouplingMesh *ret0=0;
3847         void *da=0;
3848         int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_MEDCoupling__DataArrayInt, 0 |  0 );
3849         if (!SWIG_IsOK(res1))
3850           {
3851             int size;
3852             INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
3853             ret0=self->buildSubMeshData(tmp,tmp+size,ret1);
3854           }
3855         else
3856           {
3857             DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
3858             if(!da2)
3859               throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
3860             da2->checkAllocated();
3861             ret0=self->buildSubMeshData(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems(),ret1);
3862           }
3863         PyObject *res = PyList_New(2);
3864         PyList_SetItem(res,0,convertMesh(ret0, SWIG_POINTER_OWN | 0 ));
3865         PyList_SetItem(res,1,SWIG_NewPointerObj((void*)ret1,SWIGTYPE_p_MEDCoupling__DataArrayInt,SWIG_POINTER_OWN | 0));
3866         return res;
3867       }
3868
3869       PyObject *buildSubMeshDataRange(int begin, int end, int step) const throw(INTERP_KERNEL::Exception)
3870       {
3871         DataArrayInt *ret1=0;
3872         int bb,ee,ss;
3873         MEDCouplingMesh *ret0=self->buildSubMeshDataRange(begin,end,step,bb,ee,ss,ret1);
3874         PyObject *res=PyTuple_New(2);
3875         PyTuple_SetItem(res,0,convertMesh(ret0, SWIG_POINTER_OWN | 0 ));
3876         if(ret1)
3877           PyTuple_SetItem(res,1,SWIG_NewPointerObj((void*)ret1,SWIGTYPE_p_MEDCoupling__DataArrayInt,SWIG_POINTER_OWN | 0));
3878         else
3879           {
3880             PyObject *res1=PySlice_New(PyInt_FromLong(bb),PyInt_FromLong(ee),PyInt_FromLong(ss));
3881             PyTuple_SetItem(res,1,res1);
3882           }
3883         return res;
3884       }
3885
3886       DataArrayInt *computeTupleIdsToSelectFromCellIds(PyObject *cellIds) const
3887       {
3888         int sw,sz(-1);
3889         int v0; std::vector<int> v1;
3890         const int *cellIdsBg(convertIntStarLikePyObjToCppIntStar(cellIds,sw,sz,v0,v1));
3891         return self->computeTupleIdsToSelectFromCellIds(cellIdsBg,cellIdsBg+sz);
3892       }
3893
3894       void setGaussLocalizationOnCells(PyObject *li, const std::vector<double>& refCoo,
3895                                        const std::vector<double>& gsCoo, const std::vector<double>& wg) throw(INTERP_KERNEL::Exception)
3896       {
3897         void *da=0;
3898         int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_MEDCoupling__DataArrayInt, 0 |  0 );
3899         if (!SWIG_IsOK(res1))
3900           {
3901             int size;
3902             INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
3903             self->setGaussLocalizationOnCells(tmp,((int *)tmp)+size,refCoo,gsCoo,wg);
3904           }
3905         else
3906           {
3907             DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
3908             if(!da2)
3909               throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
3910             da2->checkAllocated();
3911             self->setGaussLocalizationOnCells(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems(),refCoo,gsCoo,wg);
3912           }
3913       }
3914
3915       PyObject *getCellIdsHavingGaussLocalization(int locId) const throw(INTERP_KERNEL::Exception)
3916       {
3917         std::vector<int> tmp;
3918         self->getCellIdsHavingGaussLocalization(locId,tmp);
3919         DataArrayInt *ret=DataArrayInt::New();
3920         ret->alloc((int)tmp.size(),1);
3921         std::copy(tmp.begin(),tmp.end(),ret->getPointer());
3922         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 );
3923       }
3924       
3925       int getNumberOfTuplesExpectedRegardingCode(PyObject *code, PyObject *idsPerType) const throw(INTERP_KERNEL::Exception)
3926       {
3927         std::vector<int> inp0;
3928         convertPyToNewIntArr4(code,1,3,inp0);
3929         std::vector<const DataArrayInt *> inp1;
3930         convertFromPyObjVectorOfObj<const MEDCoupling::DataArrayInt *>(idsPerType,SWIGTYPE_p_MEDCoupling__DataArrayInt,"DataArrayInt",inp1);
3931         return self->getNumberOfTuplesExpectedRegardingCode(inp0,inp1);
3932       }
3933     }
3934   };
3935   
3936   class MEDCouplingFieldTemplate : public MEDCoupling::MEDCouplingField
3937   {
3938   public:
3939     static MEDCouplingFieldTemplate *New(const MEDCouplingFieldDouble& f) throw(INTERP_KERNEL::Exception);
3940     static MEDCouplingFieldTemplate *New(const MEDCouplingFieldFloat& f) throw(INTERP_KERNEL::Exception);
3941     static MEDCouplingFieldTemplate *New(const MEDCouplingFieldInt& f) throw(INTERP_KERNEL::Exception);
3942     static MEDCouplingFieldTemplate *New(TypeOfField type);
3943     std::string simpleRepr() const throw(INTERP_KERNEL::Exception);
3944     std::string advancedRepr() const throw(INTERP_KERNEL::Exception);
3945     bool isEqual(const MEDCouplingFieldTemplate *other, double meshPrec) const throw(INTERP_KERNEL::Exception);
3946     bool isEqualWithoutConsideringStr(const MEDCouplingFieldTemplate *other, double meshPrec) const throw(INTERP_KERNEL::Exception);
3947     %extend
3948        {
3949          MEDCouplingFieldTemplate(const MEDCouplingFieldDouble& f) throw(INTERP_KERNEL::Exception)
3950          {
3951            return MEDCouplingFieldTemplate::New(f);
3952          }
3953
3954          MEDCouplingFieldTemplate(const MEDCouplingFieldFloat& f) throw(INTERP_KERNEL::Exception)
3955          {
3956            return MEDCouplingFieldTemplate::New(f);
3957          }
3958          
3959          MEDCouplingFieldTemplate(const MEDCouplingFieldInt& f) throw(INTERP_KERNEL::Exception)
3960          {
3961            return MEDCouplingFieldTemplate::New(f);
3962          }
3963          
3964          MEDCouplingFieldTemplate(TypeOfField type) throw(INTERP_KERNEL::Exception)
3965          {
3966            return MEDCouplingFieldTemplate::New(type);
3967          }
3968          
3969          std::string __str__() const throw(INTERP_KERNEL::Exception)
3970          {
3971            return self->simpleRepr();
3972          }
3973          
3974          std::string __repr__() const throw(INTERP_KERNEL::Exception)
3975          {
3976            std::ostringstream oss;
3977            self->reprQuickOverview(oss);
3978            return oss.str();
3979          }
3980
3981          PyObject *isEqualIfNotWhy(const MEDCouplingFieldTemplate *other, double meshPrec) const throw(INTERP_KERNEL::Exception)
3982          {
3983            std::string ret1;
3984            bool ret0=self->isEqualIfNotWhy(other,meshPrec,ret1);
3985            PyObject *ret=PyTuple_New(2);
3986            PyObject *ret0Py=ret0?Py_True:Py_False;
3987            Py_XINCREF(ret0Py);
3988            PyTuple_SetItem(ret,0,ret0Py);
3989            PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
3990            return ret;
3991          }
3992        }
3993   };
3994
3995   template<class T>
3996  class MEDCouplingFieldT : public MEDCoupling::MEDCouplingField
3997   {
3998   public:
3999     TypeOfTimeDiscretization getTimeDiscretization() const throw(INTERP_KERNEL::Exception);
4000   protected:
4001     MEDCouplingFieldT();
4002     ~MEDCouplingFieldT();
4003   };
4004
4005   %template(MEDCouplingFieldTdouble) MEDCoupling::MEDCouplingFieldT<double>;
4006   %template(MEDCouplingFieldTfloat) MEDCoupling::MEDCouplingFieldT<float>;
4007   %template(MEDCouplingFieldTint) MEDCoupling::MEDCouplingFieldT<int>;
4008   
4009   class MEDCouplingFieldInt;
4010   class MEDCouplingFieldFloat;
4011   
4012   class MEDCouplingFieldDouble : public MEDCouplingFieldT<double>
4013   {
4014   public:
4015     static MEDCouplingFieldDouble *New(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME);
4016     static MEDCouplingFieldDouble *New(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME);
4017     bool isEqual(const MEDCouplingFieldDouble *other, double meshPrec, double valsPrec) const throw(INTERP_KERNEL::Exception);
4018     bool isEqualWithoutConsideringStr(const MEDCouplingFieldDouble *other, double meshPrec, double valsPrec) const throw(INTERP_KERNEL::Exception);
4019     void setTimeUnit(const std::string& unit);
4020     std::string getTimeUnit() const;
4021     void synchronizeTimeWithSupport() throw(INTERP_KERNEL::Exception);
4022     void copyTinyAttrFrom(const MEDCouplingFieldDouble *other) throw(INTERP_KERNEL::Exception);
4023     void copyAllTinyAttrFrom(const MEDCouplingFieldDouble *other) throw(INTERP_KERNEL::Exception);
4024     std::string simpleRepr() const throw(INTERP_KERNEL::Exception);
4025     std::string advancedRepr() const throw(INTERP_KERNEL::Exception);
4026     std::string  writeVTK(const std::string& fileName, bool isBinary=true) const throw(INTERP_KERNEL::Exception);
4027     MEDCouplingFieldInt *convertToIntField() const throw(INTERP_KERNEL::Exception);
4028     MEDCouplingFieldFloat *convertToFloatField() const throw(INTERP_KERNEL::Exception);
4029     MEDCouplingFieldDouble *clone(bool recDeepCpy) const;
4030     MEDCouplingFieldDouble *cloneWithMesh(bool recDeepCpy) const;
4031     MEDCouplingFieldDouble *deepCopy() const;
4032     MEDCouplingFieldDouble *buildNewTimeReprFromThis(TypeOfTimeDiscretization td, bool deepCopy) const throw(INTERP_KERNEL::Exception);
4033     MEDCouplingFieldDouble *nodeToCellDiscretization() const throw(INTERP_KERNEL::Exception);
4034     MEDCouplingFieldDouble *cellToNodeDiscretization() const throw(INTERP_KERNEL::Exception);
4035     double getIJ(int tupleId, int compoId) const throw(INTERP_KERNEL::Exception);
4036     double getIJK(int cellId, int nodeIdInCell, int compoId) const throw(INTERP_KERNEL::Exception);
4037     void synchronizeTimeWithMesh() throw(INTERP_KERNEL::Exception);
4038     void setArray(DataArrayDouble *array) throw(INTERP_KERNEL::Exception);
4039     void setEndArray(DataArrayDouble *array) throw(INTERP_KERNEL::Exception);
4040     void setTime(double val, int iteration, int order) throw(INTERP_KERNEL::Exception);
4041     void setStartTime(double val, int iteration, int order) throw(INTERP_KERNEL::Exception);
4042     void setEndTime(double val, int iteration, int order) throw(INTERP_KERNEL::Exception);
4043     void applyLin(double a, double b, int compoId) throw(INTERP_KERNEL::Exception);
4044     void applyLin(double a, double b) throw(INTERP_KERNEL::Exception);
4045     int getNumberOfComponents() const throw(INTERP_KERNEL::Exception);
4046     int getNumberOfTuples() const throw(INTERP_KERNEL::Exception);
4047     int getNumberOfValues() const throw(INTERP_KERNEL::Exception);
4048     void setTimeTolerance(double val) throw(INTERP_KERNEL::Exception);
4049     double getTimeTolerance() const throw(INTERP_KERNEL::Exception);
4050     void setIteration(int it) throw(INTERP_KERNEL::Exception);
4051     void setEndIteration(int it) throw(INTERP_KERNEL::Exception);
4052     void setOrder(int order) throw(INTERP_KERNEL::Exception);
4053     void setEndOrder(int order) throw(INTERP_KERNEL::Exception);
4054     void setTimeValue(double val) throw(INTERP_KERNEL::Exception);
4055     void setEndTimeValue(double val) throw(INTERP_KERNEL::Exception);
4056     void changeUnderlyingMesh(const MEDCouplingMesh *other, int levOfCheck, double precOnMesh, double eps=1e-15) throw(INTERP_KERNEL::Exception);
4057     void substractInPlaceDM(const MEDCouplingFieldDouble *f, int levOfCheck, double precOnMesh, double eps=1e-15) throw(INTERP_KERNEL::Exception);
4058     bool mergeNodes(double eps, double epsOnVals=1e-15) throw(INTERP_KERNEL::Exception);
4059     bool mergeNodesCenter(double eps, double epsOnVals=1e-15) throw(INTERP_KERNEL::Exception);
4060     bool zipCoords(double epsOnVals=1e-15) throw(INTERP_KERNEL::Exception);
4061     bool zipConnectivity(int compType,double epsOnVals=1e-15) throw(INTERP_KERNEL::Exception);
4062     bool simplexize(int policy) throw(INTERP_KERNEL::Exception);
4063     MEDCouplingFieldDouble *doublyContractedProduct() const throw(INTERP_KERNEL::Exception);
4064     MEDCouplingFieldDouble *determinant() const throw(INTERP_KERNEL::Exception);
4065     MEDCouplingFieldDouble *eigenValues() const throw(INTERP_KERNEL::Exception);
4066     MEDCouplingFieldDouble *eigenVectors() const throw(INTERP_KERNEL::Exception);
4067     MEDCouplingFieldDouble *inverse() const throw(INTERP_KERNEL::Exception);
4068     MEDCouplingFieldDouble *trace() const throw(INTERP_KERNEL::Exception);
4069     MEDCouplingFieldDouble *deviator() const throw(INTERP_KERNEL::Exception);
4070     MEDCouplingFieldDouble *magnitude() const throw(INTERP_KERNEL::Exception);
4071     MEDCouplingFieldDouble *maxPerTuple() const throw(INTERP_KERNEL::Exception);
4072     void changeNbOfComponents(int newNbOfComp, double dftValue=0.) throw(INTERP_KERNEL::Exception);
4073     void sortPerTuple(bool asc) throw(INTERP_KERNEL::Exception);
4074     MEDCouplingFieldDouble &operator=(double value) throw(INTERP_KERNEL::Exception);
4075     void fillFromAnalytic(int nbOfComp, const std::string& func) throw(INTERP_KERNEL::Exception);
4076     void fillFromAnalyticCompo(int nbOfComp, const std::string& func) throw(INTERP_KERNEL::Exception);
4077     void fillFromAnalyticNamedCompo(int nbOfComp, const std::vector<std::string>& varsOrder, const std::string& func) throw(INTERP_KERNEL::Exception);
4078     void applyFunc(int nbOfComp, const std::string& func) throw(INTERP_KERNEL::Exception);
4079     void applyFuncCompo(int nbOfComp, const std::string& func) throw(INTERP_KERNEL::Exception);
4080     void applyFuncNamedCompo(int nbOfComp, const std::vector<std::string>& varsOrder, const std::string& func) throw(INTERP_KERNEL::Exception);
4081     void applyFunc(int nbOfComp, double val) throw(INTERP_KERNEL::Exception);
4082     void applyFunc(const std::string& func) throw(INTERP_KERNEL::Exception);
4083     void applyFuncFast32(const std::string& func) throw(INTERP_KERNEL::Exception);
4084     void applyFuncFast64(const std::string& func) throw(INTERP_KERNEL::Exception);
4085     double accumulate(int compId) const throw(INTERP_KERNEL::Exception);
4086     double getMaxValue() const throw(INTERP_KERNEL::Exception);
4087     double getMinValue() const throw(INTERP_KERNEL::Exception);
4088     double getAverageValue() const throw(INTERP_KERNEL::Exception);
4089     double norm2() const throw(INTERP_KERNEL::Exception);
4090     //do not put a default value to isWAbs because confusion in python with overloaded getWeightedAverageValue method
4091     double getWeightedAverageValue(int compId, bool isWAbs) const throw(INTERP_KERNEL::Exception);
4092     double integral(int compId, bool isWAbs) const throw(INTERP_KERNEL::Exception);
4093     double normL1(int compId) const throw(INTERP_KERNEL::Exception);
4094     double normL2(int compId) const throw(INTERP_KERNEL::Exception);
4095     double normMax(int compId) const throw(INTERP_KERNEL::Exception);
4096     DataArrayInt *findIdsInRange(double vmin, double vmax) const throw(INTERP_KERNEL::Exception);
4097     MEDCouplingFieldDouble *buildSubPartRange(int begin, int end, int step) const throw(INTERP_KERNEL::Exception);
4098     static MEDCouplingFieldDouble *MergeFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
4099     static MEDCouplingFieldDouble *MeldFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
4100     static MEDCouplingFieldDouble *DotFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
4101     MEDCouplingFieldDouble *dot(const MEDCouplingFieldDouble& other) const throw(INTERP_KERNEL::Exception);
4102     static MEDCouplingFieldDouble *CrossProductFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
4103     MEDCouplingFieldDouble *crossProduct(const MEDCouplingFieldDouble& other) const throw(INTERP_KERNEL::Exception);
4104     static MEDCouplingFieldDouble *MaxFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
4105     MEDCouplingFieldDouble *max(const MEDCouplingFieldDouble& other) const throw(INTERP_KERNEL::Exception);
4106     static MEDCouplingFieldDouble *MinFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
4107     static MEDCouplingFieldDouble *AddFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
4108     static MEDCouplingFieldDouble *SubstractFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
4109     static MEDCouplingFieldDouble *MultiplyFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
4110     static MEDCouplingFieldDouble *DivideFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
4111     MEDCouplingFieldDouble *min(const MEDCouplingFieldDouble& other) const throw(INTERP_KERNEL::Exception);
4112     MEDCouplingFieldDouble *negate() const throw(INTERP_KERNEL::Exception);
4113     %extend {
4114       MEDCouplingFieldDouble(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME)
4115       {
4116         return MEDCouplingFieldDouble::New(type,td);
4117       }
4118
4119       MEDCouplingFieldDouble(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME)
4120       {
4121         return MEDCouplingFieldDouble::New(ft,td);
4122       }
4123
4124       std::string __str__() const throw(INTERP_KERNEL::Exception)
4125       {
4126         return self->simpleRepr();
4127       }
4128
4129       std::string __repr__() const throw(INTERP_KERNEL::Exception)
4130       {
4131         std::ostringstream oss;
4132         self->reprQuickOverview(oss);
4133         return oss.str();
4134       }
4135
4136       PyObject *isEqualIfNotWhy(const MEDCouplingFieldDouble *other, double meshPrec, double valsPrec) const throw(INTERP_KERNEL::Exception)
4137       {
4138         std::string ret1;
4139         bool ret0=self->isEqualIfNotWhy(other,meshPrec,valsPrec,ret1);
4140         PyObject *ret=PyTuple_New(2);
4141         PyObject *ret0Py=ret0?Py_True:Py_False;
4142         Py_XINCREF(ret0Py);
4143         PyTuple_SetItem(ret,0,ret0Py);
4144         PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
4145         return ret;
4146       }
4147       
4148       MEDCouplingFieldDouble *voronoize(double eps) const throw(INTERP_KERNEL::Exception)
4149       {
4150         MCAuto<MEDCouplingFieldDouble> ret(self->voronoize(eps));
4151         return ret.retn();
4152       }
4153
4154       MEDCouplingFieldDouble *convertQuadraticCellsToLinear() const throw(INTERP_KERNEL::Exception)
4155       {
4156         MCAuto<MEDCouplingFieldDouble> ret(self->convertQuadraticCellsToLinear());
4157         return ret.retn();
4158       }
4159       
4160       MEDCouplingFieldDouble *computeVectorFieldCyl(PyObject *center, PyObject *vector) const
4161       {
4162         const char msg[]="Python wrap of MEDCouplingFieldDouble::computeVectorFieldCyl : ";
4163         double val,val2;
4164         DataArrayDouble *a,*a2;
4165         DataArrayDoubleTuple *aa,*aa2;
4166         std::vector<double> bb,bb2;
4167         int sw;
4168         const double *centerPtr=convertObjToPossibleCpp5_Safe(center,sw,val,a,aa,bb,msg,1,3,true);
4169         const double *vectorPtr=convertObjToPossibleCpp5_Safe(vector,sw,val2,a2,aa2,bb2,msg,1,3,true);
4170         return self->computeVectorFieldCyl(centerPtr,vectorPtr);
4171       }
4172
4173       DataArrayDouble *getArray() throw(INTERP_KERNEL::Exception)
4174       {
4175         DataArrayDouble *ret=self->getArray();
4176         if(ret)
4177           ret->incrRef();
4178         return ret;
4179       }
4180
4181       PyObject *getArrays() const throw(INTERP_KERNEL::Exception)
4182       {
4183         std::vector<DataArrayDouble *> arrs=self->getArrays();
4184         for(std::vector<DataArrayDouble *>::iterator it=arrs.begin();it!=arrs.end();it++)
4185           if(*it)
4186             (*it)->incrRef();
4187         int sz=arrs.size();
4188         PyObject *ret=PyTuple_New(sz);
4189         for(int i=0;i<sz;i++)
4190           {
4191             if(arrs[i])
4192               PyTuple_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(arrs[i]),SWIGTYPE_p_MEDCoupling__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
4193             else
4194               PyTuple_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_MEDCoupling__DataArrayDouble, 0 | 0 ));
4195           }
4196         return ret;
4197       }
4198
4199       void setArrays(PyObject *ls) throw(INTERP_KERNEL::Exception)
4200       {
4201         std::vector<const DataArrayDouble *> tmp;
4202         convertFromPyObjVectorOfObj<const DataArrayDouble *>(ls,SWIGTYPE_p_MEDCoupling__DataArrayDouble,"DataArrayDouble",tmp);
4203         int sz=tmp.size();
4204         std::vector<DataArrayDouble *> arrs(sz);
4205         for(int i=0;i<sz;i++)
4206           arrs[i]=const_cast<DataArrayDouble *>(tmp[i]);
4207         self->setArrays(arrs);
4208       }
4209
4210       DataArrayDouble *getEndArray() throw(INTERP_KERNEL::Exception)
4211       {
4212         DataArrayDouble *ret=self->getEndArray();
4213         if(ret)
4214           ret->incrRef();
4215         return ret;
4216       }
4217
4218       PyObject *getValueOn(PyObject *sl) const throw(INTERP_KERNEL::Exception)
4219       {
4220         double val;
4221         DataArrayDouble *a;
4222         DataArrayDoubleTuple *aa;
4223         std::vector<double> bb;
4224         int sw;
4225         const MEDCouplingMesh *mesh=self->getMesh();
4226         if(!mesh)
4227           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingFieldDouble::getValueOn : no underlying mesh !");
4228         int spaceDim=mesh->getSpaceDimension();
4229         const char msg[]="Python wrap of MEDCouplingFieldDouble::getValueOn : ";
4230         const double *spaceLoc=convertObjToPossibleCpp5_Safe(sl,sw,val,a,aa,bb,msg,1,spaceDim,true);
4231         //
4232         int sz=self->getNumberOfComponents();
4233         INTERP_KERNEL::AutoPtr<double> res=new double[sz];
4234         self->getValueOn(spaceLoc,res);
4235         return convertDblArrToPyList<double>(res,sz);
4236       }
4237
4238        PyObject *getValueOnPos(int i, int j, int k) const throw(INTERP_KERNEL::Exception)
4239        {
4240          int sz=self->getNumberOfComponents();
4241          INTERP_KERNEL::AutoPtr<double> res=new double[sz];
4242          self->getValueOnPos(i,j,k,res);
4243          return convertDblArrToPyList<double>(res,sz);
4244        }
4245
4246       DataArrayDouble *getValueOnMulti(PyObject *locs) const throw(INTERP_KERNEL::Exception)
4247       {
4248         const MEDCouplingMesh *mesh(self->getMesh());
4249         if(!mesh)
4250           throw INTERP_KERNEL::Exception("Python wrap MEDCouplingFieldDouble::getValueOnMulti : lying on a null mesh !");
4251         //
4252         int sw,nbPts;
4253         double v0; MEDCoupling::DataArrayDouble *v1(0); MEDCoupling::DataArrayDoubleTuple *v2(0); std::vector<double> v3;
4254         const double *inp=convertObjToPossibleCpp5_Safe2(locs,sw,v0,v1,v2,v3,"wrap of MEDCouplingFieldDouble::getValueOnMulti",
4255                                                          mesh->getSpaceDimension(),true,nbPts);
4256         return self->getValueOnMulti(inp,nbPts);
4257       }
4258
4259       PyObject *getValueOn(PyObject *sl, double time) const throw(INTERP_KERNEL::Exception)
4260       {
4261         double val;
4262         DataArrayDouble *a;
4263         DataArrayDoubleTuple *aa;
4264         std::vector<double> bb;
4265         int sw;
4266         const MEDCouplingMesh *mesh=self->getMesh();
4267         if(!mesh)
4268           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingFieldDouble::getValueOn : no underlying mesh !");
4269         int spaceDim=mesh->getSpaceDimension();
4270         const char msg[]="Python wrap of MEDCouplingFieldDouble::getValueOn : ";
4271         const double *spaceLoc=convertObjToPossibleCpp5_Safe(sl,sw,val,a,aa,bb,msg,1,spaceDim,true);
4272         //
4273         //
4274         int sz=self->getNumberOfComponents();
4275         INTERP_KERNEL::AutoPtr<double> res=new double[sz];
4276         self->getValueOn(spaceLoc,time,res);
4277         return convertDblArrToPyList<double>(res,sz);
4278       }
4279
4280       void setValues(PyObject *li, PyObject *nbOfTuples=0, PyObject *nbOfComp=0) throw(INTERP_KERNEL::Exception)
4281       {
4282         if(self->getArray()!=0)
4283           MEDCoupling_DataArrayDouble_setValues__SWIG_0(self->getArray(),li,nbOfTuples,nbOfComp);
4284         else
4285           {
4286             MCAuto<DataArrayDouble> arr=DataArrayDouble::New();
4287             MEDCoupling_DataArrayDouble_setValues__SWIG_0(arr,li,nbOfTuples,nbOfComp);
4288             self->setArray(arr);
4289           }
4290       }
4291       
4292       PyObject *getTime() throw(INTERP_KERNEL::Exception)
4293       {
4294         int tmp1,tmp2;
4295         double tmp0=self->getTime(tmp1,tmp2);
4296         PyObject *res = PyList_New(3);
4297         PyList_SetItem(res,0,SWIG_From_double(tmp0));
4298         PyList_SetItem(res,1,SWIG_From_int(tmp1));
4299         PyList_SetItem(res,2,SWIG_From_int(tmp2));
4300         return res;
4301       }
4302
4303       PyObject *getStartTime() throw(INTERP_KERNEL::Exception)
4304       {
4305         int tmp1,tmp2;
4306         double tmp0=self->getStartTime(tmp1,tmp2);
4307         PyObject *res = PyList_New(3);
4308         PyList_SetItem(res,0,SWIG_From_double(tmp0));
4309         PyList_SetItem(res,1,SWIG_From_int(tmp1));
4310         PyList_SetItem(res,2,SWIG_From_int(tmp2));
4311         return res;
4312       }
4313
4314       PyObject *getEndTime() throw(INTERP_KERNEL::Exception)
4315       {
4316         int tmp1,tmp2;
4317         double tmp0=self->getEndTime(tmp1,tmp2);
4318         PyObject *res = PyList_New(3);
4319         PyList_SetItem(res,0,SWIG_From_double(tmp0));
4320         PyList_SetItem(res,1,SWIG_From_int(tmp1));
4321         PyList_SetItem(res,2,SWIG_From_int(tmp2));
4322         return res;
4323       }
4324       PyObject *accumulate() const throw(INTERP_KERNEL::Exception)
4325       {
4326         int sz=self->getNumberOfComponents();
4327         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
4328         self->accumulate(tmp);
4329         return convertDblArrToPyList<double>(tmp,sz);
4330       }
4331       PyObject *integral(bool isWAbs) const throw(INTERP_KERNEL::Exception)
4332       {
4333         int sz=self->getNumberOfComponents();
4334         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
4335         self->integral(isWAbs,tmp);
4336         return convertDblArrToPyList<double>(tmp,sz);
4337       }
4338       PyObject *getWeightedAverageValue(bool isWAbs=true) const throw(INTERP_KERNEL::Exception)
4339       {
4340         int sz=self->getNumberOfComponents();
4341         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
4342         self->getWeightedAverageValue(tmp,isWAbs);
4343         return convertDblArrToPyList<double>(tmp,sz);
4344       }
4345       PyObject *normL1() const throw(INTERP_KERNEL::Exception)
4346       {
4347         int sz=self->getNumberOfComponents();
4348         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
4349         self->normL1(tmp);
4350         return convertDblArrToPyList<double>(tmp,sz);
4351       }
4352       PyObject *normL2() const throw(INTERP_KERNEL::Exception)
4353       {
4354         int sz=self->getNumberOfComponents();
4355         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
4356         self->normL2(tmp);
4357         return convertDblArrToPyList<double>(tmp,sz);
4358       }
4359       PyObject *normMax() const throw(INTERP_KERNEL::Exception)
4360       {
4361         int sz=self->getNumberOfComponents();
4362         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
4363         self->normMax(tmp);
4364         return convertDblArrToPyList<double>(tmp,sz);
4365       }
4366       void renumberCells(PyObject *li, bool check=true) throw(INTERP_KERNEL::Exception)
4367       {
4368         int szArr,sw,iTypppArr;
4369         std::vector<int> stdvecTyyppArr;
4370         const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
4371         self->renumberCells(tmp,check);
4372       }
4373       
4374       void renumberCellsWithoutMesh(PyObject *li, bool check=true) throw(INTERP_KERNEL::Exception)
4375       {
4376         int szArr,sw,iTypppArr;
4377         std::vector<int> stdvecTyyppArr;
4378         const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
4379         self->renumberCellsWithoutMesh(tmp,check);
4380       }
4381       
4382       void renumberNodes(PyObject *li, double eps=1e-15) throw(INTERP_KERNEL::Exception)
4383       {
4384         int szArr,sw,iTypppArr;
4385         std::vector<int> stdvecTyyppArr;
4386         const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
4387         self->renumberNodes(tmp,eps);
4388       }
4389
4390       void renumberNodesWithoutMesh(PyObject *li, int newNbOfNodes, double eps=1e-15) throw(INTERP_KERNEL::Exception)
4391       {
4392         int szArr,sw,iTypppArr;
4393         std::vector<int> stdvecTyyppArr;
4394         const int *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
4395         self->renumberNodesWithoutMesh(tmp,newNbOfNodes,eps);
4396       }
4397
4398       MEDCouplingFieldDouble *buildSubPart(PyObject *li) const throw(INTERP_KERNEL::Exception)
4399       {
4400         return fieldT_buildSubPart(self,li);
4401       }
4402
4403       MEDCouplingFieldDouble *__getitem__(PyObject *li) const throw(INTERP_KERNEL::Exception)
4404       {
4405         return fieldT__getitem__(self,li);
4406       }
4407
4408       PyObject *getMaxValue2() const throw(INTERP_KERNEL::Exception)
4409       {
4410         DataArrayInt *tmp;
4411         double r1=self->getMaxValue2(tmp);
4412         PyObject *ret=PyTuple_New(2);
4413         PyTuple_SetItem(ret,0,PyFloat_FromDouble(r1));
4414         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
4415         return ret;
4416       }
4417       
4418       PyObject *getMinValue2() const throw(INTERP_KERNEL::Exception)
4419       {
4420         DataArrayInt *tmp;
4421         double r1=self->getMinValue2(tmp);
4422         PyObject *ret=PyTuple_New(2);
4423         PyTuple_SetItem(ret,0,PyFloat_FromDouble(r1));
4424         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 ));
4425         return ret;
4426       }
4427       
4428       MEDCouplingFieldDouble *keepSelectedComponents(PyObject *li) const throw(INTERP_KERNEL::Exception)
4429       {
4430         std::vector<int> tmp;
4431         convertPyToNewIntArr3(li,tmp);
4432         return self->keepSelectedComponents(tmp);
4433       }
4434
4435       void setSelectedComponents(const MEDCouplingFieldDouble *f, PyObject *li) throw(INTERP_KERNEL::Exception)
4436       {
4437         std::vector<int> tmp;
4438         convertPyToNewIntArr3(li,tmp);
4439         self->setSelectedComponents(f,tmp);
4440       }
4441
4442       MEDCouplingFieldDouble *extractSlice3D(PyObject *origin, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
4443       {
4444         double val,val2;
4445         DataArrayDouble *a,*a2;
4446         DataArrayDoubleTuple *aa,*aa2;
4447         std::vector<double> bb,bb2;
4448         int sw;
4449         int spaceDim=3;
4450         const char msg[]="Python wrap of MEDCouplingFieldDouble::extractSlice3D : 1st parameter for origin.";
4451         const char msg2[]="Python wrap of MEDCouplingFieldDouble::extractSlice3D : 2nd parameter for vector.";
4452         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
4453         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
4454         //
4455         return self->extractSlice3D(orig,vect,eps);
4456       }
4457
4458       MEDCouplingFieldDouble *__add__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4459       {
4460         return MEDCoupling_MEDCouplingFieldDouble___add__Impl(self,obj);
4461       }
4462
4463       MEDCouplingFieldDouble *__radd__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4464       {
4465         return MEDCoupling_MEDCouplingFieldDouble___radd__Impl(self,obj);
4466       }
4467
4468       MEDCouplingFieldDouble *__sub__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4469       {
4470         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__sub__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4471         const char msg2[]="in MEDCouplingFieldDouble.__sub__ : self field has no Array of values set !";
4472         void *argp;
4473         //
4474         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,0|0)))
4475           {
4476             MEDCouplingFieldDouble *other=reinterpret_cast< MEDCoupling::MEDCouplingFieldDouble * >(argp);
4477             if(other)
4478               return (*self)-(*other);
4479             else
4480               throw INTERP_KERNEL::Exception(msg);
4481           }
4482         //
4483         double val;
4484         DataArrayDouble *a;
4485         DataArrayDoubleTuple *aa;
4486         std::vector<double> bb;
4487         int sw;
4488         convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb);
4489         switch(sw)
4490           {
4491           case 1:
4492             {
4493               if(!self->getArray())
4494                 throw INTERP_KERNEL::Exception(msg2);
4495               MCAuto<DataArrayDouble> ret=self->getArray()->deepCopy();
4496               ret->applyLin(1.,-val);
4497               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4498               ret2->setArray(ret);
4499               return ret2.retn();
4500             }
4501           case 2:
4502             {
4503               if(!self->getArray())
4504                 throw INTERP_KERNEL::Exception(msg2);
4505               MCAuto<DataArrayDouble> ret=DataArrayDouble::Substract(self->getArray(),a);
4506               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4507               ret2->setArray(ret);
4508               return ret2.retn();
4509             }
4510           case 3:
4511             {
4512               if(!self->getArray())
4513                 throw INTERP_KERNEL::Exception(msg2);
4514               MCAuto<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4515               MCAuto<DataArrayDouble> ret=DataArrayDouble::Substract(self->getArray(),aaa);
4516               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4517               ret2->setArray(ret);
4518               return ret2.retn();
4519             }
4520           case 4:
4521             {
4522               if(!self->getArray())
4523                 throw INTERP_KERNEL::Exception(msg2);
4524               MCAuto<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4525               MCAuto<DataArrayDouble> ret=DataArrayDouble::Substract(self->getArray(),aaa);
4526               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4527               ret2->setArray(ret);
4528               return ret2.retn();
4529             }
4530           default:
4531             { throw INTERP_KERNEL::Exception(msg); }
4532           }
4533       }
4534
4535       MEDCouplingFieldDouble *__rsub__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4536       {
4537         return MEDCoupling_MEDCouplingFieldDouble___rsub__Impl(self,obj);
4538       }
4539
4540       MEDCouplingFieldDouble *__mul__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4541       {
4542         return MEDCoupling_MEDCouplingFieldDouble___mul__Impl(self,obj);
4543       }
4544
4545       MEDCouplingFieldDouble *__rmul__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4546       {
4547         return MEDCoupling_MEDCouplingFieldDouble___rmul__Impl(self,obj);
4548       }
4549
4550       MEDCouplingFieldDouble *__div__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4551       {
4552         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__div__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4553         const char msg2[]="in MEDCouplingFieldDouble.__div__ : self field has no Array of values set !";
4554         void *argp;
4555         //
4556         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,0|0)))
4557           {
4558             MEDCouplingFieldDouble *other=reinterpret_cast< MEDCoupling::MEDCouplingFieldDouble * >(argp);
4559             if(other)
4560               return (*self)/(*other);
4561             else
4562               throw INTERP_KERNEL::Exception(msg);
4563           }
4564         //
4565         double val;
4566         DataArrayDouble *a;
4567         DataArrayDoubleTuple *aa;
4568         std::vector<double> bb;
4569         int sw;
4570         convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb);
4571         switch(sw)
4572           {
4573           case 1:
4574             {
4575               if(val==0.)
4576                 throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble.__div__ : trying to divide by zero !");
4577               if(!self->getArray())
4578                 throw INTERP_KERNEL::Exception(msg2);
4579               MCAuto<DataArrayDouble> ret=self->getArray()->deepCopy();
4580               ret->applyLin(1./val,0);
4581               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4582               ret2->setArray(ret);
4583               return ret2.retn();
4584             }
4585           case 2:
4586             {
4587               if(!self->getArray())
4588                 throw INTERP_KERNEL::Exception(msg2);
4589               MCAuto<DataArrayDouble> ret=DataArrayDouble::Divide(self->getArray(),a);
4590               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4591               ret2->setArray(ret);
4592               return ret2.retn();
4593             }
4594           case 3:
4595             {
4596               if(!self->getArray())
4597                 throw INTERP_KERNEL::Exception(msg2);
4598               MCAuto<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4599               MCAuto<DataArrayDouble> ret=DataArrayDouble::Divide(self->getArray(),aaa);
4600               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4601               ret2->setArray(ret);
4602               return ret2.retn();
4603             }
4604           case 4:
4605             {
4606               if(!self->getArray())
4607                 throw INTERP_KERNEL::Exception(msg2);
4608               MCAuto<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4609               MCAuto<DataArrayDouble> ret=DataArrayDouble::Divide(self->getArray(),aaa);
4610               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4611               ret2->setArray(ret);
4612               return ret2.retn();
4613             }
4614           default:
4615             { throw INTERP_KERNEL::Exception(msg); }
4616           }
4617       }
4618
4619       MEDCouplingFieldDouble *__rdiv__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4620       {
4621         return MEDCoupling_MEDCouplingFieldDouble___rdiv__Impl(self,obj);
4622       }
4623
4624       MEDCouplingFieldDouble *__pow__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4625       {
4626         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__pow__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4627         const char msg2[]="in MEDCouplingFieldDouble.__pow__ : self field has no Array of values set !";
4628         void *argp;
4629         //
4630         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,0|0)))
4631           {
4632             MEDCouplingFieldDouble *other=reinterpret_cast< MEDCoupling::MEDCouplingFieldDouble * >(argp);
4633             if(other)
4634               return (*self)^(*other);
4635             else
4636               throw INTERP_KERNEL::Exception(msg);
4637           }
4638         //
4639         double val;
4640         DataArrayDouble *a;
4641         DataArrayDoubleTuple *aa;
4642         std::vector<double> bb;
4643         int sw;
4644         convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb);
4645         switch(sw)
4646           {
4647           case 1:
4648             {
4649               if(!self->getArray())
4650                 throw INTERP_KERNEL::Exception(msg2);
4651               MCAuto<DataArrayDouble> ret=self->getArray()->deepCopy();
4652               ret->applyPow(val);
4653               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4654               ret2->setArray(ret);
4655               return ret2.retn();
4656             }
4657           case 2:
4658             {
4659               if(!self->getArray())
4660                 throw INTERP_KERNEL::Exception(msg2);
4661               MCAuto<DataArrayDouble> ret=DataArrayDouble::Pow(self->getArray(),a);
4662               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4663               ret2->setArray(ret);
4664               return ret2.retn();
4665             }
4666           case 3:
4667             {
4668               if(!self->getArray())
4669                 throw INTERP_KERNEL::Exception(msg2);
4670               MCAuto<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4671               MCAuto<DataArrayDouble> ret=DataArrayDouble::Pow(self->getArray(),aaa);
4672               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4673               ret2->setArray(ret);
4674               return ret2.retn();
4675             }
4676           case 4:
4677             {
4678               if(!self->getArray())
4679                 throw INTERP_KERNEL::Exception(msg2);
4680               MCAuto<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4681               MCAuto<DataArrayDouble> ret=DataArrayDouble::Pow(self->getArray(),aaa);
4682               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4683               ret2->setArray(ret);
4684               return ret2.retn();
4685             }
4686           default:
4687             { throw INTERP_KERNEL::Exception(msg); }
4688           }
4689       }
4690
4691       MEDCouplingFieldDouble *__neg__() const throw(INTERP_KERNEL::Exception)
4692       {
4693         return self->negate();
4694       }
4695
4696       PyObject *___iadd___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
4697       {
4698         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__iadd__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4699         const char msg2[]="in MEDCouplingFieldDouble.__iadd__ : self field has no Array of values set !";
4700         void *argp;
4701         //
4702         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,0|0)))
4703           {
4704             MEDCouplingFieldDouble *other=reinterpret_cast< MEDCoupling::MEDCouplingFieldDouble * >(argp);
4705             if(other)
4706               {
4707                 *self+=*other;
4708                 Py_XINCREF(trueSelf);
4709                 return trueSelf;
4710               }
4711             else
4712               throw INTERP_KERNEL::Exception(msg);
4713           }
4714         //
4715         double val;
4716         DataArrayDouble *a;
4717         DataArrayDoubleTuple *aa;
4718         std::vector<double> bb;
4719         int sw;
4720         convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb);
4721         switch(sw)
4722           {
4723           case 1:
4724             {
4725               if(!self->getArray())
4726                 throw INTERP_KERNEL::Exception(msg2);
4727               self->getArray()->applyLin(1.,val);
4728               Py_XINCREF(trueSelf);
4729               return trueSelf;
4730             }
4731           case 2:
4732             {
4733               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4734               ret2->setArray(a);
4735               *self+=*ret2;
4736               Py_XINCREF(trueSelf);
4737               return trueSelf;
4738             }
4739           case 3:
4740             {
4741               MCAuto<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4742               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4743               ret2->setArray(aaa);
4744               *self+=*ret2;
4745               Py_XINCREF(trueSelf);
4746               return trueSelf;
4747             }
4748           case 4:
4749             {
4750               if(!self->getArray())
4751                 throw INTERP_KERNEL::Exception(msg2);
4752               MCAuto<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4753               self->getArray()->addEqual(aaa);
4754               Py_XINCREF(trueSelf);
4755               return trueSelf;
4756             }
4757           default:
4758             { throw INTERP_KERNEL::Exception(msg); }
4759           }
4760       }
4761
4762       PyObject *___isub___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
4763       {
4764         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__isub__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4765         const char msg2[]="in MEDCouplingFieldDouble.__isub__ : self field has no Array of values set !";
4766         void *argp;
4767         //
4768         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,0|0)))
4769           {
4770             MEDCouplingFieldDouble *other=reinterpret_cast< MEDCoupling::MEDCouplingFieldDouble * >(argp);
4771             if(other)
4772               {
4773                 *self-=*other;
4774                 Py_XINCREF(trueSelf);
4775                 return trueSelf;
4776               }
4777             else
4778               throw INTERP_KERNEL::Exception(msg);
4779           }
4780         //
4781         double val;
4782         DataArrayDouble *a;
4783         DataArrayDoubleTuple *aa;
4784         std::vector<double> bb;
4785         int sw;
4786         convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb);
4787         switch(sw)
4788           {
4789           case 1:
4790             {
4791               if(!self->getArray())
4792                 throw INTERP_KERNEL::Exception(msg2);
4793               self->getArray()->applyLin(1.,-val);
4794               Py_XINCREF(trueSelf);
4795               return trueSelf;
4796             }
4797           case 2:
4798             {
4799               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4800               ret2->setArray(a);
4801               *self-=*ret2;
4802               Py_XINCREF(trueSelf);
4803               return trueSelf;
4804             }
4805           case 3:
4806             {
4807               MCAuto<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4808               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4809               ret2->setArray(aaa);
4810               *self-=*ret2;
4811               Py_XINCREF(trueSelf);
4812               return trueSelf;
4813             }
4814           case 4:
4815             {
4816               if(!self->getArray())
4817                 throw INTERP_KERNEL::Exception(msg2);
4818               MCAuto<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4819               self->getArray()->substractEqual(aaa);
4820               Py_XINCREF(trueSelf);
4821               return trueSelf;
4822             }
4823           default:
4824             { throw INTERP_KERNEL::Exception(msg); }
4825           }
4826       }
4827
4828       PyObject *___imul___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
4829       {
4830         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__imul__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4831         const char msg2[]="in MEDCouplingFieldDouble.__imul__ : self field has no Array of values set !";
4832         void *argp;
4833         //
4834         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,0|0)))
4835           {
4836             MEDCouplingFieldDouble *other=reinterpret_cast< MEDCoupling::MEDCouplingFieldDouble * >(argp);
4837             if(other)
4838               {
4839                 *self*=*other;
4840                 Py_XINCREF(trueSelf);
4841                 return trueSelf;
4842               }
4843             else
4844               throw INTERP_KERNEL::Exception(msg);
4845           }
4846         //
4847         double val;
4848         DataArrayDouble *a;
4849         DataArrayDoubleTuple *aa;
4850         std::vector<double> bb;
4851         int sw;
4852         convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb);
4853         switch(sw)
4854           {
4855           case 1:
4856             {
4857               if(!self->getArray())
4858                 throw INTERP_KERNEL::Exception(msg2);
4859               self->getArray()->applyLin(val,0);
4860               Py_XINCREF(trueSelf);
4861               return trueSelf;
4862             }
4863           case 2:
4864             {
4865               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4866               ret2->setArray(a);
4867               *self*=*ret2;
4868               Py_XINCREF(trueSelf);
4869               return trueSelf;
4870             }
4871           case 3:
4872             {
4873               MCAuto<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4874               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4875               ret2->setArray(aaa);
4876               *self*=*ret2;
4877               Py_XINCREF(trueSelf);
4878               return trueSelf;
4879             }
4880           case 4:
4881             {
4882               if(!self->getArray())
4883                 throw INTERP_KERNEL::Exception(msg2);
4884               MCAuto<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4885               self->getArray()->multiplyEqual(aaa);
4886               Py_XINCREF(trueSelf);
4887               return trueSelf;
4888             }
4889           default:
4890             { throw INTERP_KERNEL::Exception(msg); }
4891           }
4892       }
4893
4894       PyObject *___idiv___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
4895       {
4896         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__idiv__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4897         const char msg2[]="in MEDCouplingFieldDouble.__idiv__ : self field has no Array of values set !";
4898         void *argp;
4899         //
4900         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,0|0)))
4901           {
4902             MEDCouplingFieldDouble *other=reinterpret_cast< MEDCoupling::MEDCouplingFieldDouble * >(argp);
4903             if(other)
4904               {
4905                 *self/=*other;
4906                 Py_XINCREF(trueSelf);
4907                 return trueSelf;
4908               }
4909             else
4910               throw INTERP_KERNEL::Exception(msg);
4911           }
4912         //
4913         double val;
4914         DataArrayDouble *a;
4915         DataArrayDoubleTuple *aa;
4916         std::vector<double> bb;
4917         int sw;
4918         convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb);
4919         switch(sw)
4920           {
4921           case 1:
4922             {
4923               if(val==0.)
4924                 throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble.__idiv__ : trying to divide by zero !");
4925               if(!self->getArray())
4926                 throw INTERP_KERNEL::Exception(msg2);
4927               self->getArray()->applyLin(1./val,0);
4928               Py_XINCREF(trueSelf);
4929               return trueSelf;
4930             }
4931           case 2:
4932             {
4933               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4934               ret2->setArray(a);
4935               *self/=*ret2;
4936               Py_XINCREF(trueSelf);
4937               return trueSelf;
4938             }
4939           case 3:
4940             {
4941               MCAuto<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4942               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4943               ret2->setArray(aaa);
4944               *self/=*ret2;
4945               Py_XINCREF(trueSelf);
4946               return trueSelf;
4947             }
4948           case 4:
4949             {
4950               if(!self->getArray())
4951                 throw INTERP_KERNEL::Exception(msg2);
4952               MCAuto<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4953               self->getArray()->divideEqual(aaa);
4954               Py_XINCREF(trueSelf);
4955               return trueSelf;
4956             }
4957           default:
4958             { throw INTERP_KERNEL::Exception(msg); }
4959           }
4960       }
4961
4962       PyObject *___ipow___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
4963       {
4964         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__ipow__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4965         const char msg2[]="in MEDCouplingFieldDouble.__ipow__ : self field has no Array of values set !";
4966         void *argp;
4967         //
4968         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,0|0)))
4969           {
4970             MEDCouplingFieldDouble *other=reinterpret_cast< MEDCoupling::MEDCouplingFieldDouble * >(argp);
4971             if(other)
4972               {
4973                 *self^=*other;
4974                 Py_XINCREF(trueSelf);
4975                 return trueSelf;
4976               }
4977             else
4978               throw INTERP_KERNEL::Exception(msg);
4979           }
4980         //
4981         double val;
4982         DataArrayDouble *a;
4983         DataArrayDoubleTuple *aa;
4984         std::vector<double> bb;
4985         int sw;
4986         convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb);
4987         switch(sw)
4988           {
4989           case 1:
4990             {
4991               if(!self->getArray())
4992                 throw INTERP_KERNEL::Exception(msg2);
4993               self->getArray()->applyPow(val);
4994               Py_XINCREF(trueSelf);
4995               return trueSelf;
4996             }
4997           case 2:
4998             {
4999               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
5000               ret2->setArray(a);
5001               *self^=*ret2;
5002               Py_XINCREF(trueSelf);
5003               return trueSelf;
5004             }
5005           case 3:
5006             {
5007               MCAuto<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
5008               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
5009               ret2->setArray(aaa);
5010               *self^=*ret2;
5011               Py_XINCREF(trueSelf);
5012               return trueSelf;
5013             }
5014           case 4:
5015             {
5016               if(!self->getArray())
5017                 throw INTERP_KERNEL::Exception(msg2);
5018               MCAuto<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
5019               self->getArray()->powEqual(aaa);
5020               Py_XINCREF(trueSelf);
5021               return trueSelf;
5022             }
5023           default:
5024             { throw INTERP_KERNEL::Exception(msg); }
5025           }
5026       }
5027
5028       static MEDCouplingFieldDouble *MergeFields(PyObject *li) throw(INTERP_KERNEL::Exception)
5029       {
5030         std::vector<const MEDCouplingFieldDouble *> tmp;
5031         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
5032         return MEDCouplingFieldDouble::MergeFields(tmp);
5033       }
5034
5035       static std::string WriteVTK(const char *fileName, PyObject *li, bool isBinary=true) throw(INTERP_KERNEL::Exception)
5036       {
5037         std::vector<const MEDCouplingFieldDouble *> tmp;
5038         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
5039         return MEDCouplingFieldDouble::WriteVTK(fileName,tmp,isBinary);
5040       }
5041
5042       PyObject *getTinySerializationInformation() const throw(INTERP_KERNEL::Exception)
5043       {
5044         return field_getTinySerializationInformation<MEDCouplingFieldDouble>(self);
5045       }
5046       
5047       PyObject *serialize() const throw(INTERP_KERNEL::Exception)
5048       {
5049         return field_serialize<double>(self);
5050       }
5051
5052       PyObject *__getstate__() const throw(INTERP_KERNEL::Exception)
5053       {
5054         return field__getstate__<MEDCouplingFieldDouble>(self,MEDCoupling_MEDCouplingFieldDouble_getTinySerializationInformation,MEDCoupling_MEDCouplingFieldDouble_serialize);
5055       }
5056       
5057       void __setstate__(PyObject *inp) throw(INTERP_KERNEL::Exception)
5058       {
5059         field__setstate__<double>(self,inp);
5060       }
5061     }
5062   };
5063
5064   class MEDCouplingMultiFields : public RefCountObject, public TimeLabel
5065   {
5066   public:
5067     int getNumberOfFields() const;
5068     MEDCouplingMultiFields *deepCopy() const;
5069     virtual std::string simpleRepr() const throw(INTERP_KERNEL::Exception);
5070     virtual std::string advancedRepr() const throw(INTERP_KERNEL::Exception);
5071     virtual bool isEqual(const MEDCouplingMultiFields *other, double meshPrec, double valsPrec) const;
5072     virtual bool isEqualWithoutConsideringStr(const MEDCouplingMultiFields *other, double meshPrec, double valsPrec) const;
5073     virtual void checkConsistencyLight() const throw(INTERP_KERNEL::Exception);
5074     %extend
5075        {
5076          std::string __str__() const throw(INTERP_KERNEL::Exception)
5077          {
5078            return self->simpleRepr();
5079          }
5080          static MEDCouplingMultiFields *New(PyObject *li) throw(INTERP_KERNEL::Exception)
5081          {
5082            std::vector<const MEDCoupling::MEDCouplingFieldDouble *> tmp;
5083            convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
5084            int sz=tmp.size();
5085            std::vector<MEDCouplingFieldDouble *> fs(sz);
5086            for(int i=0;i<sz;i++)
5087              fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
5088            return MEDCouplingMultiFields::New(fs);
5089          }
5090          MEDCouplingMultiFields(PyObject *li) throw(INTERP_KERNEL::Exception)
5091          {
5092            std::vector<const MEDCoupling::MEDCouplingFieldDouble *> tmp;
5093            convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
5094            int sz=tmp.size();
5095            std::vector<MEDCouplingFieldDouble *> fs(sz);
5096            for(int i=0;i<sz;i++)
5097              fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
5098            return MEDCouplingMultiFields::New(fs);
5099          }
5100          PyObject *getFields() const
5101          {
5102            std::vector<const MEDCouplingFieldDouble *> fields=self->getFields();
5103            int sz=fields.size();
5104            PyObject *res = PyList_New(sz);
5105            for(int i=0;i<sz;i++)
5106              {
5107                if(fields[i])
5108                  {
5109                    fields[i]->incrRef();
5110                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(fields[i]),SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble, SWIG_POINTER_OWN | 0 ));
5111                  }
5112                else
5113                  {
5114                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble, 0 ));
5115                  }
5116              }
5117            return res;
5118          }
5119          PyObject *getFieldAtPos(int id) const throw(INTERP_KERNEL::Exception)
5120          {
5121            const MEDCouplingFieldDouble *ret=self->getFieldAtPos(id);
5122            if(ret)
5123              {
5124                ret->incrRef();
5125                return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble, SWIG_POINTER_OWN | 0 );
5126              }
5127            else
5128              return SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble, 0 );
5129          }
5130          PyObject *getMeshes() const throw(INTERP_KERNEL::Exception)
5131          {
5132            std::vector<MEDCouplingMesh *> ms=self->getMeshes();
5133            int sz=ms.size();
5134            PyObject *res = PyList_New(sz);
5135            for(int i=0;i<sz;i++)
5136              {
5137                if(ms[i])
5138                  {
5139                    ms[i]->incrRef();
5140                    PyList_SetItem(res,i,convertMesh(ms[i], SWIG_POINTER_OWN | 0 ));
5141                  }
5142                else
5143                  {
5144                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, 0 ));
5145                  }
5146              }
5147            return res;
5148          }
5149          PyObject *getDifferentMeshes() const throw(INTERP_KERNEL::Exception)
5150          {
5151            std::vector<int> refs;
5152            std::vector<MEDCouplingMesh *> ms=self->getDifferentMeshes(refs);
5153            int sz=ms.size();
5154            PyObject *res = PyList_New(sz);
5155            for(int i=0;i<sz;i++)
5156              {
5157                if(ms[i])
5158                  {
5159                    ms[i]->incrRef();
5160                    PyList_SetItem(res,i,convertMesh(ms[i], SWIG_POINTER_OWN | 0 ));
5161                  }
5162                else
5163                  {
5164                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, 0 ));
5165                  }
5166              }
5167            //
5168            PyObject *ret=PyTuple_New(2);
5169            PyTuple_SetItem(ret,0,res);
5170            PyTuple_SetItem(ret,1,convertIntArrToPyList2(refs));
5171            return ret;
5172          }
5173          PyObject *getArrays() const throw(INTERP_KERNEL::Exception)
5174          {
5175            std::vector<DataArrayDouble *> ms=self->getArrays();
5176            int sz=ms.size();
5177            PyObject *res = PyList_New(sz);
5178            for(int i=0;i<sz;i++)
5179              {
5180                if(ms[i])
5181                  {
5182                    ms[i]->incrRef();
5183                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(ms[i]),SWIGTYPE_p_MEDCoupling__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
5184                  }
5185                else
5186                  {
5187                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_MEDCoupling__DataArrayDouble, 0 ));
5188                  }
5189              }
5190            return res;
5191          }
5192          PyObject *getDifferentArrays() const throw(INTERP_KERNEL::Exception)
5193          {
5194            std::vector< std::vector<int> > refs;
5195            std::vector<DataArrayDouble *> ms=self->getDifferentArrays(refs);
5196            int sz=ms.size();
5197            PyObject *res = PyList_New(sz);
5198            PyObject *res2 = PyList_New(sz);
5199            for(int i=0;i<sz;i++)
5200              {
5201                if(ms[i])
5202                  {
5203                    ms[i]->incrRef();
5204                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(ms[i]),SWIGTYPE_p_MEDCoupling__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
5205                  }
5206                else
5207                  {
5208                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_MEDCoupling__DataArrayDouble, 0 ));
5209                  }
5210                PyList_SetItem(res2,i,convertIntArrToPyList2(refs[i]));
5211              }
5212            //
5213            PyObject *ret=PyTuple_New(2);
5214            PyTuple_SetItem(ret,0,res);
5215            PyTuple_SetItem(ret,1,res2);
5216            return ret;
5217          }
5218        }
5219   };
5220
5221   class MEDCouplingFieldInt : public MEDCouplingFieldT<int>
5222   {
5223   public:
5224     static MEDCouplingFieldInt *New(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME);
5225     static MEDCouplingFieldInt *New(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME);
5226     bool isEqual(const MEDCouplingFieldInt *other, double meshPrec, int valsPrec) const throw(INTERP_KERNEL::Exception);
5227     bool isEqualWithoutConsideringStr(const MEDCouplingFieldInt *other, double meshPrec, int valsPrec) const throw(INTERP_KERNEL::Exception);
5228     void setTimeUnit(const std::string& unit) throw(INTERP_KERNEL::Exception);
5229     std::string getTimeUnit() const throw(INTERP_KERNEL::Exception);
5230     void setTime(double val, int iteration, int order) throw(INTERP_KERNEL::Exception);
5231     void setArray(DataArrayInt *array) throw(INTERP_KERNEL::Exception);
5232     MEDCouplingFieldInt *deepCopy() const throw(INTERP_KERNEL::Exception);
5233     MEDCouplingFieldInt *clone(bool recDeepCpy) const throw(INTERP_KERNEL::Exception);
5234     MEDCouplingFieldInt *cloneWithMesh(bool recDeepCpy) const throw(INTERP_KERNEL::Exception);
5235     MEDCouplingFieldDouble *convertToDblField() const throw(INTERP_KERNEL::Exception);
5236     MEDCouplingFieldInt *buildSubPartRange(int begin, int end, int step) const throw(INTERP_KERNEL::Exception);
5237     %extend {
5238       MEDCouplingFieldInt(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME)
5239       {
5240         return MEDCouplingFieldInt::New(type,td);
5241       }
5242
5243       MEDCouplingFieldInt(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME)
5244       {
5245         return MEDCouplingFieldInt::New(ft,td);
5246       }
5247
5248       PyObject *isEqualIfNotWhy(const MEDCouplingFieldInt *other, double meshPrec, int valsPrec) const throw(INTERP_KERNEL::Exception)
5249       {
5250         std::string ret1;
5251         bool ret0=self->isEqualIfNotWhy(other,meshPrec,valsPrec,ret1);
5252         PyObject *ret=PyTuple_New(2);
5253         PyObject *ret0Py=ret0?Py_True:Py_False;
5254         Py_XINCREF(ret0Py);
5255         PyTuple_SetItem(ret,0,ret0Py);
5256         PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
5257         return ret;
5258       }
5259       
5260       std::string __str__() const throw(INTERP_KERNEL::Exception)
5261       {
5262         return self->simpleRepr();
5263       }
5264
5265       std::string __repr__() const throw(INTERP_KERNEL::Exception)
5266       {
5267         std::ostringstream oss;
5268         self->reprQuickOverview(oss);
5269         return oss.str();
5270       }
5271
5272       MEDCouplingFieldInt *buildSubPart(PyObject *li) const throw(INTERP_KERNEL::Exception)
5273       {
5274         return fieldT_buildSubPart(self,li);
5275       }
5276
5277       MEDCouplingFieldInt *__getitem__(PyObject *li) const throw(INTERP_KERNEL::Exception)
5278       {
5279         return fieldT__getitem__(self,li);
5280       }
5281
5282       DataArrayInt *getArray() throw(INTERP_KERNEL::Exception)
5283       {
5284         DataArrayInt *ret=self->getArray();
5285         if(ret)
5286           ret->incrRef();
5287         return ret;
5288       }
5289       
5290       PyObject *getTime() throw(INTERP_KERNEL::Exception)
5291         {
5292         int tmp1,tmp2;
5293         double tmp0=self->getTime(tmp1,tmp2);
5294         PyObject *res = PyList_New(3);
5295         PyList_SetItem(res,0,SWIG_From_double(tmp0));
5296         PyList_SetItem(res,1,SWIG_From_int(tmp1));
5297         PyList_SetItem(res,2,SWIG_From_int(tmp2));
5298         return res;
5299         }
5300
5301       PyObject *getTinySerializationInformation() const throw(INTERP_KERNEL::Exception)
5302       {
5303         return field_getTinySerializationInformation<MEDCouplingFieldInt>(self);
5304       }
5305       
5306       PyObject *serialize() const throw(INTERP_KERNEL::Exception)
5307       {
5308         return field_serialize<int>(self);
5309       }
5310
5311       PyObject *__getstate__() const throw(INTERP_KERNEL::Exception)
5312       {
5313         return field__getstate__<MEDCouplingFieldInt>(self,MEDCoupling_MEDCouplingFieldInt_getTinySerializationInformation,MEDCoupling_MEDCouplingFieldInt_serialize);
5314       }
5315       
5316       void __setstate__(PyObject *inp) throw(INTERP_KERNEL::Exception)
5317       {
5318         field__setstate__<int>(self,inp);
5319       }
5320     }
5321   };
5322
5323   class MEDCouplingFieldFloat : public MEDCouplingFieldT<float>
5324   {
5325   public:
5326     static MEDCouplingFieldFloat *New(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME);
5327     static MEDCouplingFieldFloat *New(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME);
5328     bool isEqual(const MEDCouplingFieldFloat *other, double meshPrec, float valsPrec) const throw(INTERP_KERNEL::Exception);
5329     bool isEqualWithoutConsideringStr(const MEDCouplingFieldFloat *other, double meshPrec, float valsPrec) const throw(INTERP_KERNEL::Exception);
5330     void setTimeUnit(const std::string& unit) throw(INTERP_KERNEL::Exception);
5331     std::string getTimeUnit() const throw(INTERP_KERNEL::Exception);
5332     void setTime(double val, int iteration, int order) throw(INTERP_KERNEL::Exception);
5333     void setArray(DataArrayFloat *array) throw(INTERP_KERNEL::Exception);
5334     MEDCouplingFieldFloat *deepCopy() const throw(INTERP_KERNEL::Exception);
5335     MEDCouplingFieldFloat *clone(bool recDeepCpy) const throw(INTERP_KERNEL::Exception);
5336     MEDCouplingFieldFloat *cloneWithMesh(bool recDeepCpy) const throw(INTERP_KERNEL::Exception);
5337     MEDCouplingFieldDouble *convertToDblField() const throw(INTERP_KERNEL::Exception);
5338     MEDCouplingFieldFloat *buildSubPartRange(int begin, int end, int step) const throw(INTERP_KERNEL::Exception);
5339     %extend {
5340       MEDCouplingFieldFloat(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME)
5341       {
5342         return MEDCouplingFieldFloat::New(type,td);
5343       }
5344
5345       MEDCouplingFieldFloat(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME)
5346       {
5347         return MEDCouplingFieldFloat::New(ft,td);
5348       }
5349
5350       PyObject *isEqualIfNotWhy(const MEDCouplingFieldFloat *other, double meshPrec, float valsPrec) const throw(INTERP_KERNEL::Exception)
5351       {
5352         std::string ret1;
5353         bool ret0=self->isEqualIfNotWhy(other,meshPrec,valsPrec,ret1);
5354         PyObject *ret=PyTuple_New(2);
5355         PyObject *ret0Py=ret0?Py_True:Py_False;
5356         Py_XINCREF(ret0Py);
5357         PyTuple_SetItem(ret,0,ret0Py);
5358         PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
5359         return ret;
5360       }
5361
5362       std::string __str__() const throw(INTERP_KERNEL::Exception)
5363       {
5364         return self->simpleRepr();
5365       }
5366
5367       std::string __repr__() const throw(INTERP_KERNEL::Exception)
5368       {
5369         std::ostringstream oss;
5370         self->reprQuickOverview(oss);
5371         return oss.str();
5372       }
5373
5374       MEDCouplingFieldFloat *buildSubPart(PyObject *li) const throw(INTERP_KERNEL::Exception)
5375       {
5376         return fieldT_buildSubPart(self,li);
5377       }
5378
5379       MEDCouplingFieldFloat *__getitem__(PyObject *li) const throw(INTERP_KERNEL::Exception)
5380       {
5381         return fieldT__getitem__(self,li);
5382       }
5383
5384       DataArrayFloat *getArray() throw(INTERP_KERNEL::Exception)
5385       {
5386         DataArrayFloat *ret=self->getArray();
5387         if(ret)
5388           ret->incrRef();
5389         return ret;
5390       }
5391       
5392       PyObject *getTime() throw(INTERP_KERNEL::Exception)
5393       {
5394         int tmp1,tmp2;
5395         double tmp0=self->getTime(tmp1,tmp2);
5396         PyObject *res = PyList_New(3);
5397         PyList_SetItem(res,0,SWIG_From_double(tmp0));
5398         PyList_SetItem(res,1,SWIG_From_int(tmp1));
5399         PyList_SetItem(res,2,SWIG_From_int(tmp2));
5400         return res;
5401       }
5402
5403       PyObject *getTinySerializationInformation() const throw(INTERP_KERNEL::Exception)
5404       {
5405         return field_getTinySerializationInformation<MEDCouplingFieldFloat>(self);
5406       }
5407       
5408       PyObject *serialize() const throw(INTERP_KERNEL::Exception)
5409       {
5410         return field_serialize<float>(self);
5411       }
5412       
5413       PyObject *__getstate__() const throw(INTERP_KERNEL::Exception)
5414       {
5415         return field__getstate__<MEDCouplingFieldFloat>(self,MEDCoupling_MEDCouplingFieldFloat_getTinySerializationInformation,MEDCoupling_MEDCouplingFieldFloat_serialize);
5416       }
5417         
5418       void __setstate__(PyObject *inp) throw(INTERP_KERNEL::Exception)
5419       {
5420         field__setstate__<float>(self,inp);
5421       }
5422     }
5423   };
5424   
5425   class MEDCouplingDefinitionTime
5426   {
5427   public:
5428     MEDCouplingDefinitionTime();
5429     void assign(const MEDCouplingDefinitionTime& other);
5430     bool isEqual(const MEDCouplingDefinitionTime& other) const;
5431     double getTimeResolution() const;
5432     std::vector<double> getHotSpotsTime() const;
5433     %extend
5434       {
5435         std::string __str__() const throw(INTERP_KERNEL::Exception)
5436           {
5437             std::ostringstream oss;
5438             self->appendRepr(oss);
5439             return oss.str();
5440           }
5441
5442         PyObject *getIdsOnTimeRight(double tm) const throw(INTERP_KERNEL::Exception)
5443         {
5444           int meshId,arrId,arrIdInField,fieldId;
5445           self->getIdsOnTimeRight(tm,meshId,arrId,arrIdInField,fieldId);
5446           PyObject *res=PyList_New(4);
5447           PyList_SetItem(res,0,PyInt_FromLong(meshId));
5448           PyList_SetItem(res,1,PyInt_FromLong(arrId));
5449           PyList_SetItem(res,2,PyInt_FromLong(arrIdInField));
5450           PyList_SetItem(res,3,PyInt_FromLong(fieldId));
5451           return res;
5452         }
5453
5454         PyObject *getIdsOnTimeLeft(double tm) const throw(INTERP_KERNEL::Exception)
5455         {
5456           int meshId,arrId,arrIdInField,fieldId;
5457           self->getIdsOnTimeLeft(tm,meshId,arrId,arrIdInField,fieldId);
5458           PyObject *res=PyList_New(4);
5459           PyList_SetItem(res,0,PyInt_FromLong(meshId));
5460           PyList_SetItem(res,1,PyInt_FromLong(arrId));
5461           PyList_SetItem(res,2,PyInt_FromLong(arrIdInField));
5462           PyList_SetItem(res,3,PyInt_FromLong(fieldId));
5463           return res;
5464         }
5465       }
5466   };
5467
5468   class MEDCouplingFieldOverTime : public MEDCouplingMultiFields
5469   {
5470   public:
5471     double getTimeTolerance() const throw(INTERP_KERNEL::Exception);
5472     MEDCouplingDefinitionTime getDefinitionTimeZone() const;
5473     
5474     %extend
5475       {
5476         MEDCouplingFieldOverTime(PyObject *li) throw(INTERP_KERNEL::Exception)
5477           {
5478             std::vector<const MEDCoupling::MEDCouplingFieldDouble *> tmp;
5479             convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
5480             int sz=tmp.size();
5481             std::vector<MEDCouplingFieldDouble *> fs(sz);
5482             for(int i=0;i<sz;i++)
5483               fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
5484             return MEDCouplingFieldOverTime::New(fs);
5485           }
5486         std::string __str__() const throw(INTERP_KERNEL::Exception)
5487           {
5488             return self->simpleRepr();
5489           }
5490         static MEDCouplingFieldOverTime *New(PyObject *li) throw(INTERP_KERNEL::Exception)
5491         {
5492           std::vector<const MEDCoupling::MEDCouplingFieldDouble *> tmp;
5493           convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
5494            int sz=tmp.size();
5495            std::vector<MEDCouplingFieldDouble *> fs(sz);
5496            for(int i=0;i<sz;i++)
5497              fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
5498            return MEDCouplingFieldOverTime::New(fs);
5499          }
5500       }
5501   };
5502
5503   class MEDCouplingCartesianAMRMesh;
5504   
5505   class MEDCouplingCartesianAMRPatchGen : public RefCountObject
5506   {
5507   public:
5508     int getNumberOfCellsRecursiveWithOverlap() const throw(INTERP_KERNEL::Exception);
5509     int getNumberOfCellsRecursiveWithoutOverlap() const throw(INTERP_KERNEL::Exception);
5510     int getMaxNumberOfLevelsRelativeToThis() const throw(INTERP_KERNEL::Exception);
5511     %extend
5512     {
5513       MEDCouplingCartesianAMRMeshGen *getMesh() const throw(INTERP_KERNEL::Exception)
5514       {
5515         MEDCouplingCartesianAMRMeshGen *ret(const_cast<MEDCouplingCartesianAMRMeshGen *>(self->getMesh()));
5516         if(ret)
5517           ret->incrRef();
5518         return ret;
5519       }
5520     }
5521   };
5522
5523   class MEDCouplingCartesianAMRPatch : public MEDCouplingCartesianAMRPatchGen
5524   {
5525   public:
5526     int getNumberOfOverlapedCellsForFather() const throw(INTERP_KERNEL::Exception);
5527     bool isInMyNeighborhood(const MEDCouplingCartesianAMRPatch *other, int ghostLev) const throw(INTERP_KERNEL::Exception);
5528     std::vector<int> computeCellGridSt() const throw(INTERP_KERNEL::Exception);
5529     %extend
5530     {
5531       PyObject *getBLTRRange() const throw(INTERP_KERNEL::Exception)
5532       {
5533         const std::vector< std::pair<int,int> >& ret(self->getBLTRRange());
5534         return convertFromVectorPairInt(ret);
5535       }
5536
5537       PyObject *getBLTRRangeRelativeToGF() const throw(INTERP_KERNEL::Exception)
5538       {
5539         std::vector< std::pair<int,int> > ret(self->getBLTRRangeRelativeToGF());
5540         return convertFromVectorPairInt(ret);
5541       }
5542
5543       void addPatch(PyObject *bottomLeftTopRight, const std::vector<int>& factors) throw(INTERP_KERNEL::Exception)
5544       {
5545         std::vector< std::pair<int,int> > inp;
5546         convertPyToVectorPairInt(bottomLeftTopRight,inp);
5547         self->addPatch(inp,factors);
5548       }
5549
5550       MEDCouplingCartesianAMRPatch *__getitem__(int patchId) const throw(INTERP_KERNEL::Exception)
5551       {
5552         const MEDCouplingCartesianAMRMeshGen *mesh(self->getMesh());
5553         if(!mesh)
5554           throw INTERP_KERNEL::Exception("wrap MEDCouplingCartesianAMRPatchGen.__getitem__ : no underlying mesh !");
5555         if(patchId==mesh->getNumberOfPatches())
5556           {
5557             std::ostringstream oss;
5558             oss << "Requesting for patchId " << patchId << " having only " << mesh->getNumberOfPatches() << " patches !";
5559             PyErr_SetString(PyExc_StopIteration,oss.str().c_str());
5560             return 0;
5561           }
5562         MEDCouplingCartesianAMRPatch *ret(const_cast<MEDCouplingCartesianAMRPatch *>(mesh->getPatch(patchId)));
5563         if(ret)
5564           ret->incrRef();
5565         return ret;
5566       }
5567
5568       void __delitem__(int patchId) throw(INTERP_KERNEL::Exception)
5569       {
5570         MEDCouplingCartesianAMRMeshGen *mesh(const_cast<MEDCouplingCartesianAMRMeshGen *>(self->getMesh()));
5571         if(!mesh)
5572           throw INTERP_KERNEL::Exception("wrap MEDCouplingCartesianAMRPatch.__delitem__ : no underlying mesh !");
5573         mesh->removePatch(patchId);
5574       }
5575
5576       int __len__() const throw(INTERP_KERNEL::Exception)
5577       {
5578         const MEDCouplingCartesianAMRMeshGen *mesh(self->getMesh());
5579         if(!mesh)
5580           throw INTERP_KERNEL::Exception("wrap MEDCouplingCartesianAMRPatch.__len__ : no underlying mesh !");
5581         return mesh->getNumberOfPatches();
5582       }
5583     }
5584   };
5585
5586   class MEDCouplingCartesianAMRPatchGF : public MEDCouplingCartesianAMRPatchGen
5587   {
5588   };
5589   
5590   class MEDCouplingCartesianAMRMeshGen : public RefCountObject, public TimeLabel
5591   {
5592   public:
5593     int getAbsoluteLevel() const throw(INTERP_KERNEL::Exception);
5594     int getAbsoluteLevelRelativeTo(const MEDCouplingCartesianAMRMeshGen *ref) const throw(INTERP_KERNEL::Exception);
5595     std::vector<int> getPositionRelativeTo(const MEDCouplingCartesianAMRMeshGen *ref) const throw(INTERP_KERNEL::Exception);
5596     int getSpaceDimension() const throw(INTERP_KERNEL::Exception);
5597     const std::vector<int>& getFactors() const throw(INTERP_KERNEL::Exception);
5598     void setFactors(const std::vector<int>& newFactors) throw(INTERP_KERNEL::Exception);
5599     int getMaxNumberOfLevelsRelativeToThis() const throw(INTERP_KERNEL::Exception);
5600     int getNumberOfCellsAtCurrentLevel() const throw(INTERP_KERNEL::Exception);
5601     int getNumberOfCellsAtCurrentLevelGhost(int ghostLev) const throw(INTERP_KERNEL::Exception);
5602     int getNumberOfCellsRecursiveWithOverlap() const throw(INTERP_KERNEL::Exception);
5603     int getNumberOfCellsRecursiveWithoutOverlap() const throw(INTERP_KERNEL::Exception);
5604     bool isPatchInNeighborhoodOf(int patchId1, int patchId2, int ghostLev) const throw(INTERP_KERNEL::Exception);
5605    virtual void detachFromFather() throw(INTERP_KERNEL::Exception);
5606     //
5607     int getNumberOfPatches() const throw(INTERP_KERNEL::Exception);
5608     int getPatchIdFromChildMesh(const MEDCouplingCartesianAMRMeshGen *mesh) const throw(INTERP_KERNEL::Exception);
5609     MEDCouplingUMesh *buildUnstructured() const throw(INTERP_KERNEL::Exception);
5610     DataArrayDouble *extractGhostFrom(int ghostSz, const DataArrayDouble *arr) const throw(INTERP_KERNEL::Exception);
5611     std::vector<int> getPatchIdsInTheNeighborhoodOf(int patchId, int ghostLev) const throw(INTERP_KERNEL::Exception);
5612     MEDCoupling1SGTUMesh *buildMeshFromPatchEnvelop() const throw(INTERP_KERNEL::Exception);
5613     MEDCoupling1SGTUMesh *buildMeshOfDirectChildrenOnly() const throw(INTERP_KERNEL::Exception);
5614     void removeAllPatches() throw(INTERP_KERNEL::Exception);
5615     void removePatch(int patchId) throw(INTERP_KERNEL::Exception);
5616     void createPatchesFromCriterion(const INTERP_KERNEL::BoxSplittingOptions& bso, const DataArrayByte *criterion, const std::vector<int>& factors) throw(INTERP_KERNEL::Exception);
5617     void createPatchesFromCriterion(const INTERP_KERNEL::BoxSplittingOptions& bso, const DataArrayDouble *criterion, const std::vector<int>& factors, double eps) throw(INTERP_KERNEL::Exception);
5618     DataArrayDouble *createCellFieldOnPatch(int patchId, const DataArrayDouble *cellFieldOnThis) const throw(INTERP_KERNEL::Exception);
5619     void fillCellFieldOnPatch(int patchId, const DataArrayDouble *cellFieldOnThis, DataArrayDouble *cellFieldOnPatch, bool isConservative=true) const throw(INTERP_KERNEL::Exception);
5620     void fillCellFieldOnPatchGhost(int patchId, const DataArrayDouble *cellFieldOnThis, DataArrayDouble *cellFieldOnPatch, int ghostLev, bool isConservative=true) const throw(INTERP_KERNEL::Exception);
5621     void fillCellFieldOnPatchOnlyOnGhostZone(int patchId, const DataArrayDouble *cellFieldOnThis, DataArrayDouble *cellFieldOnPatch, int ghostLev) const throw(INTERP_KERNEL::Exception);
5622     void fillCellFieldOnPatchOnlyOnGhostZoneWith(int ghostLev, const MEDCouplingCartesianAMRPatch *patchToBeModified, const MEDCouplingCartesianAMRPatch *neighborPatch, DataArrayDouble *cellFieldOnPatch, const DataArrayDouble *cellFieldNeighbor) const;
5623     void fillCellFieldComingFromPatch(int patchId, const DataArrayDouble *cellFieldOnPatch, DataArrayDouble *cellFieldOnThis, bool isConservative=true) const throw(INTERP_KERNEL::Exception);
5624     void fillCellFieldComingFromPatchGhost(int patchId, const DataArrayDouble *cellFieldOnPatch, DataArrayDouble *cellFieldOnThis, int ghostLev, bool isConservative=true) const throw(INTERP_KERNEL::Exception);
5625     DataArrayInt *findPatchesInTheNeighborhoodOf(int patchId, int ghostLev) const throw(INTERP_KERNEL::Exception);
5626     std::string buildPythonDumpOfThis() const throw(INTERP_KERNEL::Exception);
5627     %extend
5628     {
5629       void addPatch(PyObject *bottomLeftTopRight, const std::vector<int>& factors) throw(INTERP_KERNEL::Exception)
5630       {
5631         std::vector< std::pair<int,int> > inp;
5632         convertPyToVectorPairInt(bottomLeftTopRight,inp);
5633         self->addPatch(inp,factors);
5634       }
5635
5636       PyObject *getPatches() const throw(INTERP_KERNEL::Exception)
5637       {
5638         std::vector< const MEDCouplingCartesianAMRPatch *> ps(self->getPatches());
5639         int sz(ps.size());
5640         PyObject *ret = PyList_New(sz);
5641         for(int i=0;i<sz;i++)
5642           {
5643             MEDCouplingCartesianAMRPatch *elt(const_cast<MEDCouplingCartesianAMRPatch *>(ps[i]));
5644             if(elt)
5645               elt->incrRef();
5646             PyList_SetItem(ret,i,convertCartesianAMRPatch(elt, SWIG_POINTER_OWN | 0 ));
5647           }
5648         return ret;
5649       }
5650
5651       // agy : don't know why typemap fails here ??? let it in the extend section
5652       PyObject *deepCopy(MEDCouplingCartesianAMRMeshGen *father) const throw(INTERP_KERNEL::Exception)
5653       {
5654         return convertCartesianAMRMesh(self->deepCopy(father), SWIG_POINTER_OWN | 0 );
5655       }
5656
5657       MEDCouplingCartesianAMRPatch *getPatchAtPosition(const std::vector<int>& pos) const throw(INTERP_KERNEL::Exception)
5658       {
5659         const MEDCouplingCartesianAMRPatch *ret(self->getPatchAtPosition(pos));
5660         MEDCouplingCartesianAMRPatch *ret2(const_cast<MEDCouplingCartesianAMRPatch *>(ret));
5661         if(ret2)
5662           ret2->incrRef();
5663         return ret2;
5664       }
5665
5666       MEDCouplingCartesianAMRMeshGen *getMeshAtPosition(const std::vector<int>& pos) const throw(INTERP_KERNEL::Exception)
5667       {
5668         const MEDCouplingCartesianAMRMeshGen *ret(self->getMeshAtPosition(pos));
5669         MEDCouplingCartesianAMRMeshGen *ret2(const_cast<MEDCouplingCartesianAMRMeshGen *>(ret));
5670         if(ret2)
5671           ret2->incrRef();
5672         return ret2;
5673       }
5674
5675       virtual PyObject *positionRelativeToGodFather() const throw(INTERP_KERNEL::Exception)
5676       {
5677         std::vector<int> out1;
5678         std::vector< std::pair<int,int> > out0(self->positionRelativeToGodFather(out1));
5679         PyObject *ret(PyTuple_New(2));
5680         PyTuple_SetItem(ret,0,convertFromVectorPairInt(out0));
5681         PyTuple_SetItem(ret,1,convertIntArrToPyList2(out1));
5682         return ret;
5683       }
5684
5685       virtual PyObject *retrieveGridsAt(int absoluteLev) const throw(INTERP_KERNEL::Exception)
5686       {
5687         std::vector<MEDCouplingCartesianAMRPatchGen *> ps(self->retrieveGridsAt(absoluteLev));
5688         int sz(ps.size());
5689         PyObject *ret = PyList_New(sz);
5690         for(int i=0;i<sz;i++)
5691           PyList_SetItem(ret,i,convertCartesianAMRPatch(ps[i], SWIG_POINTER_OWN | 0 ));
5692         return ret;
5693       }
5694
5695       MEDCouplingFieldDouble *buildCellFieldOnRecurseWithoutOverlapWithoutGhost(int ghostSz, PyObject *recurseArrs) const
5696       {
5697         std::vector<const DataArrayDouble *> inp;
5698         convertFromPyObjVectorOfObj<const MEDCoupling::DataArrayDouble *>(recurseArrs,SWIGTYPE_p_MEDCoupling__DataArrayDouble,"DataArrayDouble",inp);
5699         return self->buildCellFieldOnRecurseWithoutOverlapWithoutGhost(ghostSz,inp);
5700       }
5701
5702       virtual MEDCouplingCartesianAMRMeshGen *getFather() const throw(INTERP_KERNEL::Exception)
5703       {
5704         MEDCouplingCartesianAMRMeshGen *ret(const_cast<MEDCouplingCartesianAMRMeshGen *>(self->getFather()));
5705         if(ret)
5706           ret->incrRef();
5707         return ret;
5708       }
5709       
5710       virtual MEDCouplingCartesianAMRMeshGen *getGodFather() const throw(INTERP_KERNEL::Exception)
5711       {
5712         MEDCouplingCartesianAMRMeshGen *ret(const_cast<MEDCouplingCartesianAMRMeshGen *>(self->getGodFather()));
5713         if(ret)
5714           ret->incrRef();
5715         return ret;
5716       }
5717
5718       MEDCouplingCartesianAMRPatch *getPatch(int patchId) const throw(INTERP_KERNEL::Exception)
5719       {
5720         MEDCouplingCartesianAMRPatch *ret(const_cast<MEDCouplingCartesianAMRPatch *>(self->getPatch(patchId)));
5721         if(ret)
5722           ret->incrRef();
5723         return ret;
5724       }
5725
5726       MEDCouplingIMesh *getImageMesh() const throw(INTERP_KERNEL::Exception)
5727       {
5728         const MEDCouplingIMesh *ret(self->getImageMesh());
5729         if(ret)
5730           ret->incrRef();
5731         return const_cast<MEDCouplingIMesh *>(ret);
5732       }
5733
5734       MEDCouplingCartesianAMRPatch *__getitem__(int patchId) const throw(INTERP_KERNEL::Exception)
5735       {
5736         if(patchId==self->getNumberOfPatches())
5737           {
5738             std::ostringstream oss;
5739             oss << "Requesting for patchId " << patchId << " having only " << self->getNumberOfPatches() << " patches !";
5740             PyErr_SetString(PyExc_StopIteration,oss.str().c_str());
5741             return 0;
5742           }
5743         MEDCouplingCartesianAMRPatch *ret(const_cast<MEDCouplingCartesianAMRPatch *>(self->getPatch(patchId)));
5744         if(ret)
5745           ret->incrRef();
5746         return ret;
5747       }
5748
5749       void fillCellFieldOnPatchGhostAdv(int patchId, const DataArrayDouble *cellFieldOnThis, int ghostLev, PyObject *arrsOnPatches, bool isConservative=true) const throw(INTERP_KERNEL::Exception)
5750       {
5751         std::vector<const MEDCoupling::DataArrayDouble *> arrsOnPatches2;
5752         convertFromPyObjVectorOfObj<const MEDCoupling::DataArrayDouble *>(arrsOnPatches,SWIGTYPE_p_MEDCoupling__DataArrayDouble,"DataArrayDouble",arrsOnPatches2);
5753         self->fillCellFieldOnPatchGhostAdv(patchId,cellFieldOnThis,ghostLev,arrsOnPatches2,isConservative);
5754       }
5755
5756       void fillCellFieldOnPatchOnlyGhostAdv(int patchId, int ghostLev, PyObject *arrsOnPatches) const
5757       {
5758         std::vector<const MEDCoupling::DataArrayDouble *> arrsOnPatches2;
5759         convertFromPyObjVectorOfObj<const MEDCoupling::DataArrayDouble *>(arrsOnPatches,SWIGTYPE_p_MEDCoupling__DataArrayDouble,"DataArrayDouble",arrsOnPatches2);
5760         self->fillCellFieldOnPatchOnlyGhostAdv(patchId,ghostLev,arrsOnPatches2);
5761       }
5762
5763       void __delitem__(int patchId) throw(INTERP_KERNEL::Exception)
5764       {
5765         self->removePatch(patchId);
5766       }
5767
5768       int __len__() const throw(INTERP_KERNEL::Exception)
5769       {
5770         return self->getNumberOfPatches();
5771       }
5772     }
5773   };
5774
5775   class MEDCouplingCartesianAMRMeshSub : public MEDCouplingCartesianAMRMeshGen
5776   {
5777   };
5778
5779   class MEDCouplingCartesianAMRMesh : public MEDCouplingCartesianAMRMeshGen
5780   {
5781   public:
5782     static MEDCouplingCartesianAMRMesh *New(MEDCouplingIMesh *mesh) throw(INTERP_KERNEL::Exception);
5783     %extend
5784     {
5785       static MEDCouplingCartesianAMRMesh *New(const std::string& meshName, int spaceDim, PyObject *nodeStrct, PyObject *origin, PyObject *dxyz) throw(INTERP_KERNEL::Exception)
5786       {
5787         static const char msg0[]="MEDCouplingCartesianAMRMesh::New : error on 'origin' parameter !";
5788         static const char msg1[]="MEDCouplingCartesianAMRMesh::New : error on 'dxyz' parameter !";
5789         const int *nodeStrctPtr(0);
5790         const double *originPtr(0),*dxyzPtr(0);
5791         int sw,sz,val0;
5792         std::vector<int> bb0;
5793         nodeStrctPtr=convertIntStarLikePyObjToCppIntStar(nodeStrct,sw,sz,val0,bb0);
5794         //
5795         double val,val2;
5796         std::vector<double> bb,bb2;
5797         int sz1,sz2;
5798         originPtr=convertObjToPossibleCpp5_SingleCompo(origin,sw,val,bb,msg0,false,sz1);
5799         dxyzPtr=convertObjToPossibleCpp5_SingleCompo(dxyz,sw,val2,bb2,msg1,false,sz2);
5800         //
5801         return MEDCouplingCartesianAMRMesh::New(meshName,spaceDim,nodeStrctPtr,nodeStrctPtr+sz,originPtr,originPtr+sz1,dxyzPtr,dxyzPtr+sz2);
5802       }
5803
5804       void createPatchesFromCriterionML(PyObject *bso, const DataArrayDouble *criterion, PyObject *factors, double eps) throw(INTERP_KERNEL::Exception)
5805       {
5806         std::vector<const INTERP_KERNEL::BoxSplittingOptions *> inp0;
5807         convertFromPyObjVectorOfObj<const INTERP_KERNEL::BoxSplittingOptions *>(bso,SWIGTYPE_p_INTERP_KERNEL__BoxSplittingOptions,"BoxSplittingOptions",inp0);
5808         std::vector< std::vector<int> > inp2;
5809         convertPyToVectorOfVectorOfInt(factors,inp2);
5810         self->createPatchesFromCriterionML(inp0,criterion,inp2,eps);
5811       }
5812
5813       MEDCouplingCartesianAMRMesh(const std::string& meshName, int spaceDim, PyObject *nodeStrct, PyObject *origin, PyObject *dxyz) throw(INTERP_KERNEL::Exception)
5814       {
5815         return MEDCoupling_MEDCouplingCartesianAMRMesh_New__SWIG_1(meshName,spaceDim,nodeStrct,origin,dxyz);
5816       }
5817
5818       MEDCouplingCartesianAMRMesh(MEDCouplingIMesh *mesh) throw(INTERP_KERNEL::Exception)
5819       {
5820         return MEDCouplingCartesianAMRMesh::New(mesh);
5821       }
5822     }
5823   };
5824
5825   class MEDCouplingDataForGodFather : public RefCountObject
5826   {
5827   public:
5828     virtual void synchronizeFineToCoarse() throw(INTERP_KERNEL::Exception);
5829     virtual void synchronizeFineToCoarseBetween(int fromLev, int toLev) throw(INTERP_KERNEL::Exception);
5830     virtual void synchronizeCoarseToFine() throw(INTERP_KERNEL::Exception);
5831     virtual void synchronizeCoarseToFineBetween(int fromLev, int toLev) throw(INTERP_KERNEL::Exception);
5832     virtual void synchronizeAllGhostZones() throw(INTERP_KERNEL::Exception);
5833     virtual void synchronizeAllGhostZonesOfDirectChidrenOf(const MEDCouplingCartesianAMRMeshGen *mesh) throw(INTERP_KERNEL::Exception);
5834     virtual void synchronizeAllGhostZonesAtASpecifiedLevel(int level) throw(INTERP_KERNEL::Exception);
5835     virtual void synchronizeAllGhostZonesAtASpecifiedLevelUsingOnlyFather(int level) throw(INTERP_KERNEL::Exception);
5836     virtual void alloc() throw(INTERP_KERNEL::Exception);
5837     virtual void dealloc() throw(INTERP_KERNEL::Exception);
5838     %extend
5839     {
5840       MEDCouplingCartesianAMRMesh *getMyGodFather() throw(INTERP_KERNEL::Exception)
5841       {
5842         MEDCouplingCartesianAMRMesh *ret(self->getMyGodFather());
5843         if(ret)
5844           ret->incrRef();
5845         return ret;
5846       }
5847     }
5848   };
5849   
5850   class MEDCouplingAMRAttribute : public MEDCouplingDataForGodFather, public TimeLabel
5851   {
5852   public:
5853     int getNumberOfLevels() const throw(INTERP_KERNEL::Exception);
5854     MEDCouplingAMRAttribute *deepCopy() const throw(INTERP_KERNEL::Exception);
5855     MEDCouplingAMRAttribute *deepCpyWithoutGodFather() const throw(INTERP_KERNEL::Exception);
5856     MEDCouplingFieldDouble *buildCellFieldOnRecurseWithoutOverlapWithoutGhost(MEDCouplingCartesianAMRMeshGen *mesh, const std::string& fieldName) const throw(INTERP_KERNEL::Exception);
5857     MEDCouplingFieldDouble *buildCellFieldOnWithGhost(MEDCouplingCartesianAMRMeshGen *mesh, const std::string& fieldName) const throw(INTERP_KERNEL::Exception);
5858     MEDCouplingFieldDouble *buildCellFieldOnWithoutGhost(MEDCouplingCartesianAMRMeshGen *mesh, const std::string& fieldName) const throw(INTERP_KERNEL::Exception);
5859     bool changeGodFather(MEDCouplingCartesianAMRMesh *gf) throw(INTERP_KERNEL::Exception);
5860     MEDCouplingAMRAttribute *projectTo(MEDCouplingCartesianAMRMesh *targetGF) const throw(INTERP_KERNEL::Exception);
5861     std::string writeVTHB(const std::string& fileName) const throw(INTERP_KERNEL::Exception);
5862     %extend
5863     {
5864       static MEDCouplingAMRAttribute *New(MEDCouplingCartesianAMRMesh *gf, PyObject *fieldNames, int ghostLev) throw(INTERP_KERNEL::Exception)
5865       {
5866         std::vector< std::pair<std::string,int> > fieldNamesCpp0;
5867         std::vector< std::pair<std::string, std::vector<std::string> > > fieldNamesCpp1;
5868         MEDCouplingAMRAttribute *ret(0);
5869         try
5870           {
5871             convertPyToVectorPairStringInt(fieldNames,fieldNamesCpp0);
5872             ret=MEDCouplingAMRAttribute::New(gf,fieldNamesCpp0,ghostLev);
5873           }
5874         catch(INTERP_KERNEL::Exception&)
5875           {
5876             convertPyToVectorPairStringVecString(fieldNames,fieldNamesCpp1);
5877             ret=MEDCouplingAMRAttribute::New(gf,fieldNamesCpp1,ghostLev);
5878           }
5879         return ret;
5880       }
5881
5882       MEDCouplingAMRAttribute(MEDCouplingCartesianAMRMesh *gf, PyObject *fieldNames, int ghostLev) throw(INTERP_KERNEL::Exception)
5883       {
5884         return MEDCoupling_MEDCouplingAMRAttribute_New(gf,fieldNames,ghostLev);
5885       }
5886
5887       DataArrayDouble *getFieldOn(MEDCouplingCartesianAMRMeshGen *mesh, const std::string& fieldName) const throw(INTERP_KERNEL::Exception)
5888       {
5889         const DataArrayDouble *ret(self->getFieldOn(mesh,fieldName));
5890         DataArrayDouble *ret2(const_cast<DataArrayDouble *>(ret));
5891         if(ret2)
5892           ret2->incrRef();
5893         return ret2;
5894       }
5895
5896       void spillInfoOnComponents(PyObject *compNames) throw(INTERP_KERNEL::Exception)
5897       {
5898         std::vector< std::vector<std::string> > compNamesCpp;
5899         convertPyToVectorOfVectorOfString(compNames,compNamesCpp);
5900         self->spillInfoOnComponents(compNamesCpp);
5901       }
5902
5903       void spillNatures(PyObject *nfs) throw(INTERP_KERNEL::Exception)
5904       {
5905         std::vector<int> inp0;
5906         if(!fillIntVector(nfs,inp0))
5907           throw INTERP_KERNEL::Exception("wrap of MEDCouplingAMRAttribute::spillNatures : vector of NatureOfField enum expected !");
5908         std::size_t sz(inp0.size());
5909         std::vector<NatureOfField> inp00(sz);
5910         for(std::size_t i=0;i<sz;i++)
5911           inp00[i]=(NatureOfField)inp0[i];
5912         self->spillNatures(inp00);
5913       }
5914       
5915       PyObject *retrieveFieldsOn(MEDCouplingCartesianAMRMeshGen *mesh) const throw(INTERP_KERNEL::Exception)
5916       {
5917         std::vector<DataArrayDouble *> ret(self->retrieveFieldsOn(mesh));
5918         int sz((int)ret.size());
5919         PyObject *retPy(PyList_New(sz));
5920         for(int i=0;i<sz;i++)
5921           PyList_SetItem(retPy,i,SWIG_NewPointerObj(SWIG_as_voidptr(ret[i]),SWIGTYPE_p_MEDCoupling__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
5922         return retPy;
5923       }
5924     }
5925   };
5926
5927   class DenseMatrix : public RefCountObject, public TimeLabel
5928   {
5929   public:
5930     static DenseMatrix *New(int nbRows, int nbCols) throw(INTERP_KERNEL::Exception);
5931     static DenseMatrix *New(DataArrayDouble *array, int nbRows, int nbCols) throw(INTERP_KERNEL::Exception);
5932     DenseMatrix *deepCopy() const throw(INTERP_KERNEL::Exception);
5933     DenseMatrix *shallowCpy() const throw(INTERP_KERNEL::Exception);
5934     //
5935     int getNumberOfRows() const throw(INTERP_KERNEL::Exception);
5936     int getNumberOfCols() const throw(INTERP_KERNEL::Exception);
5937     int getNbOfElems() const throw(INTERP_KERNEL::Exception);
5938     void reBuild(DataArrayDouble *array, int nbRows=-1, int nbCols=-1) throw(INTERP_KERNEL::Exception);
5939     void reShape(int nbRows, int nbCols) throw(INTERP_KERNEL::Exception);
5940     void transpose() throw(INTERP_KERNEL::Exception);
5941     //
5942     bool isEqual(const DenseMatrix& other, double eps) const throw(INTERP_KERNEL::Exception);
5943     DataArrayDouble *matVecMult(const DataArrayDouble *vec) const throw(INTERP_KERNEL::Exception);
5944     static DataArrayDouble *MatVecMult(const DenseMatrix *mat, const DataArrayDouble *vec) throw(INTERP_KERNEL::Exception);
5945     %extend
5946     {
5947       DenseMatrix(int nbRows, int nbCols) throw(INTERP_KERNEL::Exception)
5948       {
5949         return DenseMatrix::New(nbRows,nbCols);
5950       }
5951
5952       DenseMatrix(DataArrayDouble *array, int nbRows, int nbCols) throw(INTERP_KERNEL::Exception)
5953       {
5954         return DenseMatrix::New(array,nbRows,nbCols);
5955       }
5956
5957       PyObject *isEqualIfNotWhy(const DenseMatrix& other, double eps) const throw(INTERP_KERNEL::Exception)
5958       {
5959         std::string ret1;
5960         bool ret0=self->isEqualIfNotWhy(other,eps,ret1);
5961         PyObject *ret=PyTuple_New(2);
5962         PyObject *ret0Py=ret0?Py_True:Py_False;
5963         Py_XINCREF(ret0Py);
5964         PyTuple_SetItem(ret,0,ret0Py);
5965         PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
5966         return ret;
5967       }
5968
5969       DataArrayDouble *getData() throw(INTERP_KERNEL::Exception)
5970       {
5971         DataArrayDouble *ret(self->getData());
5972         if(ret)
5973           ret->incrRef();
5974         return ret;
5975       }
5976
5977       DenseMatrix *__add__(const DenseMatrix *other) throw(INTERP_KERNEL::Exception)
5978       {
5979         return MEDCoupling::DenseMatrix::Add(self,other);
5980       }
5981
5982       DenseMatrix *__sub__(const DenseMatrix *other) throw(INTERP_KERNEL::Exception)
5983       {
5984         return MEDCoupling::DenseMatrix::Substract(self,other);
5985       }
5986
5987       DenseMatrix *__mul__(const DenseMatrix *other) throw(INTERP_KERNEL::Exception)
5988       {
5989         return MEDCoupling::DenseMatrix::Multiply(self,other);
5990       }
5991
5992       DenseMatrix *__mul__(const DataArrayDouble *other) throw(INTERP_KERNEL::Exception)
5993       {
5994         return MEDCoupling::DenseMatrix::Multiply(self,other);
5995       }
5996
5997       PyObject *___iadd___(PyObject *trueSelf, const DenseMatrix *other) throw(INTERP_KERNEL::Exception)
5998       {
5999         self->addEqual(other);
6000         Py_XINCREF(trueSelf);
6001         return trueSelf;
6002       }
6003
6004       PyObject *___isub___(PyObject *trueSelf, const DenseMatrix *other) throw(INTERP_KERNEL::Exception)
6005       {
6006         self->substractEqual(other);
6007         Py_XINCREF(trueSelf);
6008         return trueSelf;
6009       }
6010 #ifdef WITH_NUMPY
6011       PyObject *toNumPyMatrix() throw(INTERP_KERNEL::Exception) // not const. It is not a bug !
6012       {
6013         PyObject *obj(ToNumPyArrayUnderground<DataArrayDouble,double>(self->getData(),NPY_DOUBLE,"DataArrayDouble",self->getNumberOfRows(),self->getNumberOfCols()));
6014         return obj;
6015       }
6016 #endif
6017     }
6018   };
6019 }
6020
6021 %pythoncode %{
6022 def MEDCouplingUMeshReduce(self):
6023     return MEDCouplingStdReduceFunct,(MEDCouplingUMesh,((),(self.__getstate__()),))
6024 def MEDCouplingCMeshReduce(self):
6025     return MEDCouplingStdReduceFunct,(MEDCouplingCMesh,((),(self.__getstate__()),))
6026 def MEDCouplingIMeshReduce(self):
6027     return MEDCouplingStdReduceFunct,(MEDCouplingIMesh,((),(self.__getstate__()),))
6028 def MEDCouplingMappedExtrudedMeshReduce(self):
6029     return MEDCouplingStdReduceFunct,(MEDCouplingMappedExtrudedMesh,((),(self.__getstate__()),))
6030 def MEDCouplingCurveLinearMeshReduce(self):
6031     return MEDCouplingStdReduceFunct,(MEDCouplingCurveLinearMesh,((),(self.__getstate__()),))
6032 def MEDCoupling1SGTUMeshReduce(self):
6033     return MEDCouplingStdReduceFunct,(MEDCoupling1SGTUMesh,((),(self.__getstate__()),))
6034 def MEDCoupling1DGTUMeshReduce(self):
6035     return MEDCouplingStdReduceFunct,(MEDCoupling1DGTUMesh,((),(self.__getstate__()),))
6036 def MEDCouplingFieldDoubleReduce(self):
6037     self.checkConsistencyLight()
6038     d=(self.getTypeOfField(),self.getTimeDiscretization())
6039     return MEDCouplingStdReduceFunct,(MEDCouplingFieldDouble,(d,(self.__getstate__()),))
6040 def MEDCouplingFieldIntReduce(self):
6041     self.checkConsistencyLight()
6042     d=(self.getTypeOfField(),self.getTimeDiscretization())
6043     return MEDCouplingStdReduceFunct,(MEDCouplingFieldInt,(d,(self.__getstate__()),))
6044 def MEDCouplingFieldFloatReduce(self):
6045     self.checkConsistencyLight()
6046     d=(self.getTypeOfField(),self.getTimeDiscretization())
6047     return MEDCouplingStdReduceFunct,(MEDCouplingFieldFloat,(d,(self.__getstate__()),))
6048 %}
6049
6050 %pythoncode %{
6051 import os
6052 __filename=os.environ.get('PYTHONSTARTUP')
6053 if __filename and os.path.isfile(__filename):
6054   exec(open(__filename).read())
6055   pass
6056 %}