Salome HOME
Portability: Mac
[tools/medcoupling.git] / src / MEDCoupling_Swig / MEDCouplingCommon.i
1 // Copyright (C) 2017-2022  CEA/DEN, EDF R&D
2 //
3 // This library is free software; you can redistribute it and/or
4 // modify it under the terms of the GNU Lesser General Public
5 // License as published by the Free Software Foundation; either
6 // version 2.1 of the License, or (at your option) any later version.
7 //
8 // This library is distributed in the hope that it will be useful,
9 // but WITHOUT ANY WARRANTY; without even the implied warranty of
10 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11 // Lesser General Public License for more details.
12 //
13 // You should have received a copy of the GNU Lesser General Public
14 // License along with this library; if not, write to the Free Software
15 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
16 //
17 // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
18 //
19 // Author : Anthony Geay (EDF R&D)
20
21 #ifdef WITH_DOCSTRINGS
22 %include MEDCoupling_doc.i
23 #endif
24
25 %include std_vector.i
26 %include std_string.i
27
28 %{
29 #include "MEDCouplingMemArray.hxx"
30 #include "MEDCouplingMemArray.txx"
31 #include "MEDCouplingUMesh.hxx"
32 #include "MEDCouplingMappedExtrudedMesh.hxx"
33 #include "MEDCouplingCMesh.hxx"
34 #include "MEDCouplingIMesh.hxx"
35 #include "MEDCouplingMap.txx"
36 #include "MEDCouplingCurveLinearMesh.hxx"
37 #include "MEDCoupling1GTUMesh.hxx"
38 #include "MEDCouplingField.hxx"
39 #include "MEDCouplingFieldDouble.hxx"
40 #include "MEDCouplingFieldInt32.hxx"
41 #include "MEDCouplingFieldInt64.hxx"
42 #include "MEDCouplingFieldFloat.hxx"
43 #include "MEDCouplingFieldTemplate.hxx"
44 #include "MEDCouplingGaussLocalization.hxx"
45 #include "MCAuto.hxx"
46 #include "MEDCouplingMultiFields.hxx"
47 #include "MEDCouplingFieldOverTime.hxx"
48 #include "MEDCouplingDefinitionTime.hxx"
49 #include "MEDCouplingFieldDiscretization.hxx"
50 #include "MEDCouplingFieldDiscretizationOnNodesFE.hxx"
51 #include "MEDCouplingCartesianAMRMesh.hxx"
52 #include "MEDCouplingAMRAttribute.hxx"
53 #include "MEDCouplingMatrix.hxx"
54 #include "MEDCouplingPartDefinition.hxx"
55 #include "MEDCouplingSkyLineArray.hxx"
56 #include "MEDCouplingTypemaps.i"
57
58 #include "InterpKernelAutoPtr.hxx"
59 #include "BoxSplittingOptions.hxx"
60
61 using namespace MEDCoupling;
62 using namespace INTERP_KERNEL;
63
64 %}
65
66 %template(dvec) std::vector<double>;
67 %template(svec) std::vector<std::string>;
68
69 //%include stdint.i
70
71 #ifndef MEDCOUPLING_USE_64BIT_IDS
72 //typedef std::int32_t mcIdType;
73 typedef int mcIdType;
74 typedef DataArrayInt32 DataArrayIdType;
75 %template(ivec) std::vector<int>;
76 %template(i64vec) std::vector<int64_t>;
77 #else
78 //typedef std::int64_t mcIdType;
79 typedef DataArrayInt64 DataArrayIdType;
80 #ifdef WIN32
81 %template(ivec) std::vector<long long>;
82 typedef long long mcIdType;
83 #else 
84 %template(ivec) std::vector<long>;
85 typedef long int mcIdType;
86 #endif
87 %template(i32vec) std::vector<int>;
88 #endif
89 #ifdef WIN32
90 typedef long long mcPyPtrType;
91 #else
92 typedef long mcPyPtrType;
93 #endif
94
95 ////////////////////
96 %typemap(out) MEDCoupling::MEDCouplingMesh*
97 {
98   $result=convertMesh($1,$owner);
99 }
100
101 %typemap(out) MEDCouplingMesh*
102 {
103   $result=convertMesh($1,$owner);
104 }
105 //$$$$$$$$$$$$$$$$$$
106
107 ////////////////////
108 %typemap(out) MEDCoupling::MEDCouplingPointSet*
109 {
110   $result=convertMesh($1,$owner);
111 }
112
113 %typemap(out) MEDCouplingPointSet*
114 {
115   $result=convertMesh($1,$owner);
116 }
117 //$$$$$$$$$$$$$$$$$$
118
119 ////////////////////
120 %typemap(out) MEDCouplingCartesianAMRPatchGen*
121 {
122   $result=convertCartesianAMRPatch($1,$owner);
123 }
124 //$$$$$$$$$$$$$$$$$$
125
126 ////////////////////
127 %typemap(out) MEDCouplingCartesianAMRMeshGen*
128 {
129   $result=convertCartesianAMRMesh($1,$owner);
130 }
131 //$$$$$$$$$$$$$$$$$$
132
133 ////////////////////
134 %typemap(out) MEDCouplingDataForGodFather*
135 {
136   $result=convertDataForGodFather($1,$owner);
137 }
138 //$$$$$$$$$$$$$$$$$$
139
140 ////////////////////
141 %typemap(out) MEDCoupling::MEDCoupling1GTUMesh*
142 {
143   $result=convertMesh($1,$owner);
144 }
145
146 %typemap(out) MEDCoupling1GTUMesh*
147 {
148   $result=convertMesh($1,$owner);
149 }
150 //$$$$$$$$$$$$$$$$$$
151
152 ////////////////////
153 %typemap(out) MEDCoupling::MEDCouplingStructuredMesh*
154 {
155   $result=convertMesh($1,$owner);
156 }
157
158 %typemap(out) MEDCouplingStructuredMesh*
159 {
160   $result=convertMesh($1,$owner);
161 }
162 //$$$$$$$$$$$$$$$$$$
163
164 ////////////////////
165 %typemap(out) MEDCoupling::MEDCouplingFieldDiscretization*
166 {
167   $result=convertFieldDiscretization($1,$owner);
168 }
169
170 %typemap(out) MEDCouplingFieldDiscretization*
171 {
172   $result=convertFieldDiscretization($1,$owner);
173 }
174 //$$$$$$$$$$$$$$$$$$
175
176 ////////////////////
177 %typemap(out) MEDCoupling::MEDCouplingField*
178 {
179   $result=convertField($1,$owner);
180 }
181
182 %typemap(out) MEDCouplingField*
183 {
184   $result=convertField($1,$owner);
185 }
186 //$$$$$$$$$$$$$$$$$$
187
188 ////////////////////
189 %typemap(out) MEDCoupling::MEDCouplingMultiFields*
190 {
191   $result=convertMultiFields($1,$owner);
192 }
193
194 %typemap(out) MEDCouplingMultiFields*
195 {
196   $result=convertMultiFields($1,$owner);
197 }
198 //$$$$$$$$$$$$$$$$$$
199
200 ////////////////////
201 %typemap(out) MEDCoupling::PartDefinition*
202 {
203   $result=convertPartDefinition($1,$owner);
204 }
205
206 %typemap(out) PartDefinition*
207 {
208   $result=convertPartDefinition($1,$owner);
209 }
210 //$$$$$$$$$$$$$$$$$$
211
212 #ifdef WITH_NUMPY
213 %init %{ import_array(); %}
214 #endif
215
216 %init %{ initializeMe(); %}
217
218 %feature("autodoc", "1");
219 %feature("docstring");
220
221 %newobject MEDCoupling::MEDCouplingFieldDiscretizationOnNodesFE::getCooInRefElement;
222 %newobject MEDCoupling::MEDCouplingField::buildMeasureField;
223 %newobject MEDCoupling::MEDCouplingField::getLocalizationOfDiscr;
224 %newobject MEDCoupling::MEDCouplingField::computeTupleIdsToSelectFromCellIds;
225 %newobject MEDCoupling::MEDCouplingFieldDouble::New;
226 %newobject MEDCoupling::MEDCouplingFieldDouble::getArray;
227 %newobject MEDCoupling::MEDCouplingFieldDouble::getEndArray;
228 %newobject MEDCoupling::MEDCouplingFieldDouble::MergeFields;
229 %newobject MEDCoupling::MEDCouplingFieldDouble::MeldFields;
230 %newobject MEDCoupling::MEDCouplingFieldDouble::convertToIntField;
231 %newobject MEDCoupling::MEDCouplingFieldDouble::convertToFloatField;
232 %newobject MEDCoupling::MEDCouplingFieldDouble::doublyContractedProduct;
233 %newobject MEDCoupling::MEDCouplingFieldDouble::determinant;
234 %newobject MEDCoupling::MEDCouplingFieldDouble::eigenValues;
235 %newobject MEDCoupling::MEDCouplingFieldDouble::eigenVectors;
236 %newobject MEDCoupling::MEDCouplingFieldDouble::inverse;
237 %newobject MEDCoupling::MEDCouplingFieldDouble::trace;
238 %newobject MEDCoupling::MEDCouplingFieldDouble::deviator;
239 %newobject MEDCoupling::MEDCouplingFieldDouble::magnitude;
240 %newobject MEDCoupling::MEDCouplingFieldDouble::maxPerTuple;
241 %newobject MEDCoupling::MEDCouplingFieldDouble::keepSelectedComponents;
242 %newobject MEDCoupling::MEDCouplingFieldDouble::extractSlice3D;
243 %newobject MEDCoupling::MEDCouplingFieldDouble::DotFields;
244 %newobject MEDCoupling::MEDCouplingFieldDouble::dot;
245 %newobject MEDCoupling::MEDCouplingFieldDouble::CrossProductFields;
246 %newobject MEDCoupling::MEDCouplingFieldDouble::crossProduct;
247 %newobject MEDCoupling::MEDCouplingFieldDouble::MaxFields;
248 %newobject MEDCoupling::MEDCouplingFieldDouble::max;
249 %newobject MEDCoupling::MEDCouplingFieldDouble::MinFields;
250 %newobject MEDCoupling::MEDCouplingFieldDouble::AddFields;
251 %newobject MEDCoupling::MEDCouplingFieldDouble::SubstractFields;
252 %newobject MEDCoupling::MEDCouplingFieldDouble::MultiplyFields;
253 %newobject MEDCoupling::MEDCouplingFieldDouble::DivideFields;
254 %newobject MEDCoupling::MEDCouplingFieldDouble::min;
255 %newobject MEDCoupling::MEDCouplingFieldDouble::negate;
256 %newobject MEDCoupling::MEDCouplingFieldDouble::findIdsInRange;
257 %newobject MEDCoupling::MEDCouplingFieldDouble::buildSubPart;
258 %newobject MEDCoupling::MEDCouplingFieldDouble::buildSubPartRange;
259 %newobject MEDCoupling::MEDCouplingFieldDouble::voronoize;
260 %newobject MEDCoupling::MEDCouplingFieldDouble::convertQuadraticCellsToLinear;
261 %newobject MEDCoupling::MEDCouplingFieldDouble::__getitem__;
262 %newobject MEDCoupling::MEDCouplingFieldDouble::__neg__;
263 %newobject MEDCoupling::MEDCouplingFieldDouble::__add__;
264 %newobject MEDCoupling::MEDCouplingFieldDouble::__sub__;
265 %newobject MEDCoupling::MEDCouplingFieldDouble::__mul__;
266 %newobject MEDCoupling::MEDCouplingFieldDouble::__div__;
267 %newobject MEDCoupling::MEDCouplingFieldDouble::__pow__;
268 %newobject MEDCoupling::MEDCouplingFieldDouble::__radd__;
269 %newobject MEDCoupling::MEDCouplingFieldDouble::__rsub__;
270 %newobject MEDCoupling::MEDCouplingFieldDouble::__rmul__;
271 %newobject MEDCoupling::MEDCouplingFieldDouble::__rdiv__;
272 %newobject MEDCoupling::MEDCouplingFieldDouble::clone;
273 %newobject MEDCoupling::MEDCouplingFieldDouble::cloneWithMesh;
274 %newobject MEDCoupling::MEDCouplingFieldDouble::deepCopy;
275 %newobject MEDCoupling::MEDCouplingFieldDouble::buildNewTimeReprFromThis;
276 %newobject MEDCoupling::MEDCouplingFieldDouble::nodeToCellDiscretization;
277 %newobject MEDCoupling::MEDCouplingFieldDouble::cellToNodeDiscretization;
278 %newobject MEDCoupling::MEDCouplingFieldDouble::getValueOnMulti;
279 %newobject MEDCoupling::MEDCouplingFieldDouble::computeVectorFieldCyl;
280 %newobject MEDCoupling::MEDCouplingFieldInt32::New;
281 %newobject MEDCoupling::MEDCouplingFieldInt32::convertToDblField;
282 %newobject MEDCoupling::MEDCouplingFieldInt32::getArray;
283 %newobject MEDCoupling::MEDCouplingFieldInt32::deepCopy;
284 %newobject MEDCoupling::MEDCouplingFieldInt32::clone;
285 %newobject MEDCoupling::MEDCouplingFieldInt32::cloneWithMesh;
286 %newobject MEDCoupling::MEDCouplingFieldInt32::buildSubPart;
287 %newobject MEDCoupling::MEDCouplingFieldInt32::buildSubPartRange;
288 %newobject MEDCoupling::MEDCouplingFieldInt32::__getitem__;
289 %newobject MEDCoupling::MEDCouplingFieldInt64::New;
290 %newobject MEDCoupling::MEDCouplingFieldInt64::convertToDblField;
291 %newobject MEDCoupling::MEDCouplingFieldInt64::getArray;
292 %newobject MEDCoupling::MEDCouplingFieldInt64::deepCopy;
293 %newobject MEDCoupling::MEDCouplingFieldInt64::clone;
294 %newobject MEDCoupling::MEDCouplingFieldInt64::cloneWithMesh;
295 %newobject MEDCoupling::MEDCouplingFieldInt64::buildSubPart;
296 %newobject MEDCoupling::MEDCouplingFieldInt64::buildSubPartRange;
297 %newobject MEDCoupling::MEDCouplingFieldInt64::__getitem__;
298 %newobject MEDCoupling::MEDCouplingFieldFloat::New;
299 %newobject MEDCoupling::MEDCouplingFieldFloat::convertToDblField;
300 %newobject MEDCoupling::MEDCouplingFieldFloat::getArray;
301 %newobject MEDCoupling::MEDCouplingFieldFloat::deepCopy;
302 %newobject MEDCoupling::MEDCouplingFieldFloat::clone;
303 %newobject MEDCoupling::MEDCouplingFieldFloat::cloneWithMesh;
304 %newobject MEDCoupling::MEDCouplingFieldFloat::buildSubPart;
305 %newobject MEDCoupling::MEDCouplingFieldFloat::buildSubPartRange;
306 %newobject MEDCoupling::MEDCouplingFieldFloat::__getitem__;
307 %newobject MEDCoupling::MEDCouplingFieldTemplate::New;
308 %newobject MEDCoupling::MEDCouplingMesh::deepCopy;
309 %newobject MEDCoupling::MEDCouplingMesh::clone;
310 %newobject MEDCoupling::MEDCouplingMesh::checkDeepEquivalOnSameNodesWith;
311 %newobject MEDCoupling::MEDCouplingMesh::checkTypeConsistencyAndContig;
312 %newobject MEDCoupling::MEDCouplingMesh::computeNbOfNodesPerCell;
313 %newobject MEDCoupling::MEDCouplingMesh::computeNbOfFacesPerCell;
314 %newobject MEDCoupling::MEDCouplingMesh::computeEffectiveNbOfNodesPerCell;
315 %newobject MEDCoupling::MEDCouplingMesh::buildPartRange;
316 %newobject MEDCoupling::MEDCouplingMesh::giveCellsWithType;
317 %newobject MEDCoupling::MEDCouplingMesh::getCoordinatesAndOwner;
318 %newobject MEDCoupling::MEDCouplingMesh::computeMeshCenterOfMass;
319 %newobject MEDCoupling::MEDCouplingMesh::computeCellCenterOfMass;
320 %newobject MEDCoupling::MEDCouplingMesh::computeIsoBarycenterOfNodesPerCell;
321 %newobject MEDCoupling::MEDCouplingMesh::buildOrthogonalField;
322 %newobject MEDCoupling::MEDCouplingMesh::getCellIdsFullyIncludedInNodeIds;
323 %newobject MEDCoupling::MEDCouplingMesh::mergeMyselfWith;
324 %newobject MEDCoupling::MEDCouplingMesh::fillFromAnalytic;
325 %newobject MEDCoupling::MEDCouplingMesh::fillFromAnalyticCompo;
326 %newobject MEDCoupling::MEDCouplingMesh::fillFromAnalyticNamedCompo;
327 %newobject MEDCoupling::MEDCouplingMesh::getMeasureField;
328 %newobject MEDCoupling::MEDCouplingMesh::simplexize;
329 %newobject MEDCoupling::MEDCouplingMesh::buildUnstructured;
330 %newobject MEDCoupling::MEDCouplingMesh::MergeMeshes;
331 %newobject MEDCoupling::MEDCouplingMesh::getDirectAccessOfCoordsArrIfInStructure;
332 %newobject MEDCoupling::MEDCouplingPointSet::zipCoordsTraducer;
333 %newobject MEDCoupling::MEDCouplingPointSet::getCellsInBoundingBox;
334 %newobject MEDCoupling::MEDCouplingPointSet::findBoundaryNodes;
335 %newobject MEDCoupling::MEDCouplingPointSet::buildBoundaryMesh;
336 %newobject MEDCoupling::MEDCouplingPointSet::MergeNodesArray;
337 %newobject MEDCoupling::MEDCouplingPointSet::buildPartOfMySelfSlice;
338 %newobject MEDCoupling::MEDCouplingPointSet::BuildInstanceFromMeshType;
339 %newobject MEDCoupling::MEDCouplingPointSet::zipConnectivityTraducer;
340 %newobject MEDCoupling::MEDCouplingPointSet::mergeMyselfWithOnSameCoords;
341 %newobject MEDCoupling::MEDCouplingPointSet::fillCellIdsToKeepFromNodeIds;
342 %newobject MEDCoupling::MEDCouplingPointSet::getCellIdsLyingOnNodes;
343 %newobject MEDCoupling::MEDCouplingPointSet::deepCopyConnectivityOnly;
344 %newobject MEDCoupling::MEDCouplingPointSet::getBoundingBoxForBBTree;
345 %newobject MEDCoupling::MEDCouplingPointSet::computeFetchedNodeIds;
346 %newobject MEDCoupling::MEDCouplingPointSet::ComputeNbOfInteractionsWithSrcCells;
347 %newobject MEDCoupling::MEDCouplingPointSet::computeDiameterField;
348 %newobject MEDCoupling::MEDCouplingPointSet::__getitem__;
349 %newobject MEDCoupling::MEDCouplingUMesh::New;
350 %newobject MEDCoupling::MEDCouplingUMesh::getNodalConnectivity;
351 %newobject MEDCoupling::MEDCouplingUMesh::getNodalConnectivityIndex;
352 %newobject MEDCoupling::MEDCouplingUMesh::__iter__;
353 %newobject MEDCoupling::MEDCouplingUMesh::cellsByType;
354 %newobject MEDCoupling::MEDCouplingUMesh::buildDescendingConnectivity;
355 %newobject MEDCoupling::MEDCouplingUMesh::buildDescendingConnectivity2;
356 %newobject MEDCoupling::MEDCouplingUMesh::explode3DMeshTo1D;
357 %newobject MEDCoupling::MEDCouplingUMesh::explodeMeshIntoMicroEdges;
358 %newobject MEDCoupling::MEDCouplingUMesh::buildExtrudedMesh;
359 %newobject MEDCoupling::MEDCouplingUMesh::buildSpreadZonesWithPoly;
360 %newobject MEDCoupling::MEDCouplingUMesh::MergeUMeshes;
361 %newobject MEDCoupling::MEDCouplingUMesh::MergeUMeshesOnSameCoords;
362 %newobject MEDCoupling::MEDCouplingUMesh::ComputeSpreadZoneGradually;
363 %newobject MEDCoupling::MEDCouplingUMesh::ComputeSpreadZoneGraduallyFromSeed;
364 %newobject MEDCoupling::MEDCouplingUMesh::buildNewNumberingFromCommNodesFrmt;
365 %newobject MEDCoupling::MEDCouplingUMesh::conformize2D;
366 %newobject MEDCoupling::MEDCouplingUMesh::conformize3D;
367 %newobject MEDCoupling::MEDCouplingUMesh::colinearize2D;
368 %newobject MEDCoupling::MEDCouplingUMesh::colinearizeKeepingConform2D;
369 %newobject MEDCoupling::MEDCouplingUMesh::rearrange2ConsecutiveCellTypes;
370 %newobject MEDCoupling::MEDCouplingUMesh::sortCellsInMEDFileFrmt;
371 %newobject MEDCoupling::MEDCouplingUMesh::getRenumArrForMEDFileFrmt;
372 %newobject MEDCoupling::MEDCouplingUMesh::convertCellArrayPerGeoType;
373 %newobject MEDCoupling::MEDCouplingUMesh::getRenumArrForConsecutiveCellTypesSpec;
374 %newobject MEDCoupling::MEDCouplingUMesh::findNodesToDuplicate;
375 %newobject MEDCoupling::MEDCouplingUMesh::buildDirectionVectorField;
376 %newobject MEDCoupling::MEDCouplingUMesh::convertLinearCellsToQuadratic;
377 %newobject MEDCoupling::MEDCouplingUMesh::getEdgeRatioField;
378 %newobject MEDCoupling::MEDCouplingUMesh::getAspectRatioField;
379 %newobject MEDCoupling::MEDCouplingUMesh::getWarpField;
380 %newobject MEDCoupling::MEDCouplingUMesh::getSkewField;
381 %newobject MEDCoupling::MEDCouplingUMesh::getPartBarycenterAndOwner;
382 %newobject MEDCoupling::MEDCouplingUMesh::computePlaneEquationOf3DFaces;
383 %newobject MEDCoupling::MEDCouplingUMesh::getPartMeasureField;
384 %newobject MEDCoupling::MEDCouplingUMesh::buildPartOrthogonalField;
385 %newobject MEDCoupling::MEDCouplingUMesh::keepCellIdsByType;
386 %newobject MEDCoupling::MEDCouplingUMesh::Build0DMeshFromCoords;
387 %newobject MEDCoupling::MEDCouplingUMesh::Build1DMeshFromCoords;
388 %newobject MEDCoupling::MEDCouplingUMesh::findAndCorrectBadOriented3DExtrudedCells;
389 %newobject MEDCoupling::MEDCouplingUMesh::findAndCorrectBadOriented3DCells;
390 %newobject MEDCoupling::MEDCouplingUMesh::convertIntoSingleGeoTypeMesh;
391 %newobject MEDCoupling::MEDCouplingUMesh::convertNodalConnectivityToStaticGeoTypeMesh;
392 %newobject MEDCoupling::MEDCouplingUMesh::findCellIdsOnBoundary;
393 %newobject MEDCoupling::MEDCouplingUMesh::computeSkin;
394 %newobject MEDCoupling::MEDCouplingUMesh::buildSetInstanceFromThis;
395 %newobject MEDCoupling::MEDCouplingUMesh::getCellIdsCrossingPlane;
396 %newobject MEDCoupling::MEDCouplingUMesh::convexEnvelop2D;
397 %newobject MEDCoupling::MEDCouplingUMesh::ComputeRangesFromTypeDistribution;
398 %newobject MEDCoupling::MEDCouplingUMesh::buildUnionOf2DMesh;
399 %newobject MEDCoupling::MEDCouplingUMesh::buildUnionOf3DMesh;
400 %newobject MEDCoupling::MEDCouplingUMesh::generateGraph;
401 %newobject MEDCoupling::MEDCouplingUMesh::orderConsecutiveCells1D;
402 %newobject MEDCoupling::MEDCouplingUMesh::clipSingle3DCellByPlane;
403 %newobject MEDCoupling::MEDCouplingUMesh::getBoundingBoxForBBTreeFast;
404 %newobject MEDCoupling::MEDCouplingUMesh::getBoundingBoxForBBTree2DQuadratic;
405 %newobject MEDCoupling::MEDCouplingUMesh::getBoundingBoxForBBTree1DQuadratic;
406 %newobject MEDCoupling::MEDCouplingUMesh::convertDegeneratedCellsAndRemoveFlatOnes;
407 %newobject MEDCoupling::MEDCouplingUMeshCellByTypeEntry::__iter__;
408 %newobject MEDCoupling::MEDCouplingUMeshCellEntry::__iter__;
409 %newobject MEDCoupling::MEDCoupling1GTUMesh::New;
410 %newobject MEDCoupling::MEDCoupling1GTUMesh::getNodalConnectivity;
411 %newobject MEDCoupling::MEDCoupling1GTUMesh::AggregateOnSameCoordsToUMesh;
412 %newobject MEDCoupling::MEDCoupling1SGTUMesh::New;
413 %newobject MEDCoupling::MEDCoupling1SGTUMesh::buildSetInstanceFromThis;
414 %newobject MEDCoupling::MEDCoupling1SGTUMesh::computeDualMesh;
415 %newobject MEDCoupling::MEDCoupling1SGTUMesh::explodeEachHexa8To6Quad4;
416 %newobject MEDCoupling::MEDCoupling1SGTUMesh::computeTriangleHeight;
417 %newobject MEDCoupling::MEDCoupling1SGTUMesh::sortHexa8EachOther;
418 %newobject MEDCoupling::MEDCoupling1SGTUMesh::Merge1SGTUMeshes;
419 %newobject MEDCoupling::MEDCoupling1SGTUMesh::Merge1SGTUMeshesOnSameCoords;
420 %newobject MEDCoupling::MEDCoupling1DGTUMesh::New;
421 %newobject MEDCoupling::MEDCoupling1DGTUMesh::getNodalConnectivityIndex;
422 %newobject MEDCoupling::MEDCoupling1DGTUMesh::buildSetInstanceFromThis;
423 %newobject MEDCoupling::MEDCoupling1DGTUMesh::Merge1DGTUMeshes;
424 %newobject MEDCoupling::MEDCoupling1DGTUMesh::Merge1DGTUMeshesOnSameCoords;
425 %newobject MEDCoupling::MEDCouplingMappedExtrudedMesh::New;
426 %newobject MEDCoupling::MEDCouplingMappedExtrudedMesh::build3DUnstructuredMesh;
427 %newobject MEDCoupling::MEDCouplingStructuredMesh::buildStructuredSubPart;
428 %newobject MEDCoupling::MEDCouplingStructuredMesh::build1SGTUnstructured;
429 %newobject MEDCoupling::MEDCouplingStructuredMesh::build1SGTSubLevelMesh;
430 %newobject MEDCoupling::MEDCouplingStructuredMesh::BuildExplicitIdsFrom;
431 %newobject MEDCoupling::MEDCouplingStructuredMesh::ExtractFieldOfDoubleFrom;
432 %newobject MEDCoupling::MEDCouplingStructuredMesh::Build1GTNodalConnectivity;
433 %newobject MEDCoupling::MEDCouplingStructuredMesh::Build1GTNodalConnectivityOfSubLevelMesh;
434 %newobject MEDCoupling::MEDCouplingStructuredMesh::ComputeCornersGhost;
435 %newobject MEDCoupling::MEDCouplingCMesh::New;
436 %newobject MEDCoupling::MEDCouplingCMesh::getCoordsAt;
437 %newobject MEDCoupling::MEDCouplingCMesh::buildCurveLinear;
438 %newobject MEDCoupling::MEDCouplingIMesh::New;
439 %newobject MEDCoupling::MEDCouplingIMesh::asSingleCell;
440 %newobject MEDCoupling::MEDCouplingIMesh::buildWithGhost;
441 %newobject MEDCoupling::MEDCouplingIMesh::convertToCartesian;
442 %newobject MEDCoupling::MEDCouplingCurveLinearMesh::New;
443 %newobject MEDCoupling::MEDCouplingCurveLinearMesh::getCoords;
444 %newobject MEDCoupling::MEDCouplingMultiFields::New;
445 %newobject MEDCoupling::MEDCouplingMultiFields::deepCopy;
446 %newobject MEDCoupling::MEDCouplingFieldOverTime::New;
447 %newobject MEDCoupling::MEDCouplingCartesianAMRPatchGen::getMesh;
448 %newobject MEDCoupling::MEDCouplingCartesianAMRPatchGen::__getitem__;
449 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::deepCopy;
450 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::buildUnstructured;
451 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::extractGhostFrom;
452 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::buildMeshFromPatchEnvelop;
453 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::buildMeshOfDirectChildrenOnly;
454 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::getImageMesh;
455 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::getGodFather;
456 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::getFather;
457 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::getPatch;
458 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::createCellFieldOnPatch;
459 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::findPatchesInTheNeighborhoodOf;
460 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::getPatchAtPosition;
461 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::getMeshAtPosition;
462 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::__getitem__;
463 %newobject MEDCoupling::MEDCouplingCartesianAMRMesh::New;
464 %newobject MEDCoupling::MEDCouplingDataForGodFather::getMyGodFather;
465 %newobject MEDCoupling::MEDCouplingAMRAttribute::New;
466 %newobject MEDCoupling::MEDCouplingAMRAttribute::deepCopy;
467 %newobject MEDCoupling::MEDCouplingAMRAttribute::deepCpyWithoutGodFather;
468 %newobject MEDCoupling::MEDCouplingAMRAttribute::getFieldOn;
469 %newobject MEDCoupling::MEDCouplingAMRAttribute::projectTo;
470 %newobject MEDCoupling::MEDCouplingAMRAttribute::buildCellFieldOnRecurseWithoutOverlapWithoutGhost;
471 %newobject MEDCoupling::MEDCouplingAMRAttribute::buildCellFieldOnWithGhost;
472 %newobject MEDCoupling::MEDCouplingAMRAttribute::buildCellFieldOnWithoutGhost;
473 %newobject MEDCoupling::DenseMatrix::New;
474 %newobject MEDCoupling::DenseMatrix::deepCopy;
475 %newobject MEDCoupling::DenseMatrix::shallowCpy;
476 %newobject MEDCoupling::DenseMatrix::getData;
477 %newobject MEDCoupling::DenseMatrix::matVecMult;
478 %newobject MEDCoupling::DenseMatrix::MatVecMult;
479 %newobject MEDCoupling::DenseMatrix::__add__;
480 %newobject MEDCoupling::DenseMatrix::__sub__;
481 %newobject MEDCoupling::DenseMatrix::__mul__;
482 %newobject MEDCoupling::MEDCouplingGaussLocalization::localizePtsInRefCooForEachCell;
483 %newobject MEDCoupling::MEDCouplingGaussLocalization::buildRefCell;
484 %newobject MEDCoupling::MEDCouplingGaussLocalization::getShapeFunctionValues;
485 %newobject MEDCoupling::MEDCouplingGaussLocalization::getDerivativeOfShapeFunctionValues;
486 %newobject MEDCoupling::MEDCouplingGaussLocalization::GetDefaultReferenceCoordinatesOf;
487 %newobject MEDCoupling::MEDCouplingSkyLineArray::BuildFromPolyhedronConn;
488 %newobject MEDCoupling::MEDCouplingSkyLineArray::getSuperIndexArray;
489 %newobject MEDCoupling::MEDCouplingSkyLineArray::getIndexArray;
490 %newobject MEDCoupling::MEDCouplingSkyLineArray::getValuesArray;
491 %newobject MEDCoupling::MEDCouplingSkyLineArray::groupPacks;
492 %newobject MEDCoupling::MEDCouplingSkyLineArray::uniqueNotSortedByPack;
493 %newobject MEDCoupling::MEDCouplingSkyLineArray::AggregatePacks;
494 %newobject MEDCoupling::MEDCouplingSkyLineArray::deepCopy;
495
496 %feature("unref") MEDCouplingPointSet "$this->decrRef();"
497 %feature("unref") MEDCouplingMesh "$this->decrRef();"
498 %feature("unref") MEDCouplingUMesh "$this->decrRef();"
499 %feature("unref") MEDCoupling1GTUMesh "$this->decrRef();"
500 %feature("unref") MEDCoupling1SGTUMesh "$this->decrRef();"
501 %feature("unref") MEDCoupling1DGTUMesh "$this->decrRef();"
502 %feature("unref") MEDCouplingMappedExtrudedMesh "$this->decrRef();"
503 %feature("unref") MEDCouplingCMesh "$this->decrRef();"
504 %feature("unref") MEDCouplingIMesh "$this->decrRef();"
505 %feature("unref") MEDCouplingCurveLinearMesh "$this->decrRef();"
506 %feature("unref") MEDCouplingField "$this->decrRef();"
507 %feature("unref") MEDCouplingFieldDiscretizationP0 "$this->decrRef();"
508 %feature("unref") MEDCouplingFieldDiscretizationP1 "$this->decrRef();"
509 %feature("unref") MEDCouplingFieldDiscretizationGauss "$this->decrRef();"
510 %feature("unref") MEDCouplingFieldDiscretizationGaussNE "$this->decrRef();"
511 %feature("unref") MEDCouplingFieldDiscretizationKriging "$this->decrRef();"
512 %feature("unref") MEDCouplingFieldDiscretizationOnNodesFE "$this->decrRef();"
513 %feature("unref") MEDCouplingFieldDouble "$this->decrRef();"
514 %feature("unref") MEDCouplingFieldFloat "$this->decrRef();"
515 %feature("unref") MEDCouplingFieldInt32 "$this->decrRef();"
516 %feature("unref") MEDCouplingFieldInt64 "$this->decrRef();"
517 %feature("unref") MEDCouplingMultiFields "$this->decrRef();"
518 %feature("unref") MEDCouplingFieldTemplate "$this->decrRef();"
519 %feature("unref") MEDCouplingMultiFields "$this->decrRef();"
520 %feature("unref") MEDCouplingCartesianAMRMeshGen "$this->decrRef();"
521 %feature("unref") MEDCouplingCartesianAMRMesh "$this->decrRef();"
522 %feature("unref") MEDCouplingCartesianAMRMeshSub "$this->decrRef();"
523 %feature("unref") MEDCouplingCartesianAMRPatchGen "$this->decrRef();"
524 %feature("unref") MEDCouplingCartesianAMRPatchGF "$this->decrRef();"
525 %feature("unref") MEDCouplingCartesianAMRPatch "$this->decrRef();"
526 %feature("unref") MEDCouplingDataForGodFather "$this->decrRef();"
527 %feature("unref") MEDCouplingAMRAttribute "$this->decrRef();"
528 %feature("unref") DenseMatrix "$this->decrRef();"
529 %feature("unref") MEDCouplingSkyLineArray "$this->decrRef();"
530
531 %rename(assign) *::operator=;
532 %ignore MEDCoupling::MEDCouplingGaussLocalization::pushTinySerializationIntInfo;
533 %ignore MEDCoupling::MEDCouplingGaussLocalization::pushTinySerializationDblInfo;
534 %ignore MEDCoupling::MEDCouplingGaussLocalization::fillWithValues;
535 %ignore MEDCoupling::MEDCouplingGaussLocalization::buildNewInstanceFromTinyInfo;
536
537 %nodefaultctor;
538
539 // ABN: Instruct SWIG that INTERP_KERNEL::Exception is an exception class and that it should inherit Exception
540 // on the Python side. Must be put BEFORE the %rename clause:
541 %exceptionclass INTERP_KERNEL::Exception;
542 %rename (InterpKernelException) INTERP_KERNEL::Exception;
543
544 %include "MEDCouplingRefCountObject.i"
545 %include "MEDCouplingMemArray.i"
546
547 %{
548   void initializeMe()
549   {// AGY : here initialization of C++ traits in MEDCouplingDataArrayTypemaps.i for code factorization. Awful, I know, but no other solutions.
550     SWIGTITraits<double>::TI=SWIGTYPE_p_MEDCoupling__DataArrayDouble;
551     SWIGTITraits<float>::TI=SWIGTYPE_p_MEDCoupling__DataArrayFloat;
552     SWIGTITraits<Int32>::TI=SWIGTYPE_p_MEDCoupling__DataArrayInt32;
553     SWIGTITraits<Int64>::TI=SWIGTYPE_p_MEDCoupling__DataArrayInt64;
554     SWIGTITraits<double>::TI_TUPLE=SWIGTYPE_p_MEDCoupling__DataArrayDoubleTuple;
555     SWIGTITraits<float>::TI_TUPLE=SWIGTYPE_p_MEDCoupling__DataArrayFloatTuple;
556     SWIGTITraits<Int32>::TI_TUPLE=SWIGTYPE_p_MEDCoupling__DataArrayInt32Tuple;
557     SWIGTITraits<Int64>::TI_TUPLE=SWIGTYPE_p_MEDCoupling__DataArrayInt64Tuple;
558   }
559 %}
560
561 %inline
562 {
563   PyObject *med2vtk_cell_types()
564   {
565     Py_ssize_t sz(sizeof(MEDCOUPLING2VTKTYPETRADUCER)/sizeof(decltype(MEDCOUPLING2VTKTYPETRADUCER[0])));
566     PyObject *ret(PyList_New(sz));
567     for(Py_ssize_t i=0;i<sz;i++)
568       {
569         mcIdType elt = MEDCOUPLING2VTKTYPETRADUCER[i]!=MEDCOUPLING2VTKTYPETRADUCER_NONE ? MEDCOUPLING2VTKTYPETRADUCER[i] : -1;
570         PyList_SetItem(ret,i,PyInt_FromLong(elt));
571       }
572     return ret;
573   }
574
575   PyObject *vtk2med_cell_types()
576   {
577     Py_ssize_t sz(sizeof(MEDCOUPLING2VTKTYPETRADUCER)/sizeof(decltype(MEDCOUPLING2VTKTYPETRADUCER[0])));
578     auto maxElt(*std::max_element(MEDCOUPLING2VTKTYPETRADUCER,MEDCOUPLING2VTKTYPETRADUCER+sz,[](unsigned char a, unsigned char b) { if(b==MEDCOUPLING2VTKTYPETRADUCER_NONE) return false; else return a<b; } ));
579     auto szOut(maxElt+1);
580     std::vector< mcIdType > retCpp(szOut,-1);
581     mcIdType id(0);
582     for(const unsigned char *it=MEDCOUPLING2VTKTYPETRADUCER;it!=MEDCOUPLING2VTKTYPETRADUCER+sz;it++,id++)
583       {
584         if(*it!=MEDCOUPLING2VTKTYPETRADUCER_NONE)
585           retCpp[*it]=id;
586       }
587     //
588     PyObject *ret(PyList_New(szOut));
589     id = 0;
590     for(auto it=retCpp.begin();it!=retCpp.end();it++,id++)
591       PyList_SetItem(ret,id,PyInt_FromLong(*it));
592     return ret;
593   }
594
595   PyObject *AllGeometricTypes()
596   {
597     Py_ssize_t sz(MEDCouplingUMesh::N_MEDMEM_ORDER);
598     PyObject *ret(PyList_New(sz));
599     for(Py_ssize_t i=0;i<sz;i++)
600       PyList_SetItem(ret,i,PyInt_FromLong(MEDCouplingUMesh::MEDMEM_ORDER[i]));
601     return ret;
602   }
603 }
604
605 namespace INTERP_KERNEL
606
607   /*!
608    * \class BoxSplittingOptions
609    * Class defining the options for box splitting used for AMR algorithm like creation of patches following a criterion.
610    */
611   class BoxSplittingOptions
612   {
613   public:
614     BoxSplittingOptions();
615     void init();
616     double getEfficiencyGoal() const;
617     void setEfficiencyGoal(double efficiency);
618     double getEfficiencyThreshold() const;
619     void setEfficiencyThreshold(double efficiencyThreshold);
620     int getMinimumPatchLength() const;
621     void setMinimumPatchLength(int minPatchLength);
622     int getMaximumPatchLength() const;
623     void setMaximumPatchLength(int maxPatchLength);
624     int getMaximumNbOfCellsInPatch() const;
625     void setMaximumNbOfCellsInPatch(int maxNbCellsInPatch);
626     void copyOptions(const BoxSplittingOptions & other);
627     std::string printOptions() const;
628     %extend
629     {
630       std::string __str__() const
631       {
632         return self->printOptions();
633       }
634     }
635   };
636 }
637
638 namespace MEDCoupling
639 {
640   typedef enum
641     {
642       ON_CELLS = 0,
643       ON_NODES = 1,
644       ON_GAUSS_PT = 2,
645       ON_GAUSS_NE = 3,
646       ON_NODES_KR = 4,
647       ON_NODES_FE = 5
648     } TypeOfField;
649
650   typedef enum
651     {
652       NO_TIME = 4,
653       ONE_TIME = 5,
654       LINEAR_TIME = 6,
655       CONST_ON_TIME_INTERVAL = 7
656     } TypeOfTimeDiscretization;
657
658   typedef enum
659     {
660       UNSTRUCTURED = 5,
661       CARTESIAN = 7,
662       EXTRUDED = 8,
663       CURVE_LINEAR = 9,
664       SINGLE_STATIC_GEO_TYPE_UNSTRUCTURED = 10,
665       SINGLE_DYNAMIC_GEO_TYPE_UNSTRUCTURED = 11,
666       IMAGE_GRID = 12
667     } MEDCouplingMeshType;
668
669   class DataArrayInt32;
670   class DataArrayInt64;
671   class DataArrayDouble;
672   class MEDCouplingUMesh;
673   class MEDCouplingCMesh;
674   class MEDCouplingFieldDouble;
675
676   %extend RefCountObject
677   {
678     std::string getHiddenCppPointer() const
679     {
680       std::ostringstream oss; oss << "C++ Pointer address is : " << self;
681       return oss.str();
682     }
683   }
684
685   %extend MEDCouplingGaussLocalization
686   {
687     std::string __str__() const
688     {
689       return self->getStringRepr();
690     }
691
692     std::string __repr__() const
693     {
694       std::ostringstream oss; oss << "MEDCouplingGaussLocalization C++ instance at " << self << "." << std::endl;
695       oss << self->getStringRepr();
696       return oss.str();
697     }
698   }
699
700   //== MEDCouplingMesh
701   
702   class MEDCouplingMesh : public RefCountObject, public TimeLabel
703   {
704   public:
705     void setName(const std::string& name);
706     std::string getName() const;
707     void setDescription(const std::string& descr);
708     std::string getDescription() const;
709     void setTime(double val, int iteration, int order);
710     void setTimeUnit(const std::string& unit);
711     std::string getTimeUnit() const;
712     virtual MEDCouplingMeshType getType() const;
713     bool isStructured() const;
714     virtual MEDCouplingMesh *deepCopy() const;
715     virtual MEDCouplingMesh *clone(bool recDeepCpy) const;
716     virtual bool isEqual(const MEDCouplingMesh *other, double prec) const;
717     virtual bool isEqualWithoutConsideringStr(const MEDCouplingMesh *other, double prec) const;
718     virtual void checkFastEquivalWith(const MEDCouplingMesh *other, double prec) const;
719     virtual void copyTinyStringsFrom(const MEDCouplingMesh *other);
720     virtual void copyTinyInfoFrom(const MEDCouplingMesh *other);
721     virtual void checkConsistencyLight() const;
722     virtual void checkConsistency(double eps=1e-12) const;
723     virtual int getNumberOfCells() const;
724     virtual int getNumberOfNodes() const;
725     virtual int getSpaceDimension() const;
726     virtual int getMeshDimension() const;
727     virtual DataArrayDouble *getCoordinatesAndOwner() const;
728     virtual DataArrayDouble *computeCellCenterOfMass() const;
729     virtual DataArrayDouble *computeIsoBarycenterOfNodesPerCell() const;
730     virtual DataArrayIdType *giveCellsWithType(INTERP_KERNEL::NormalizedCellType type) const;
731     virtual DataArrayIdType *computeNbOfNodesPerCell() const;
732     virtual DataArrayIdType *computeNbOfFacesPerCell() const;
733     virtual DataArrayIdType *computeEffectiveNbOfNodesPerCell() const;
734     virtual MEDCouplingMesh *buildPartRange(int beginCellIds, int endCellIds, int stepCellIds) const;
735     virtual int getNumberOfCellsWithType(INTERP_KERNEL::NormalizedCellType type) const;
736     virtual INTERP_KERNEL::NormalizedCellType getTypeOfCell(int cellId) const;
737     virtual std::string simpleRepr() const;
738     virtual std::string advancedRepr() const;
739     std::string writeVTK(const std::string& fileName, bool isBinary=true) const;
740     virtual std::string getVTKFileExtension() const;
741     std::string getVTKFileNameOf(const std::string& fileName) const;
742     // tools
743     virtual MEDCouplingFieldDouble *getMeasureField(bool isAbs) const;
744     virtual MEDCouplingFieldDouble *getMeasureFieldOnNode(bool isAbs) const;
745     virtual MEDCouplingFieldDouble *fillFromAnalytic(TypeOfField t, int nbOfComp, const std::string& func) const;
746     virtual MEDCouplingFieldDouble *fillFromAnalyticCompo(TypeOfField t, int nbOfComp, const std::string& func) const;
747     virtual MEDCouplingFieldDouble *fillFromAnalyticNamedCompo(TypeOfField t, int nbOfComp, const std::vector<std::string>& varsOrder, const std::string& func) const;
748     virtual MEDCouplingFieldDouble *buildOrthogonalField() const;
749     virtual MEDCouplingUMesh *buildUnstructured() const;
750     virtual MEDCouplingMesh *mergeMyselfWith(const MEDCouplingMesh *other) const;
751     virtual bool areCompatibleForMerge(const MEDCouplingMesh *other) const;
752     virtual DataArrayIdType *simplexize(int policy);
753     virtual void unserialization(const std::vector<double>& tinyInfoD, const std::vector<mcIdType>& tinyInfo, const DataArrayIdType *a1, DataArrayDouble *a2, const std::vector<std::string>& littleStrings);
754     static MEDCouplingMesh *MergeMeshes(const MEDCouplingMesh *mesh1, const MEDCouplingMesh *mesh2);
755     static bool IsStaticGeometricType(INTERP_KERNEL::NormalizedCellType type);
756     static bool IsLinearGeometricType(INTERP_KERNEL::NormalizedCellType type);
757     static INTERP_KERNEL::NormalizedCellType GetCorrespondingPolyType(INTERP_KERNEL::NormalizedCellType type);
758     static int GetNumberOfNodesOfGeometricType(INTERP_KERNEL::NormalizedCellType type);
759     static int GetDimensionOfGeometricType(INTERP_KERNEL::NormalizedCellType type);
760     static const char *GetReprOfGeometricType(INTERP_KERNEL::NormalizedCellType type);
761     %extend
762        {
763          std::string __str__() const
764          {
765            return self->simpleRepr();
766          }
767          
768           DataArrayDouble *computeMeshCenterOfMass() const
769           {
770             MCAuto<DataArrayDouble> ret(self->computeMeshCenterOfMass());
771             return ret.retn();
772           }
773
774          PyObject *getTime()
775          {
776            int tmp1,tmp2;
777            double tmp0=self->getTime(tmp1,tmp2);
778            PyObject *res = PyList_New(3);
779            PyList_SetItem(res,0,SWIG_From_double(tmp0));
780            PyList_SetItem(res,1,SWIG_From_int(tmp1));
781            PyList_SetItem(res,2,SWIG_From_int(tmp2));
782            return res;
783          }
784
785          DataArrayDouble *getDirectAccessOfCoordsArrIfInStructure() const
786          {
787            const DataArrayDouble *ret(self->getDirectAccessOfCoordsArrIfInStructure());
788            DataArrayDouble *ret2(const_cast<DataArrayDouble *>(ret));
789            if(ret2)
790              ret2->incrRef();
791            return ret2;
792          }
793          
794          mcIdType getCellContainingPoint(PyObject *p, double eps) const
795          {
796            double val;
797            DataArrayDouble *a;
798            DataArrayDoubleTuple *aa;
799            std::vector<double> bb;
800            mcIdType sw;
801            int spaceDim=self->getSpaceDimension();
802            const char msg[]="Python wrap of MEDCouplingMesh::getCellContainingPoint : ";
803            const double *pos=convertObjToPossibleCpp5_Safe(p,sw,val,a,aa,bb,msg,1,spaceDim,true);
804            return self->getCellContainingPoint(pos,eps);
805          }
806
807          PyObject *getCellsContainingPoints(PyObject *p, int nbOfPoints, double eps) const
808          {
809            double val;
810            DataArrayDouble *a;
811            DataArrayDoubleTuple *aa;
812            std::vector<double> bb;
813            mcIdType sw;
814            int spaceDim=self->getSpaceDimension();
815            const char msg[]="Python wrap of MEDCouplingMesh::getCellsContainingPoint : ";
816            const double *pos=convertObjToPossibleCpp5_Safe(p,sw,val,a,aa,bb,msg,nbOfPoints,spaceDim,true);
817            MCAuto<DataArrayIdType> elts,eltsIndex;
818            self->getCellsContainingPoints(pos,nbOfPoints,eps,elts,eltsIndex);
819            PyObject *ret=PyTuple_New(2);
820            PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(elts.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
821            PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(eltsIndex.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
822            return ret;
823          }
824
825          PyObject *getCellsContainingPointsLinearPartOnlyOnNonDynType(PyObject *p, int nbOfPoints, double eps) const
826          {
827            double val;
828            DataArrayDouble *a;
829            DataArrayDoubleTuple *aa;
830            std::vector<double> bb;
831            mcIdType sw;
832            int spaceDim=self->getSpaceDimension();
833            const char msg[]="Python wrap of MEDCouplingMesh::getCellsContainingPointsLinearPartOnlyOnNonDynType : ";
834            const double *pos=convertObjToPossibleCpp5_Safe(p,sw,val,a,aa,bb,msg,nbOfPoints,spaceDim,true);
835            MCAuto<DataArrayIdType> elts,eltsIndex;
836            self->getCellsContainingPointsLinearPartOnlyOnNonDynType(pos,nbOfPoints,eps,elts,eltsIndex);
837            PyObject *ret=PyTuple_New(2);
838            PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(elts.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
839            PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(eltsIndex.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
840            return ret;
841          }
842
843          PyObject *getCellsContainingPoints(PyObject *p, double eps) const
844          {
845            auto getCellsContainingPointsFunc=[self](const double *a, int b,double c, MCAuto<DataArrayIdType>& d, MCAuto<DataArrayIdType>& e) { self->getCellsContainingPoints(a,b,c,d,e); };
846            return Mesh_getCellsContainingPointsLike(p,eps,self,getCellsContainingPointsFunc);
847          }
848
849          PyObject *getCellsContainingPointsLinearPartOnlyOnNonDynType(PyObject *p, double eps) const
850          {
851            auto getCellsContainingPointsFunc=[self](const double *a, int b,double c, MCAuto<DataArrayIdType>& d, MCAuto<DataArrayIdType>& e) { self->getCellsContainingPointsLinearPartOnlyOnNonDynType(a,b,c,d,e); };
852            return Mesh_getCellsContainingPointsLike(p,eps,self,getCellsContainingPointsFunc);
853          }
854          
855          PyObject *getCellsContainingPoint(PyObject *p, double eps) const
856          {
857            double val;
858            DataArrayDouble *a;
859            DataArrayDoubleTuple *aa;
860            std::vector<double> bb;
861            mcIdType sw;
862            int spaceDim=self->getSpaceDimension();
863            const char msg[]="Python wrap of MEDCouplingUMesh::getCellsContainingPoint : ";
864            const double *pos=convertObjToPossibleCpp5_Safe(p,sw,val,a,aa,bb,msg,1,spaceDim,true);
865            std::vector<mcIdType> elts;
866            self->getCellsContainingPoint(pos,eps,elts);
867            DataArrayIdType *ret=DataArrayIdType::New();
868            ret->alloc((int)elts.size(),1);
869            std::copy(elts.begin(),elts.end(),ret->getPointer());
870            return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 );
871          }
872          
873          virtual PyObject *getReverseNodalConnectivity() const
874          {
875            MCAuto<DataArrayIdType> d0=DataArrayIdType::New();
876            MCAuto<DataArrayIdType> d1=DataArrayIdType::New();
877            self->getReverseNodalConnectivity(d0,d1);
878            PyObject *ret=PyTuple_New(2);
879            PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
880            PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
881            return ret;
882          }
883          
884          void renumberCells(PyObject *li, bool check=true)
885          {
886            mcIdType sw,sz(-1);
887            mcIdType v0; std::vector<mcIdType> v1;
888            const mcIdType *ids(convertIntStarLikePyObjToCppIntStar(li,sw,sz,v0,v1));
889            self->renumberCells(ids,check);
890          }
891
892          PyObject *checkGeoEquivalWith(const MEDCouplingMesh *other, int levOfCheck, double prec) const
893          {
894            DataArrayIdType *cellCor, *nodeCor;
895            self->checkGeoEquivalWith(other,levOfCheck,prec,cellCor,nodeCor);
896            PyObject *res = PyList_New(2);
897            PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(cellCor),SWIGTITraits<mcIdType>::TI, cellCor?SWIG_POINTER_OWN | 0:0 ));
898            PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(nodeCor),SWIGTITraits<mcIdType>::TI, nodeCor?SWIG_POINTER_OWN | 0:0 ));
899            return res;
900          }
901
902          PyObject *checkDeepEquivalWith(const MEDCouplingMesh *other, int cellCompPol, double prec) const
903          {
904            DataArrayIdType *cellCor=0,*nodeCor=0;
905            self->checkDeepEquivalWith(other,cellCompPol,prec,cellCor,nodeCor);
906            PyObject *res = PyList_New(2);
907            PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(cellCor),SWIGTITraits<mcIdType>::TI, cellCor?SWIG_POINTER_OWN | 0:0 ));
908            PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(nodeCor),SWIGTITraits<mcIdType>::TI, nodeCor?SWIG_POINTER_OWN | 0:0 ));
909            return res;
910          }
911          
912          DataArrayIdType *checkDeepEquivalOnSameNodesWith(const MEDCouplingMesh *other, int cellCompPol, double prec) const
913          {
914            DataArrayIdType *cellCor=0;
915            self->checkDeepEquivalOnSameNodesWith(other,cellCompPol,prec,cellCor);
916            return cellCor;
917          }
918
919          DataArrayIdType *getCellIdsFullyIncludedInNodeIds(PyObject *li) const
920          {
921            void *da=0;
922            int res1=SWIG_ConvertPtr(li,&da,SWIGTITraits<mcIdType>::TI, 0 |  0 );
923            if (!SWIG_IsOK(res1))
924              {
925                mcIdType size;
926                INTERP_KERNEL::AutoPtr<mcIdType> tmp=convertPyToNewIntArr2(li,&size);
927                return self->getCellIdsFullyIncludedInNodeIds(tmp,((const mcIdType *)tmp)+size);
928              }
929            else
930              {
931                DataArrayIdType *da2=reinterpret_cast< DataArrayIdType * >(da);
932                if(!da2)
933                  throw INTERP_KERNEL::Exception("Not null DataArrayIdType instance expected !");
934                da2->checkAllocated();
935                return self->getCellIdsFullyIncludedInNodeIds(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems());
936              }
937          }
938          PyObject *getNodeIdsOfCell(int cellId) const
939          {
940            std::vector<mcIdType> conn;
941            self->getNodeIdsOfCell(cellId,conn);
942            return convertIntArrToPyList2(conn);
943          }
944
945          PyObject *getCoordinatesOfNode(mcIdType nodeId) const
946          {
947            std::vector<double> coo;
948            self->getCoordinatesOfNode(nodeId,coo);
949            return convertDblArrToPyList2(coo);
950          }
951
952          void scale(PyObject *point, double factor)
953          {
954            double val;
955            DataArrayDouble *a;
956            DataArrayDoubleTuple *aa;
957            std::vector<double> bb;
958            mcIdType sw;
959            int spaceDim=self->getSpaceDimension();
960            const char msg[]="Python wrap of MEDCouplingPointSet::scale : ";
961            const double *pointPtr=convertObjToPossibleCpp5_Safe(point,sw,val,a,aa,bb,msg,1,spaceDim,true);
962            self->scale(pointPtr,factor);
963          }
964
965          PyObject *getBoundingBox() const
966          {
967            int spaceDim=self->getSpaceDimension();
968            INTERP_KERNEL::AutoPtr<double> tmp=new double[2*spaceDim];
969            self->getBoundingBox(tmp);
970            PyObject *ret=convertDblArrToPyListOfTuple<double>(tmp,2,spaceDim);
971            return ret;
972          }
973
974          PyObject *isEqualIfNotWhy(const MEDCouplingMesh *other, double prec) const
975          {
976            std::string ret1;
977            bool ret0=self->isEqualIfNotWhy(other,prec,ret1);
978            PyObject *ret=PyTuple_New(2);
979            PyObject *ret0Py=ret0?Py_True:Py_False;
980            Py_XINCREF(ret0Py);
981            PyTuple_SetItem(ret,0,ret0Py);
982            PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
983            return ret;
984          }
985
986          PyObject *buildPart(PyObject *li) const
987          {
988            mcIdType szArr,sw,iTypppArr;
989            std::vector<mcIdType> stdvecTyyppArr;
990            const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
991            MEDCouplingMesh *ret=self->buildPart(tmp,tmp+szArr);
992            if(sw==3)//DataArrayIdType
993              { 
994                void *argp; SWIG_ConvertPtr(li,&argp,SWIGTITraits<mcIdType>::TI,0|0);
995                DataArrayIdType *argpt=reinterpret_cast< MEDCoupling::DataArrayIdType * >(argp);
996                std::string name=argpt->getName();
997                if(!name.empty())
998                  ret->setName(name.c_str());
999              }
1000            return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1001          }
1002         
1003          PyObject *buildPartAndReduceNodes(PyObject *li) const
1004          {
1005            mcIdType szArr,sw,iTypppArr;
1006            std::vector<mcIdType> stdvecTyyppArr;
1007            DataArrayIdType *arr=0;
1008            const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1009            MEDCouplingMesh *ret=self->buildPartAndReduceNodes(tmp,tmp+szArr,arr);
1010            if(sw==3)//DataArrayIdType
1011              { 
1012                void *argp; SWIG_ConvertPtr(li,&argp,SWIGTITraits<mcIdType>::TI,0|0);
1013                DataArrayIdType *argpt=reinterpret_cast< MEDCoupling::DataArrayIdType * >(argp);
1014                std::string name=argpt->getName();
1015                if(!name.empty())
1016                  ret->setName(name.c_str());
1017              }
1018            //
1019            PyObject *res = PyList_New(2);
1020            PyObject *obj0=convertMesh(ret, SWIG_POINTER_OWN | 0 );
1021            PyObject *obj1=SWIG_NewPointerObj(SWIG_as_voidptr(arr),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 );
1022            PyList_SetItem(res,0,obj0);
1023            PyList_SetItem(res,1,obj1);
1024            return res;
1025          }
1026
1027          PyObject *buildPartRangeAndReduceNodes(mcIdType beginCellIds, mcIdType endCellIds, mcIdType stepCellIds) const
1028          {
1029            mcIdType a,b,c;
1030            DataArrayIdType *arr=0;
1031            MEDCouplingMesh *ret=self->buildPartRangeAndReduceNodes(beginCellIds,endCellIds,stepCellIds,a,b,c,arr);
1032            PyObject *res = PyTuple_New(2);
1033            PyObject *obj0=convertMesh(ret, SWIG_POINTER_OWN | 0 );
1034            PyObject *obj1=0;
1035            if(arr)
1036              obj1=SWIG_NewPointerObj(SWIG_as_voidptr(arr),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 );
1037            else
1038              obj1=PySlice_New(PyInt_FromLong(a),PyInt_FromLong(b),PyInt_FromLong(b));
1039            PyTuple_SetItem(res,0,obj0);
1040            PyTuple_SetItem(res,1,obj1);
1041            return res;
1042          }
1043
1044         PyObject *getDistributionOfTypes() const
1045         {
1046           std::vector<mcIdType> vals=self->getDistributionOfTypes();
1047           if(vals.size()%3!=0)
1048             throw INTERP_KERNEL::Exception("Internal Error detected in wrap python ! code returned by MEDCouplingMesh::getDistributionOfTypes is not so that %3==0 !");
1049           PyObject *ret=PyList_New((mcIdType)vals.size()/3);
1050           for(std::size_t j=0;j<vals.size()/3;j++)
1051              {
1052                PyObject *ret1=PyList_New(3);
1053                PyList_SetItem(ret1,0,PyInt_FromLong(vals[3*j]));
1054                PyList_SetItem(ret1,1,PyInt_FromLong(vals[3*j+1]));
1055                PyList_SetItem(ret1,2,PyInt_FromLong(vals[3*j+2]));
1056                PyList_SetItem(ret,j,ret1);
1057              }
1058           return ret;
1059         }
1060
1061         DataArrayIdType *checkTypeConsistencyAndContig(PyObject *li, PyObject *li2) const
1062         {
1063           std::vector<mcIdType> code;
1064           std::vector<const DataArrayIdType *> idsPerType;
1065           convertFromPyObjVectorOfObj<const MEDCoupling::DataArrayIdType *>(li2,SWIGTITraits<mcIdType>::TI,"DataArrayIdType",idsPerType);
1066           convertPyToNewIntArr4(li,1,3,code);
1067           return self->checkTypeConsistencyAndContig(code,idsPerType);
1068         }
1069
1070         PyObject *splitProfilePerType(const DataArrayIdType *profile, bool smartPflKiller=true) const
1071         {
1072           std::vector<mcIdType> code;
1073           std::vector<DataArrayIdType *> idsInPflPerType;
1074           std::vector<DataArrayIdType *> idsPerType;
1075           self->splitProfilePerType(profile,code,idsInPflPerType,idsPerType,smartPflKiller);
1076           PyObject *ret=PyTuple_New(3);
1077           //
1078           if(code.size()%3!=0)
1079             throw INTERP_KERNEL::Exception("Internal Error detected in wrap python ! code returned by MEDCouplingMesh::splitProfilePerType is not so that %3==0 !");
1080           PyObject *ret0=PyList_New((mcIdType)code.size()/3);
1081           for(std::size_t j=0;j<code.size()/3;j++)
1082              {
1083                PyObject *ret00=PyList_New(3);
1084                PyList_SetItem(ret00,0,PyInt_FromLong(code[3*j]));
1085                PyList_SetItem(ret00,1,PyInt_FromLong(code[3*j+1]));
1086                PyList_SetItem(ret00,2,PyInt_FromLong(code[3*j+2]));
1087                PyList_SetItem(ret0,j,ret00);
1088              }
1089           PyTuple_SetItem(ret,0,ret0);
1090           //
1091           PyObject *ret1=PyList_New(idsInPflPerType.size());
1092           for(std::size_t j=0;j<idsInPflPerType.size();j++)
1093             PyList_SetItem(ret1,j,SWIG_NewPointerObj(SWIG_as_voidptr(idsInPflPerType[j]),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
1094           PyTuple_SetItem(ret,1,ret1);
1095           std::size_t n=idsPerType.size();
1096           PyObject *ret2=PyList_New(n);
1097           for(std::size_t i=0;i<n;i++)
1098             PyList_SetItem(ret2,i,SWIG_NewPointerObj(SWIG_as_voidptr(idsPerType[i]),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
1099           PyTuple_SetItem(ret,2,ret2);
1100           return ret;
1101         }
1102
1103         void translate(PyObject *vector)
1104         {
1105           double val;
1106           DataArrayDouble *a;
1107           DataArrayDoubleTuple *aa;
1108           std::vector<double> bb;
1109           mcIdType sw;
1110           int spaceDim=self->getSpaceDimension();
1111           const char msg[]="Python wrap of MEDCouplingPointSet::translate : ";
1112           const double *vectorPtr=convertObjToPossibleCpp5_Safe(vector,sw,val,a,aa,bb,msg,1,spaceDim,true);
1113           self->translate(vectorPtr);
1114         }
1115
1116          void rotate(PyObject *center, double alpha)
1117          {
1118            const char msg[]="Python wrap of MEDCouplingPointSet::rotate : ";
1119            double val;
1120            DataArrayDouble *a;
1121            DataArrayDoubleTuple *aa;
1122            std::vector<double> bb;
1123            mcIdType sw;
1124            int spaceDim=self->getSpaceDimension();
1125            const double *centerPtr=convertObjToPossibleCpp5_Safe(center,sw,val,a,aa,bb,msg,1,spaceDim,true);
1126            self->rotate(centerPtr,0,alpha);
1127          }
1128
1129          void rotate(PyObject *center, PyObject *vector, double alpha)
1130          {
1131            const char msg[]="Python wrap of MEDCouplingPointSet::rotate : ";
1132            double val,val2;
1133            DataArrayDouble *a,*a2;
1134            DataArrayDoubleTuple *aa,*aa2;
1135            std::vector<double> bb,bb2;
1136            mcIdType sw;
1137            int spaceDim=self->getSpaceDimension();
1138            const double *centerPtr=convertObjToPossibleCpp5_Safe(center,sw,val,a,aa,bb,msg,1,spaceDim,true);
1139            const double *vectorPtr=convertObjToPossibleCpp5_Safe(vector,sw,val2,a2,aa2,bb2,msg,1,spaceDim,false);//vectorPtr can be null in case of space dim 2
1140            self->rotate(centerPtr,vectorPtr,alpha);
1141          }
1142
1143          PyObject *getAllGeoTypes() const
1144          {
1145            std::set<INTERP_KERNEL::NormalizedCellType> result=self->getAllGeoTypes();
1146            std::set<INTERP_KERNEL::NormalizedCellType>::const_iterator iL=result.begin();
1147            PyObject *res=PyList_New(result.size());
1148            for(int i=0;iL!=result.end(); i++, iL++)
1149              PyList_SetItem(res,i,PyInt_FromLong(*iL));
1150            return res;
1151          }
1152
1153          virtual PyObject *getTinySerializationInformation() const
1154          {
1155            std::vector<double> a0;
1156            std::vector<mcIdType> a1;
1157            std::vector<std::string> a2;
1158            self->getTinySerializationInformation(a0,a1,a2);
1159            PyObject *ret(PyTuple_New(3));
1160            PyTuple_SetItem(ret,0,convertDblArrToPyList2(a0));
1161            PyTuple_SetItem(ret,1,convertIntArrToPyList2(a1));
1162            std::size_t sz(a2.size());
1163            PyObject *ret2(PyList_New(sz));
1164            {
1165              for(std::size_t i=0;i<sz;i++)
1166                PyList_SetItem(ret2,i,PyString_FromString(a2[i].c_str()));
1167            }
1168            PyTuple_SetItem(ret,2,ret2);
1169            return ret;
1170          }
1171
1172          virtual PyObject *serialize() const
1173          {
1174            DataArrayIdType *a0Tmp(0);
1175            DataArrayDouble *a1Tmp(0);
1176            self->serialize(a0Tmp,a1Tmp);
1177            PyObject *ret(PyTuple_New(2));
1178            PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(a0Tmp),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
1179            PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(a1Tmp),SWIGTYPE_p_MEDCoupling__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
1180            return ret;
1181          }
1182
1183          void resizeForUnserialization(const std::vector<mcIdType>& tinyInfo, DataArrayIdType *a1, DataArrayDouble *a2) const
1184          {
1185            std::vector<std::string> littleStrings;
1186            self->resizeForUnserialization(tinyInfo,a1,a2,littleStrings);
1187          }
1188          
1189          PyObject *__getstate__() const
1190          {
1191            PyObject *ret0(MEDCoupling_MEDCouplingMesh_getTinySerializationInformation(self));
1192            PyObject *ret1(MEDCoupling_MEDCouplingMesh_serialize(self));
1193            PyObject *ret(PyTuple_New(2));
1194            PyTuple_SetItem(ret,0,ret0);
1195            PyTuple_SetItem(ret,1,ret1);
1196            return ret;
1197          }
1198
1199          void __setstate__(PyObject *inp)
1200          {
1201            static const char MSG[]="MEDCouplingMesh.__setstate__ : expected input is a tuple of size 2 !";
1202            if(!PyTuple_Check(inp))
1203              throw INTERP_KERNEL::Exception(MSG);
1204            std::size_t sz(PyTuple_Size(inp));
1205            if(sz!=2)
1206              throw INTERP_KERNEL::Exception(MSG);
1207            PyObject *elt0(PyTuple_GetItem(inp,0));
1208            PyObject *elt1(PyTuple_GetItem(inp,1));
1209            std::vector<double> a0;
1210            std::vector<mcIdType> a1;
1211            std::vector<std::string> a2;
1212            DataArrayIdType *b0(0);
1213            DataArrayDouble *b1(0);
1214            {
1215              if(!PyTuple_Check(elt0) && PyTuple_Size(elt0)!=3)
1216                throw INTERP_KERNEL::Exception(MSG);
1217              PyObject *a0py(PyTuple_GetItem(elt0,0)),*a1py(PyTuple_GetItem(elt0,1)),*a2py(PyTuple_GetItem(elt0,2));
1218              mcIdType tmp(-1);
1219              fillArrayWithPyListDbl3(a0py,tmp,a0);
1220              convertPyToNewIntArr3(a1py,a1);
1221              fillStringVector(a2py,a2);
1222            }
1223            {
1224              if(!PyTuple_Check(elt1) && PyTuple_Size(elt1)!=2)
1225                throw INTERP_KERNEL::Exception(MSG);
1226              PyObject *b0py(PyTuple_GetItem(elt1,0)),*b1py(PyTuple_GetItem(elt1,1));
1227              void *argp(0);
1228              int status(SWIG_ConvertPtr(b0py,&argp,SWIGTITraits<mcIdType>::TI,0|0));
1229              if(!SWIG_IsOK(status))
1230                throw INTERP_KERNEL::Exception(MSG);
1231              b0=reinterpret_cast<DataArrayIdType *>(argp);
1232              status=SWIG_ConvertPtr(b1py,&argp,SWIGTYPE_p_MEDCoupling__DataArrayDouble,0|0);
1233              if(!SWIG_IsOK(status))
1234                throw INTERP_KERNEL::Exception(MSG);
1235              b1=reinterpret_cast<DataArrayDouble *>(argp);
1236            }
1237            // useless here to call resizeForUnserialization because arrays are well resized.
1238            self->unserialization(a0,a1,b0,b1,a2);
1239          }
1240          
1241          static MEDCouplingMesh *MergeMeshes(PyObject *li)
1242          {
1243             std::vector<const MEDCoupling::MEDCouplingMesh *> tmp;
1244             convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingMesh *>(li,SWIGTYPE_p_MEDCoupling__MEDCouplingMesh,"MEDCouplingMesh",tmp);
1245             return MEDCouplingMesh::MergeMeshes(tmp);
1246          }
1247        }
1248   };
1249 }
1250
1251 //== MEDCouplingMesh End
1252
1253 %include "NormalizedGeometricTypes"
1254 %include "MEDCouplingNatureOfFieldEnum"
1255 //
1256 namespace MEDCoupling
1257 {
1258   class MEDCouplingNatureOfField
1259   {
1260   public:
1261     static const char *GetRepr(NatureOfField nat);
1262     static std::string GetReprNoThrow(NatureOfField nat);
1263     static std::string GetAllPossibilitiesStr();
1264   };
1265 }
1266
1267 // the MEDCouplingTimeDiscretization classes are not swigged : in case the file can help
1268 // include "MEDCouplingTimeDiscretization.i"
1269
1270 namespace MEDCoupling
1271 {
1272   class MEDCouplingGaussLocalization
1273   {
1274   public:
1275     MEDCouplingGaussLocalization(INTERP_KERNEL::NormalizedCellType type, const std::vector<double>& refCoo,
1276                                  const std::vector<double>& gsCoo, const std::vector<double>& w);
1277     MEDCouplingGaussLocalization(INTERP_KERNEL::NormalizedCellType typ);
1278     INTERP_KERNEL::NormalizedCellType getType() const;
1279     void setType(INTERP_KERNEL::NormalizedCellType typ);
1280     int getNumberOfGaussPt() const;
1281     int getDimension() const;
1282     int getNumberOfPtsInRefCell() const;
1283     std::string getStringRepr() const;
1284     void checkConsistencyLight() const;
1285     bool isEqual(const MEDCouplingGaussLocalization& other, double eps) const;
1286     //
1287     const std::vector<double>& getRefCoords() const;
1288     double getRefCoord(int ptIdInCell, int comp) const;
1289     const std::vector<double>& getGaussCoords() const;
1290     double getGaussCoord(int gaussPtIdInCell, int comp) const;
1291     const std::vector<double>& getWeights() const;
1292     double getWeight(int gaussPtIdInCell) const;
1293     void setRefCoord(int ptIdInCell, int comp, double newVal);
1294     void setGaussCoord(int gaussPtIdInCell, int comp, double newVal);
1295     void setWeight(int gaussPtIdInCell, double newVal);
1296     void setRefCoords(const std::vector<double>& refCoo);
1297     void setGaussCoords(const std::vector<double>& gsCoo);
1298     void setWeights(const std::vector<double>& w);
1299     //
1300     static bool AreAlmostEqual(const std::vector<double>& v1, const std::vector<double>& v2, double eps);
1301     //
1302     %extend 
1303     {
1304       DataArrayDouble *localizePtsInRefCooForEachCell(const DataArrayDouble *ptsInRefCoo, const MEDCouplingUMesh *mesh) const
1305       {
1306         MCAuto<DataArrayDouble> ret(self->localizePtsInRefCooForEachCell(ptsInRefCoo,mesh));
1307         return ret.retn();
1308       }
1309
1310       MEDCouplingUMesh *buildRefCell() const
1311       {
1312         MCAuto<MEDCouplingUMesh> ret(self->buildRefCell());
1313         return ret.retn();
1314       }
1315       
1316       DataArrayDouble *getShapeFunctionValues() const
1317       {
1318         MCAuto<DataArrayDouble> ret(self->getShapeFunctionValues());
1319         return ret.retn();
1320       }
1321       
1322       DataArrayDouble *getDerivativeOfShapeFunctionValues() const
1323       {
1324         MCAuto<DataArrayDouble> ret(self->getDerivativeOfShapeFunctionValues());
1325         return ret.retn();
1326       }
1327
1328       static DataArrayDouble *GetDefaultReferenceCoordinatesOf(INTERP_KERNEL::NormalizedCellType type)
1329       {
1330         MCAuto<DataArrayDouble> ret(MEDCouplingGaussLocalization::GetDefaultReferenceCoordinatesOf(type));
1331         return ret.retn();
1332       }
1333     }
1334   };
1335
1336   class MEDCouplingSkyLineArray
1337   {
1338   public:  
1339     static MEDCouplingSkyLineArray *BuildFromPolyhedronConn( const DataArrayIdType* c, const DataArrayIdType* cI );
1340   
1341     void set( DataArrayIdType* index, DataArrayIdType* value );
1342     void set3( DataArrayIdType* superIndex, DataArrayIdType* index, DataArrayIdType* value );
1343     
1344     int getSuperNumberOf() const;
1345     int getNumberOf() const;
1346     int getLength() const;
1347     
1348     void deletePack(const int i, const int j);
1349     
1350     void deleteSimplePack(const int i);
1351     void deleteSimplePacks(const DataArrayIdType* idx);
1352
1353     MEDCouplingSkyLineArray *groupPacks(const DataArrayIdType *indexedPacks) const;
1354     MEDCouplingSkyLineArray *uniqueNotSortedByPack() const;
1355
1356     MEDCouplingSkyLineArray *deepCopy() const;
1357     
1358     %extend 
1359     {
1360       MEDCouplingSkyLineArray()
1361       {
1362         return MEDCouplingSkyLineArray::New();
1363       }
1364
1365       MEDCouplingSkyLineArray( const std::vector<mcIdType>& index, const std::vector<mcIdType>& value)
1366       {
1367         return MEDCouplingSkyLineArray::New(index, value);
1368       }
1369
1370       MEDCouplingSkyLineArray( DataArrayIdType* index, DataArrayIdType* value )
1371       {
1372         return MEDCouplingSkyLineArray::New(index, value);
1373       }
1374
1375       MEDCouplingSkyLineArray( const MEDCouplingSkyLineArray & other )
1376       {
1377         return MEDCouplingSkyLineArray::New(other);
1378       }
1379
1380       std::string __str__() const
1381       {
1382         return self->simpleRepr();
1383       }
1384       
1385       DataArrayIdType *getSuperIndexArray() const
1386       {
1387         DataArrayIdType *ret(self->getSuperIndexArray());
1388         if(ret)
1389           ret->incrRef();
1390         return ret;
1391       }
1392       
1393       DataArrayIdType *getIndexArray() const
1394       {
1395         DataArrayIdType *ret(self->getIndexArray());
1396         if(ret)
1397           ret->incrRef();
1398         return ret;
1399       }
1400       
1401       DataArrayIdType *getValuesArray() const
1402       {
1403         DataArrayIdType *ret(self->getValuesArray());
1404         if(ret)
1405           ret->incrRef();
1406         return ret;
1407       }
1408      
1409       PyObject *getSimplePackSafe(mcIdType absolutePackId) const
1410       {
1411         std::vector<mcIdType> ret;
1412         self->getSimplePackSafe(absolutePackId,ret);
1413         return convertIntArrToPyList2(ret);
1414       }
1415
1416       PyObject *findPackIds(PyObject *superPackIndices, PyObject *pack) const
1417       {
1418           std::vector<mcIdType> vpack, vspIdx, out;
1419           
1420           convertPyToNewIntArr3(superPackIndices,vspIdx);
1421           convertPyToNewIntArr3(pack,vpack);
1422           
1423           self->findPackIds(vspIdx, vpack.data(), vpack.data()+vpack.size(), out);
1424           return convertIntArrToPyList2(out);
1425       }
1426       
1427       void pushBackPack(const mcIdType i, PyObject *pack)
1428         {
1429           std::vector<mcIdType> vpack;
1430           convertPyToNewIntArr3(pack,vpack);
1431           self->pushBackPack(i,vpack.data(), vpack.data()+vpack.size());
1432         }
1433         
1434       void replaceSimplePack(const mcIdType idx, PyObject *pack)
1435         {
1436           std::vector<mcIdType> vpack;
1437           convertPyToNewIntArr3(pack,vpack);
1438           self->replaceSimplePack(idx, vpack.data(), vpack.data()+vpack.size());
1439         }
1440         
1441       void replaceSimplePacks(const DataArrayIdType* idx, PyObject *listePacks)
1442         {
1443           std::vector<const DataArrayIdType*> packs;
1444           convertFromPyObjVectorOfObj<const MEDCoupling::DataArrayIdType*>(listePacks,SWIGTITraits<mcIdType>::TI,"DataArrayIdType",packs);
1445           self->replaceSimplePacks(idx, packs);
1446         }
1447
1448       static MEDCouplingSkyLineArray *AggregatePacks(PyObject *sks)
1449       {
1450         std::vector<const MEDCouplingSkyLineArray *> sksCpp;
1451         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingSkyLineArray*>(sks,SWIGTYPE_p_MEDCoupling__MEDCouplingSkyLineArray,"MEDCouplingSkyLineArray",sksCpp);
1452         return MEDCoupling::MEDCouplingSkyLineArray::AggregatePacks(sksCpp);
1453       }
1454         
1455       void replacePack(const mcIdType superIdx, const mcIdType idx, PyObject *pack)
1456         {
1457           std::vector<mcIdType> vpack;
1458           convertPyToNewIntArr3(pack,vpack);
1459           self->replacePack(superIdx, idx, vpack.data(), vpack.data()+vpack.size());
1460         }
1461
1462       PyObject *convertToPolyhedronConn() const
1463          {
1464            MCAuto<DataArrayIdType> d0=DataArrayIdType::New();
1465            MCAuto<DataArrayIdType> d1=DataArrayIdType::New();
1466            self->convertToPolyhedronConn(d0,d1);
1467            PyObject *ret=PyTuple_New(2);
1468            PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
1469            PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
1470            return ret;
1471          } 
1472
1473       PyObject *thresholdPerPack(mcIdType threshold) const
1474       {
1475         MCAuto<MEDCouplingSkyLineArray> left, right;
1476         self->thresholdPerPack(threshold,left,right);
1477         PyObject *ret=PyTuple_New(2);
1478         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(left.retn()),SWIGTYPE_p_MEDCoupling__MEDCouplingSkyLineArray, SWIG_POINTER_OWN | 0 ));
1479         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(right.retn()),SWIGTYPE_p_MEDCoupling__MEDCouplingSkyLineArray, SWIG_POINTER_OWN | 0 ));
1480         return ret;
1481       }
1482     }
1483   };
1484 }
1485
1486 %include "MEDCouplingFieldDiscretization.i"
1487
1488 //== MEDCouplingPointSet
1489
1490 namespace MEDCoupling
1491 {
1492   class MEDCouplingPointSet : public MEDCoupling::MEDCouplingMesh
1493     {
1494     public:
1495       void setCoords(const DataArrayDouble *coords);
1496       DataArrayDouble *getCoordinatesAndOwner() const;
1497       bool areCoordsEqual(const MEDCouplingPointSet& other, double prec) const;
1498       void zipCoords();
1499       double getCaracteristicDimension() const;
1500       void recenterForMaxPrecision(double eps);
1501       void changeSpaceDimension(int newSpaceDim, double dftVal=0.);
1502       void tryToShareSameCoords(const MEDCouplingPointSet& other, double epsilon);
1503       virtual void shallowCopyConnectivityFrom(const MEDCouplingPointSet *other);
1504       virtual MEDCouplingPointSet *buildPartOfMySelfSlice(int start, int end, int step) const;
1505       virtual void tryToShareSameCoordsPermute(const MEDCouplingPointSet& other, double epsilon);
1506       static DataArrayDouble *MergeNodesArray(const MEDCouplingPointSet *m1, const MEDCouplingPointSet *m2);
1507       static MEDCouplingPointSet *BuildInstanceFromMeshType(MEDCouplingMeshType type);
1508       static DataArrayIdType *ComputeNbOfInteractionsWithSrcCells(const MEDCouplingPointSet *srcMesh, const MEDCouplingPointSet *trgMesh, double eps);
1509       virtual DataArrayIdType *computeFetchedNodeIds() const;
1510       virtual int getNumberOfNodesInCell(int cellId) const;
1511       virtual MEDCouplingPointSet *buildBoundaryMesh(bool keepCoords) const;
1512       virtual DataArrayIdType *getCellsInBoundingBox(const INTERP_KERNEL::DirectedBoundingBox& bbox, double eps);
1513       virtual DataArrayIdType *zipCoordsTraducer();
1514       virtual DataArrayIdType *findBoundaryNodes() const;
1515       virtual DataArrayIdType *zipConnectivityTraducer(int compType, int startCellId=0);
1516       virtual MEDCouplingPointSet *mergeMyselfWithOnSameCoords(const MEDCouplingPointSet *other) const;
1517       virtual void checkFullyDefined() const;
1518       virtual bool isEmptyMesh(const std::vector<mcIdType>& tinyInfo) const;
1519       virtual MEDCouplingPointSet *deepCopyConnectivityOnly() const;
1520       virtual DataArrayDouble *getBoundingBoxForBBTree(double arcDetEps=1e-12) const;
1521       virtual void renumberNodesWithOffsetInConn(int offset);
1522       virtual bool areAllNodesFetched() const;
1523       virtual MEDCouplingFieldDouble *computeDiameterField() const;
1524       virtual void invertOrientationOfAllCells();
1525       %extend 
1526          {
1527            std::string __str__() const
1528            {
1529              return self->simpleRepr();
1530            }
1531            
1532            PyObject *buildNewNumberingFromCommonNodesFormat(const DataArrayIdType *comm, const DataArrayIdType *commIndex) const
1533            {
1534              mcIdType newNbOfNodes;
1535              DataArrayIdType *ret0=self->buildNewNumberingFromCommonNodesFormat(comm,commIndex,newNbOfNodes);
1536              PyObject *res = PyList_New(2);
1537              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
1538              PyList_SetItem(res,1,PyInt_FromLong(newNbOfNodes));
1539              return res;
1540            }
1541            
1542            PyObject *findCommonNodes(double prec, mcIdType limitTupleId=-1) const
1543            {
1544              DataArrayIdType *comm, *commIndex;
1545              self->findCommonNodes(prec,limitTupleId,comm,commIndex);
1546              PyObject *res = PyList_New(2);
1547              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(comm),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
1548              PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(commIndex),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
1549              return res;
1550            }
1551            
1552            PyObject *getCoords()
1553            {
1554              DataArrayDouble *ret1=self->getCoords();
1555              if (ret1)
1556                 ret1->incrRef();
1557              return SWIG_NewPointerObj((void*)ret1,SWIGTYPE_p_MEDCoupling__DataArrayDouble,SWIG_POINTER_OWN | 0);
1558            }
1559            
1560            PyObject *buildPartOfMySelf(PyObject *li, bool keepCoords=true) const
1561            {
1562              mcIdType szArr,sw,iTypppArr;
1563              std::vector<mcIdType> stdvecTyyppArr;
1564              const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1565              MEDCouplingPointSet *ret=self->buildPartOfMySelf(tmp,tmp+szArr,keepCoords);
1566              if(sw==3)//DataArrayIdType
1567                { 
1568                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTITraits<mcIdType>::TI,0|0);
1569                  DataArrayIdType *argpt=reinterpret_cast< MEDCoupling::DataArrayIdType * >(argp);
1570                  std::string name=argpt->getName();
1571                  if(!name.empty())
1572                    ret->setName(name.c_str());
1573                }
1574              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1575            }
1576            
1577            PyObject *buildPartOfMySelfNode(PyObject *li, bool fullyIn) const
1578            {
1579              mcIdType szArr,sw,iTypppArr;
1580              std::vector<mcIdType> stdvecTyyppArr;
1581              const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1582              MEDCouplingPointSet *ret=self->buildPartOfMySelfNode(tmp,tmp+szArr,fullyIn);
1583              if(sw==3)//DataArrayIdType
1584                { 
1585                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTITraits<mcIdType>::TI,0|0);
1586                  DataArrayIdType *argpt=reinterpret_cast< MEDCoupling::DataArrayIdType * >(argp);
1587                  std::string name=argpt->getName();
1588                  if(!name.empty())
1589                    ret->setName(name.c_str());
1590                }
1591              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1592            }
1593
1594            virtual PyObject *buildPartOfMySelfKeepCoords(PyObject *li) const
1595            {
1596              mcIdType szArr,sw,iTypppArr;
1597              std::vector<mcIdType> stdvecTyyppArr;
1598              const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1599              MEDCouplingPointSet *ret=self->buildPartOfMySelfKeepCoords(tmp,tmp+szArr);
1600              if(sw==3)//DataArrayIdType
1601                { 
1602                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTITraits<mcIdType>::TI,0|0);
1603                  DataArrayIdType *argpt=reinterpret_cast< MEDCoupling::DataArrayIdType * >(argp);
1604                  std::string name=argpt->getName();
1605                  if(!name.empty())
1606                    ret->setName(name.c_str());
1607                }
1608              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1609            }
1610
1611            virtual PyObject *buildPartOfMySelfKeepCoordsSlice(mcIdType start, mcIdType end, mcIdType step) const
1612            {
1613              MEDCouplingPointSet *ret=self->buildPartOfMySelfKeepCoordsSlice(start,end,step);
1614              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1615            }
1616
1617            PyObject *buildFacePartOfMySelfNode(PyObject *li, bool fullyIn) const
1618            {
1619              mcIdType szArr,sw,iTypppArr;
1620              std::vector<mcIdType> stdvecTyyppArr;
1621              const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1622              MEDCouplingPointSet *ret=self->buildFacePartOfMySelfNode(tmp,tmp+szArr,fullyIn);
1623              if(sw==3)//DataArrayIdType
1624                { 
1625                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTITraits<mcIdType>::TI,0|0);
1626                  DataArrayIdType *argpt=reinterpret_cast< MEDCoupling::DataArrayIdType * >(argp);
1627                  std::string name=argpt->getName();
1628                  if(!name.empty())
1629                    ret->setName(name.c_str());
1630                }
1631              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1632            }
1633
1634            void renumberNodes(PyObject *li, mcIdType newNbOfNodes)
1635            {
1636              mcIdType szArr,sw,iTypppArr;
1637              std::vector<mcIdType> stdvecTyyppArr;
1638              const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1639              self->renumberNodes(tmp,newNbOfNodes);
1640            }
1641
1642            void renumberNodesCenter(PyObject *li, mcIdType newNbOfNodes)
1643            {
1644              mcIdType szArr,sw,iTypppArr;
1645              std::vector<mcIdType> stdvecTyyppArr;
1646              const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1647              self->renumberNodesCenter(tmp,newNbOfNodes);
1648            }
1649
1650            PyObject *findNodesOnLine(PyObject *pt, PyObject *vec, double eps) const
1651              {
1652                int spaceDim=self->getSpaceDimension();
1653                double val,val2;
1654                DataArrayDouble *a,*a2;
1655                DataArrayDoubleTuple *aa,*aa2;
1656                std::vector<double> bb,bb2;
1657                mcIdType sw;
1658                const char msg[]="Python wrap of MEDCouplingPointSet::findNodesOnLine : 1st parameter for point.";
1659                const char msg2[]="Python wrap of MEDCouplingPointSet::findNodesOnLine : 2nd parameter for vector.";
1660                const double *p=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,1,spaceDim,true);
1661                const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
1662                std::vector<mcIdType> nodes;
1663                self->findNodesOnLine(p,v,eps,nodes);
1664                DataArrayIdType *ret=DataArrayIdType::New();
1665                ret->alloc(nodes.size(),1);
1666                std::copy(nodes.begin(),nodes.end(),ret->getPointer());
1667                return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 );
1668              }
1669            PyObject *findNodesOnPlane(PyObject *pt, PyObject *vec, double eps) const
1670              {
1671                int spaceDim=self->getSpaceDimension();
1672                double val,val2;
1673                DataArrayDouble *a,*a2;
1674                DataArrayDoubleTuple *aa,*aa2;
1675                std::vector<double> bb,bb2;
1676                mcIdType sw;
1677                const char msg[]="Python wrap of MEDCouplingPointSet::findNodesOnPlane : 1st parameter for point.";
1678                const char msg2[]="Python wrap of MEDCouplingPointSet::findNodesOnPlane : 2nd parameter for vector.";
1679                const double *p=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,1,spaceDim,true);
1680                const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
1681                std::vector<mcIdType> nodes;
1682                self->findNodesOnPlane(p,v,eps,nodes);
1683                DataArrayIdType *ret=DataArrayIdType::New();
1684                ret->alloc(nodes.size(),1);
1685                std::copy(nodes.begin(),nodes.end(),ret->getPointer());
1686                return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 );
1687              }
1688            
1689            PyObject *getNodeIdsNearPoint(PyObject *pt, double eps) const
1690            {
1691              double val;
1692              DataArrayDouble *a;
1693              DataArrayDoubleTuple *aa;
1694              std::vector<double> bb;
1695              mcIdType sw;
1696              int spaceDim=self->getSpaceDimension();
1697              const char msg[]="Python wrap of MEDCouplingPointSet::getNodeIdsNearPoint : ";
1698              const double *pos=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,1,spaceDim,true);
1699              DataArrayIdType *ret=self->getNodeIdsNearPoint(pos,eps);
1700              return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 );
1701            }
1702
1703            PyObject *getNodeIdsNearPoints(PyObject *pt, mcIdType nbOfPoints, double eps) const
1704            {
1705              DataArrayIdType *c=0,*cI=0;
1706              //
1707              double val;
1708              DataArrayDouble *a;
1709              DataArrayDoubleTuple *aa;
1710              std::vector<double> bb;
1711              mcIdType sw;
1712              int spaceDim=self->getSpaceDimension();
1713              const char msg[]="Python wrap of MEDCouplingPointSet::getNodeIdsNearPoints : ";
1714              const double *pos=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,nbOfPoints,spaceDim,true);
1715              self->getNodeIdsNearPoints(pos,nbOfPoints,eps,c,cI);
1716              PyObject *ret=PyTuple_New(2);
1717              PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(c),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
1718              PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cI),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
1719              return ret;
1720            }
1721
1722            PyObject *getNodeIdsNearPoints(PyObject *pt, double eps) const
1723            {
1724              DataArrayIdType *c=0,*cI=0;
1725              int spaceDim=self->getSpaceDimension();
1726              double val;
1727              DataArrayDouble *a;
1728              DataArrayDoubleTuple *aa;
1729              std::vector<double> bb;
1730              mcIdType sw;
1731              mcIdType nbOfTuples=-1;
1732              const double *ptPtr=convertObjToPossibleCpp5_Safe2(pt,sw,val,a,aa,bb,"Python wrap of MEDCouplingUMesh::getNodeIdsNearPoints",spaceDim,true,nbOfTuples);
1733              self->getNodeIdsNearPoints(ptPtr,nbOfTuples,eps,c,cI);
1734              //
1735              PyObject *ret=PyTuple_New(2);
1736              PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(c),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
1737              PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cI),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
1738              return ret;
1739            }
1740
1741            PyObject *getCellsInBoundingBox(PyObject *bbox, double eps) const
1742            {
1743              double val;
1744              DataArrayDouble *a;
1745              DataArrayDoubleTuple *aa;
1746              std::vector<double> bb;
1747              mcIdType sw;
1748              int spaceDim=self->getSpaceDimension();
1749              const char msg[]="Python wrap of MEDCouplingPointSet::getCellsInBoundingBox : ";
1750              const double *tmp=convertObjToPossibleCpp5_Safe(bbox,sw,val,a,aa,bb,msg,spaceDim,2,true);
1751              //
1752              DataArrayIdType *elems=self->getCellsInBoundingBox(tmp,eps);
1753              return SWIG_NewPointerObj(SWIG_as_voidptr(elems),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 );
1754            }
1755
1756            void duplicateNodesInCoords(PyObject *li)
1757            {
1758              mcIdType sw;
1759              mcIdType singleVal;
1760              std::vector<mcIdType> multiVal;
1761              std::pair<mcIdType, std::pair<mcIdType,mcIdType> > slic;
1762              MEDCoupling::DataArrayIdType *daIntTyypp=0;
1763              convertIntStarOrSliceLikePyObjToCpp(li,self->getNumberOfNodes(),sw,singleVal,multiVal,slic,daIntTyypp);
1764              switch(sw)
1765                {
1766                case 1:
1767                  return self->duplicateNodesInCoords(&singleVal,&singleVal+1);
1768                case 2:
1769                  return self->duplicateNodesInCoords(&multiVal[0],&multiVal[0]+multiVal.size());
1770                case 4:
1771                  return self->duplicateNodesInCoords(daIntTyypp->begin(),daIntTyypp->end());
1772                default:
1773                  throw INTERP_KERNEL::Exception("MEDCouplingPointSet::duplicateNodesInCoords : unrecognized type entered, expected list of int, tuple of int or DataArrayIdType !");
1774                }
1775            }
1776
1777            virtual PyObject *findCommonCells(int compType, mcIdType startCellId=0) const
1778            {
1779              DataArrayIdType *v0(nullptr),*v1(nullptr);
1780              self->findCommonCells(compType,startCellId,v0,v1);
1781              PyObject *res = PyList_New(2);
1782              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(v0),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
1783              PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(v1),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
1784              return res;
1785            }
1786
1787       
1788            virtual void renumberNodesInConn(PyObject *li)
1789            {
1790              void *da(nullptr);
1791              {
1792                int res1(SWIG_ConvertPtr(li,&da,SWIGTYPE_p_MEDCoupling__MapII, 0 |  0 ));
1793                if(SWIG_IsOK(res1))
1794                  {
1795                    MapII *da2(reinterpret_cast<MapII *>(da));
1796                    self->renumberNodesInConn(da2->data());
1797                    return ;
1798                  }
1799              }
1800              int res1(SWIG_ConvertPtr(li,&da,SWIGTITraits<mcIdType>::TI, 0 | 0 ));
1801              if (!SWIG_IsOK(res1))
1802                {
1803                  mcIdType size;
1804                  INTERP_KERNEL::AutoPtr<mcIdType> tmp=convertPyToNewIntArr2(li,&size);
1805                  self->renumberNodesInConn(tmp);
1806                }
1807              else
1808                {
1809                  DataArrayIdType *da2(reinterpret_cast< DataArrayIdType * >(da));
1810                  if(!da2)
1811                    throw INTERP_KERNEL::Exception("Not null DataArrayIdType instance expected !");
1812                  da2->checkAllocated();
1813                  self->renumberNodesInConn(da2->getConstPointer());
1814                }
1815            }
1816
1817            virtual PyObject *getNodeIdsInUse() const
1818            {
1819              mcIdType ret1=-1;
1820              DataArrayIdType *ret0=self->getNodeIdsInUse(ret1);
1821              PyObject *ret=PyTuple_New(2);
1822              PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
1823              PyTuple_SetItem(ret,1,PyInt_FromLong(ret1));
1824              return ret;
1825            }
1826
1827            virtual DataArrayIdType *fillCellIdsToKeepFromNodeIds(PyObject *li, bool fullyIn) const
1828            {
1829              DataArrayIdType *ret(nullptr);
1830              //
1831              mcIdType szArr,sw,iTypppArr;
1832              std::vector<mcIdType> stdvecTyyppArr;
1833              const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1834              self->fillCellIdsToKeepFromNodeIds(tmp,tmp+szArr,fullyIn,ret);
1835              return ret;
1836            }
1837
1838            virtual PyObject *mergeNodes(double precision)
1839            {
1840              bool ret1;
1841              mcIdType ret2;
1842              DataArrayIdType *ret0=self->mergeNodes(precision,ret1,ret2);
1843              PyObject *res = PyList_New(3);
1844              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
1845              PyList_SetItem(res,1,SWIG_From_bool(ret1));
1846              PyList_SetItem(res,2,PyInt_FromLong(ret2));
1847              return res;
1848            }
1849            
1850            virtual PyObject *mergeNodesCenter(double precision)
1851            {
1852              bool ret1;
1853              mcIdType ret2;
1854              DataArrayIdType *ret0=self->mergeNodesCenter(precision,ret1,ret2);
1855              PyObject *res = PyList_New(3);
1856              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
1857              PyList_SetItem(res,1,SWIG_From_bool(ret1));
1858              PyList_SetItem(res,2,PyInt_FromLong(ret2));
1859              return res;
1860            }
1861            
1862            DataArrayIdType *getCellIdsLyingOnNodes(PyObject *li, bool fullyIn) const
1863            {
1864              void *da=0;
1865              int res1=SWIG_ConvertPtr(li,&da,SWIGTITraits<mcIdType>::TI, 0 |  0 );
1866              if (!SWIG_IsOK(res1))
1867                {
1868                  mcIdType size;
1869                  INTERP_KERNEL::AutoPtr<mcIdType> tmp=convertPyToNewIntArr2(li,&size);
1870                  return self->getCellIdsLyingOnNodes(tmp,((const mcIdType *)tmp)+size,fullyIn);
1871                }
1872              else
1873                {
1874                  DataArrayIdType *da2=reinterpret_cast< DataArrayIdType * >(da);
1875                  if(!da2)
1876                    throw INTERP_KERNEL::Exception("Not null DataArrayIdType instance expected !");
1877                  da2->checkAllocated();
1878                  return self->getCellIdsLyingOnNodes(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems(),fullyIn);
1879                }
1880            }
1881
1882            MEDCouplingPointSet *__getitem__(PyObject *listOrDataArrI)
1883            {
1884              mcIdType sw;
1885              mcIdType singleVal;
1886              std::vector<mcIdType> multiVal;
1887              std::pair<mcIdType, std::pair<mcIdType,mcIdType> > slic;
1888              MEDCoupling::DataArrayIdType *daIntTyypp=0;
1889              mcIdType nbc=self->getNumberOfCells();
1890              convertIntStarOrSliceLikePyObjToCpp(listOrDataArrI,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
1891              switch(sw)
1892                {
1893                case 1:
1894                  {
1895                    if(singleVal>=nbc)
1896                      {
1897                        std::ostringstream oss;
1898                        oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1899                        throw INTERP_KERNEL::Exception(oss.str().c_str());
1900                      }
1901                    if(singleVal>=0)
1902                      return self->buildPartOfMySelf(&singleVal,&singleVal+1,true);
1903                    else
1904                      {
1905                        if(nbc+singleVal>0)
1906                          {
1907                            mcIdType tmp=nbc+singleVal;
1908                            return self->buildPartOfMySelf(&tmp,&tmp+1,true);
1909                          }
1910                        else
1911                          {
1912                            std::ostringstream oss;
1913                            oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1914                            throw INTERP_KERNEL::Exception(oss.str().c_str());
1915                          }
1916                      }
1917                  }
1918                case 2:
1919                  {
1920                    return static_cast<MEDCouplingPointSet *>(self->buildPartOfMySelf(&multiVal[0],&multiVal[0]+multiVal.size(),true));
1921                  }
1922                case 3:
1923                  {
1924                    return self->buildPartOfMySelfSlice(slic.first,slic.second.first,slic.second.second,true);
1925                  }
1926                case 4:
1927                  {
1928                    if(!daIntTyypp)
1929                      throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__getitem__ : null instance has been given in input !");
1930                    daIntTyypp->checkAllocated();
1931                    return self->buildPartOfMySelf(daIntTyypp->begin(),daIntTyypp->end(),true);
1932                  }
1933                default:
1934                  throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__getitem__ : unrecognized type in input ! Possibilities are : int, list or tuple of int DataArrayIdType instance !");
1935                }
1936            }
1937            
1938            static void Rotate2DAlg(PyObject *center, double angle, mcIdType nbNodes, PyObject *coords)
1939            {
1940              mcIdType sz;
1941              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1942              INTERP_KERNEL::AutoCPtr<double> coo=convertPyToNewDblArr2(coords,&sz);
1943              MEDCoupling::DataArrayDouble::Rotate2DAlg(c,angle,nbNodes,coo,coo);
1944              for(mcIdType i=0;i<sz;i++)
1945                PyList_SetItem(coords,i,PyFloat_FromDouble(coo[i]));
1946            }
1947            
1948            static void Rotate2DAlg(PyObject *center, double angle, PyObject *coords)
1949            {
1950              mcIdType sz;
1951              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1952              mcIdType sw,nbNodes=0;
1953              double val0;  MEDCoupling::DataArrayDouble *val1=0; MEDCoupling::DataArrayDoubleTuple *val2=0;
1954              std::vector<double> val3;
1955              const double *coo=convertObjToPossibleCpp5_Safe2(coords,sw,val0,val1,val2,val3,
1956                                                             "Rotate2DAlg",2,true,nbNodes);
1957              if(sw!=2 && sw!=3)
1958                throw INTERP_KERNEL::Exception("Invalid call to MEDCouplingPointSet::Rotate2DAlg : try another overload method !");
1959              MEDCoupling::DataArrayDouble::Rotate2DAlg(c,angle,nbNodes,coo,const_cast<double *>(coo));
1960            }
1961            
1962            static void Rotate3DAlg(PyObject *center, PyObject *vect, double angle, mcIdType nbNodes, PyObject *coords)
1963            {
1964              mcIdType sz,sz2;
1965              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1966              INTERP_KERNEL::AutoCPtr<double> coo=convertPyToNewDblArr2(coords,&sz);
1967              INTERP_KERNEL::AutoCPtr<double> v=convertPyToNewDblArr2(vect,&sz2);
1968              MEDCoupling::DataArrayDouble::Rotate3DAlg(c,v,angle,nbNodes,coo,coo);
1969              for(mcIdType i=0;i<sz;i++)
1970                PyList_SetItem(coords,i,PyFloat_FromDouble(coo[i]));
1971            }
1972            
1973            static void Rotate3DAlg(PyObject *center, PyObject *vect, double angle, PyObject *coords)
1974            {
1975              mcIdType sz,sz2;
1976              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1977              mcIdType sw,nbNodes=0;
1978              double val0;  MEDCoupling::DataArrayDouble *val1=0; MEDCoupling::DataArrayDoubleTuple *val2=0;
1979              std::vector<double> val3;
1980              const double *coo=convertObjToPossibleCpp5_Safe2(coords,sw,val0,val1,val2,val3,
1981                                                             "Rotate3DAlg",3,true,nbNodes);
1982              if(sw!=2 && sw!=3)
1983                throw INTERP_KERNEL::Exception("Invalid call to MEDCouplingPointSet::Rotate3DAlg : try another overload method !");
1984              INTERP_KERNEL::AutoCPtr<double> v=convertPyToNewDblArr2(vect,&sz2);
1985              MEDCoupling::DataArrayDouble::Rotate3DAlg(c,v,angle,nbNodes,coo,const_cast<double *>(coo));
1986            }
1987          }
1988     };
1989
1990   //== MEDCouplingPointSet End
1991
1992   class MEDCouplingUMeshCell
1993   {
1994   public:
1995     INTERP_KERNEL::NormalizedCellType getType() const;
1996     %extend
1997       {
1998         std::string __str__() const
1999         {
2000           return self->repr();
2001         }
2002
2003         PyObject *getAllConn() const
2004         {
2005           mcIdType ret2;
2006           const mcIdType *r=self->getAllConn(ret2);
2007           PyObject *ret=PyTuple_New(ret2);
2008           for(mcIdType i=0;i<ret2;i++)
2009             PyTuple_SetItem(ret,i,PyInt_FromLong(r[i]));
2010           return ret;
2011         }
2012       }
2013   };
2014
2015   class MEDCouplingUMeshCellIterator
2016   {
2017   public:
2018     %extend
2019       {
2020         PyObject *next()
2021         {
2022           MEDCouplingUMeshCell *ret=self->nextt();
2023           if(ret)
2024             return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_MEDCoupling__MEDCouplingUMeshCell,0|0);
2025           else
2026             {
2027               PyErr_SetString(PyExc_StopIteration,"No more data.");
2028               return 0;
2029             }
2030         }
2031       }
2032   };
2033
2034   class MEDCouplingUMeshCellByTypeIterator
2035   {
2036   public:
2037     ~MEDCouplingUMeshCellByTypeIterator();
2038     %extend
2039       {
2040         PyObject *next()
2041         {
2042           MEDCouplingUMeshCellEntry *ret=self->nextt();
2043           if(ret)
2044             return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_MEDCoupling__MEDCouplingUMeshCellEntry,SWIG_POINTER_OWN | 0);
2045           else
2046             {
2047               PyErr_SetString(PyExc_StopIteration,"No more data.");
2048               return 0;
2049             }
2050         }
2051       }
2052   };
2053
2054   class MEDCouplingUMeshCellByTypeEntry
2055   {
2056   public:
2057     ~MEDCouplingUMeshCellByTypeEntry();
2058     %extend
2059       {
2060         MEDCouplingUMeshCellByTypeIterator *__iter__()
2061         {
2062           return self->iterator();
2063         }
2064       }
2065   };
2066
2067   class MEDCouplingUMeshCellEntry
2068   {
2069   public:
2070     INTERP_KERNEL::NormalizedCellType getType() const;
2071     int getNumberOfElems() const;
2072     %extend
2073       {
2074         MEDCouplingUMeshCellIterator *__iter__()
2075         {
2076           return self->iterator();
2077         }
2078       }
2079   };
2080   
2081   //== MEDCouplingUMesh
2082
2083   class MEDCouplingUMesh : public MEDCoupling::MEDCouplingPointSet
2084   {
2085   public:
2086     static MEDCouplingUMesh *New();
2087     static MEDCouplingUMesh *New(const char *meshName, int meshDim);
2088     void checkConsistencyLight() const;
2089     void checkGeomConsistency(double eps=1e-12) const;
2090     void setMeshDimension(int meshDim);
2091     void allocateCells(int nbOfCells=0);
2092     void finishInsertingCells();
2093     MEDCouplingUMeshCellByTypeEntry *cellsByType();
2094     void setConnectivity(DataArrayIdType *conn, DataArrayIdType *connIndex, bool isComputingTypes=true);
2095     INTERP_KERNEL::NormalizedCellType getTypeOfCell(int cellId) const;
2096     void setPartOfMySelfSlice(int start, int end, int step, const MEDCouplingUMesh& otherOnSameCoordsThanThis);
2097     int getNodalConnectivityArrayLen() const;
2098     void computeTypes();
2099     std::string reprConnectivityOfThis() const;
2100     MEDCouplingUMesh *buildSetInstanceFromThis(int spaceDim) const;
2101     //tools
2102     DataArrayIdType *conformize2D(double eps);
2103     DataArrayIdType *conformize3D(double eps);
2104     DataArrayIdType *colinearize2D(double eps);
2105     DataArrayIdType *colinearizeKeepingConform2D(double eps);
2106     void shiftNodeNumbersInConn(int delta);
2107     std::vector<bool> getQuadraticStatus() const;
2108     DataArrayIdType *findCellIdsOnBoundary() const;
2109     MEDCouplingUMesh *computeSkin() const;
2110     bool checkConsecutiveCellTypes() const;
2111     bool checkConsecutiveCellTypesForMEDFileFrmt() const;
2112     DataArrayIdType *rearrange2ConsecutiveCellTypes();
2113     DataArrayIdType *sortCellsInMEDFileFrmt();
2114     DataArrayIdType *getRenumArrForMEDFileFrmt() const;
2115     DataArrayIdType *convertCellArrayPerGeoType(const DataArrayIdType *da) const;
2116     MEDCouplingUMesh *buildDescendingConnectivity(DataArrayIdType *desc, DataArrayIdType *descIndx, DataArrayIdType *revDesc, DataArrayIdType *revDescIndx) const;
2117     MEDCouplingUMesh *buildDescendingConnectivity2(DataArrayIdType *desc, DataArrayIdType *descIndx, DataArrayIdType *revDesc, DataArrayIdType *revDescIndx) const;
2118     MEDCouplingUMesh *explode3DMeshTo1D(DataArrayIdType *desc, DataArrayIdType *descIndx, DataArrayIdType *revDesc, DataArrayIdType *revDescIndx) const;
2119     MEDCouplingUMesh *explodeMeshIntoMicroEdges(DataArrayIdType *desc, DataArrayIdType *descIndx, DataArrayIdType *revDesc, DataArrayIdType *revDescIndx) const;
2120     void orientCorrectlyPolyhedrons();
2121     bool isPresenceOfQuadratic() const;
2122     bool isFullyQuadratic() const;
2123     MEDCouplingFieldDouble *buildDirectionVectorField() const;
2124     bool isContiguous1D() const;
2125     void tessellate2D(double eps);
2126     void convertQuadraticCellsToLinear();
2127     DataArrayIdType *convertLinearCellsToQuadratic(int conversionType=0);
2128     void convertDegeneratedCells();
2129     DataArrayIdType *convertDegeneratedCellsAndRemoveFlatOnes();
2130     bool removeDegenerated1DCells();
2131     bool areOnlySimplexCells() const;
2132     MEDCouplingFieldDouble *getEdgeRatioField() const;
2133     MEDCouplingFieldDouble *getAspectRatioField() const;
2134     MEDCouplingFieldDouble *getWarpField() const;
2135     MEDCouplingFieldDouble *getSkewField() const;
2136     DataArrayDouble *computePlaneEquationOf3DFaces() const;
2137     DataArrayIdType *convexEnvelop2D();
2138     std::string cppRepr() const;
2139     DataArrayIdType *findAndCorrectBadOriented3DExtrudedCells();
2140     DataArrayIdType *findAndCorrectBadOriented3DCells();
2141     MEDCoupling::MEDCoupling1GTUMesh *convertIntoSingleGeoTypeMesh() const;
2142     MEDCouplingSkyLineArray *generateGraph() const;
2143     DataArrayIdType *convertNodalConnectivityToStaticGeoTypeMesh() const;
2144     DataArrayIdType *buildUnionOf2DMesh() const;
2145     DataArrayIdType *buildUnionOf3DMesh() const;
2146     DataArrayIdType *orderConsecutiveCells1D() const;
2147     DataArrayDouble *getBoundingBoxForBBTreeFast() const;
2148     DataArrayDouble *getBoundingBoxForBBTree2DQuadratic(double arcDetEps=1e-12) const;
2149     DataArrayDouble *getBoundingBoxForBBTree1DQuadratic(double arcDetEps=1e-12) const;
2150     void changeOrientationOfCells();
2151     void orientCorrectly2DCells(const MEDCouplingUMesh *refFaces);
2152     DataArrayDouble *computeCellCenterOfMassWithPrecision(double eps);
2153     int split2DCells(const DataArrayIdType *desc, const DataArrayIdType *descI, const DataArrayIdType *subNodesInSeg, const DataArrayIdType *subNodesInSegI, const DataArrayIdType *midOpt=0, const DataArrayIdType *midOptI=0);
2154     static MEDCouplingUMesh *Build0DMeshFromCoords(DataArrayDouble *da);
2155     static MEDCouplingUMesh *MergeUMeshes(const MEDCouplingUMesh *mesh1, const MEDCouplingUMesh *mesh2);
2156     static MEDCouplingUMesh *MergeUMeshesOnSameCoords(const MEDCouplingUMesh *mesh1, const MEDCouplingUMesh *mesh2);
2157     static DataArrayIdType *ComputeSpreadZoneGradually(const DataArrayIdType *arrIn, const DataArrayIdType *arrIndxIn);
2158     static DataArrayIdType *ComputeRangesFromTypeDistribution(const std::vector<mcIdType>& code);
2159     %extend {
2160       MEDCouplingUMesh()
2161       {
2162         return MEDCouplingUMesh::New();
2163       }
2164       
2165       MEDCouplingUMesh(const char *meshName, int meshDim)
2166       {
2167         return MEDCouplingUMesh::New(meshName,meshDim);
2168       }
2169
2170       std::string __str__() const
2171       {
2172         return self->simpleRepr();
2173       }
2174       
2175       std::string __repr__() const
2176       {
2177         std::ostringstream oss;
2178         self->reprQuickOverview(oss);
2179         return oss.str();
2180       }
2181       
2182       MEDCouplingUMeshCellIterator *__iter__()
2183       {
2184         return self->cellIterator();
2185       }
2186
2187       static MEDCouplingUMesh *Build1DMeshFromCoords(DataArrayDouble *da)
2188       {
2189         MCAuto<MEDCouplingUMesh> ret(MEDCouplingUMesh::Build1DMeshFromCoords(da));
2190         return ret.retn();
2191       }
2192       
2193       PyObject *getAllGeoTypesSorted() const
2194       {
2195         std::vector<INTERP_KERNEL::NormalizedCellType> result=self->getAllGeoTypesSorted();
2196         std::vector<INTERP_KERNEL::NormalizedCellType>::const_iterator iL=result.begin();
2197         PyObject *res=PyList_New(result.size());
2198         for(int i=0;iL!=result.end(); i++, iL++)
2199           PyList_SetItem(res,i,PyInt_FromLong(*iL));
2200         return res;
2201       }
2202       
2203       void setPartOfMySelf(PyObject *li, const MEDCouplingUMesh& otherOnSameCoordsThanThis)
2204       {
2205         mcIdType sw;
2206         mcIdType singleVal;
2207         std::vector<mcIdType> multiVal;
2208         std::pair<mcIdType, std::pair<mcIdType,mcIdType> > slic;
2209         MEDCoupling::DataArrayIdType *daIntTyypp=0;
2210         mcIdType nbc=self->getNumberOfCells();
2211         convertIntStarOrSliceLikePyObjToCpp(li,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
2212         switch(sw)
2213           {
2214           case 1:
2215             {
2216               if(singleVal>=nbc)
2217                 {
2218                   std::ostringstream oss;
2219                   oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
2220                   throw INTERP_KERNEL::Exception(oss.str().c_str());
2221                 }
2222               if(singleVal>=0)
2223                 {
2224                   self->setPartOfMySelf(&singleVal,&singleVal+1,otherOnSameCoordsThanThis);
2225                   break;
2226                 }
2227               else
2228                 {
2229                   if(nbc+singleVal>0)
2230                     {
2231                       mcIdType tmp=nbc+singleVal;
2232                       self->setPartOfMySelf(&tmp,&tmp+1,otherOnSameCoordsThanThis);
2233                       break;
2234                     }
2235                   else
2236                     {
2237                       std::ostringstream oss;
2238                       oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
2239                       throw INTERP_KERNEL::Exception(oss.str().c_str());
2240                     }
2241                 }
2242             }
2243           case 2:
2244             {
2245               self->setPartOfMySelf(&multiVal[0],&multiVal[0]+multiVal.size(),otherOnSameCoordsThanThis);
2246               break;
2247             }
2248           case 4:
2249             {
2250               if(!daIntTyypp)
2251                 throw INTERP_KERNEL::Exception("MEDCouplingUMesh::setPartOfMySelf : null instance has been given in input !");
2252               daIntTyypp->checkAllocated();
2253               self->setPartOfMySelf(daIntTyypp->begin(),daIntTyypp->end(),otherOnSameCoordsThanThis);
2254               break;
2255             }
2256           default:
2257             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::setPartOfMySelf : unrecognized type in input ! Possibilities are : int, list or tuple of int DataArrayIdType instance !");
2258           }
2259       }
2260
2261       void __setitem__(PyObject *li, const MEDCouplingUMesh& otherOnSameCoordsThanThis)
2262       {
2263         mcIdType sw;
2264         mcIdType singleVal;
2265         std::vector<mcIdType> multiVal;
2266         std::pair<mcIdType, std::pair<mcIdType,mcIdType> > slic;
2267         MEDCoupling::DataArrayIdType *daIntTyypp=0;
2268         mcIdType nbc=self->getNumberOfCells();
2269         convertIntStarOrSliceLikePyObjToCpp(li,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
2270         switch(sw)
2271           {
2272           case 1:
2273             {
2274               if(singleVal>=nbc)
2275                 {
2276                   std::ostringstream oss;
2277                   oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
2278                   throw INTERP_KERNEL::Exception(oss.str().c_str());
2279                 }
2280               if(singleVal>=0)
2281                 {
2282                   self->setPartOfMySelf(&singleVal,&singleVal+1,otherOnSameCoordsThanThis);
2283                   break;
2284                 }
2285               else
2286                 {
2287                   if(nbc+singleVal>0)
2288                     {
2289                       mcIdType tmp=nbc+singleVal;
2290                       self->setPartOfMySelf(&tmp,&tmp+1,otherOnSameCoordsThanThis);
2291                       break;
2292                     }
2293                   else
2294                     {
2295                       std::ostringstream oss;
2296                       oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
2297                       throw INTERP_KERNEL::Exception(oss.str().c_str());
2298                     }
2299                 }
2300             }
2301           case 2:
2302             {
2303               self->setPartOfMySelf(&multiVal[0],&multiVal[0]+multiVal.size(),otherOnSameCoordsThanThis);
2304               break;
2305             }
2306           case 3:
2307             {
2308               self->setPartOfMySelfSlice(slic.first,slic.second.first,slic.second.second,otherOnSameCoordsThanThis);
2309               break;
2310             }
2311           case 4:
2312             {
2313               if(!daIntTyypp)
2314                 throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__setitem__ : null instance has been given in input !");
2315               daIntTyypp->checkAllocated();
2316               self->setPartOfMySelf(daIntTyypp->begin(),daIntTyypp->end(),otherOnSameCoordsThanThis);
2317               break;
2318             }
2319           default:
2320             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__setitem__ : unrecognized type in input ! Possibilities are : int, list or tuple of int, slice, DataArrayIdType instance !");
2321           }
2322       }
2323
2324       void insertNextCell(INTERP_KERNEL::NormalizedCellType type, mcIdType size, PyObject *li)
2325       {
2326         mcIdType szArr,sw,iTypppArr;
2327         std::vector<mcIdType> stdvecTyyppArr;
2328         const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
2329         if(size>szArr)
2330           {
2331             std::ostringstream oss; oss << "Wrap of MEDCouplingUMesh::insertNextCell : request of connectivity with length " << size << " whereas the length of input is " << szArr << " !";
2332             throw INTERP_KERNEL::Exception(oss.str().c_str());
2333           }
2334         self->insertNextCell(type,size,tmp);
2335       }
2336
2337       void insertNextCell(INTERP_KERNEL::NormalizedCellType type, PyObject *li)
2338       {
2339         mcIdType szArr,sw,iTypppArr;
2340         std::vector<mcIdType> stdvecTyyppArr;
2341         const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
2342         self->insertNextCell(type,szArr,tmp);
2343       }
2344       
2345       DataArrayIdType *getNodalConnectivity()
2346       {
2347         DataArrayIdType *ret=self->getNodalConnectivity();
2348         if(ret)
2349           ret->incrRef();
2350         return ret;
2351       }
2352       DataArrayIdType *getNodalConnectivityIndex()
2353       {
2354         DataArrayIdType *ret=self->getNodalConnectivityIndex();
2355         if(ret)
2356           ret->incrRef();
2357         return ret;
2358       }
2359       
2360       static PyObject *ComputeSpreadZoneGraduallyFromSeed(PyObject *seed, const DataArrayIdType *arrIn, const DataArrayIdType *arrIndxIn, mcIdType nbOfDepthPeeling=-1)
2361       {
2362         mcIdType szArr,sw,iTypppArr;
2363         std::vector<mcIdType> stdvecTyyppArr;
2364         const mcIdType *seedPtr=convertIntStarLikePyObjToCppIntStar(seed,sw,szArr,iTypppArr,stdvecTyyppArr);
2365         mcIdType nbOfDepthPeelingPerformed=0;
2366         DataArrayIdType *ret0=MEDCouplingUMesh::ComputeSpreadZoneGraduallyFromSeed(seedPtr,seedPtr+szArr,arrIn,arrIndxIn,nbOfDepthPeeling,nbOfDepthPeelingPerformed);
2367         PyObject *res=PyTuple_New(2);
2368         PyTuple_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2369         PyTuple_SetItem(res,1,PyInt_FromLong(nbOfDepthPeelingPerformed));
2370         return res;
2371       }
2372
2373       static PyObject *FindCommonCellsAlg(int compType, mcIdType startCellId, const DataArrayIdType *nodal, const DataArrayIdType *nodalI, const DataArrayIdType *revNodal, const DataArrayIdType *revNodalI)
2374       {
2375         DataArrayIdType *v0=0,*v1=0;
2376         MEDCouplingUMesh::FindCommonCellsAlg(compType,startCellId,nodal,nodalI,revNodal,revNodalI,v0,v1);
2377         PyObject *res = PyList_New(2);
2378         PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(v0),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2379         PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(v1),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2380         return res;
2381       }
2382       
2383       PyObject *distanceToPoint(PyObject *point) const
2384       {
2385         double val;
2386         DataArrayDouble *a;
2387         DataArrayDoubleTuple *aa;
2388         std::vector<double> bb;
2389         mcIdType sw;
2390         int nbOfCompo=self->getSpaceDimension();
2391         const double *pt=convertObjToPossibleCpp5_Safe(point,sw,val,a,aa,bb,"Python wrap of MEDCouplingUMesh::distanceToPoint",1,nbOfCompo,true);
2392         //
2393         mcIdType cellId=-1;
2394         double ret0=self->distanceToPoint(pt,pt+nbOfCompo,cellId);
2395         PyObject *ret=PyTuple_New(2);
2396         PyTuple_SetItem(ret,0,PyFloat_FromDouble(ret0));
2397         PyTuple_SetItem(ret,1,PyInt_FromLong(cellId));
2398         return ret;
2399       }
2400
2401       PyObject *distanceToPoints(const DataArrayDouble *pts) const
2402       {
2403         DataArrayIdType *ret1=0;
2404         DataArrayDouble *ret0=self->distanceToPoints(pts,ret1);
2405         PyObject *ret=PyTuple_New(2);
2406         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
2407         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2408         return ret;
2409       }
2410
2411       PyObject *tetrahedrize(int policy)
2412       {
2413         mcIdType ret2(-1);
2414         DataArrayIdType *ret1(0);
2415         MEDCoupling1SGTUMesh *ret0(self->tetrahedrize(policy,ret1,ret2));
2416         PyObject *ret=PyTuple_New(3);
2417         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__MEDCoupling1SGTUMesh, SWIG_POINTER_OWN | 0 ));
2418         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2419         PyTuple_SetItem(ret,2,PyInt_FromLong(ret2));
2420         return ret;
2421       }
2422       
2423       PyObject *checkButterflyCells(double eps=1e-12)
2424       {
2425         std::vector<mcIdType> cells;
2426         self->checkButterflyCells(cells,eps);
2427         DataArrayIdType *ret=DataArrayIdType::New();
2428         ret->alloc(cells.size(),1);
2429         std::copy(cells.begin(),cells.end(),ret->getPointer());
2430         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 );
2431       }
2432
2433       PyObject *splitByType() const
2434       {
2435         std::vector<MEDCouplingUMesh *> ms=self->splitByType();
2436         std::size_t sz=ms.size();
2437         PyObject *ret = PyList_New(sz);
2438         for(std::size_t i=0;i<sz;i++)
2439           PyList_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(ms[i]),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2440         return ret;
2441       }
2442
2443       PyObject *partitionBySpreadZone() const
2444       {
2445         std::vector<DataArrayIdType *> retCpp=self->partitionBySpreadZone();
2446         std::size_t sz=retCpp.size();
2447         PyObject *ret=PyList_New(sz);
2448         for(std::size_t i=0;i<sz;i++)
2449           PyList_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(retCpp[i]),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2450         return ret;
2451       }
2452
2453       static PyObject *PartitionBySpreadZone(const DataArrayIdType *arrIn, const DataArrayIdType *arrIndxIn)
2454       {
2455         std::vector<DataArrayIdType *> retCpp(MEDCouplingUMesh::PartitionBySpreadZone(arrIn,arrIndxIn));
2456         std::size_t sz=retCpp.size();
2457         PyObject *ret=PyList_New(sz);
2458         for(std::size_t i=0;i<sz;i++)
2459           PyList_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(retCpp[i]),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2460         return ret;
2461       }
2462
2463       PyObject *keepSpecifiedCells(INTERP_KERNEL::NormalizedCellType type, PyObject *ids) const
2464       {
2465         mcIdType size;
2466         INTERP_KERNEL::AutoPtr<mcIdType> tmp=convertPyToNewIntArr2(ids,&size);
2467         MEDCouplingUMesh *ret=self->keepSpecifiedCells(type,tmp,tmp+size);
2468         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 );
2469       }
2470
2471       bool checkConsecutiveCellTypesAndOrder(PyObject *li) const
2472       {
2473         mcIdType sz;
2474         INTERP_KERNEL::AutoPtr<INTERP_KERNEL::NormalizedCellType> order=convertPyToNewIntArr2<INTERP_KERNEL::NormalizedCellType>(li,&sz);
2475         bool ret=self->checkConsecutiveCellTypesAndOrder(order,order+sz);
2476         return ret;
2477       }
2478
2479       DataArrayIdType *getRenumArrForConsecutiveCellTypesSpec(PyObject *li) const
2480       {
2481         mcIdType sz;
2482         INTERP_KERNEL::AutoPtr<INTERP_KERNEL::NormalizedCellType> order=convertPyToNewIntArr2<INTERP_KERNEL::NormalizedCellType>(li,&sz);
2483         DataArrayIdType *ret=self->getRenumArrForConsecutiveCellTypesSpec(order,(INTERP_KERNEL::NormalizedCellType *)order+sz);
2484         return ret;
2485       }
2486
2487       DataArrayIdType *findNodesToDuplicate(const MEDCouplingUMesh& otherDimM1OnSameCoords) const
2488       {
2489         DataArrayIdType *ret=self->findNodesToDuplicate(otherDimM1OnSameCoords);
2490         return ret;
2491       }
2492
2493       PyObject *findCellsToRenumber(const MEDCouplingUMesh& otherDimM1OnSameCoords, const DataArrayIdType *dupNodes) const
2494       {
2495         DataArrayIdType *tmp0=0,*tmp1=0;
2496         self->findCellsToRenumber(otherDimM1OnSameCoords,dupNodes->begin(), dupNodes->end(), tmp0,tmp1);
2497         PyObject *ret=PyTuple_New(2);
2498         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(tmp0),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2499         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp1),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2500         return ret;
2501       }
2502
2503       PyObject *findCellIdsLyingOn(const MEDCouplingUMesh& otherDimM1OnSameCoords) const
2504       {
2505         DataArrayIdType *tmp0=0,*tmp1=0;
2506         self->findCellIdsLyingOn(otherDimM1OnSameCoords,tmp0,tmp1);
2507         PyObject *ret=PyTuple_New(2);
2508         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(tmp0),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2509         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp1),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2510         return ret;
2511       }
2512
2513       void duplicateNodes(PyObject *li)
2514       {
2515         mcIdType sw;
2516         mcIdType singleVal;
2517         std::vector<mcIdType> multiVal;
2518         std::pair<mcIdType, std::pair<mcIdType,mcIdType> > slic;
2519         MEDCoupling::DataArrayIdType *daIntTyypp=0;
2520         convertIntStarOrSliceLikePyObjToCpp(li,self->getNumberOfNodes(),sw,singleVal,multiVal,slic,daIntTyypp);
2521         switch(sw)
2522           {
2523           case 1:
2524             return self->duplicateNodes(&singleVal,&singleVal+1);
2525           case 2:
2526             return self->duplicateNodes(&multiVal[0],&multiVal[0]+multiVal.size());
2527           case 4:
2528             return self->duplicateNodes(daIntTyypp->begin(),daIntTyypp->end());
2529           default:
2530             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::duplicateNodes : unrecognized type entered, expected list of int, tuple of int or DataArrayIdType !");
2531           }
2532       }
2533
2534       void duplicateNodesInConn(PyObject *li, mcIdType offset)
2535       {
2536         mcIdType sw;
2537         mcIdType singleVal;
2538         std::vector<mcIdType> multiVal;
2539         std::pair<mcIdType, std::pair<mcIdType,mcIdType> > slic;
2540         MEDCoupling::DataArrayIdType *daIntTyypp=0;
2541         convertIntStarOrSliceLikePyObjToCpp(li,self->getNumberOfNodes(),sw,singleVal,multiVal,slic,daIntTyypp);
2542         switch(sw)
2543           {
2544           case 1:
2545             return self->duplicateNodesInConn(&singleVal,&singleVal+1,offset);
2546           case 2:
2547             return self->duplicateNodesInConn(&multiVal[0],&multiVal[0]+multiVal.size(),offset);
2548           case 4:
2549             return self->duplicateNodesInConn(daIntTyypp->begin(),daIntTyypp->end(),offset);
2550           default:
2551             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::duplicateNodesInConn : unrecognized type entered, expected list of int, tuple of int or DataArrayIdType !");
2552           }
2553       }
2554
2555       void attractSeg3MidPtsAroundNodes(double ratio, PyObject *nodeIds)
2556       {
2557         mcIdType szArr,sw,iTypppArr;
2558         std::vector<mcIdType> stdvecTyyppArr;
2559         const mcIdType *nodeIdsPtr(convertIntStarLikePyObjToCppIntStar(nodeIds,sw,szArr,iTypppArr,stdvecTyyppArr));
2560         self->attractSeg3MidPtsAroundNodes(ratio,nodeIdsPtr,nodeIdsPtr+szArr);
2561       }
2562
2563       PyObject *getLevArrPerCellTypes(PyObject *li) const
2564       {
2565         mcIdType sz;
2566         INTERP_KERNEL::AutoPtr<INTERP_KERNEL::NormalizedCellType> order=convertPyToNewIntArr2<INTERP_KERNEL::NormalizedCellType>(li,&sz);
2567         DataArrayIdType *tmp0,*tmp1=0;
2568         tmp0=self->getLevArrPerCellTypes(order,(INTERP_KERNEL::NormalizedCellType *)order+sz,tmp1);
2569         PyObject *ret=PyTuple_New(2);
2570         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(tmp0),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2571         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp1),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2572         return ret;
2573       }
2574
2575       PyObject *convertNodalConnectivityToDynamicGeoTypeMesh() const
2576       {
2577         DataArrayIdType *ret0=0,*ret1=0;
2578         self->convertNodalConnectivityToDynamicGeoTypeMesh(ret0,ret1);
2579         PyObject *ret=PyTuple_New(2);
2580         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2581         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2582         return ret;
2583       }
2584
2585       static PyObject *AggregateSortedByTypeMeshesOnSameCoords(PyObject *ms)
2586       {
2587         std::vector<const MEDCoupling::MEDCouplingUMesh *> meshes;
2588         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingUMesh *>(ms,SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2589         DataArrayIdType *ret1=0,*ret2=0;
2590         MEDCouplingUMesh *ret0=MEDCouplingUMesh::AggregateSortedByTypeMeshesOnSameCoords(meshes,ret1,ret2);
2591         PyObject *ret=PyTuple_New(3);
2592         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2593         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2594         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(ret2),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2595         return ret;
2596       }
2597
2598       static PyObject *MergeUMeshesOnSameCoords(PyObject *ms)
2599       {
2600         std::vector<const MEDCoupling::MEDCouplingUMesh *> meshes;
2601         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingUMesh *>(ms,SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2602         MEDCouplingUMesh *ret=MEDCouplingUMesh::MergeUMeshesOnSameCoords(meshes);
2603         return convertMesh(ret, SWIG_POINTER_OWN | 0 );
2604       }
2605
2606       static PyObject *FuseUMeshesOnSameCoords(PyObject *ms, int compType)
2607       {
2608         std::size_t sz;
2609         std::vector<const MEDCouplingUMesh *> meshes;
2610         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingUMesh *>(ms,SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2611         std::vector<DataArrayIdType *> corr;
2612         MEDCouplingUMesh *um=MEDCouplingUMesh::FuseUMeshesOnSameCoords(meshes,compType,corr);
2613         sz=corr.size();
2614         PyObject *ret1=PyList_New(sz);
2615         for(std::size_t i=0;i<sz;i++)
2616           PyList_SetItem(ret1,i,SWIG_NewPointerObj(SWIG_as_voidptr(corr[i]),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2617         PyObject *ret=PyList_New(2);
2618         PyList_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(um),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2619         PyList_SetItem(ret,1,ret1);
2620         return ret;
2621       }
2622
2623       static void PutUMeshesOnSameAggregatedCoords(PyObject *ms)
2624       {
2625         std::vector<MEDCouplingUMesh *> meshes;
2626         convertFromPyObjVectorOfObj<MEDCoupling::MEDCouplingUMesh *>(ms,SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2627         MEDCouplingUMesh::PutUMeshesOnSameAggregatedCoords(meshes);
2628       }
2629
2630       static void MergeNodesOnUMeshesSharingSameCoords(PyObject *ms, double eps)
2631       {
2632         std::vector<MEDCouplingUMesh *> meshes;
2633         convertFromPyObjVectorOfObj<MEDCoupling::MEDCouplingUMesh *>(ms,SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2634         MEDCouplingUMesh::MergeNodesOnUMeshesSharingSameCoords(meshes,eps);
2635       }
2636
2637       PyObject *are2DCellsNotCorrectlyOriented(PyObject *vec, bool polyOnly) const
2638       {
2639         double val;
2640         DataArrayDouble *a;
2641         DataArrayDoubleTuple *aa;
2642         std::vector<double> bb;
2643         mcIdType sw;
2644         int spaceDim=self->getSpaceDimension();
2645         const char msg[]="Python wrap of MEDCouplingUMesh::are2DCellsNotCorrectlyOriented : ";
2646         const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val,a,aa,bb,msg,1,spaceDim,true);
2647         //
2648         std::vector<mcIdType> cells;
2649         self->are2DCellsNotCorrectlyOriented(v,polyOnly,cells);
2650         DataArrayIdType *ret=DataArrayIdType::New();
2651         ret->alloc(cells.size(),1);
2652         std::copy(cells.begin(),cells.end(),ret->getPointer());
2653         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 );
2654       }
2655
2656       void orientCorrectly2DCells(PyObject *vec, bool polyOnly)
2657       {
2658         double val;
2659         DataArrayDouble *a;
2660         DataArrayDoubleTuple *aa;
2661         std::vector<double> bb;
2662         mcIdType sw;
2663         int spaceDim=self->getSpaceDimension();
2664         const char msg[]="Python wrap of MEDCouplingUMesh::orientCorrectly2DCells : ";
2665         const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val,a,aa,bb,msg,1,spaceDim,true);
2666         self->orientCorrectly2DCells(v,polyOnly);
2667       }
2668       
2669       PyObject *arePolyhedronsNotCorrectlyOriented() const
2670       {
2671         std::vector<mcIdType> cells;
2672         self->arePolyhedronsNotCorrectlyOriented(cells);
2673         DataArrayIdType *ret=DataArrayIdType::New();
2674         ret->alloc(cells.size(),1);
2675         std::copy(cells.begin(),cells.end(),ret->getPointer());
2676         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 );
2677       }
2678
2679       PyObject *getFastAveragePlaneOfThis() const
2680       {
2681         double vec[3];
2682         double pos[3];
2683         self->getFastAveragePlaneOfThis(vec,pos);
2684         double vals[6];
2685         std::copy(vec,vec+3,vals);
2686         std::copy(pos,pos+3,vals+3);
2687         return convertDblArrToPyListOfTuple<double>(vals,3,2);
2688       }
2689       
2690       static MEDCouplingUMesh *MergeUMeshes(PyObject *li)
2691       {
2692         std::vector<const MEDCoupling::MEDCouplingUMesh *> tmp;
2693         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingUMesh *>(li,SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh,"MEDCouplingUMesh",tmp);
2694         return MEDCouplingUMesh::MergeUMeshes(tmp);
2695       }
2696
2697       PyObject *areCellsIncludedIn(const MEDCouplingUMesh *other, int compType) const
2698       {
2699         DataArrayIdType *ret1;
2700         bool ret0=self->areCellsIncludedIn(other,compType,ret1);
2701         PyObject *ret=PyTuple_New(2);
2702         PyObject *ret0Py=ret0?Py_True:Py_False;
2703         Py_XINCREF(ret0Py);
2704         PyTuple_SetItem(ret,0,ret0Py);
2705         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2706         return ret;
2707       }
2708
2709       PyObject *areCellsIncludedInPolicy7(const MEDCouplingUMesh *other) const
2710       {
2711         DataArrayIdType *ret1;
2712         bool ret0=self->areCellsIncludedInPolicy7(other,ret1);
2713         PyObject *ret=PyTuple_New(2);
2714         PyObject *ret0Py=ret0?Py_True:Py_False;
2715         Py_XINCREF(ret0Py);
2716         PyTuple_SetItem(ret,0,ret0Py);
2717         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2718         return ret;
2719       }
2720
2721       PyObject *explode3DMeshTo1D() const
2722       {
2723         MCAuto<DataArrayIdType> d0=DataArrayIdType::New();
2724         MCAuto<DataArrayIdType> d1=DataArrayIdType::New();
2725         MCAuto<DataArrayIdType> d2=DataArrayIdType::New();
2726         MCAuto<DataArrayIdType> d3=DataArrayIdType::New();
2727         MEDCouplingUMesh *m=self->explode3DMeshTo1D(d0,d1,d2,d3);
2728         PyObject *ret=PyTuple_New(5);
2729         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2730         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2731         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2732         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2733         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2734         return ret;
2735       }
2736
2737       PyObject *explodeIntoEdges() const
2738       {
2739         MCAuto<DataArrayIdType> desc,descIndex,revDesc,revDescIndx;
2740         MCAuto<MEDCouplingUMesh> m(self->explodeIntoEdges(desc,descIndex,revDesc,revDescIndx));
2741         PyObject *ret=PyTuple_New(5);
2742         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m.retn()),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2743         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(desc.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2744         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(descIndex.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2745         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(revDesc.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2746         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(revDescIndx.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2747         return ret;
2748       }
2749
2750       PyObject *explodeMeshIntoMicroEdges() const
2751       {
2752         MCAuto<DataArrayIdType> d0=DataArrayIdType::New();
2753         MCAuto<DataArrayIdType> d1=DataArrayIdType::New();
2754         MCAuto<DataArrayIdType> d2=DataArrayIdType::New();
2755         MCAuto<DataArrayIdType> d3=DataArrayIdType::New();
2756         MEDCouplingUMesh *m=self->explodeMeshIntoMicroEdges(d0,d1,d2,d3);
2757         PyObject *ret=PyTuple_New(5);
2758         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2759         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2760         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2761         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2762         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2763         return ret;
2764       }
2765
2766       PyObject *buildDescendingConnectivity() const
2767       {
2768         MCAuto<DataArrayIdType> d0=DataArrayIdType::New();
2769         MCAuto<DataArrayIdType> d1=DataArrayIdType::New();
2770         MCAuto<DataArrayIdType> d2=DataArrayIdType::New();
2771         MCAuto<DataArrayIdType> d3=DataArrayIdType::New();
2772         MEDCouplingUMesh *m=self->buildDescendingConnectivity(d0,d1,d2,d3);
2773         PyObject *ret=PyTuple_New(5);
2774         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2775         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2776         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2777         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2778         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2779         return ret;
2780       }
2781
2782       PyObject *buildDescendingConnectivity2() const
2783       {
2784         MCAuto<DataArrayIdType> d0=DataArrayIdType::New();
2785         MCAuto<DataArrayIdType> d1=DataArrayIdType::New();
2786         MCAuto<DataArrayIdType> d2=DataArrayIdType::New();
2787         MCAuto<DataArrayIdType> d3=DataArrayIdType::New();
2788         MEDCouplingUMesh *m=self->buildDescendingConnectivity2(d0,d1,d2,d3);
2789         PyObject *ret=PyTuple_New(5);
2790         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2791         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2792         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2793         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2794         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2795         return ret;
2796       }
2797       
2798       PyObject *computeNeighborsOfCells() const
2799       {
2800         DataArrayIdType *neighbors=0,*neighborsIdx=0;
2801         self->computeNeighborsOfCells(neighbors,neighborsIdx);
2802         PyObject *ret=PyTuple_New(2);
2803         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(neighbors),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2804         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(neighborsIdx),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2805         return ret;
2806       }
2807
2808       PyObject *computeNeighborsOfNodes() const
2809       {
2810         DataArrayIdType *neighbors=0,*neighborsIdx=0;
2811         self->computeNeighborsOfNodes(neighbors,neighborsIdx);
2812         PyObject *ret=PyTuple_New(2);
2813         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(neighbors),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2814         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(neighborsIdx),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2815         return ret;
2816       }
2817
2818       PyObject *computeEnlargedNeighborsOfNodes() const
2819       {
2820         MCAuto<DataArrayIdType> neighbors,neighborsIdx;
2821         self->computeEnlargedNeighborsOfNodes(neighbors,neighborsIdx);
2822         PyObject *ret=PyTuple_New(2);
2823         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(neighbors.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2824         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(neighborsIdx.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2825         return ret;
2826       }
2827       
2828       PyObject *computeCellNeighborhoodFromNodesOne(const DataArrayIdType *nodeNeigh, const DataArrayIdType *nodeNeighI) const
2829       {
2830         MCAuto<DataArrayIdType> cellNeigh,cellNeighIndex;
2831         self->computeCellNeighborhoodFromNodesOne(nodeNeigh,nodeNeighI,cellNeigh,cellNeighIndex);
2832         PyObject *ret=PyTuple_New(2);
2833         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(cellNeigh.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2834         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellNeighIndex.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2835         return ret;
2836       }
2837       
2838       static PyObject *ComputeNeighborsOfCellsAdv(const DataArrayIdType *desc, const DataArrayIdType *descI, const DataArrayIdType *revDesc, const DataArrayIdType *revDescI)
2839       {
2840         DataArrayIdType *neighbors=0,*neighborsIdx=0;
2841         MEDCouplingUMesh::ComputeNeighborsOfCellsAdv(desc,descI,revDesc,revDescI,neighbors,neighborsIdx);
2842         PyObject *ret=PyTuple_New(2);
2843         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(neighbors),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2844         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(neighborsIdx),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2845         return ret;
2846       }
2847
2848       PyObject *emulateMEDMEMBDC(const MEDCouplingUMesh *nM1LevMesh)
2849       {
2850         MCAuto<DataArrayIdType> d0=DataArrayIdType::New();
2851         MCAuto<DataArrayIdType> d1=DataArrayIdType::New();
2852         DataArrayIdType *d2,*d3,*d4,*dd5;
2853         MEDCouplingUMesh *mOut=self->emulateMEDMEMBDC(nM1LevMesh,d0,d1,d2,d3,d4,dd5);
2854         PyObject *ret=PyTuple_New(7);
2855         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(mOut),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2856         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2857         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2858         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2859         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2860         PyTuple_SetItem(ret,5,SWIG_NewPointerObj(SWIG_as_voidptr(d4),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2861         PyTuple_SetItem(ret,6,SWIG_NewPointerObj(SWIG_as_voidptr(dd5),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2862         return ret;
2863       }
2864
2865       DataArrayDouble *getPartBarycenterAndOwner(DataArrayIdType *da) const
2866       {
2867         if(!da)
2868           throw INTERP_KERNEL::Exception("Not null DataArrayIdType instance expected !");
2869         da->checkAllocated();
2870         return self->getPartBarycenterAndOwner(da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2871       }
2872
2873       DataArrayDouble *getPartMeasureField(bool isAbs, DataArrayIdType *da) const
2874       {
2875         if(!da)
2876           throw INTERP_KERNEL::Exception("Not null DataArrayIdType instance expected !");
2877         da->checkAllocated();
2878         return self->getPartMeasureField(isAbs,da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2879       }
2880
2881       MEDCouplingFieldDouble *buildPartOrthogonalField(DataArrayIdType *da) const
2882       {
2883         if(!da)
2884           throw INTERP_KERNEL::Exception("Not null DataArrayIdType instance expected !");
2885         da->checkAllocated();
2886         return self->buildPartOrthogonalField(da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2887       }
2888
2889       PyObject *getTypesOfPart(DataArrayIdType *da) const
2890       {
2891         if(!da)
2892           throw INTERP_KERNEL::Exception("Not null DataArrayIdType instance expected !");
2893         da->checkAllocated();
2894         std::set<INTERP_KERNEL::NormalizedCellType> result=self->getTypesOfPart(da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2895         std::set<INTERP_KERNEL::NormalizedCellType>::const_iterator iL=result.begin();
2896         PyObject *res = PyList_New(result.size());
2897         for (int i=0;iL!=result.end(); i++, iL++)
2898           PyList_SetItem(res,i,PyInt_FromLong(*iL));
2899         return res;
2900       }
2901
2902       DataArrayIdType *keepCellIdsByType(INTERP_KERNEL::NormalizedCellType type, DataArrayIdType *da) const
2903       {
2904         if(!da)
2905           throw INTERP_KERNEL::Exception("Not null DataArrayIdType instance expected !");
2906         da->checkAllocated();
2907         DataArrayIdType *ret=self->keepCellIdsByType(type,da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2908         ret->setName(da->getName().c_str());
2909         return ret;
2910       }
2911
2912       static PyObject *Intersect2DMeshes(const MEDCouplingUMesh *m1, const MEDCouplingUMesh *m2, double eps)
2913       {
2914         DataArrayIdType *cellNb1=0,*cellNb2=0;
2915         MEDCouplingUMesh *mret=MEDCouplingUMesh::Intersect2DMeshes(m1,m2,eps,cellNb1,cellNb2);
2916         PyObject *ret=PyTuple_New(3);
2917         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(mret),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2918         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellNb1),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2919         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(cellNb2),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2920         return ret;
2921       }
2922
2923       static PyObject *Intersect2DMeshWith1DLine(const MEDCouplingUMesh *mesh2D, const MEDCouplingUMesh *mesh1D, double eps)
2924       {
2925         MEDCouplingUMesh *splitMesh2D(0),*splitMesh1D(0);
2926         DataArrayIdType *cellIdInMesh2D(0),*cellIdInMesh1D(0);
2927         MEDCouplingUMesh::Intersect2DMeshWith1DLine(mesh2D,mesh1D,eps,splitMesh2D,splitMesh1D,cellIdInMesh2D,cellIdInMesh1D);
2928         PyObject *ret(PyTuple_New(4));
2929         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(splitMesh2D),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2930         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(splitMesh1D),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2931         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(cellIdInMesh2D),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2932         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(cellIdInMesh1D),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2933         return ret;
2934       }
2935
2936       PyObject *buildSlice3D(PyObject *origin, PyObject *vec, double eps) const
2937       {
2938         int spaceDim=self->getSpaceDimension();
2939         if(spaceDim!=3)
2940           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingUMesh::buildSlice3D : works only for spaceDim 3 !");
2941         double val,val2;
2942         DataArrayDouble *a,*a2;
2943         DataArrayDoubleTuple *aa,*aa2;
2944         std::vector<double> bb,bb2;
2945         mcIdType sw;
2946         const char msg[]="Python wrap of MEDCouplingUMesh::buildSlice3D : 1st parameter for origin.";
2947         const char msg2[]="Python wrap of MEDCouplingUMesh::buildSlice3D : 2nd parameter for vector.";
2948         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
2949         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
2950         //
2951         DataArrayIdType *cellIds=0;
2952         MEDCouplingUMesh *ret0=self->buildSlice3D(orig,vect,eps,cellIds);
2953         PyObject *ret=PyTuple_New(2);
2954         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2955         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellIds),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2956         return ret;
2957       }
2958
2959       PyObject *buildSlice3DSurf(PyObject *origin, PyObject *vec, double eps) const
2960       {
2961         int spaceDim=self->getSpaceDimension();
2962         if(spaceDim!=3)
2963           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingUMesh::buildSlice3DSurf : works only for spaceDim 3 !");
2964         double val,val2;
2965         DataArrayDouble *a,*a2;
2966         DataArrayDoubleTuple *aa,*aa2;
2967         std::vector<double> bb,bb2;
2968         mcIdType sw;
2969         const char msg[]="Python wrap of MEDCouplingUMesh::buildSlice3DSurf : 1st parameter for origin.";
2970         const char msg2[]="Python wrap of MEDCouplingUMesh::buildSlice3DSurf : 2nd parameter for vector.";
2971         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
2972         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
2973         //
2974         DataArrayIdType *cellIds=0;
2975         MEDCouplingUMesh *ret0=self->buildSlice3DSurf(orig,vect,eps,cellIds);
2976         PyObject *ret=PyTuple_New(2);
2977         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2978         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellIds),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2979         return ret;
2980       }
2981
2982       MEDCouplingUMesh *clipSingle3DCellByPlane(PyObject *origin, PyObject *vec, double eps) const
2983       {
2984         double val,val2;
2985         DataArrayDouble *a,*a2;
2986         DataArrayDoubleTuple *aa,*aa2;
2987         std::vector<double> bb,bb2;
2988         mcIdType sw;
2989         const char msg[]="Python wrap of MEDCouplingUMesh::clipSingle3DCellByPlane : 1st parameter for origin.";
2990         const char msg2[]="Python wrap of MEDCouplingUMesh::clipSingle3DCellByPlane : 2nd parameter for vector.";
2991         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,3,true);
2992         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,3,true);
2993         MCAuto<MEDCouplingUMesh> ret(self->clipSingle3DCellByPlane(orig,vect,eps));
2994         return ret.retn();
2995       }
2996
2997       DataArrayIdType *getCellIdsCrossingPlane(PyObject *origin, PyObject *vec, double eps) const
2998       {
2999         int spaceDim=self->getSpaceDimension();
3000         if(spaceDim!=3)
3001           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingUMesh::getCellIdsCrossingPlane : works only for spaceDim 3 !");
3002         double val,val2;
3003         DataArrayDouble *a,*a2;
3004         DataArrayDoubleTuple *aa,*aa2;
3005         std::vector<double> bb,bb2;
3006         mcIdType sw;
3007         const char msg[]="Python wrap of MEDCouplingUMesh::getCellIdsCrossingPlane : 1st parameter for origin.";
3008         const char msg2[]="Python wrap of MEDCouplingUMesh::getCellIdsCrossingPlane : 2nd parameter for vector.";
3009         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
3010         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
3011         return self->getCellIdsCrossingPlane(orig,vect,eps);
3012       }
3013
3014       void convertToPolyTypes(PyObject *li)
3015       {
3016         mcIdType sw;
3017         mcIdType pos1;
3018         std::vector<mcIdType> pos2;
3019         DataArrayIdType *pos3=0;
3020         DataArrayIdTypeTuple *pos4=0;
3021         convertIntStarLikePyObjToCpp(li,sw,pos1,pos2,pos3,pos4);
3022         switch(sw)
3023           {
3024           case 1:
3025             {
3026               self->convertToPolyTypes(&pos1,&pos1+1);
3027               return;
3028             }
3029           case 2:
3030             {
3031               if(pos2.empty())
3032                 return;
3033               self->convertToPolyTypes(&pos2[0],&pos2[0]+pos2.size());
3034               return ;
3035             }
3036           case 3:
3037             {
3038               self->convertToPolyTypes(pos3->begin(),pos3->end());
3039               return ;
3040             }
3041           default:
3042             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::convertToPolyTypes : unexpected input array type recognized !");
3043           }
3044       }      
3045     }
3046     void convertAllToPoly();
3047     void convertExtrudedPolyhedra();
3048     bool unPolyze();
3049     void simplifyPolyhedra(double eps);
3050     MEDCouplingUMesh *buildSpreadZonesWithPoly() const;
3051     MEDCouplingUMesh *buildExtrudedMesh(const MEDCouplingUMesh *mesh1D, int policy);
3052   };
3053
3054   //== MEDCouplingUMesh End
3055
3056   //== MEDCouplingMappedExtrudedMesh
3057
3058   class MEDCouplingMappedExtrudedMesh : public MEDCoupling::MEDCouplingMesh
3059   {
3060   public:
3061     static MEDCouplingMappedExtrudedMesh *New(const MEDCouplingUMesh *mesh3D, const MEDCouplingUMesh *mesh2D, int cell2DId);
3062     static MEDCouplingMappedExtrudedMesh *New(const MEDCouplingCMesh *mesh3D);
3063     MEDCouplingUMesh *build3DUnstructuredMesh() const;
3064     int get2DCellIdForExtrusion() const;
3065     %extend {
3066       MEDCouplingMappedExtrudedMesh(const MEDCouplingUMesh *mesh3D, const MEDCouplingUMesh *mesh2D, mcIdType cell2DId)
3067       {
3068         return MEDCouplingMappedExtrudedMesh::New(mesh3D,mesh2D,cell2DId);
3069       }
3070
3071       MEDCouplingMappedExtrudedMesh(const MEDCouplingCMesh *mesh3D)
3072       {
3073         return MEDCouplingMappedExtrudedMesh::New(mesh3D);
3074       }
3075
3076       MEDCouplingMappedExtrudedMesh()
3077       {
3078         return MEDCouplingMappedExtrudedMesh::New();
3079       }
3080       
3081       std::string __str__() const
3082       {
3083         return self->simpleRepr();
3084       }
3085
3086       std::string __repr__() const
3087       {
3088         std::ostringstream oss;
3089         self->reprQuickOverview(oss);
3090         return oss.str();
3091       }
3092       
3093       PyObject *getMesh2D() const
3094       {
3095         MEDCouplingUMesh *ret=self->getMesh2D();
3096         if(ret)
3097           ret->incrRef();
3098         return convertMesh(ret, SWIG_POINTER_OWN | 0 );
3099       }
3100       PyObject *getMesh1D() const
3101       {
3102         MEDCouplingUMesh *ret=self->getMesh1D();
3103         if(ret)
3104           ret->incrRef();
3105         return convertMesh(ret, SWIG_POINTER_OWN | 0 );
3106       }
3107       PyObject *getMesh3DIds() const
3108       {
3109         DataArrayIdType *ret=self->getMesh3DIds();
3110         if(ret)
3111           ret->incrRef();
3112         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 );
3113       } 
3114     }
3115   };
3116
3117   //== MEDCouplingMappedExtrudedMesh End
3118
3119   class MEDCoupling1GTUMesh : public MEDCoupling::MEDCouplingPointSet
3120   {
3121   public:
3122     static MEDCoupling1GTUMesh *New(const std::string& name, INTERP_KERNEL::NormalizedCellType type);
3123     static MEDCoupling1GTUMesh *New(const MEDCouplingUMesh *m);
3124     INTERP_KERNEL::NormalizedCellType getCellModelEnum() const;
3125     int getNodalConnectivityLength() const;
3126     virtual void allocateCells(int nbOfCells=0);
3127     virtual void checkConsistencyOfConnectivity() const;
3128     %extend
3129     {
3130       virtual void insertNextCell(PyObject *li)
3131       {
3132         mcIdType szArr,sw,iTypppArr;
3133         std::vector<mcIdType> stdvecTyyppArr;
3134         const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3135         self->insertNextCell(tmp,tmp+szArr);
3136       }
3137
3138       virtual DataArrayIdType *getNodalConnectivity() const
3139       {
3140         DataArrayIdType *ret=self->getNodalConnectivity();
3141         if(ret) ret->incrRef();
3142         return ret;
3143       }
3144       
3145       static MEDCouplingUMesh *AggregateOnSameCoordsToUMesh(PyObject *li)
3146       {
3147         std::vector< const MEDCoupling1GTUMesh *> parts;
3148         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCoupling1GTUMesh *>(li,SWIGTYPE_p_MEDCoupling__MEDCoupling1GTUMesh,"MEDCoupling1GTUMesh",parts);
3149         return MEDCoupling1GTUMesh::AggregateOnSameCoordsToUMesh(parts);
3150       }
3151     }
3152   };
3153
3154   //== MEDCoupling1SGTUMesh
3155
3156   class MEDCoupling1SGTUMesh : public MEDCoupling::MEDCoupling1GTUMesh
3157   {
3158   public:
3159     static MEDCoupling1SGTUMesh *New(const std::string& name, INTERP_KERNEL::NormalizedCellType type);
3160     static MEDCoupling1SGTUMesh *New(const MEDCouplingUMesh *m);
3161     void setNodalConnectivity(DataArrayIdType *nodalConn);
3162     int getNumberOfNodesPerCell() const;
3163     static MEDCoupling1SGTUMesh *Merge1SGTUMeshes(const MEDCoupling1SGTUMesh *mesh1, const MEDCoupling1SGTUMesh *mesh2);
3164     MEDCoupling1SGTUMesh *buildSetInstanceFromThis(int spaceDim) const;
3165     MEDCoupling1GTUMesh *computeDualMesh() const;
3166     MEDCoupling1SGTUMesh *explodeEachHexa8To6Quad4() const;
3167     DataArrayIdType *sortHexa8EachOther();
3168     %extend
3169     {
3170       MEDCoupling1SGTUMesh()
3171       {
3172         return MEDCoupling1SGTUMesh::New();
3173       }
3174
3175       MEDCoupling1SGTUMesh(const std::string& name, INTERP_KERNEL::NormalizedCellType type)
3176       {
3177         return MEDCoupling1SGTUMesh::New(name,type);
3178       }
3179
3180       MEDCoupling1SGTUMesh(const MEDCouplingUMesh *m)
3181       {
3182         return MEDCoupling1SGTUMesh::New(m);
3183       }
3184
3185       std::string __str__() const
3186       {
3187         return self->simpleRepr();
3188       }
3189       
3190       std::string __repr__() const
3191       {
3192         std::ostringstream oss;
3193         self->reprQuickOverview(oss);
3194         return oss.str();
3195       }
3196
3197       PyObject *structurizeMe(double eps=1e-12) const
3198       {
3199         DataArrayIdType *cellPerm(0),*nodePerm(0);
3200         MEDCouplingCMesh *retCpp(self->structurizeMe(cellPerm,nodePerm,eps));
3201         PyObject *ret(PyTuple_New(3));
3202         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(retCpp),SWIGTYPE_p_MEDCoupling__MEDCouplingCMesh, SWIG_POINTER_OWN | 0 ));
3203         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellPerm),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
3204         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(nodePerm),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
3205         return ret;
3206       }
3207
3208       DataArrayDouble *MEDCoupling1SGTUMesh::computeTriangleHeight() const
3209       {
3210         MCAuto<DataArrayDouble> ret = self->computeTriangleHeight();
3211         return ret.retn();
3212       }
3213
3214       static MEDCoupling1SGTUMesh *Merge1SGTUMeshes(PyObject *li)
3215       {
3216         std::vector<const MEDCoupling::MEDCoupling1SGTUMesh *> tmp;
3217         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCoupling1SGTUMesh *>(li,SWIGTYPE_p_MEDCoupling__MEDCoupling1SGTUMesh,"MEDCoupling1SGTUMesh",tmp);
3218         return MEDCoupling1SGTUMesh::Merge1SGTUMeshes(tmp);
3219       }
3220       
3221       static MEDCoupling1SGTUMesh *Merge1SGTUMeshesOnSameCoords(PyObject *li)
3222       {
3223         std::vector<const MEDCoupling::MEDCoupling1SGTUMesh *> tmp;
3224         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCoupling1SGTUMesh *>(li,SWIGTYPE_p_MEDCoupling__MEDCoupling1SGTUMesh,"MEDCoupling1SGTUMesh",tmp);
3225         return MEDCoupling1SGTUMesh::Merge1SGTUMeshesOnSameCoords(tmp);
3226       }
3227     }
3228   };
3229   
3230   //== MEDCoupling1SGTUMesh End
3231
3232   //== MEDCoupling1DGTUMesh
3233
3234   class MEDCoupling1DGTUMesh : public MEDCoupling::MEDCoupling1GTUMesh
3235   {
3236   public:
3237     static MEDCoupling1DGTUMesh *New(const std::string& name, INTERP_KERNEL::NormalizedCellType type);
3238     static MEDCoupling1DGTUMesh *New(const MEDCouplingUMesh *m);
3239     void setNodalConnectivity(DataArrayIdType *nodalConn, DataArrayIdType *nodalConnIndex);
3240     MEDCoupling1DGTUMesh *buildSetInstanceFromThis(int spaceDim) const;
3241     bool isPacked() const;
3242     %extend
3243     {
3244       MEDCoupling1DGTUMesh()
3245       {
3246         return MEDCoupling1DGTUMesh::New();
3247       }
3248       MEDCoupling1DGTUMesh(const std::string& name, INTERP_KERNEL::NormalizedCellType type)
3249       {
3250         return MEDCoupling1DGTUMesh::New(name,type);
3251       }
3252
3253       MEDCoupling1DGTUMesh(const MEDCouplingUMesh *m)
3254       {
3255         return MEDCoupling1DGTUMesh::New(m);
3256       }
3257
3258       std::string __str__() const
3259       {
3260         return self->simpleRepr();
3261       }
3262       
3263       std::string __repr__() const
3264       {
3265         std::ostringstream oss;
3266         self->reprQuickOverview(oss);
3267         return oss.str();
3268       }
3269
3270       DataArrayIdType *getNodalConnectivityIndex() const
3271       {
3272         DataArrayIdType *ret=self->getNodalConnectivityIndex();
3273         if(ret) ret->incrRef();
3274         return ret;
3275       }
3276
3277       PyObject *retrievePackedNodalConnectivity() const
3278       {
3279         DataArrayIdType *ret1=0,*ret2=0;
3280         bool ret0=self->retrievePackedNodalConnectivity(ret1,ret2);
3281         PyObject *ret0Py=ret0?Py_True:Py_False;
3282         Py_XINCREF(ret0Py);
3283         PyObject *ret=PyTuple_New(3);
3284         PyTuple_SetItem(ret,0,ret0Py);
3285         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
3286         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(ret2),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
3287         return ret;
3288       }
3289       
3290       PyObject *copyWithNodalConnectivityPacked() const
3291       {
3292         bool ret1;
3293         MEDCoupling1DGTUMesh *ret0=self->copyWithNodalConnectivityPacked(ret1);
3294         PyObject *ret=PyTuple_New(2);
3295         PyObject *ret1Py=ret1?Py_True:Py_False; Py_XINCREF(ret1Py);
3296         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__MEDCoupling1DGTUMesh, SWIG_POINTER_OWN | 0 ));
3297         PyTuple_SetItem(ret,1,ret1Py);
3298         return ret;
3299       }
3300
3301       static MEDCoupling1DGTUMesh *Merge1DGTUMeshes(PyObject *li)
3302       {
3303         std::vector<const MEDCoupling::MEDCoupling1DGTUMesh *> tmp;
3304         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCoupling1DGTUMesh *>(li,SWIGTYPE_p_MEDCoupling__MEDCoupling1DGTUMesh,"MEDCoupling1DGTUMesh",tmp);
3305         return MEDCoupling1DGTUMesh::Merge1DGTUMeshes(tmp);
3306       }
3307       
3308       static MEDCoupling1DGTUMesh *Merge1DGTUMeshesOnSameCoords(PyObject *li)
3309       {
3310         std::vector<const MEDCoupling::MEDCoupling1DGTUMesh *> tmp;
3311         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCoupling1DGTUMesh *>(li,SWIGTYPE_p_MEDCoupling__MEDCoupling1DGTUMesh,"MEDCoupling1DGTUMesh",tmp);
3312         return MEDCoupling1DGTUMesh::Merge1DGTUMeshesOnSameCoords(tmp);
3313       }
3314       
3315       static DataArrayIdType *AggregateNodalConnAndShiftNodeIds(PyObject *li, const std::vector<mcIdType>& offsetInNodeIdsPerElt)
3316       {
3317         std::vector<const MEDCoupling::DataArrayIdType *> tmp;
3318         convertFromPyObjVectorOfObj<const MEDCoupling::DataArrayIdType *>(li,SWIGTITraits<mcIdType>::TI,"DataArrayIdType",tmp);
3319         return MEDCoupling1DGTUMesh::AggregateNodalConnAndShiftNodeIds(tmp,offsetInNodeIdsPerElt);
3320       }
3321     }
3322   };
3323
3324   //== MEDCoupling1DGTUMeshEnd
3325
3326   class MEDCouplingStructuredMesh : public MEDCoupling::MEDCouplingMesh
3327   {
3328   public:
3329     mcIdType getCellIdFromPos(mcIdType i, mcIdType j, mcIdType k) const;
3330     mcIdType getNodeIdFromPos(mcIdType i, mcIdType j, mcIdType k) const;
3331     mcIdType getNumberOfCellsOfSubLevelMesh() const;
3332     int getSpaceDimensionOnNodeStruct() const;
3333     double computeSquareness() const;
3334     virtual std::vector<mcIdType> getNodeGridStructure() const;
3335     std::vector<mcIdType> getCellGridStructure() const;
3336     MEDCoupling1SGTUMesh *build1SGTUnstructured() const;
3337     std::vector<mcIdType> getLocationFromCellId(mcIdType cellId) const;
3338     std::vector<mcIdType> getLocationFromNodeId(mcIdType cellId) const;
3339     static INTERP_KERNEL::NormalizedCellType GetGeoTypeGivenMeshDimension(int meshDim);
3340     MEDCoupling1SGTUMesh *build1SGTSubLevelMesh() const;
3341     static mcIdType DeduceNumberOfGivenStructure(const std::vector<mcIdType>& st);
3342     static DataArrayIdType *ComputeCornersGhost(const std::vector<mcIdType>& st, mcIdType ghostLev);
3343     static std::vector<mcIdType> GetSplitVectFromStruct(const std::vector<mcIdType>& strct);
3344     %extend
3345     {
3346       virtual MEDCouplingStructuredMesh *buildStructuredSubPart(PyObject *cellPart) const
3347       {
3348         mcIdType tmpp1=-1,tmpp2=-1;
3349         std::vector<mcIdType> tmp=fillArrayWithPyListInt2(cellPart,tmpp1,tmpp2);
3350         std::vector< std::pair<mcIdType,mcIdType> > inp;
3351         if(tmpp2==2)
3352           {
3353             inp.resize(tmpp1);
3354             for(mcIdType i=0;i<tmpp1;i++)
3355               { inp[i].first=tmp[2*i]; inp[i].second=tmp[2*i+1]; }
3356           }
3357         else if(tmpp2==1)
3358           {
3359             if(tmpp1%2!=0)
3360               throw INTERP_KERNEL::Exception("Wrap of MEDCouplingStructuredMesh.buildStructuredSubPart : invalid input size ! Must be even size !");
3361             inp.resize(tmpp1/2);
3362             for(mcIdType i=0;i<tmpp1/2;i++)
3363               { inp[i].first=tmp[2*i]; inp[i].second=tmp[2*i+1]; }
3364           }
3365         else
3366           throw INTERP_KERNEL::Exception("Wrap of MEDCouplingStructuredMesh.buildStructuredSubPart : invalid input size !");
3367         return self->buildStructuredSubPart(inp);
3368       }
3369
3370       static DataArrayIdType *BuildExplicitIdsFrom(PyObject *st, PyObject *part)
3371       {
3372         std::vector< std::pair<mcIdType,mcIdType> > inp;
3373         convertPyToVectorPairInt(part,inp);
3374         //
3375         mcIdType szArr,sw,iTypppArr;
3376         std::vector<mcIdType> stdvecTyyppArr;
3377         const mcIdType *tmp4=convertIntStarLikePyObjToCppIntStar(st,sw,szArr,iTypppArr,stdvecTyyppArr);
3378         std::vector<mcIdType> tmp5(tmp4,tmp4+szArr);
3379         //
3380         return MEDCouplingStructuredMesh::BuildExplicitIdsFrom(tmp5,inp);
3381       }
3382
3383       static void MultiplyPartOf(const std::vector<mcIdType>& st, PyObject *part, double factor, DataArrayDouble *da)
3384       {
3385         std::vector< std::pair<mcIdType,mcIdType> > inp;
3386         convertPyToVectorPairInt(part,inp);
3387         MEDCouplingStructuredMesh::MultiplyPartOf(st,inp,factor,da);
3388       }
3389
3390       static void MultiplyPartOfByGhost(const std::vector<mcIdType>& st, PyObject *part, mcIdType ghostSize, double factor, DataArrayDouble *da)
3391       {
3392         std::vector< std::pair<mcIdType,mcIdType> > inp;
3393         convertPyToVectorPairInt(part,inp);
3394         MEDCouplingStructuredMesh::MultiplyPartOfByGhost(st,inp,ghostSize,factor,da);
3395       }
3396
3397       static PyObject *PutInGhostFormat(mcIdType ghostSize, const std::vector<mcIdType>& st, PyObject *part)
3398       {
3399         std::vector< std::pair<mcIdType,mcIdType> > inp;
3400         convertPyToVectorPairInt(part,inp);
3401         std::vector<mcIdType> stWithGhost;
3402         std::vector< std::pair<mcIdType,mcIdType> > partWithGhost;
3403         MEDCouplingStructuredMesh::PutInGhostFormat(ghostSize,st,inp,stWithGhost,partWithGhost);
3404         PyObject *ret(PyTuple_New(2));
3405         PyTuple_SetItem(ret,0,convertIntArrToPyList2(stWithGhost));
3406         PyTuple_SetItem(ret,1,convertFromVectorPairInt(partWithGhost));
3407         return ret;
3408       }
3409
3410       static DataArrayDouble *ExtractFieldOfDoubleFrom(const std::vector<mcIdType>& st, const DataArrayDouble *fieldOfDbl, PyObject *partCompactFormat)
3411       {
3412         std::vector< std::pair<mcIdType,mcIdType> > inp;
3413         convertPyToVectorPairInt(partCompactFormat,inp);
3414         return MEDCouplingStructuredMesh::ExtractFieldOfDoubleFrom(st,fieldOfDbl,inp);
3415       }
3416
3417       static void AssignPartOfFieldOfDoubleUsing(const std::vector<mcIdType>& st, DataArrayDouble *fieldOfDbl, PyObject *partCompactFormat, const DataArrayDouble *other)
3418       {
3419         std::vector< std::pair<mcIdType,mcIdType> > inp;
3420         convertPyToVectorPairInt(partCompactFormat,inp);
3421         MEDCouplingStructuredMesh::AssignPartOfFieldOfDoubleUsing(st,fieldOfDbl,inp,other);
3422       }
3423
3424       static mcIdType DeduceNumberOfGivenRangeInCompactFrmt(PyObject *part)
3425       {
3426         std::vector< std::pair<mcIdType,mcIdType> > inp;
3427         convertPyToVectorPairInt(part,inp);
3428         return MEDCouplingStructuredMesh::DeduceNumberOfGivenRangeInCompactFrmt(inp);
3429       }
3430
3431       static DataArrayIdType *Build1GTNodalConnectivity(PyObject *li)
3432       {
3433         mcIdType szArr,sw,iTypppArr;
3434         std::vector<mcIdType> stdvecTyyppArr;
3435         const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3436         return MEDCouplingStructuredMesh::Build1GTNodalConnectivity(tmp,tmp+szArr);
3437       }
3438
3439       static DataArrayIdType *Build1GTNodalConnectivityOfSubLevelMesh(PyObject *li)
3440       {
3441         mcIdType szArr,sw,iTypppArr;
3442         std::vector<mcIdType> stdvecTyyppArr;
3443         const mcIdType *tmp(convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr));
3444         return MEDCouplingStructuredMesh::Build1GTNodalConnectivityOfSubLevelMesh(tmp,tmp+szArr);
3445       }
3446
3447       static std::vector<mcIdType> GetDimensionsFromCompactFrmt(PyObject *partCompactFormat)
3448       {
3449         std::vector< std::pair<mcIdType,mcIdType> > inp;
3450         convertPyToVectorPairInt(partCompactFormat,inp);
3451         return MEDCouplingStructuredMesh::GetDimensionsFromCompactFrmt(inp);
3452       }
3453
3454       static PyObject *GetCompactFrmtFromDimensions(const std::vector<mcIdType>& dims)
3455       {
3456         std::vector< std::pair<mcIdType,mcIdType> > ret(MEDCouplingStructuredMesh::GetCompactFrmtFromDimensions(dims));
3457         PyObject *retPy=PyList_New(ret.size());
3458         for(std::size_t i=0;i<ret.size();i++)
3459           {
3460             PyObject *tmp=PyTuple_New(2);
3461             PyTuple_SetItem(tmp,0,PyInt_FromLong(ret[i].first));
3462             PyTuple_SetItem(tmp,1,PyInt_FromLong(ret[i].second));
3463             PyList_SetItem(retPy,i,tmp);
3464           }
3465         return retPy;
3466       }
3467
3468       static PyObject *IntersectRanges(PyObject *r1, PyObject *r2)
3469       {
3470         std::vector< std::pair<mcIdType,mcIdType> > r1Cpp,r2Cpp;
3471         convertPyToVectorPairInt(r1,r1Cpp);
3472         convertPyToVectorPairInt(r2,r2Cpp);
3473         std::vector< std::pair<mcIdType,mcIdType> > ret(MEDCouplingStructuredMesh::IntersectRanges(r1Cpp,r2Cpp));
3474         PyObject *retPy=PyList_New(ret.size());
3475         for(std::size_t i=0;i<ret.size();i++)
3476           {
3477             PyObject *tmp=PyTuple_New(2);
3478             PyTuple_SetItem(tmp,0,PyInt_FromLong(ret[i].first));
3479             PyTuple_SetItem(tmp,1,PyInt_FromLong(ret[i].second));
3480             PyList_SetItem(retPy,i,tmp);
3481           }
3482         return retPy;
3483       }
3484
3485       static bool AreRangesIntersect(PyObject *r1, PyObject *r2)
3486       {
3487         std::vector< std::pair<mcIdType,mcIdType> > r1Cpp,r2Cpp;
3488         convertPyToVectorPairInt(r1,r1Cpp);
3489         convertPyToVectorPairInt(r2,r2Cpp);
3490         return MEDCouplingStructuredMesh::AreRangesIntersect(r1Cpp,r2Cpp);
3491       }
3492
3493       static PyObject *IsPartStructured(PyObject *li, PyObject *st)
3494       {
3495         mcIdType szArr,sw,iTypppArr;
3496         std::vector<mcIdType> stdvecTyyppArr;
3497         const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3498         mcIdType szArr2,sw2,iTypppArr2;
3499         std::vector<mcIdType> stdvecTyyppArr2;
3500         const mcIdType *tmp2=convertIntStarLikePyObjToCppIntStar(st,sw2,szArr2,iTypppArr2,stdvecTyyppArr2);
3501         std::vector<mcIdType> tmp3(tmp2,tmp2+szArr2);
3502         std::vector< std::pair<mcIdType,mcIdType> > partCompactFormat;
3503         bool ret0=MEDCouplingStructuredMesh::IsPartStructured(tmp,tmp+szArr,tmp3,partCompactFormat);
3504         PyObject *ret=PyTuple_New(2);
3505         PyObject *ret0Py=ret0?Py_True:Py_False; Py_XINCREF(ret0Py);
3506         PyTuple_SetItem(ret,0,ret0Py);
3507         PyObject *ret1Py=PyList_New(partCompactFormat.size());
3508         for(std::size_t i=0;i<partCompactFormat.size();i++)
3509           {
3510             PyObject *tmp4=PyTuple_New(2);
3511             PyTuple_SetItem(tmp4,0,PyInt_FromLong(partCompactFormat[i].first));
3512             PyTuple_SetItem(tmp4,1,PyInt_FromLong(partCompactFormat[i].second));
3513             PyList_SetItem(ret1Py,i,tmp4);
3514           }
3515         PyTuple_SetItem(ret,1,ret1Py);
3516         return ret;
3517       }
3518
3519       static PyObject *ChangeReferenceFromGlobalOfCompactFrmt(PyObject *bigInAbs, PyObject *partOfBigInAbs, bool check=true)
3520       {
3521         std::vector< std::pair<mcIdType,mcIdType> > param0,param1,ret;
3522         convertPyToVectorPairInt(bigInAbs,param0);
3523         convertPyToVectorPairInt(partOfBigInAbs,param1);
3524         MEDCouplingStructuredMesh::ChangeReferenceFromGlobalOfCompactFrmt(param0,param1,ret,check);
3525         PyObject *retPy(PyList_New(ret.size()));
3526         for(std::size_t i=0;i<ret.size();i++)
3527           {
3528             PyObject *tmp(PyTuple_New(2));
3529             PyTuple_SetItem(tmp,0,PyInt_FromLong(ret[i].first));
3530             PyTuple_SetItem(tmp,1,PyInt_FromLong(ret[i].second));
3531             PyList_SetItem(retPy,i,tmp);
3532           }
3533         return retPy;
3534       }
3535
3536       static PyObject *TranslateCompactFrmt(PyObject *part, const std::vector<mcIdType>& translation)
3537       {
3538         std::vector< std::pair<mcIdType,mcIdType> > param0;
3539         convertPyToVectorPairInt(part,param0);
3540         std::vector< std::pair<mcIdType,mcIdType> > ret(MEDCouplingStructuredMesh::TranslateCompactFrmt(param0,translation));
3541         PyObject *retPy(PyList_New(ret.size()));
3542         for(std::size_t i=0;i<ret.size();i++)
3543           {
3544             PyObject *tmp(PyTuple_New(2));
3545             PyTuple_SetItem(tmp,0,PyInt_FromLong(ret[i].first));
3546             PyTuple_SetItem(tmp,1,PyInt_FromLong(ret[i].second));
3547             PyList_SetItem(retPy,i,tmp);
3548           }
3549         return retPy;
3550       }
3551
3552       static std::vector<mcIdType> FindTranslationFrom(PyObject *startingFrom, PyObject *goingTo)
3553       {
3554         std::vector< std::pair<mcIdType,mcIdType> > param0,param1;
3555         convertPyToVectorPairInt(startingFrom,param0);
3556         convertPyToVectorPairInt(goingTo,param1);
3557         return  MEDCouplingStructuredMesh::FindTranslationFrom(param0,param1);
3558       }
3559
3560       static PyObject *ChangeReferenceToGlobalOfCompactFrmt(PyObject *bigInAbs, PyObject *partOfBigRelativeToBig, bool check=true)
3561       {
3562         std::vector< std::pair<mcIdType,mcIdType> > param0,param1,ret;
3563         convertPyToVectorPairInt(bigInAbs,param0);
3564         convertPyToVectorPairInt(partOfBigRelativeToBig,param1);
3565         MEDCouplingStructuredMesh::ChangeReferenceToGlobalOfCompactFrmt(param0,param1,ret,check);
3566         PyObject *retPy(PyList_New(ret.size()));
3567         for(std::size_t i=0;i<ret.size();i++)
3568           {
3569             PyObject *tmp(PyTuple_New(2));
3570             PyTuple_SetItem(tmp,0,PyInt_FromLong(ret[i].first));
3571             PyTuple_SetItem(tmp,1,PyInt_FromLong(ret[i].second));
3572             PyList_SetItem(retPy,i,tmp);
3573           }
3574         return retPy;
3575       }
3576     }
3577   };
3578
3579   class MEDCouplingCurveLinearMesh;
3580
3581   //== MEDCouplingCMesh
3582   
3583   class MEDCouplingCMesh : public MEDCoupling::MEDCouplingStructuredMesh
3584   {
3585   public:
3586     static MEDCouplingCMesh *New();
3587     static MEDCouplingCMesh *New(const std::string& meshName);
3588     void setCoords(const DataArrayDouble *coordsX,
3589                    const DataArrayDouble *coordsY=0,
3590                    const DataArrayDouble *coordsZ=0);
3591     void setCoordsAt(int i, const DataArrayDouble *arr);
3592     MEDCouplingCurveLinearMesh *buildCurveLinear() const;
3593     %extend {
3594       MEDCouplingCMesh()
3595       {
3596         return MEDCouplingCMesh::New();
3597       }
3598       MEDCouplingCMesh(const std::string& meshName)
3599       {
3600         return MEDCouplingCMesh::New(meshName);
3601       }
3602       std::string __str__() const
3603       {
3604         return self->simpleRepr();
3605       }
3606       std::string __repr__() const
3607       {
3608         std::ostringstream oss;
3609         self->reprQuickOverview(oss);
3610         return oss.str();
3611       }
3612       DataArrayDouble *getCoordsAt(int i)
3613       {
3614         DataArrayDouble *ret=self->getCoordsAt(i);
3615         if(ret)
3616           ret->incrRef();
3617         return ret;
3618       }
3619     }
3620   };
3621
3622   //== MEDCouplingCMesh End
3623
3624   //== MEDCouplingCurveLinearMesh
3625
3626   class MEDCouplingCurveLinearMesh : public MEDCoupling::MEDCouplingStructuredMesh
3627   {
3628   public:
3629     static MEDCouplingCurveLinearMesh *New();
3630     static MEDCouplingCurveLinearMesh *New(const std::string& meshName);
3631     void setCoords(const DataArrayDouble *coords);
3632     %extend {
3633       MEDCouplingCurveLinearMesh()
3634       {
3635         return MEDCouplingCurveLinearMesh::New();
3636       }
3637       MEDCouplingCurveLinearMesh(const std::string& meshName)
3638       {
3639         return MEDCouplingCurveLinearMesh::New(meshName);
3640       }
3641       std::string __str__() const 
3642       {
3643         return self->simpleRepr();
3644       }
3645       std::string __repr__() const
3646       {
3647         std::ostringstream oss;
3648         self->reprQuickOverview(oss);
3649         return oss.str();
3650       }
3651       DataArrayDouble *getCoords()
3652       {
3653         DataArrayDouble *ret=self->getCoords();
3654         if(ret)
3655           ret->incrRef();
3656         return ret;
3657       }
3658       void setNodeGridStructure(PyObject *gridStruct)
3659       {
3660         mcIdType szArr,sw,iTypppArr;
3661         std::vector<mcIdType> stdvecTyyppArr;
3662         const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(gridStruct,sw,szArr,iTypppArr,stdvecTyyppArr);
3663         self->setNodeGridStructure(tmp,tmp+szArr);
3664       }
3665     }
3666   };
3667
3668   //== MEDCouplingCurveLinearMesh End
3669
3670   //== MEDCouplingIMesh
3671
3672   class MEDCouplingIMesh : public MEDCoupling::MEDCouplingStructuredMesh
3673   {
3674   public:
3675     static MEDCouplingIMesh *New();
3676     //
3677     void setSpaceDimension(int spaceDim);
3678     std::vector<mcIdType> getNodeStruct() const;
3679     std::vector<double> getOrigin() const;
3680     std::vector<double> getDXYZ() const;
3681     void setAxisUnit(const std::string& unitName);
3682     std::string getAxisUnit() const;
3683     double getMeasureOfAnyCell() const;
3684     MEDCouplingCMesh *convertToCartesian() const;
3685     void refineWithFactor(const std::vector<mcIdType>& factors);
3686     MEDCouplingIMesh *asSingleCell() const;
3687     MEDCouplingIMesh *buildWithGhost(mcIdType ghostLev) const;
3688     %extend
3689     {
3690       MEDCouplingIMesh()
3691       {
3692         return MEDCouplingIMesh::New();
3693       }
3694       static MEDCouplingIMesh *New(const std::string& meshName, int spaceDim, PyObject *nodeStrct, PyObject *origin, PyObject *dxyz)
3695       {
3696         static const char msg0[]="MEDCouplingIMesh::New : error on 'origin' parameter !";
3697         static const char msg1[]="MEDCouplingIMesh::New : error on 'dxyz' parameter !";
3698         const mcIdType *nodeStrctPtr(0);
3699         const double *originPtr(0),*dxyzPtr(0);
3700         mcIdType sw,sz,val0;
3701         std::vector<mcIdType> bb0;
3702         nodeStrctPtr=convertIntStarLikePyObjToCppIntStar(nodeStrct,sw,sz,val0,bb0);
3703         //
3704         double val,val2;
3705         std::vector<double> bb,bb2;
3706         mcIdType sz1,sz2;
3707         originPtr=convertObjToPossibleCpp5_SingleCompo(origin,sw,val,bb,msg0,false,sz1);
3708         dxyzPtr=convertObjToPossibleCpp5_SingleCompo(dxyz,sw,val2,bb2,msg1,false,sz2);
3709         //
3710         return MEDCouplingIMesh::New(meshName,spaceDim,nodeStrctPtr,nodeStrctPtr+sz,originPtr,originPtr+sz1,dxyzPtr,dxyzPtr+sz2);
3711       }
3712
3713       MEDCouplingIMesh(const std::string& meshName, int spaceDim, PyObject *nodeStrct, PyObject *origin, PyObject *dxyz)
3714       {
3715         return MEDCoupling_MEDCouplingIMesh_New__SWIG_1(meshName,spaceDim,nodeStrct,origin,dxyz);
3716       }
3717
3718       void setNodeStruct(PyObject *nodeStrct)
3719       {
3720         mcIdType sw,sz,val0;
3721         std::vector<mcIdType> bb0;
3722         const mcIdType *nodeStrctPtr(convertIntStarLikePyObjToCppIntStar(nodeStrct,sw,sz,val0,bb0));
3723         self->setNodeStruct(nodeStrctPtr,nodeStrctPtr+sz);
3724       }
3725
3726       void setOrigin(PyObject *origin)
3727       {
3728         static const char msg[]="MEDCouplingIMesh::setOrigin : invalid input 'origin' parameter ! integer, float, list/tuple of float, DataArrayDouble or DataArrayDoubleTuple supported !";
3729         double val;
3730         std::vector<double> bb;
3731         mcIdType sw,nbTuples;
3732         const double *originPtr(convertObjToPossibleCpp5_SingleCompo(origin,sw,val,bb,msg,false,nbTuples));
3733         self->setOrigin(originPtr,originPtr+nbTuples);
3734       }
3735       
3736       void setDXYZ(PyObject *dxyz)
3737       {
3738         static const char msg[]="MEDCouplingIMesh::setDXYZ : invalid input 'dxyz' parameter ! integer, float, list/tuple of float, DataArrayDouble or DataArrayDoubleTuple supported !";
3739         double val;
3740         std::vector<double> bb;
3741         mcIdType sw,nbTuples;
3742         const double *originPtr(convertObjToPossibleCpp5_SingleCompo(dxyz,sw,val,bb,msg,false,nbTuples));
3743         self->setDXYZ(originPtr,originPtr+nbTuples);
3744       }
3745
3746       static void CondenseFineToCoarse(const std::vector<mcIdType>& coarseSt, const DataArrayDouble *fineDA, PyObject *fineLocInCoarse, const std::vector<mcIdType>& facts, DataArrayDouble *coarseDA)
3747       {
3748         std::vector< std::pair<mcIdType,mcIdType> > inp;
3749         convertPyToVectorPairInt(fineLocInCoarse,inp);
3750         MEDCouplingIMesh::CondenseFineToCoarse(coarseSt,fineDA,inp,facts,coarseDA);
3751       }
3752
3753       static void CondenseFineToCoarseGhost(const std::vector<mcIdType>& coarseSt, const DataArrayDouble *fineDA, PyObject *fineLocInCoarse, const std::vector<mcIdType>& facts, DataArrayDouble *coarseDA, mcIdType ghostSize)
3754       {
3755         std::vector< std::pair<mcIdType,mcIdType> > inp;
3756         convertPyToVectorPairInt(fineLocInCoarse,inp);
3757         MEDCouplingIMesh::CondenseFineToCoarseGhost(coarseSt,fineDA,inp,facts,coarseDA,ghostSize);
3758       }
3759
3760       static void SpreadCoarseToFine(const DataArrayDouble *coarseDA, const std::vector<mcIdType>& coarseSt, DataArrayDouble *fineDA, PyObject *fineLocInCoarse, const std::vector<mcIdType>& facts)
3761       {
3762         std::vector< std::pair<mcIdType,mcIdType> > inp;
3763         convertPyToVectorPairInt(fineLocInCoarse,inp);
3764         MEDCouplingIMesh::SpreadCoarseToFine(coarseDA,coarseSt,fineDA,inp,facts);
3765       }
3766
3767       static void SpreadCoarseToFineGhost(const DataArrayDouble *coarseDA, const std::vector<mcIdType>& coarseSt, DataArrayDouble *fineDA, PyObject *fineLocInCoarse, const std::vector<mcIdType>& facts, mcIdType ghostSize)
3768       {
3769         std::vector< std::pair<mcIdType,mcIdType> > inp;
3770         convertPyToVectorPairInt(fineLocInCoarse,inp);
3771         MEDCouplingIMesh::SpreadCoarseToFineGhost(coarseDA,coarseSt,fineDA,inp,facts,ghostSize);
3772       }
3773
3774       static void SpreadCoarseToFineGhostZone(const DataArrayDouble *coarseDA, const std::vector<mcIdType>& coarseSt, DataArrayDouble *fineDA, PyObject *fineLocInCoarse, const std::vector<mcIdType>& facts, mcIdType ghostSize)
3775       {
3776         std::vector< std::pair<mcIdType,mcIdType> > inp;
3777         convertPyToVectorPairInt(fineLocInCoarse,inp);
3778         MEDCouplingIMesh::SpreadCoarseToFineGhostZone(coarseDA,coarseSt,fineDA,inp,facts,ghostSize);
3779       }
3780
3781       std::string __str__() const
3782       {
3783         return self->simpleRepr();
3784       }
3785       std::string __repr__() const
3786       {
3787         std::ostringstream oss;
3788         self->reprQuickOverview(oss);
3789         return oss.str();
3790       }
3791     }
3792   };
3793
3794   //== MEDCouplingIMesh End
3795
3796 }
3797
3798 namespace MEDCoupling
3799 {
3800   class MEDCouplingField : public MEDCoupling::RefCountObject, public MEDCoupling::TimeLabel
3801   {
3802   public:
3803     virtual void checkConsistencyLight() const;
3804     virtual bool areCompatibleForMerge(const MEDCouplingField *other) const;
3805     bool areStrictlyCompatible(const MEDCouplingField *other) const;
3806     bool areStrictlyCompatibleForMulDiv(const MEDCouplingField *other) const;
3807     virtual void copyTinyStringsFrom(const MEDCouplingField *other);
3808     void setMesh(const MEDCoupling::MEDCouplingMesh *mesh);
3809     void setName(const char *name);
3810     std::string getDescription() const;
3811     void setDescription(const char *desc);
3812     std::string getName() const;
3813     TypeOfField getTypeOfField() const;
3814     NatureOfField getNature() const;
3815     virtual void setNature(NatureOfField nat);
3816     DataArrayDouble *getLocalizationOfDiscr() const;
3817     MEDCouplingFieldDouble *buildMeasureField(bool isAbs) const;
3818     mcIdType getNumberOfTuplesExpected() const;
3819     mcIdType getNumberOfMeshPlacesExpected() const;
3820     void setGaussLocalizationOnType(INTERP_KERNEL::NormalizedCellType type, const std::vector<double>& refCoo,
3821                                     const std::vector<double>& gsCoo, const std::vector<double>& wg);
3822     void clearGaussLocalizations();
3823     MEDCouplingGaussLocalization& getGaussLocalization(int locId);
3824     mcIdType getNbOfGaussLocalization() const;
3825     mcIdType getGaussLocalizationIdOfOneCell(mcIdType cellId) const;
3826     const MEDCouplingGaussLocalization& getGaussLocalization(int locId) const;
3827     mcIdType getGaussLocalizationIdOfOneType(INTERP_KERNEL::NormalizedCellType type) const;
3828     void setDiscretization(MEDCouplingFieldDiscretization *newDisc);
3829     %extend {
3830       PyObject *getMesh() const
3831       {
3832         MEDCouplingMesh *ret1=const_cast<MEDCouplingMesh *>(self->getMesh());
3833         if(ret1)
3834           ret1->incrRef();
3835         return convertMesh(ret1,SWIG_POINTER_OWN | 0 );
3836       }
3837
3838       PyObject *getDiscretization()
3839       {
3840         MEDCouplingFieldDiscretization *ret=self->getDiscretization();
3841         if(ret)
3842           ret->incrRef();
3843         return convertFieldDiscretization(ret,SWIG_POINTER_OWN | 0 );
3844       }
3845
3846       PyObject *getGaussLocalizationIdsOfOneType(INTERP_KERNEL::NormalizedCellType type) const
3847       {
3848         std::set<mcIdType> ret=self->getGaussLocalizationIdsOfOneType(type);
3849         return convertIntArrToPyList3(ret);
3850       }
3851
3852       PyObject *buildSubMeshData(PyObject *li) const
3853       {
3854         DataArrayIdType *ret1=0;
3855         MEDCouplingMesh *ret0=0;
3856         void *da=0;
3857         int res1=SWIG_ConvertPtr(li,&da,SWIGTITraits<mcIdType>::TI, 0 |  0 );
3858         if (!SWIG_IsOK(res1))
3859           {
3860             mcIdType size;
3861             INTERP_KERNEL::AutoPtr<mcIdType> tmp=convertPyToNewIntArr2(li,&size);
3862             ret0=self->buildSubMeshData(tmp,tmp+size,ret1);
3863           }
3864         else
3865           {
3866             DataArrayIdType *da2=reinterpret_cast< DataArrayIdType * >(da);
3867             if(!da2)
3868               throw INTERP_KERNEL::Exception("Not null DataArrayIdType instance expected !");
3869             da2->checkAllocated();
3870             ret0=self->buildSubMeshData(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems(),ret1);
3871           }
3872         PyObject *res = PyList_New(2);
3873         PyList_SetItem(res,0,convertMesh(ret0, SWIG_POINTER_OWN | 0 ));
3874         PyList_SetItem(res,1,SWIG_NewPointerObj((void*)ret1,SWIGTITraits<mcIdType>::TI,SWIG_POINTER_OWN | 0));
3875         return res;
3876       }
3877
3878       PyObject *buildSubMeshDataRange(mcIdType begin, mcIdType end, mcIdType step) const
3879       {
3880         DataArrayIdType *ret1=0;
3881         mcIdType bb,ee,ss;
3882         MEDCouplingMesh *ret0=self->buildSubMeshDataRange(begin,end,step,bb,ee,ss,ret1);
3883         PyObject *res=PyTuple_New(2);
3884         PyTuple_SetItem(res,0,convertMesh(ret0, SWIG_POINTER_OWN | 0 ));
3885         if(ret1)
3886           PyTuple_SetItem(res,1,SWIG_NewPointerObj((void*)ret1,SWIGTITraits<mcIdType>::TI,SWIG_POINTER_OWN | 0));
3887         else
3888           {
3889             PyObject *res1=PySlice_New(PyInt_FromLong(bb),PyInt_FromLong(ee),PyInt_FromLong(ss));
3890             PyTuple_SetItem(res,1,res1);
3891           }
3892         return res;
3893       }
3894
3895       DataArrayIdType *computeTupleIdsToSelectFromCellIds(PyObject *cellIds) const
3896       {
3897         mcIdType sw,sz(-1);
3898         mcIdType v0; std::vector<mcIdType> v1;
3899         const mcIdType *cellIdsBg(convertIntStarLikePyObjToCppIntStar(cellIds,sw,sz,v0,v1));
3900         return self->computeTupleIdsToSelectFromCellIds(cellIdsBg,cellIdsBg+sz);
3901       }
3902
3903       void setGaussLocalizationOnCells(PyObject *li, const std::vector<double>& refCoo,
3904                                        const std::vector<double>& gsCoo, const std::vector<double>& wg)
3905       {
3906         void *da=0;
3907         int res1=SWIG_ConvertPtr(li,&da,SWIGTITraits<mcIdType>::TI, 0 |  0 );
3908         if (!SWIG_IsOK(res1))
3909           {
3910             mcIdType size;
3911             INTERP_KERNEL::AutoPtr<mcIdType> tmp=convertPyToNewIntArr2(li,&size);
3912             self->setGaussLocalizationOnCells(tmp,((mcIdType *)tmp)+size,refCoo,gsCoo,wg);
3913           }
3914         else
3915           {
3916             DataArrayIdType *da2=reinterpret_cast< DataArrayIdType * >(da);
3917             if(!da2)
3918               throw INTERP_KERNEL::Exception("Not null DataArrayIdType instance expected !");
3919             da2->checkAllocated();
3920             self->setGaussLocalizationOnCells(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems(),refCoo,gsCoo,wg);
3921           }
3922       }
3923
3924       PyObject *getCellIdsHavingGaussLocalization(int locId) const
3925       {
3926         std::vector<mcIdType> tmp;
3927         self->getCellIdsHavingGaussLocalization(locId,tmp);
3928         DataArrayIdType *ret=DataArrayIdType::New();
3929         ret->alloc((mcIdType)tmp.size(),1);
3930         std::copy(tmp.begin(),tmp.end(),ret->getPointer());
3931         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 );
3932       }
3933       
3934       mcIdType getNumberOfTuplesExpectedRegardingCode(PyObject *code, PyObject *idsPerType) const
3935       {
3936         std::vector<mcIdType> inp0;
3937         convertPyToNewIntArr4(code,1,3,inp0);
3938         std::vector<const DataArrayIdType *> inp1;
3939         convertFromPyObjVectorOfObj<const MEDCoupling::DataArrayIdType *>(idsPerType,SWIGTITraits<mcIdType>::TI,"DataArrayIdType",inp1);
3940         return self->getNumberOfTuplesExpectedRegardingCode(inp0,inp1);
3941       }
3942     }
3943   };
3944   
3945   class MEDCouplingFieldTemplate : public MEDCoupling::MEDCouplingField
3946   {
3947   public:
3948     static MEDCouplingFieldTemplate *New(const MEDCouplingFieldDouble& f);
3949     static MEDCouplingFieldTemplate *New(const MEDCouplingFieldFloat& f);
3950     static MEDCouplingFieldTemplate *New(const MEDCouplingFieldInt32& f);
3951     static MEDCouplingFieldTemplate *New(const MEDCouplingFieldInt64& f);
3952     static MEDCouplingFieldTemplate *New(TypeOfField type);
3953     std::string simpleRepr() const;
3954     std::string advancedRepr() const;
3955     bool isEqual(const MEDCouplingFieldTemplate *other, double meshPrec) const;
3956     bool isEqualWithoutConsideringStr(const MEDCouplingFieldTemplate *other, double meshPrec) const;
3957     %extend
3958        {
3959          MEDCouplingFieldTemplate(const MEDCouplingFieldDouble& f)
3960          {
3961            return MEDCouplingFieldTemplate::New(f);
3962          }
3963
3964          MEDCouplingFieldTemplate(const MEDCouplingFieldFloat& f)
3965          {
3966            return MEDCouplingFieldTemplate::New(f);
3967          }
3968          
3969          MEDCouplingFieldTemplate(const MEDCouplingFieldInt32& f)
3970          {
3971            return MEDCouplingFieldTemplate::New(f);
3972          }
3973
3974          MEDCouplingFieldTemplate(const MEDCouplingFieldInt64& f)
3975          {
3976            return MEDCouplingFieldTemplate::New(f);
3977          }
3978          
3979          MEDCouplingFieldTemplate(TypeOfField type)
3980          {
3981            return MEDCouplingFieldTemplate::New(type);
3982          }
3983          
3984          std::string __str__() const
3985          {
3986            return self->simpleRepr();
3987          }
3988          
3989          std::string __repr__() const
3990          {
3991            std::ostringstream oss;
3992            self->reprQuickOverview(oss);
3993            return oss.str();
3994          }
3995
3996          PyObject *isEqualIfNotWhy(const MEDCouplingFieldTemplate *other, double meshPrec) const
3997          {
3998            std::string ret1;
3999            bool ret0=self->isEqualIfNotWhy(other,meshPrec,ret1);
4000            PyObject *ret=PyTuple_New(2);
4001            PyObject *ret0Py=ret0?Py_True:Py_False;
4002            Py_XINCREF(ret0Py);
4003            PyTuple_SetItem(ret,0,ret0Py);
4004            PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
4005            return ret;
4006          }
4007        }
4008   };
4009
4010   template<class T>
4011  class MEDCouplingFieldT : public MEDCoupling::MEDCouplingField
4012   {
4013   public:
4014     TypeOfTimeDiscretization getTimeDiscretization() const;
4015   protected:
4016     MEDCouplingFieldT();
4017     ~MEDCouplingFieldT();
4018   };
4019
4020   %template(MEDCouplingFieldTdouble) MEDCoupling::MEDCouplingFieldT<double>;
4021   %template(MEDCouplingFieldTfloat) MEDCoupling::MEDCouplingFieldT<float>;
4022   %template(MEDCouplingFieldTint) MEDCoupling::MEDCouplingFieldT<int>;
4023   
4024   class MEDCouplingFieldInt32;
4025   class MEDCouplingFieldInt64;
4026   class MEDCouplingFieldFloat;
4027   
4028   class MEDCouplingFieldDouble : public MEDCouplingFieldT<double>
4029   {
4030   public:
4031     static MEDCouplingFieldDouble *New(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME);
4032     static MEDCouplingFieldDouble *New(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME);
4033     bool isEqual(const MEDCouplingFieldDouble *other, double meshPrec, double valsPrec) const;
4034     bool isEqualWithoutConsideringStr(const MEDCouplingFieldDouble *other, double meshPrec, double valsPrec) const;
4035     void setTimeUnit(const std::string& unit);
4036     std::string getTimeUnit() const;
4037     void synchronizeTimeWithSupport();
4038     void copyTinyAttrFrom(const MEDCouplingFieldDouble *other);
4039     void copyAllTinyAttrFrom(const MEDCouplingFieldDouble *other);
4040     std::string simpleRepr() const;
4041     std::string advancedRepr() const;
4042     std::string  writeVTK(const std::string& fileName, bool isBinary=true) const;
4043     MEDCouplingFieldInt32 *convertToIntField() const;
4044     MEDCouplingFieldFloat *convertToFloatField() const;
4045     MEDCouplingFieldDouble *clone(bool recDeepCpy) const;
4046     MEDCouplingFieldDouble *cloneWithMesh(bool recDeepCpy) const;
4047     MEDCouplingFieldDouble *deepCopy() const;
4048     MEDCouplingFieldDouble *buildNewTimeReprFromThis(TypeOfTimeDiscretization td, bool deepCopy) const;
4049     MEDCouplingFieldDouble *nodeToCellDiscretization() const;
4050     MEDCouplingFieldDouble *cellToNodeDiscretization() const;
4051     double getIJ(int tupleId, int compoId) const;
4052     double getIJK(int cellId, int nodeIdInCell, int compoId) const;
4053     void synchronizeTimeWithMesh();
4054     void setArray(DataArrayDouble *array);
4055     void setEndArray(DataArrayDouble *array);
4056     void setTime(double val, int iteration, int order);
4057     void setStartTime(double val, int iteration, int order);
4058     void setEndTime(double val, int iteration, int order);
4059     void applyLin(double a, double b, int compoId);
4060     void applyLin(double a, double b);
4061     int getNumberOfComponents() const;
4062     int getNumberOfTuples() const;
4063     int getNumberOfValues() const;
4064     void setTimeTolerance(double val);
4065     double getTimeTolerance() const;
4066     void setIteration(int it);
4067     void setEndIteration(int it);
4068     void setOrder(int order);
4069     void setEndOrder(int order);
4070     void setTimeValue(double val);
4071     void setEndTimeValue(double val);
4072     void changeUnderlyingMesh(const MEDCouplingMesh *other, int levOfCheck, double precOnMesh, double eps=1e-15);
4073     void substractInPlaceDM(const MEDCouplingFieldDouble *f, int levOfCheck, double precOnMesh, double eps=1e-15);
4074     bool mergeNodes(double eps, double epsOnVals=1e-15);
4075     bool mergeNodesCenter(double eps, double epsOnVals=1e-15);
4076     bool zipCoords(double epsOnVals=1e-15);
4077     bool zipConnectivity(int compType,double epsOnVals=1e-15);
4078     bool simplexize(int policy);
4079     MEDCouplingFieldDouble *doublyContractedProduct() const;
4080     MEDCouplingFieldDouble *determinant() const;
4081     MEDCouplingFieldDouble *eigenValues() const;
4082     MEDCouplingFieldDouble *eigenVectors() const;
4083     MEDCouplingFieldDouble *inverse() const;
4084     MEDCouplingFieldDouble *trace() const;
4085     MEDCouplingFieldDouble *deviator() const;
4086     MEDCouplingFieldDouble *magnitude() const;
4087     MEDCouplingFieldDouble *maxPerTuple() const;
4088     void changeNbOfComponents(std::size_t newNbOfComp, double dftValue=0.);
4089     void sortPerTuple(bool asc);
4090     MEDCouplingFieldDouble &operator=(double value);
4091     void fillFromAnalytic(int nbOfComp, const std::string& func);
4092     void fillFromAnalyticCompo(int nbOfComp, const std::string& func);
4093     void fillFromAnalyticNamedCompo(int nbOfComp, const std::vector<std::string>& varsOrder, const std::string& func);
4094     void applyFunc(int nbOfComp, const std::string& func);
4095     void applyFuncCompo(int nbOfComp, const std::string& func);
4096     void applyFuncNamedCompo(int nbOfComp, const std::vector<std::string>& varsOrder, const std::string& func);
4097     void applyFunc(int nbOfComp, double val);
4098     void applyFunc(const std::string& func);
4099     void applyFuncFast32(const std::string& func);
4100     void applyFuncFast64(const std::string& func);
4101     double accumulate(int compId) const;
4102     double getMaxValue() const;
4103     double getMinValue() const;
4104     double getAverageValue() const;
4105     double norm2() const;
4106     //do not put a default value to isWAbs because confusion in python with overloaded getWeightedAverageValue method
4107     double getWeightedAverageValue(int compId, bool isWAbs) const;
4108     double integral(int compId, bool isWAbs) const;
4109     double normL1(int compId) const;
4110     double normL2(int compId) const;
4111     double normMax(int compId) const;
4112     DataArrayIdType *findIdsInRange(double vmin, double vmax) const;
4113     MEDCouplingFieldDouble *buildSubPartRange(int begin, int end, int step) const;
4114     static MEDCouplingFieldDouble *MergeFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2);
4115     static MEDCouplingFieldDouble *MeldFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2);
4116     static MEDCouplingFieldDouble *DotFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2);
4117     MEDCouplingFieldDouble *dot(const MEDCouplingFieldDouble& other) const;
4118     static MEDCouplingFieldDouble *CrossProductFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2);
4119     MEDCouplingFieldDouble *crossProduct(const MEDCouplingFieldDouble& other) const;
4120     static MEDCouplingFieldDouble *MaxFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2);
4121     MEDCouplingFieldDouble *max(const MEDCouplingFieldDouble& other) const;
4122     static MEDCouplingFieldDouble *MinFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2);
4123     static MEDCouplingFieldDouble *AddFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2);
4124     static MEDCouplingFieldDouble *SubstractFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2);
4125     static MEDCouplingFieldDouble *MultiplyFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2);
4126     static MEDCouplingFieldDouble *DivideFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2);
4127     MEDCouplingFieldDouble *min(const MEDCouplingFieldDouble& other) const;
4128     MEDCouplingFieldDouble *negate() const;
4129     %extend {
4130       MEDCouplingFieldDouble(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME)
4131       {
4132         return MEDCouplingFieldDouble::New(type,td);
4133       }
4134
4135       MEDCouplingFieldDouble(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME)
4136       {
4137         return MEDCouplingFieldDouble::New(ft,td);
4138       }
4139
4140       std::string __str__() const
4141       {
4142         return self->simpleRepr();
4143       }
4144
4145       std::string __repr__() const
4146       {
4147         std::ostringstream oss;
4148         self->reprQuickOverview(oss);
4149         return oss.str();
4150       }
4151
4152       PyObject *isEqualIfNotWhy(const MEDCouplingFieldDouble *other, double meshPrec, double valsPrec) const
4153       {
4154         std::string ret1;
4155         bool ret0=self->isEqualIfNotWhy(other,meshPrec,valsPrec,ret1);
4156         PyObject *ret=PyTuple_New(2);
4157         PyObject *ret0Py=ret0?Py_True:Py_False;
4158         Py_XINCREF(ret0Py);
4159         PyTuple_SetItem(ret,0,ret0Py);
4160         PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
4161         return ret;
4162       }
4163       
4164       MEDCouplingFieldDouble *voronoize(double eps) const
4165       {
4166         MCAuto<MEDCouplingFieldDouble> ret(self->voronoize(eps));
4167         return ret.retn();
4168       }
4169
4170       MEDCouplingFieldDouble *convertQuadraticCellsToLinear() const
4171       {
4172         MCAuto<MEDCouplingFieldDouble> ret(self->convertQuadraticCellsToLinear());
4173         return ret.retn();
4174       }
4175       
4176       MEDCouplingFieldDouble *computeVectorFieldCyl(PyObject *center, PyObject *vector) const
4177       {
4178         const char msg[]="Python wrap of MEDCouplingFieldDouble::computeVectorFieldCyl : ";
4179         double val,val2;
4180         DataArrayDouble *a,*a2;
4181         DataArrayDoubleTuple *aa,*aa2;
4182         std::vector<double> bb,bb2;
4183         mcIdType sw;
4184         const double *centerPtr=convertObjToPossibleCpp5_Safe(center,sw,val,a,aa,bb,msg,1,3,true);
4185         const double *vectorPtr=convertObjToPossibleCpp5_Safe(vector,sw,val2,a2,aa2,bb2,msg,1,3,true);
4186         return self->computeVectorFieldCyl(centerPtr,vectorPtr);
4187       }
4188
4189       DataArrayDouble *getArray()
4190       {
4191         DataArrayDouble *ret=self->getArray();
4192         if(ret)
4193           ret->incrRef();
4194         return ret;
4195       }
4196
4197       PyObject *getArrays() const
4198       {
4199         std::vector<DataArrayDouble *> arrs=self->getArrays();
4200         for(std::vector<DataArrayDouble *>::iterator it=arrs.begin();it!=arrs.end();it++)
4201           if(*it)
4202             (*it)->incrRef();
4203         std::size_t sz=arrs.size();
4204         PyObject *ret=PyTuple_New(sz);
4205         for(std::size_t i=0;i<sz;i++)
4206           {
4207             if(arrs[i])
4208               PyTuple_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(arrs[i]),SWIGTYPE_p_MEDCoupling__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
4209             else
4210               PyTuple_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_MEDCoupling__DataArrayDouble, 0 | 0 ));
4211           }
4212         return ret;
4213       }
4214
4215       void setArrays(PyObject *ls)
4216       {
4217         std::vector<const DataArrayDouble *> tmp;
4218         convertFromPyObjVectorOfObj<const DataArrayDouble *>(ls,SWIGTYPE_p_MEDCoupling__DataArrayDouble,"DataArrayDouble",tmp);
4219         std::size_t sz=tmp.size();
4220         std::vector<DataArrayDouble *> arrs(sz);
4221         for(std::size_t i=0;i<sz;i++)
4222           arrs[i]=const_cast<DataArrayDouble *>(tmp[i]);
4223         self->setArrays(arrs);
4224       }
4225
4226       DataArrayDouble *getEndArray()
4227       {
4228         DataArrayDouble *ret=self->getEndArray();
4229         if(ret)
4230           ret->incrRef();
4231         return ret;
4232       }
4233
4234       PyObject *getValueOn(PyObject *sl) const
4235       {
4236         double val;
4237         DataArrayDouble *a;
4238         DataArrayDoubleTuple *aa;
4239         std::vector<double> bb;
4240         mcIdType sw;
4241         const MEDCouplingMesh *mesh=self->getMesh();
4242         if(!mesh)
4243           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingFieldDouble::getValueOn : no underlying mesh !");
4244         int spaceDim=mesh->getSpaceDimension();
4245         const char msg[]="Python wrap of MEDCouplingFieldDouble::getValueOn : ";
4246         const double *spaceLoc=convertObjToPossibleCpp5_Safe(sl,sw,val,a,aa,bb,msg,1,spaceDim,true);
4247         //
4248         mcIdType sz=ToIdType(self->getNumberOfComponents());
4249         INTERP_KERNEL::AutoPtr<double> res=new double[sz];
4250         self->getValueOn(spaceLoc,res);
4251         return convertDblArrToPyList<double>(res,sz);
4252       }
4253
4254        PyObject *getValueOnPos(mcIdType i, mcIdType j, mcIdType k) const
4255        {
4256          mcIdType sz=ToIdType(self->getNumberOfComponents());
4257          INTERP_KERNEL::AutoPtr<double> res=new double[sz];
4258          self->getValueOnPos(i,j,k,res);
4259          return convertDblArrToPyList<double>(res,sz);
4260        }
4261
4262       DataArrayDouble *getValueOnMulti(PyObject *locs) const
4263       {
4264         const MEDCouplingMesh *mesh(self->getMesh());
4265         if(!mesh)
4266           throw INTERP_KERNEL::Exception("Python wrap MEDCouplingFieldDouble::getValueOnMulti : lying on a null mesh !");
4267         //
4268         mcIdType sw,nbPts;
4269         double v0; MEDCoupling::DataArrayDouble *v1(0); MEDCoupling::DataArrayDoubleTuple *v2(0); std::vector<double> v3;
4270         const double *inp=convertObjToPossibleCpp5_Safe2(locs,sw,v0,v1,v2,v3,"wrap of MEDCouplingFieldDouble::getValueOnMulti",
4271                                                          mesh->getSpaceDimension(),true,nbPts);
4272         return self->getValueOnMulti(inp,(int)nbPts);
4273       }
4274
4275       PyObject *getValueOn(PyObject *sl, double time) const
4276       {
4277         double val;
4278         DataArrayDouble *a;
4279         DataArrayDoubleTuple *aa;
4280         std::vector<double> bb;
4281         mcIdType sw;
4282         const MEDCouplingMesh *mesh=self->getMesh();
4283         if(!mesh)
4284           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingFieldDouble::getValueOn : no underlying mesh !");
4285         int spaceDim=mesh->getSpaceDimension();
4286         const char msg[]="Python wrap of MEDCouplingFieldDouble::getValueOn : ";
4287         const double *spaceLoc=convertObjToPossibleCpp5_Safe(sl,sw,val,a,aa,bb,msg,1,spaceDim,true);
4288         //
4289         //
4290         mcIdType sz=ToIdType(self->getNumberOfComponents());
4291         INTERP_KERNEL::AutoPtr<double> res=new double[sz];
4292         self->getValueOn(spaceLoc,time,res);
4293         return convertDblArrToPyList<double>(res,sz);
4294       }
4295
4296       void setValues(PyObject *li, PyObject *nbOfTuples=0, PyObject *nbOfComp=0)
4297       {
4298         if(self->getArray()!=0)
4299           MEDCoupling_DataArrayDouble_setValues__SWIG_0(self->getArray(),li,nbOfTuples,nbOfComp);
4300         else
4301           {
4302             MCAuto<DataArrayDouble> arr=DataArrayDouble::New();
4303             MEDCoupling_DataArrayDouble_setValues__SWIG_0(arr,li,nbOfTuples,nbOfComp);
4304             self->setArray(arr);
4305           }
4306       }
4307       
4308       PyObject *getTime()
4309       {
4310         int tmp1,tmp2;
4311         double tmp0=self->getTime(tmp1,tmp2);
4312         PyObject *res = PyList_New(3);
4313         PyList_SetItem(res,0,SWIG_From_double(tmp0));
4314         PyList_SetItem(res,1,SWIG_From_int(tmp1));
4315         PyList_SetItem(res,2,SWIG_From_int(tmp2));
4316         return res;
4317       }
4318
4319       PyObject *getStartTime()
4320       {
4321         int tmp1,tmp2;
4322         double tmp0=self->getStartTime(tmp1,tmp2);
4323         PyObject *res = PyList_New(3);
4324         PyList_SetItem(res,0,SWIG_From_double(tmp0));
4325         PyList_SetItem(res,1,SWIG_From_int(tmp1));
4326         PyList_SetItem(res,2,SWIG_From_int(tmp2));
4327         return res;
4328       }
4329
4330       PyObject *getEndTime()
4331       {
4332         int tmp1,tmp2;
4333         double tmp0=self->getEndTime(tmp1,tmp2);
4334         PyObject *res = PyList_New(3);
4335         PyList_SetItem(res,0,SWIG_From_double(tmp0));
4336         PyList_SetItem(res,1,SWIG_From_int(tmp1));
4337         PyList_SetItem(res,2,SWIG_From_int(tmp2));
4338         return res;
4339       }
4340       PyObject *accumulate() const
4341       {
4342         mcIdType sz=ToIdType(self->getNumberOfComponents());
4343         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
4344         self->accumulate(tmp);
4345         return convertDblArrToPyList<double>(tmp,sz);
4346       }
4347       PyObject *integral(bool isWAbs) const
4348       {
4349         mcIdType sz=ToIdType(self->getNumberOfComponents());
4350         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
4351         self->integral(isWAbs,tmp);
4352         return convertDblArrToPyList<double>(tmp,sz);
4353       }
4354       PyObject *getWeightedAverageValue(bool isWAbs=true) const
4355       {
4356         mcIdType sz=ToIdType(self->getNumberOfComponents());
4357         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
4358         self->getWeightedAverageValue(tmp,isWAbs);
4359         return convertDblArrToPyList<double>(tmp,sz);
4360       }
4361       PyObject *normL1() const
4362       {
4363         mcIdType sz=ToIdType(self->getNumberOfComponents());
4364         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
4365         self->normL1(tmp);
4366         return convertDblArrToPyList<double>(tmp,sz);
4367       }
4368       PyObject *normL2() const
4369       {
4370         mcIdType sz=ToIdType(self->getNumberOfComponents());
4371         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
4372         self->normL2(tmp);
4373         return convertDblArrToPyList<double>(tmp,sz);
4374       }
4375       PyObject *normMax() const
4376       {
4377         mcIdType sz=ToIdType(self->getNumberOfComponents());
4378         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
4379         self->normMax(tmp);
4380         return convertDblArrToPyList<double>(tmp,sz);
4381       }
4382       void renumberCells(PyObject *li, bool check=true)
4383       {
4384         mcIdType szArr,sw,iTypppArr;
4385         std::vector<mcIdType> stdvecTyyppArr;
4386         const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
4387         self->renumberCells(tmp,check);
4388       }
4389       
4390       void renumberCellsWithoutMesh(PyObject *li, bool check=true)
4391       {
4392         mcIdType szArr,sw,iTypppArr;
4393         std::vector<mcIdType> stdvecTyyppArr;
4394         const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
4395         self->renumberCellsWithoutMesh(tmp,check);
4396       }
4397       
4398       void renumberNodes(PyObject *li, double eps=1e-15)
4399       {
4400         mcIdType szArr,sw,iTypppArr;
4401         std::vector<mcIdType> stdvecTyyppArr;
4402         const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
4403         self->renumberNodes(tmp,eps);
4404       }
4405
4406       void renumberNodesWithoutMesh(PyObject *li, mcIdType newNbOfNodes, double eps=1e-15)
4407       {
4408         mcIdType szArr,sw,iTypppArr;
4409         std::vector<mcIdType> stdvecTyyppArr;
4410         const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
4411         self->renumberNodesWithoutMesh(tmp,newNbOfNodes,eps);
4412       }
4413
4414       MEDCouplingFieldDouble *buildSubPart(PyObject *li) const
4415       {
4416         return fieldT_buildSubPart(self,li);
4417       }
4418
4419       MEDCouplingFieldDouble *__getitem__(PyObject *li) const
4420       {
4421         return fieldT__getitem__(self,li);
4422       }
4423
4424       PyObject *getMaxValue2() const
4425       {
4426         DataArrayIdType *tmp;
4427         double r1=self->getMaxValue2(tmp);
4428         PyObject *ret=PyTuple_New(2);
4429         PyTuple_SetItem(ret,0,PyFloat_FromDouble(r1));
4430         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
4431         return ret;
4432       }
4433       
4434       PyObject *getMinValue2() const
4435       {
4436         DataArrayIdType *tmp;
4437         double r1=self->getMinValue2(tmp);
4438         PyObject *ret=PyTuple_New(2);
4439         PyTuple_SetItem(ret,0,PyFloat_FromDouble(r1));
4440         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
4441         return ret;
4442       }
4443       
4444       MEDCouplingFieldDouble *keepSelectedComponents(PyObject *li) const
4445       {
4446         std::vector<std::size_t> tmp;
4447         convertPyToNewIntArr3(li,tmp);
4448         return self->keepSelectedComponents(tmp);
4449       }
4450
4451       void setSelectedComponents(const MEDCouplingFieldDouble *f, PyObject *li)
4452       {
4453         std::vector<std::size_t> tmp;
4454         convertPyToNewIntArr3(li,tmp);
4455         self->setSelectedComponents(f,tmp);
4456       }
4457
4458       MEDCouplingFieldDouble *extractSlice3D(PyObject *origin, PyObject *vec, double eps) const
4459       {
4460         double val,val2;
4461         DataArrayDouble *a,*a2;
4462         DataArrayDoubleTuple *aa,*aa2;
4463         std::vector<double> bb,bb2;
4464         mcIdType sw;
4465         int spaceDim=3;
4466         const char msg[]="Python wrap of MEDCouplingFieldDouble::extractSlice3D : 1st parameter for origin.";
4467         const char msg2[]="Python wrap of MEDCouplingFieldDouble::extractSlice3D : 2nd parameter for vector.";
4468         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
4469         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
4470         //
4471         return self->extractSlice3D(orig,vect,eps);
4472       }
4473
4474       MEDCouplingFieldDouble *__add__(PyObject *obj)
4475       {
4476         return MEDCoupling_MEDCouplingFieldDouble___add__Impl(self,obj);
4477       }
4478
4479       MEDCouplingFieldDouble *__radd__(PyObject *obj)
4480       {
4481         return MEDCoupling_MEDCouplingFieldDouble___radd__Impl(self,obj);
4482       }
4483
4484       MEDCouplingFieldDouble *__sub__(PyObject *obj)
4485       {
4486         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__sub__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4487         const char msg2[]="in MEDCouplingFieldDouble.__sub__ : self field has no Array of values set !";
4488         void *argp;
4489         //
4490         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,0|0)))
4491           {
4492             MEDCouplingFieldDouble *other=reinterpret_cast< MEDCoupling::MEDCouplingFieldDouble * >(argp);
4493             if(other)
4494               return (*self)-(*other);
4495             else
4496               throw INTERP_KERNEL::Exception(msg);
4497           }
4498         //
4499         double val;
4500         DataArrayDouble *a;
4501         DataArrayDoubleTuple *aa;
4502         std::vector<double> bb;
4503         mcIdType sw;
4504         convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb);
4505         switch(sw)
4506           {
4507           case 1:
4508             {
4509               if(!self->getArray())
4510                 throw INTERP_KERNEL::Exception(msg2);
4511               MCAuto<DataArrayDouble> ret=self->getArray()->deepCopy();
4512               ret->applyLin(1.,-val);
4513               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4514               ret2->setArray(ret);
4515               return ret2.retn();
4516             }
4517           case 2:
4518             {
4519               if(!self->getArray())
4520                 throw INTERP_KERNEL::Exception(msg2);
4521               MCAuto<DataArrayDouble> ret=DataArrayDouble::Substract(self->getArray(),a);
4522               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4523               ret2->setArray(ret);
4524               return ret2.retn();
4525             }
4526           case 3:
4527             {
4528               if(!self->getArray())
4529                 throw INTERP_KERNEL::Exception(msg2);
4530               MCAuto<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4531               MCAuto<DataArrayDouble> ret=DataArrayDouble::Substract(self->getArray(),aaa);
4532               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4533               ret2->setArray(ret);
4534               return ret2.retn();
4535             }
4536           case 4:
4537             {
4538               if(!self->getArray())
4539                 throw INTERP_KERNEL::Exception(msg2);
4540               MCAuto<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,DeallocType::CPP_DEALLOC,1,bb.size());
4541               MCAuto<DataArrayDouble> ret=DataArrayDouble::Substract(self->getArray(),aaa);
4542               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4543               ret2->setArray(ret);
4544               return ret2.retn();
4545             }
4546           default:
4547             { throw INTERP_KERNEL::Exception(msg); }
4548           }
4549       }
4550
4551       MEDCouplingFieldDouble *__rsub__(PyObject *obj)
4552       {
4553         return MEDCoupling_MEDCouplingFieldDouble___rsub__Impl(self,obj);
4554       }
4555
4556       MEDCouplingFieldDouble *__mul__(PyObject *obj)
4557       {
4558         return MEDCoupling_MEDCouplingFieldDouble___mul__Impl(self,obj);
4559       }
4560
4561       MEDCouplingFieldDouble *__rmul__(PyObject *obj)
4562       {
4563         return MEDCoupling_MEDCouplingFieldDouble___rmul__Impl(self,obj);
4564       }
4565
4566       MEDCouplingFieldDouble *__div__(PyObject *obj)
4567       {
4568         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__div__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4569         const char msg2[]="in MEDCouplingFieldDouble.__div__ : self field has no Array of values set !";
4570         void *argp;
4571         //
4572         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,0|0)))
4573           {
4574             MEDCouplingFieldDouble *other=reinterpret_cast< MEDCoupling::MEDCouplingFieldDouble * >(argp);
4575             if(other)
4576               return (*self)/(*other);
4577             else
4578               throw INTERP_KERNEL::Exception(msg);
4579           }
4580         //
4581         double val;
4582         DataArrayDouble *a;
4583         DataArrayDoubleTuple *aa;
4584         std::vector<double> bb;
4585         mcIdType sw;
4586         convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb);
4587         switch(sw)
4588           {
4589           case 1:
4590             {
4591               if(val==0.)
4592                 throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble.__div__ : trying to divide by zero !");
4593               if(!self->getArray())
4594                 throw INTERP_KERNEL::Exception(msg2);
4595               MCAuto<DataArrayDouble> ret=self->getArray()->deepCopy();
4596               ret->applyLin(1./val,0);
4597               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4598               ret2->setArray(ret);
4599               return ret2.retn();
4600             }
4601           case 2:
4602             {
4603               if(!self->getArray())
4604                 throw INTERP_KERNEL::Exception(msg2);
4605               MCAuto<DataArrayDouble> ret=DataArrayDouble::Divide(self->getArray(),a);
4606               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4607               ret2->setArray(ret);
4608               return ret2.retn();
4609             }
4610           case 3:
4611             {
4612               if(!self->getArray())
4613                 throw INTERP_KERNEL::Exception(msg2);
4614               MCAuto<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4615               MCAuto<DataArrayDouble> ret=DataArrayDouble::Divide(self->getArray(),aaa);
4616               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4617               ret2->setArray(ret);
4618               return ret2.retn();
4619             }
4620           case 4:
4621             {
4622               if(!self->getArray())
4623                 throw INTERP_KERNEL::Exception(msg2);
4624               MCAuto<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,DeallocType::CPP_DEALLOC,1,bb.size());
4625               MCAuto<DataArrayDouble> ret=DataArrayDouble::Divide(self->getArray(),aaa);
4626               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4627               ret2->setArray(ret);
4628               return ret2.retn();
4629             }
4630           default:
4631             { throw INTERP_KERNEL::Exception(msg); }
4632           }
4633       }
4634
4635       MEDCouplingFieldDouble *__rdiv__(PyObject *obj)
4636       {
4637         return MEDCoupling_MEDCouplingFieldDouble___rdiv__Impl(self,obj);
4638       }
4639
4640       MEDCouplingFieldDouble *__pow__(PyObject *obj)
4641       {
4642         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__pow__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4643         const char msg2[]="in MEDCouplingFieldDouble.__pow__ : self field has no Array of values set !";
4644         void *argp;
4645         //
4646         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,0|0)))
4647           {
4648             MEDCouplingFieldDouble *other=reinterpret_cast< MEDCoupling::MEDCouplingFieldDouble * >(argp);
4649             if(other)
4650               return (*self)^(*other);
4651             else
4652               throw INTERP_KERNEL::Exception(msg);
4653           }
4654         //
4655         double val;
4656         DataArrayDouble *a;
4657         DataArrayDoubleTuple *aa;
4658         std::vector<double> bb;
4659         mcIdType sw;
4660         convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb);
4661         switch(sw)
4662           {
4663           case 1:
4664             {
4665               if(!self->getArray())
4666                 throw INTERP_KERNEL::Exception(msg2);
4667               MCAuto<DataArrayDouble> ret=self->getArray()->deepCopy();
4668               ret->applyPow(val);
4669               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4670               ret2->setArray(ret);
4671               return ret2.retn();
4672             }
4673           case 2:
4674             {
4675               if(!self->getArray())
4676                 throw INTERP_KERNEL::Exception(msg2);
4677               MCAuto<DataArrayDouble> ret=DataArrayDouble::Pow(self->getArray(),a);
4678               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4679               ret2->setArray(ret);
4680               return ret2.retn();
4681             }
4682           case 3:
4683             {
4684               if(!self->getArray())
4685                 throw INTERP_KERNEL::Exception(msg2);
4686               MCAuto<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4687               MCAuto<DataArrayDouble> ret=DataArrayDouble::Pow(self->getArray(),aaa);
4688               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4689               ret2->setArray(ret);
4690               return ret2.retn();
4691             }
4692           case 4:
4693             {
4694               if(!self->getArray())
4695                 throw INTERP_KERNEL::Exception(msg2);
4696               MCAuto<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,DeallocType::CPP_DEALLOC,1,bb.size());
4697               MCAuto<DataArrayDouble> ret=DataArrayDouble::Pow(self->getArray(),aaa);
4698               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4699               ret2->setArray(ret);
4700               return ret2.retn();
4701             }
4702           default:
4703             { throw INTERP_KERNEL::Exception(msg); }
4704           }
4705       }
4706
4707       MEDCouplingFieldDouble *__neg__() const
4708       {
4709         return self->negate();
4710       }
4711
4712       PyObject *___iadd___(PyObject *trueSelf, PyObject *obj)
4713       {
4714         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__iadd__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4715         const char msg2[]="in MEDCouplingFieldDouble.__iadd__ : self field has no Array of values set !";
4716         void *argp;
4717         //
4718         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,0|0)))
4719           {
4720             MEDCouplingFieldDouble *other=reinterpret_cast< MEDCoupling::MEDCouplingFieldDouble * >(argp);
4721             if(other)
4722               {
4723                 *self+=*other;
4724                 Py_XINCREF(trueSelf);
4725                 return trueSelf;
4726               }
4727             else
4728               throw INTERP_KERNEL::Exception(msg);
4729           }
4730         //
4731         double val;
4732         DataArrayDouble *a;
4733         DataArrayDoubleTuple *aa;
4734         std::vector<double> bb;
4735         mcIdType sw;
4736         convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb);
4737         switch(sw)
4738           {
4739           case 1:
4740             {
4741               if(!self->getArray())
4742                 throw INTERP_KERNEL::Exception(msg2);
4743               self->getArray()->applyLin(1.,val);
4744               Py_XINCREF(trueSelf);
4745               return trueSelf;
4746             }
4747           case 2:
4748             {
4749               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4750               ret2->setArray(a);
4751               *self+=*ret2;
4752               Py_XINCREF(trueSelf);
4753               return trueSelf;
4754             }
4755           case 3:
4756             {
4757               MCAuto<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4758               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4759               ret2->setArray(aaa);
4760               *self+=*ret2;
4761               Py_XINCREF(trueSelf);
4762               return trueSelf;
4763             }
4764           case 4:
4765             {
4766               if(!self->getArray())
4767                 throw INTERP_KERNEL::Exception(msg2);
4768               MCAuto<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,DeallocType::CPP_DEALLOC,1,bb.size());
4769               self->getArray()->addEqual(aaa);
4770               Py_XINCREF(trueSelf);
4771               return trueSelf;
4772             }
4773           default:
4774             { throw INTERP_KERNEL::Exception(msg); }
4775           }
4776       }
4777
4778       PyObject *___isub___(PyObject *trueSelf, PyObject *obj)
4779       {
4780         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__isub__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4781         const char msg2[]="in MEDCouplingFieldDouble.__isub__ : self field has no Array of values set !";
4782         void *argp;
4783         //
4784         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,0|0)))
4785           {
4786             MEDCouplingFieldDouble *other=reinterpret_cast< MEDCoupling::MEDCouplingFieldDouble * >(argp);
4787             if(other)
4788               {
4789                 *self-=*other;
4790                 Py_XINCREF(trueSelf);
4791                 return trueSelf;
4792               }
4793             else
4794               throw INTERP_KERNEL::Exception(msg);
4795           }
4796         //
4797         double val;
4798         DataArrayDouble *a;
4799         DataArrayDoubleTuple *aa;
4800         std::vector<double> bb;
4801         mcIdType sw;
4802         convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb);
4803         switch(sw)
4804           {
4805           case 1:
4806             {
4807               if(!self->getArray())
4808                 throw INTERP_KERNEL::Exception(msg2);
4809               self->getArray()->applyLin(1.,-val);
4810               Py_XINCREF(trueSelf);
4811               return trueSelf;
4812             }
4813           case 2:
4814             {
4815               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4816               ret2->setArray(a);
4817               *self-=*ret2;
4818               Py_XINCREF(trueSelf);
4819               return trueSelf;
4820             }
4821           case 3:
4822             {
4823               MCAuto<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4824               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4825               ret2->setArray(aaa);
4826               *self-=*ret2;
4827               Py_XINCREF(trueSelf);
4828               return trueSelf;
4829             }
4830           case 4:
4831             {
4832               if(!self->getArray())
4833                 throw INTERP_KERNEL::Exception(msg2);
4834               MCAuto<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,DeallocType::CPP_DEALLOC,1,bb.size());
4835               self->getArray()->substractEqual(aaa);
4836               Py_XINCREF(trueSelf);
4837               return trueSelf;
4838             }
4839           default:
4840             { throw INTERP_KERNEL::Exception(msg); }
4841           }
4842       }
4843
4844       PyObject *___imul___(PyObject *trueSelf, PyObject *obj)
4845       {
4846         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__imul__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4847         const char msg2[]="in MEDCouplingFieldDouble.__imul__ : self field has no Array of values set !";
4848         void *argp;
4849         //
4850         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,0|0)))
4851           {
4852             MEDCouplingFieldDouble *other=reinterpret_cast< MEDCoupling::MEDCouplingFieldDouble * >(argp);
4853             if(other)
4854               {
4855                 *self*=*other;
4856                 Py_XINCREF(trueSelf);
4857                 return trueSelf;
4858               }
4859             else
4860               throw INTERP_KERNEL::Exception(msg);
4861           }
4862         //
4863         double val;
4864         DataArrayDouble *a;
4865         DataArrayDoubleTuple *aa;
4866         std::vector<double> bb;
4867         mcIdType sw;
4868         convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb);
4869         switch(sw)
4870           {
4871           case 1:
4872             {
4873               if(!self->getArray())
4874                 throw INTERP_KERNEL::Exception(msg2);
4875               self->getArray()->applyLin(val,0);
4876               Py_XINCREF(trueSelf);
4877               return trueSelf;
4878             }
4879           case 2:
4880             {
4881               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4882               ret2->setArray(a);
4883               *self*=*ret2;
4884               Py_XINCREF(trueSelf);
4885               return trueSelf;
4886             }
4887           case 3:
4888             {
4889               MCAuto<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4890               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4891               ret2->setArray(aaa);
4892               *self*=*ret2;
4893               Py_XINCREF(trueSelf);
4894               return trueSelf;
4895             }
4896           case 4:
4897             {
4898               if(!self->getArray())
4899                 throw INTERP_KERNEL::Exception(msg2);
4900               MCAuto<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,DeallocType::CPP_DEALLOC,1,(int)bb.size());
4901               self->getArray()->multiplyEqual(aaa);
4902               Py_XINCREF(trueSelf);
4903               return trueSelf;
4904             }
4905           default:
4906             { throw INTERP_KERNEL::Exception(msg); }
4907           }
4908       }
4909
4910       PyObject *___idiv___(PyObject *trueSelf, PyObject *obj)
4911       {
4912         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__idiv__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4913         const char msg2[]="in MEDCouplingFieldDouble.__idiv__ : self field has no Array of values set !";
4914         void *argp;
4915         //
4916         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,0|0)))
4917           {
4918             MEDCouplingFieldDouble *other=reinterpret_cast< MEDCoupling::MEDCouplingFieldDouble * >(argp);
4919             if(other)
4920               {
4921                 *self/=*other;
4922                 Py_XINCREF(trueSelf);
4923                 return trueSelf;
4924               }
4925             else
4926               throw INTERP_KERNEL::Exception(msg);
4927           }
4928         //
4929         double val;
4930         DataArrayDouble *a;
4931         DataArrayDoubleTuple *aa;
4932         std::vector<double> bb;
4933         mcIdType sw;
4934         convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb);
4935         switch(sw)
4936           {
4937           case 1:
4938             {
4939               if(val==0.)
4940                 throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble.__idiv__ : trying to divide by zero !");
4941               if(!self->getArray())
4942                 throw INTERP_KERNEL::Exception(msg2);
4943               self->getArray()->applyLin(1./val,0);
4944               Py_XINCREF(trueSelf);
4945               return trueSelf;
4946             }
4947           case 2:
4948             {
4949               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4950               ret2->setArray(a);
4951               *self/=*ret2;
4952               Py_XINCREF(trueSelf);
4953               return trueSelf;
4954             }
4955           case 3:
4956             {
4957               MCAuto<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4958               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4959               ret2->setArray(aaa);
4960               *self/=*ret2;
4961               Py_XINCREF(trueSelf);
4962               return trueSelf;
4963             }
4964           case 4:
4965             {
4966               if(!self->getArray())
4967                 throw INTERP_KERNEL::Exception(msg2);
4968               MCAuto<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,DeallocType::CPP_DEALLOC,1,bb.size());
4969               self->getArray()->divideEqual(aaa);
4970               Py_XINCREF(trueSelf);
4971               return trueSelf;
4972             }
4973           default:
4974             { throw INTERP_KERNEL::Exception(msg); }
4975           }
4976       }
4977
4978       PyObject *___ipow___(PyObject *trueSelf, PyObject *obj)
4979       {
4980         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__ipow__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4981         const char msg2[]="in MEDCouplingFieldDouble.__ipow__ : self field has no Array of values set !";
4982         void *argp;
4983         //
4984         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,0|0)))
4985           {
4986             MEDCouplingFieldDouble *other=reinterpret_cast< MEDCoupling::MEDCouplingFieldDouble * >(argp);
4987             if(other)
4988               {
4989                 *self^=*other;
4990                 Py_XINCREF(trueSelf);
4991                 return trueSelf;
4992               }
4993             else
4994               throw INTERP_KERNEL::Exception(msg);
4995           }
4996         //
4997         double val;
4998         DataArrayDouble *a;
4999         DataArrayDoubleTuple *aa;
5000         std::vector<double> bb;
5001         mcIdType sw;
5002         convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb);
5003         switch(sw)
5004           {
5005           case 1:
5006             {
5007               if(!self->getArray())
5008                 throw INTERP_KERNEL::Exception(msg2);
5009               self->getArray()->applyPow(val);
5010               Py_XINCREF(trueSelf);
5011               return trueSelf;
5012             }
5013           case 2:
5014             {
5015               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
5016               ret2->setArray(a);
5017               *self^=*ret2;
5018               Py_XINCREF(trueSelf);
5019               return trueSelf;
5020             }
5021           case 3:
5022             {
5023               MCAuto<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
5024               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
5025               ret2->setArray(aaa);
5026               *self^=*ret2;
5027               Py_XINCREF(trueSelf);
5028               return trueSelf;
5029             }
5030           case 4:
5031             {
5032               if(!self->getArray())
5033                 throw INTERP_KERNEL::Exception(msg2);
5034               MCAuto<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,DeallocType::CPP_DEALLOC,1,bb.size());
5035               self->getArray()->powEqual(aaa);
5036               Py_XINCREF(trueSelf);
5037               return trueSelf;
5038             }
5039           default:
5040             { throw INTERP_KERNEL::Exception(msg); }
5041           }
5042       }
5043
5044       static MEDCouplingFieldDouble *MergeFields(PyObject *li)
5045       {
5046         std::vector<const MEDCouplingFieldDouble *> tmp;
5047         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
5048         return MEDCouplingFieldDouble::MergeFields(tmp);
5049       }
5050
5051       static std::string WriteVTK(const char *fileName, PyObject *li, bool isBinary=true)
5052       {
5053         std::vector<const MEDCouplingFieldDouble *> tmp;
5054         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
5055         return MEDCouplingFieldDouble::WriteVTK(fileName,tmp,isBinary);
5056       }
5057
5058       PyObject *getTinySerializationInformation() const
5059       {
5060         return field_getTinySerializationInformation<MEDCouplingFieldDouble>(self);
5061       }
5062       
5063       PyObject *serialize() const
5064       {
5065         return field_serialize<double>(self);
5066       }
5067
5068       PyObject *__getstate__() const
5069       {
5070         return field__getstate__<MEDCouplingFieldDouble>(self,MEDCoupling_MEDCouplingFieldDouble_getTinySerializationInformation,MEDCoupling_MEDCouplingFieldDouble_serialize);
5071       }
5072       
5073       void __setstate__(PyObject *inp)
5074       {
5075         field__setstate__<double>(self,inp);
5076       }
5077     }
5078   };
5079
5080   class MEDCouplingMultiFields : public RefCountObject, public TimeLabel
5081   {
5082   public:
5083     int getNumberOfFields() const;
5084     MEDCouplingMultiFields *deepCopy() const;
5085     virtual std::string simpleRepr() const;
5086     virtual std::string advancedRepr() const;
5087     virtual bool isEqual(const MEDCouplingMultiFields *other, double meshPrec, double valsPrec) const;
5088     virtual bool isEqualWithoutConsideringStr(const MEDCouplingMultiFields *other, double meshPrec, double valsPrec) const;
5089     virtual void checkConsistencyLight() const;
5090     %extend
5091        {
5092          std::string __str__() const
5093          {
5094            return self->simpleRepr();
5095          }
5096          static MEDCouplingMultiFields *New(PyObject *li)
5097          {
5098            std::vector<const MEDCoupling::MEDCouplingFieldDouble *> tmp;
5099            convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
5100            std::size_t sz=tmp.size();
5101            std::vector<MEDCouplingFieldDouble *> fs(sz);
5102            for(std::size_t i=0;i<sz;i++)
5103              fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
5104            return MEDCouplingMultiFields::New(fs);
5105          }
5106          MEDCouplingMultiFields(PyObject *li)
5107          {
5108            std::vector<const MEDCoupling::MEDCouplingFieldDouble *> tmp;
5109            convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
5110            std::size_t sz=tmp.size();
5111            std::vector<MEDCouplingFieldDouble *> fs(sz);
5112            for(std::size_t i=0;i<sz;i++)
5113              fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
5114            return MEDCouplingMultiFields::New(fs);
5115          }
5116          PyObject *getFields() const
5117          {
5118            std::vector<const MEDCouplingFieldDouble *> fields=self->getFields();
5119            std::size_t sz=fields.size();
5120            PyObject *res = PyList_New(sz);
5121            for(std::size_t i=0;i<sz;i++)
5122              {
5123                if(fields[i])
5124                  {
5125                    fields[i]->incrRef();
5126                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(fields[i]),SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble, SWIG_POINTER_OWN | 0 ));
5127                  }
5128                else
5129                  {
5130                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble, 0 ));
5131                  }
5132              }
5133            return res;
5134          }
5135          PyObject *getFieldAtPos(int id) const
5136          {
5137            const MEDCouplingFieldDouble *ret=self->getFieldAtPos(id);
5138            if(ret)
5139              {
5140                ret->incrRef();
5141                return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble, SWIG_POINTER_OWN | 0 );
5142              }
5143            else
5144              return SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble, 0 );
5145          }
5146          PyObject *getMeshes() const
5147          {
5148            std::vector<MEDCouplingMesh *> ms=self->getMeshes();
5149            std::size_t sz=ms.size();
5150            PyObject *res = PyList_New(sz);
5151            for(std::size_t i=0;i<sz;i++)
5152              {
5153                if(ms[i])
5154                  {
5155                    ms[i]->incrRef();
5156                    PyList_SetItem(res,i,convertMesh(ms[i], SWIG_POINTER_OWN | 0 ));
5157                  }
5158                else
5159                  {
5160                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, 0 ));
5161                  }
5162              }
5163            return res;
5164          }
5165          PyObject *getDifferentMeshes() const
5166          {
5167            std::vector<int> refs;
5168            std::vector<MEDCouplingMesh *> ms=self->getDifferentMeshes(refs);
5169            std::size_t sz=ms.size();
5170            PyObject *res = PyList_New(sz);
5171            for(std::size_t i=0;i<sz;i++)
5172              {
5173                if(ms[i])
5174                  {
5175                    ms[i]->incrRef();
5176                    PyList_SetItem(res,i,convertMesh(ms[i], SWIG_POINTER_OWN | 0 ));
5177                  }
5178                else
5179                  {
5180                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, 0 ));
5181                  }
5182              }
5183            //
5184            PyObject *ret=PyTuple_New(2);
5185            PyTuple_SetItem(ret,0,res);
5186            PyTuple_SetItem(ret,1,convertIntArrToPyList2(refs));
5187            return ret;
5188          }
5189          PyObject *getArrays() const
5190          {
5191            std::vector<DataArrayDouble *> ms=self->getArrays();
5192            std::size_t sz=ms.size();
5193            PyObject *res = PyList_New(sz);
5194            for(std::size_t i=0;i<sz;i++)
5195              {
5196                if(ms[i])
5197                  {
5198                    ms[i]->incrRef();
5199                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(ms[i]),SWIGTYPE_p_MEDCoupling__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
5200                  }
5201                else
5202                  {
5203                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_MEDCoupling__DataArrayDouble, 0 ));
5204                  }
5205              }
5206            return res;
5207          }
5208          PyObject *getDifferentArrays() const
5209          {
5210            std::vector< std::vector<int> > refs;
5211            std::vector<DataArrayDouble *> ms=self->getDifferentArrays(refs);
5212            std::size_t sz=ms.size();
5213            PyObject *res = PyList_New(sz);
5214            PyObject *res2 = PyList_New(sz);
5215            for(std::size_t i=0;i<sz;i++)
5216              {
5217                if(ms[i])
5218                  {
5219                    ms[i]->incrRef();
5220                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(ms[i]),SWIGTYPE_p_MEDCoupling__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
5221                  }
5222                else
5223                  {
5224                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_MEDCoupling__DataArrayDouble, 0 ));
5225                  }
5226                PyList_SetItem(res2,i,convertIntArrToPyList2(refs[i]));
5227              }
5228            //
5229            PyObject *ret=PyTuple_New(2);
5230            PyTuple_SetItem(ret,0,res);
5231            PyTuple_SetItem(ret,1,res2);
5232            return ret;
5233          }
5234        }
5235   };
5236
5237   class MEDCouplingFieldInt32 : public MEDCouplingFieldT<int>
5238   {
5239   public:
5240     static MEDCouplingFieldInt32 *New(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME);
5241     static MEDCouplingFieldInt32 *New(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME);
5242     bool isEqual(const MEDCouplingFieldInt32 *other, double meshPrec, int valsPrec) const;
5243     bool isEqualWithoutConsideringStr(const MEDCouplingFieldInt32 *other, double meshPrec, int valsPrec) const;
5244     void setTimeUnit(const std::string& unit);
5245     std::string getTimeUnit() const;
5246     void setTime(double val, int iteration, int order);
5247     void setArray(DataArrayInt32 *array);
5248     MEDCouplingFieldInt32 *deepCopy() const;
5249     MEDCouplingFieldInt32 *clone(bool recDeepCpy) const;
5250     MEDCouplingFieldInt32 *cloneWithMesh(bool recDeepCpy) const;
5251     MEDCouplingFieldDouble *convertToDblField() const;
5252     MEDCouplingFieldInt32 *buildSubPartRange(int begin, int end, int step) const;
5253     %extend {
5254       MEDCouplingFieldInt32(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME)
5255       {
5256         return MEDCouplingFieldInt32::New(type,td);
5257       }
5258
5259       MEDCouplingFieldInt32(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME)
5260       {
5261         return MEDCouplingFieldInt32::New(ft,td);
5262       }
5263
5264       PyObject *isEqualIfNotWhy(const MEDCouplingFieldInt32 *other, double meshPrec, int valsPrec) const
5265       {
5266         std::string ret1;
5267         bool ret0=self->isEqualIfNotWhy(other,meshPrec,valsPrec,ret1);
5268         PyObject *ret=PyTuple_New(2);
5269         PyObject *ret0Py=ret0?Py_True:Py_False;
5270         Py_XINCREF(ret0Py);
5271         PyTuple_SetItem(ret,0,ret0Py);
5272         PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
5273         return ret;
5274       }
5275       
5276       std::string __str__() const
5277       {
5278         return self->simpleRepr();
5279       }
5280
5281       std::string __repr__() const
5282       {
5283         std::ostringstream oss;
5284         self->reprQuickOverview(oss);
5285         return oss.str();
5286       }
5287
5288       MEDCouplingFieldInt32 *buildSubPart(PyObject *li) const
5289       {
5290         return fieldT_buildSubPart(self,li);
5291       }
5292
5293       MEDCouplingFieldInt32 *__getitem__(PyObject *li) const
5294       {
5295         return fieldT__getitem__(self,li);
5296       }
5297
5298       DataArrayInt32 *getArray()
5299       {
5300         DataArrayInt32 *ret=self->getArray();
5301         if(ret)
5302           ret->incrRef();
5303         return ret;
5304       }
5305       
5306       PyObject *getTime()
5307         {
5308         int tmp1,tmp2;
5309         double tmp0=self->getTime(tmp1,tmp2);
5310         PyObject *res = PyList_New(3);
5311         PyList_SetItem(res,0,SWIG_From_double(tmp0));
5312         PyList_SetItem(res,1,SWIG_From_int(tmp1));
5313         PyList_SetItem(res,2,SWIG_From_int(tmp2));
5314         return res;
5315         }
5316
5317       PyObject *getTinySerializationInformation() const
5318       {
5319         return field_getTinySerializationInformation<MEDCouplingFieldInt32>(self);
5320       }
5321       
5322       PyObject *serialize() const
5323       {
5324         return field_serialize<int>(self);
5325       }
5326
5327       PyObject *__getstate__() const
5328       {
5329         return field__getstate__<MEDCouplingFieldInt32>(self,MEDCoupling_MEDCouplingFieldInt32_getTinySerializationInformation,MEDCoupling_MEDCouplingFieldInt32_serialize);
5330       }
5331       
5332       void __setstate__(PyObject *inp)
5333       {
5334         field__setstate__<int>(self,inp);
5335       }
5336     }
5337   };
5338
5339   class MEDCouplingFieldInt64 : public MEDCouplingFieldT<int>
5340   {
5341   public:
5342     static MEDCouplingFieldInt64 *New(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME);
5343     static MEDCouplingFieldInt64 *New(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME);
5344     bool isEqual(const MEDCouplingFieldInt64 *other, double meshPrec, int valsPrec) const;
5345     bool isEqualWithoutConsideringStr(const MEDCouplingFieldInt64 *other, double meshPrec, int valsPrec) const;
5346     void setTimeUnit(const std::string& unit);
5347     std::string getTimeUnit() const;
5348     void setTime(double val, int iteration, int order);
5349     void setArray(DataArrayInt64 *array);
5350     MEDCouplingFieldInt64 *deepCopy() const;
5351     MEDCouplingFieldInt64 *clone(bool recDeepCpy) const;
5352     MEDCouplingFieldInt64 *cloneWithMesh(bool recDeepCpy) const;
5353     MEDCouplingFieldDouble *convertToDblField() const;
5354     MEDCouplingFieldInt64 *buildSubPartRange(int begin, int end, int step) const;
5355     %extend {
5356       MEDCouplingFieldInt64(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME)
5357       {
5358         return MEDCouplingFieldInt64::New(type,td);
5359       }
5360
5361       MEDCouplingFieldInt64(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME)
5362       {
5363         return MEDCouplingFieldInt64::New(ft,td);
5364       }
5365
5366       PyObject *isEqualIfNotWhy(const MEDCouplingFieldInt64 *other, double meshPrec, int valsPrec) const
5367       {
5368         std::string ret1;
5369         bool ret0=self->isEqualIfNotWhy(other,meshPrec,valsPrec,ret1);
5370         PyObject *ret=PyTuple_New(2);
5371         PyObject *ret0Py=ret0?Py_True:Py_False;
5372         Py_XINCREF(ret0Py);
5373         PyTuple_SetItem(ret,0,ret0Py);
5374         PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
5375         return ret;
5376       }
5377       
5378       std::string __str__() const
5379       {
5380         return self->simpleRepr();
5381       }
5382
5383       std::string __repr__() const
5384       {
5385         std::ostringstream oss;
5386         self->reprQuickOverview(oss);
5387         return oss.str();
5388       }
5389
5390       MEDCouplingFieldInt64 *buildSubPart(PyObject *li) const
5391       {
5392         return fieldT_buildSubPart(self,li);
5393       }
5394
5395       MEDCouplingFieldInt64 *__getitem__(PyObject *li) const
5396       {
5397         return fieldT__getitem__(self,li);
5398       }
5399
5400       DataArrayInt64 *getArray()
5401       {
5402         DataArrayInt64 *ret=self->getArray();
5403         if(ret)
5404           ret->incrRef();
5405         return ret;
5406       }
5407       
5408       PyObject *getTime()
5409         {
5410         int tmp1,tmp2;
5411         double tmp0=self->getTime(tmp1,tmp2);
5412         PyObject *res = PyList_New(3);
5413         PyList_SetItem(res,0,SWIG_From_double(tmp0));
5414         PyList_SetItem(res,1,SWIG_From_int(tmp1));
5415         PyList_SetItem(res,2,SWIG_From_int(tmp2));
5416         return res;
5417         }
5418
5419       PyObject *getTinySerializationInformation() const
5420       {
5421         return field_getTinySerializationInformation<MEDCouplingFieldInt64>(self);
5422       }
5423       
5424       PyObject *serialize() const
5425       {
5426         return field_serialize<Int64>(self);
5427       }
5428
5429       PyObject *__getstate__() const
5430       {
5431         return field__getstate__<MEDCouplingFieldInt64>(self,MEDCoupling_MEDCouplingFieldInt64_getTinySerializationInformation,MEDCoupling_MEDCouplingFieldInt64_serialize);
5432       }
5433       
5434       void __setstate__(PyObject *inp)
5435       {
5436         field__setstate__<Int64>(self,inp);
5437       }
5438     }
5439   };
5440
5441   class MEDCouplingFieldFloat : public MEDCouplingFieldT<float>
5442   {
5443   public:
5444     static MEDCouplingFieldFloat *New(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME);
5445     static MEDCouplingFieldFloat *New(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME);
5446     bool isEqual(const MEDCouplingFieldFloat *other, double meshPrec, float valsPrec) const;
5447     bool isEqualWithoutConsideringStr(const MEDCouplingFieldFloat *other, double meshPrec, float valsPrec) const;
5448     void setTimeUnit(const std::string& unit);
5449     std::string getTimeUnit() const;
5450     void setTime(double val, int iteration, int order);
5451     void setArray(DataArrayFloat *array);
5452     MEDCouplingFieldFloat *deepCopy() const;
5453     MEDCouplingFieldFloat *clone(bool recDeepCpy) const;
5454     MEDCouplingFieldFloat *cloneWithMesh(bool recDeepCpy) const;
5455     MEDCouplingFieldDouble *convertToDblField() const;
5456     MEDCouplingFieldFloat *buildSubPartRange(int begin, int end, int step) const;
5457     %extend {
5458       MEDCouplingFieldFloat(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME)
5459       {
5460         return MEDCouplingFieldFloat::New(type,td);
5461       }
5462
5463       MEDCouplingFieldFloat(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME)
5464       {
5465         return MEDCouplingFieldFloat::New(ft,td);
5466       }
5467
5468       PyObject *isEqualIfNotWhy(const MEDCouplingFieldFloat *other, double meshPrec, float valsPrec) const
5469       {
5470         std::string ret1;
5471         bool ret0=self->isEqualIfNotWhy(other,meshPrec,valsPrec,ret1);
5472         PyObject *ret=PyTuple_New(2);
5473         PyObject *ret0Py=ret0?Py_True:Py_False;
5474         Py_XINCREF(ret0Py);
5475         PyTuple_SetItem(ret,0,ret0Py);
5476         PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
5477         return ret;
5478       }
5479
5480       std::string __str__() const
5481       {
5482         return self->simpleRepr();
5483       }
5484
5485       std::string __repr__() const
5486       {
5487         std::ostringstream oss;
5488         self->reprQuickOverview(oss);
5489         return oss.str();
5490       }
5491
5492       MEDCouplingFieldFloat *buildSubPart(PyObject *li) const
5493       {
5494         return fieldT_buildSubPart(self,li);
5495       }
5496
5497       MEDCouplingFieldFloat *__getitem__(PyObject *li) const
5498       {
5499         return fieldT__getitem__(self,li);
5500       }
5501
5502       DataArrayFloat *getArray()
5503       {
5504         DataArrayFloat *ret=self->getArray();
5505         if(ret)
5506           ret->incrRef();
5507         return ret;
5508       }
5509       
5510       PyObject *getTime()
5511       {
5512         int tmp1,tmp2;
5513         double tmp0=self->getTime(tmp1,tmp2);
5514         PyObject *res = PyList_New(3);
5515         PyList_SetItem(res,0,SWIG_From_double(tmp0));
5516         PyList_SetItem(res,1,SWIG_From_int(tmp1));
5517         PyList_SetItem(res,2,SWIG_From_int(tmp2));
5518         return res;
5519       }
5520
5521       PyObject *getTinySerializationInformation() const
5522       {
5523         return field_getTinySerializationInformation<MEDCouplingFieldFloat>(self);
5524       }
5525       
5526       PyObject *serialize() const
5527       {
5528         return field_serialize<float>(self);
5529       }
5530       
5531       PyObject *__getstate__() const
5532       {
5533         return field__getstate__<MEDCouplingFieldFloat>(self,MEDCoupling_MEDCouplingFieldFloat_getTinySerializationInformation,MEDCoupling_MEDCouplingFieldFloat_serialize);
5534       }
5535         
5536       void __setstate__(PyObject *inp)
5537       {
5538         field__setstate__<float>(self,inp);
5539       }
5540     }
5541   };
5542   
5543   class MEDCouplingDefinitionTime
5544   {
5545   public:
5546     MEDCouplingDefinitionTime();
5547     void assign(const MEDCouplingDefinitionTime& other);
5548     bool isEqual(const MEDCouplingDefinitionTime& other) const;
5549     double getTimeResolution() const;
5550     std::vector<double> getHotSpotsTime() const;
5551     %extend
5552       {
5553         std::string __str__() const
5554           {
5555             std::ostringstream oss;
5556             self->appendRepr(oss);
5557             return oss.str();
5558           }
5559
5560         PyObject *getIdsOnTimeRight(double tm) const
5561         {
5562           int meshId,arrId,arrIdInField,fieldId;
5563           self->getIdsOnTimeRight(tm,meshId,arrId,arrIdInField,fieldId);
5564           PyObject *res=PyList_New(4);
5565           PyList_SetItem(res,0,PyInt_FromLong(meshId));
5566           PyList_SetItem(res,1,PyInt_FromLong(arrId));
5567           PyList_SetItem(res,2,PyInt_FromLong(arrIdInField));
5568           PyList_SetItem(res,3,PyInt_FromLong(fieldId));
5569           return res;
5570         }
5571
5572         PyObject *getIdsOnTimeLeft(double tm) const
5573         {
5574           int meshId,arrId,arrIdInField,fieldId;
5575           self->getIdsOnTimeLeft(tm,meshId,arrId,arrIdInField,fieldId);
5576           PyObject *res=PyList_New(4);
5577           PyList_SetItem(res,0,PyInt_FromLong(meshId));
5578           PyList_SetItem(res,1,PyInt_FromLong(arrId));
5579           PyList_SetItem(res,2,PyInt_FromLong(arrIdInField));
5580           PyList_SetItem(res,3,PyInt_FromLong(fieldId));
5581           return res;
5582         }
5583       }
5584   };
5585
5586   class MEDCouplingFieldOverTime : public MEDCouplingMultiFields
5587   {
5588   public:
5589     double getTimeTolerance() const;
5590     MEDCouplingDefinitionTime getDefinitionTimeZone() const;
5591     
5592     %extend
5593       {
5594         MEDCouplingFieldOverTime(PyObject *li)
5595           {
5596             std::vector<const MEDCoupling::MEDCouplingFieldDouble *> tmp;
5597             convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
5598             std::size_t sz=tmp.size();
5599             std::vector<MEDCouplingFieldDouble *> fs(sz);
5600             for(std::size_t i=0;i<sz;i++)
5601               fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
5602             return MEDCouplingFieldOverTime::New(fs);
5603           }
5604         std::string __str__() const
5605           {
5606             return self->simpleRepr();
5607           }
5608         static MEDCouplingFieldOverTime *New(PyObject *li)
5609           {
5610             std::vector<const MEDCoupling::MEDCouplingFieldDouble *> tmp;
5611             convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
5612             std::size_t sz=tmp.size();
5613             std::vector<MEDCouplingFieldDouble *> fs(sz);
5614             for(std::size_t i=0;i<sz;i++)
5615               fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
5616             return MEDCouplingFieldOverTime::New(fs);
5617           }
5618       }
5619   };
5620
5621   class MEDCouplingCartesianAMRMesh;
5622   
5623   class MEDCouplingCartesianAMRPatchGen : public RefCountObject
5624   {
5625   public:
5626     int getNumberOfCellsRecursiveWithOverlap() const;
5627     int getNumberOfCellsRecursiveWithoutOverlap() const;
5628     int getMaxNumberOfLevelsRelativeToThis() const;
5629     %extend
5630     {
5631       MEDCouplingCartesianAMRMeshGen *getMesh() const
5632       {
5633         MEDCouplingCartesianAMRMeshGen *ret(const_cast<MEDCouplingCartesianAMRMeshGen *>(self->getMesh()));
5634         if(ret)
5635           ret->incrRef();
5636         return ret;
5637       }
5638     }
5639   };
5640
5641   class MEDCouplingCartesianAMRPatch : public MEDCouplingCartesianAMRPatchGen
5642   {
5643   public:
5644     int getNumberOfOverlapedCellsForFather() const;
5645     bool isInMyNeighborhood(const MEDCouplingCartesianAMRPatch *other, int ghostLev) const;
5646     std::vector<mcIdType> computeCellGridSt() const;
5647     %extend
5648     {
5649       PyObject *getBLTRRange() const
5650       {
5651         const std::vector< std::pair<mcIdType,mcIdType> >& ret(self->getBLTRRange());
5652         return convertFromVectorPairInt(ret);
5653       }
5654
5655       PyObject *getBLTRRangeRelativeToGF() const
5656       {
5657         std::vector< std::pair<mcIdType,mcIdType> > ret(self->getBLTRRangeRelativeToGF());
5658         return convertFromVectorPairInt(ret);
5659       }
5660
5661       void addPatch(PyObject *bottomLeftTopRight, const std::vector<mcIdType>& factors)
5662       {
5663         std::vector< std::pair<mcIdType,mcIdType> > inp;
5664         convertPyToVectorPairInt(bottomLeftTopRight,inp);
5665         self->addPatch(inp,factors);
5666       }
5667
5668       MEDCouplingCartesianAMRPatch *__getitem__(mcIdType patchId) const
5669       {
5670         const MEDCouplingCartesianAMRMeshGen *mesh(self->getMesh());
5671         if(!mesh)
5672           throw INTERP_KERNEL::Exception("wrap MEDCouplingCartesianAMRPatchGen.__getitem__ : no underlying mesh !");
5673         if(patchId==mesh->getNumberOfPatches())
5674           {
5675             std::ostringstream oss;
5676             oss << "Requesting for patchId " << patchId << " having only " << mesh->getNumberOfPatches() << " patches !";
5677             PyErr_SetString(PyExc_StopIteration,oss.str().c_str());
5678             return 0;
5679           }
5680         MEDCouplingCartesianAMRPatch *ret(const_cast<MEDCouplingCartesianAMRPatch *>(mesh->getPatch(patchId)));
5681         if(ret)
5682           ret->incrRef();
5683         return ret;
5684       }
5685
5686       void __delitem__(mcIdType patchId)
5687       {
5688         MEDCouplingCartesianAMRMeshGen *mesh(const_cast<MEDCouplingCartesianAMRMeshGen *>(self->getMesh()));
5689         if(!mesh)
5690           throw INTERP_KERNEL::Exception("wrap MEDCouplingCartesianAMRPatch.__delitem__ : no underlying mesh !");
5691         mesh->removePatch(patchId);
5692       }
5693
5694       mcIdType __len__() const
5695       {
5696         const MEDCouplingCartesianAMRMeshGen *mesh(self->getMesh());
5697         if(!mesh)
5698           throw INTERP_KERNEL::Exception("wrap MEDCouplingCartesianAMRPatch.__len__ : no underlying mesh !");
5699         return mesh->getNumberOfPatches();
5700       }
5701     }
5702   };
5703
5704   class MEDCouplingCartesianAMRPatchGF : public MEDCouplingCartesianAMRPatchGen
5705   {
5706   };
5707   
5708   class MEDCouplingCartesianAMRMeshGen : public RefCountObject, public TimeLabel
5709   {
5710   public:
5711     mcIdType getAbsoluteLevel() const;
5712     mcIdType getAbsoluteLevelRelativeTo(const MEDCouplingCartesianAMRMeshGen *ref) const;
5713     std::vector<mcIdType> getPositionRelativeTo(const MEDCouplingCartesianAMRMeshGen *ref) const;
5714     int getSpaceDimension() const;
5715     const std::vector<mcIdType>& getFactors() const;
5716     void setFactors(const std::vector<mcIdType>& newFactors);
5717     mcIdType getMaxNumberOfLevelsRelativeToThis() const;
5718     mcIdType getNumberOfCellsAtCurrentLevel() const;
5719     mcIdType getNumberOfCellsAtCurrentLevelGhost(mcIdType ghostLev) const;
5720     mcIdType getNumberOfCellsRecursiveWithOverlap() const;
5721     mcIdType getNumberOfCellsRecursiveWithoutOverlap() const;
5722     bool isPatchInNeighborhoodOf(mcIdType patchId1, mcIdType patchId2, mcIdType ghostLev) const;
5723    virtual void detachFromFather();
5724     //
5725     mcIdType getNumberOfPatches() const;
5726     mcIdType getPatchIdFromChildMesh(const MEDCouplingCartesianAMRMeshGen *mesh) const;
5727     MEDCouplingUMesh *buildUnstructured() const;
5728     DataArrayDouble *extractGhostFrom(mcIdType ghostSz, const DataArrayDouble *arr) const;
5729     std::vector<mcIdType> getPatchIdsInTheNeighborhoodOf(mcIdType patchId, mcIdType ghostLev) const;
5730     MEDCoupling1SGTUMesh *buildMeshFromPatchEnvelop() const;
5731     MEDCoupling1SGTUMesh *buildMeshOfDirectChildrenOnly() const;
5732     void removeAllPatches();
5733     void removePatch(mcIdType patchId);
5734     void createPatchesFromCriterion(const INTERP_KERNEL::BoxSplittingOptions& bso, const DataArrayByte *criterion, const std::vector<mcIdType>& factors);
5735     void createPatchesFromCriterion(const INTERP_KERNEL::BoxSplittingOptions& bso, const DataArrayDouble *criterion, const std::vector<mcIdType>& factors, double eps);
5736     DataArrayDouble *createCellFieldOnPatch(mcIdType patchId, const DataArrayDouble *cellFieldOnThis) const;
5737     void fillCellFieldOnPatch(mcIdType patchId, const DataArrayDouble *cellFieldOnThis, DataArrayDouble *cellFieldOnPatch, bool isConservative=true) const;
5738     void fillCellFieldOnPatchGhost(mcIdType patchId, const DataArrayDouble *cellFieldOnThis, DataArrayDouble *cellFieldOnPatch, mcIdType ghostLev, bool isConservative=true) const;
5739     void fillCellFieldOnPatchOnlyOnGhostZone(mcIdType patchId, const DataArrayDouble *cellFieldOnThis, DataArrayDouble *cellFieldOnPatch, mcIdType ghostLev) const;
5740     void fillCellFieldOnPatchOnlyOnGhostZoneWith(mcIdType ghostLev, const MEDCouplingCartesianAMRPatch *patchToBeModified, const MEDCouplingCartesianAMRPatch *neighborPatch, DataArrayDouble *cellFieldOnPatch, const DataArrayDouble *cellFieldNeighbor) const;
5741     void fillCellFieldComingFromPatch(mcIdType patchId, const DataArrayDouble *cellFieldOnPatch, DataArrayDouble *cellFieldOnThis, bool isConservative=true) const;
5742     void fillCellFieldComingFromPatchGhost(mcIdType patchId, const DataArrayDouble *cellFieldOnPatch, DataArrayDouble *cellFieldOnThis, mcIdType ghostLev, bool isConservative=true) const;
5743     DataArrayIdType *findPatchesInTheNeighborhoodOf(mcIdType patchId, mcIdType ghostLev) const;
5744     std::string buildPythonDumpOfThis() const;
5745     %extend
5746     {
5747       void addPatch(PyObject *bottomLeftTopRight, const std::vector<mcIdType>& factors)
5748       {
5749         std::vector< std::pair<mcIdType,mcIdType> > inp;
5750         convertPyToVectorPairInt(bottomLeftTopRight,inp);
5751         self->addPatch(inp,factors);
5752       }
5753
5754       PyObject *getPatches() const
5755       {
5756         std::vector< const MEDCouplingCartesianAMRPatch *> ps(self->getPatches());
5757         std::size_t sz(ps.size());
5758         PyObject *ret = PyList_New(sz);
5759         for(std::size_t i=0;i<sz;i++)
5760           {
5761             MEDCouplingCartesianAMRPatch *elt(const_cast<MEDCouplingCartesianAMRPatch *>(ps[i]));
5762             if(elt)
5763               elt->incrRef();
5764             PyList_SetItem(ret,i,convertCartesianAMRPatch(elt, SWIG_POINTER_OWN | 0 ));
5765           }
5766         return ret;
5767       }
5768
5769       // agy : don't know why typemap fails here ??? let it in the extend section
5770       PyObject *deepCopy(MEDCouplingCartesianAMRMeshGen *father) const
5771       {
5772         return convertCartesianAMRMesh(self->deepCopy(father), SWIG_POINTER_OWN | 0 );
5773       }
5774
5775       MEDCouplingCartesianAMRPatch *getPatchAtPosition(const std::vector<mcIdType>& pos) const
5776       {
5777         const MEDCouplingCartesianAMRPatch *ret(self->getPatchAtPosition(pos));
5778         MEDCouplingCartesianAMRPatch *ret2(const_cast<MEDCouplingCartesianAMRPatch *>(ret));
5779         if(ret2)
5780           ret2->incrRef();
5781         return ret2;
5782       }
5783
5784       MEDCouplingCartesianAMRMeshGen *getMeshAtPosition(const std::vector<mcIdType>& pos) const
5785       {
5786         const MEDCouplingCartesianAMRMeshGen *ret(self->getMeshAtPosition(pos));
5787         MEDCouplingCartesianAMRMeshGen *ret2(const_cast<MEDCouplingCartesianAMRMeshGen *>(ret));
5788         if(ret2)
5789           ret2->incrRef();
5790         return ret2;
5791       }
5792
5793       virtual PyObject *positionRelativeToGodFather() const
5794       {
5795         std::vector<mcIdType> out1;
5796         std::vector< std::pair<mcIdType,mcIdType> > out0(self->positionRelativeToGodFather(out1));
5797         PyObject *ret(PyTuple_New(2));
5798         PyTuple_SetItem(ret,0,convertFromVectorPairInt(out0));
5799         PyTuple_SetItem(ret,1,convertIntArrToPyList2(out1));
5800         return ret;
5801       }
5802
5803       virtual PyObject *retrieveGridsAt(mcIdType absoluteLev) const
5804       {
5805         std::vector<MEDCouplingCartesianAMRPatchGen *> ps(self->retrieveGridsAt(absoluteLev));
5806         std::size_t sz(ps.size());
5807         PyObject *ret = PyList_New(sz);
5808         for(std::size_t i=0;i<sz;i++)
5809           PyList_SetItem(ret,i,convertCartesianAMRPatch(ps[i], SWIG_POINTER_OWN | 0 ));
5810         return ret;
5811       }
5812
5813       MEDCouplingFieldDouble *buildCellFieldOnRecurseWithoutOverlapWithoutGhost(mcIdType ghostSz, PyObject *recurseArrs) const
5814       {
5815         std::vector<const DataArrayDouble *> inp;
5816         convertFromPyObjVectorOfObj<const MEDCoupling::DataArrayDouble *>(recurseArrs,SWIGTYPE_p_MEDCoupling__DataArrayDouble,"DataArrayDouble",inp);
5817         return self->buildCellFieldOnRecurseWithoutOverlapWithoutGhost(ghostSz,inp);
5818       }
5819
5820       virtual MEDCouplingCartesianAMRMeshGen *getFather() const
5821       {
5822         MEDCouplingCartesianAMRMeshGen *ret(const_cast<MEDCouplingCartesianAMRMeshGen *>(self->getFather()));
5823         if(ret)
5824           ret->incrRef();
5825         return ret;
5826       }
5827       
5828       virtual MEDCouplingCartesianAMRMeshGen *getGodFather() const
5829       {
5830         MEDCouplingCartesianAMRMeshGen *ret(const_cast<MEDCouplingCartesianAMRMeshGen *>(self->getGodFather()));
5831         if(ret)
5832           ret->incrRef();
5833         return ret;
5834       }
5835
5836       MEDCouplingCartesianAMRPatch *getPatch(mcIdType patchId) const
5837       {
5838         MEDCouplingCartesianAMRPatch *ret(const_cast<MEDCouplingCartesianAMRPatch *>(self->getPatch(patchId)));
5839         if(ret)
5840           ret->incrRef();
5841         return ret;
5842       }
5843
5844       MEDCouplingIMesh *getImageMesh() const
5845       {
5846         const MEDCouplingIMesh *ret(self->getImageMesh());
5847         if(ret)
5848           ret->incrRef();
5849         return const_cast<MEDCouplingIMesh *>(ret);
5850       }
5851
5852       MEDCouplingCartesianAMRPatch *__getitem__(mcIdType patchId) const
5853       {
5854         if(patchId==self->getNumberOfPatches())
5855           {
5856             std::ostringstream oss;
5857             oss << "Requesting for patchId " << patchId << " having only " << self->getNumberOfPatches() << " patches !";
5858             PyErr_SetString(PyExc_StopIteration,oss.str().c_str());
5859             return 0;
5860           }
5861         MEDCouplingCartesianAMRPatch *ret(const_cast<MEDCouplingCartesianAMRPatch *>(self->getPatch(patchId)));
5862         if(ret)
5863           ret->incrRef();
5864         return ret;
5865       }
5866
5867       void fillCellFieldOnPatchGhostAdv(mcIdType patchId, const DataArrayDouble *cellFieldOnThis, mcIdType ghostLev, PyObject *arrsOnPatches, bool isConservative=true) const
5868       {
5869         std::vector<const MEDCoupling::DataArrayDouble *> arrsOnPatches2;
5870         convertFromPyObjVectorOfObj<const MEDCoupling::DataArrayDouble *>(arrsOnPatches,SWIGTYPE_p_MEDCoupling__DataArrayDouble,"DataArrayDouble",arrsOnPatches2);
5871         self->fillCellFieldOnPatchGhostAdv(patchId,cellFieldOnThis,ghostLev,arrsOnPatches2,isConservative);
5872       }
5873
5874       void fillCellFieldOnPatchOnlyGhostAdv(mcIdType patchId, mcIdType ghostLev, PyObject *arrsOnPatches) const
5875       {
5876         std::vector<const MEDCoupling::DataArrayDouble *> arrsOnPatches2;
5877         convertFromPyObjVectorOfObj<const MEDCoupling::DataArrayDouble *>(arrsOnPatches,SWIGTYPE_p_MEDCoupling__DataArrayDouble,"DataArrayDouble",arrsOnPatches2);
5878         self->fillCellFieldOnPatchOnlyGhostAdv(patchId,ghostLev,arrsOnPatches2);
5879       }
5880
5881       void __delitem__(mcIdType patchId)
5882       {
5883         self->removePatch(patchId);
5884       }
5885
5886       mcIdType __len__() const
5887       {
5888         return self->getNumberOfPatches();
5889       }
5890     }
5891   };
5892
5893   class MEDCouplingCartesianAMRMeshSub : public MEDCouplingCartesianAMRMeshGen
5894   {
5895   };
5896
5897   class MEDCouplingCartesianAMRMesh : public MEDCouplingCartesianAMRMeshGen
5898   {
5899   public:
5900     static MEDCouplingCartesianAMRMesh *New(MEDCouplingIMesh *mesh);
5901     %extend
5902     {
5903       static MEDCouplingCartesianAMRMesh *New(const std::string& meshName, int spaceDim, PyObject *nodeStrct, PyObject *origin, PyObject *dxyz)
5904       {
5905         static const char msg0[]="MEDCouplingCartesianAMRMesh::New : error on 'origin' parameter !";
5906         static const char msg1[]="MEDCouplingCartesianAMRMesh::New : error on 'dxyz' parameter !";
5907         const mcIdType *nodeStrctPtr(0);
5908         const double *originPtr(0),*dxyzPtr(0);
5909         mcIdType sw,sz,val0;
5910         std::vector<mcIdType> bb0;
5911         nodeStrctPtr=convertIntStarLikePyObjToCppIntStar(nodeStrct,sw,sz,val0,bb0);
5912         //
5913         double val,val2;
5914         std::vector<double> bb,bb2;
5915         mcIdType sz1,sz2;
5916         originPtr=convertObjToPossibleCpp5_SingleCompo(origin,sw,val,bb,msg0,false,sz1);
5917         dxyzPtr=convertObjToPossibleCpp5_SingleCompo(dxyz,sw,val2,bb2,msg1,false,sz2);
5918         //
5919         return MEDCouplingCartesianAMRMesh::New(meshName,spaceDim,nodeStrctPtr,nodeStrctPtr+sz,originPtr,originPtr+sz1,dxyzPtr,dxyzPtr+sz2);
5920       }
5921
5922       void createPatchesFromCriterionML(PyObject *bso, const DataArrayDouble *criterion, PyObject *factors, double eps)
5923       {
5924         std::vector<const INTERP_KERNEL::BoxSplittingOptions *> inp0;
5925         convertFromPyObjVectorOfObj<const INTERP_KERNEL::BoxSplittingOptions *>(bso,SWIGTYPE_p_INTERP_KERNEL__BoxSplittingOptions,"BoxSplittingOptions",inp0);
5926         std::vector< std::vector<mcIdType> > inp2;
5927         convertPyToVectorOfVectorOfInt(factors,inp2);
5928         self->createPatchesFromCriterionML(inp0,criterion,inp2,eps);
5929       }
5930
5931       MEDCouplingCartesianAMRMesh(const std::string& meshName, int spaceDim, PyObject *nodeStrct, PyObject *origin, PyObject *dxyz)
5932       {
5933         return MEDCoupling_MEDCouplingCartesianAMRMesh_New__SWIG_1(meshName,spaceDim,nodeStrct,origin,dxyz);
5934       }
5935
5936       MEDCouplingCartesianAMRMesh(MEDCouplingIMesh *mesh)
5937       {
5938         return MEDCouplingCartesianAMRMesh::New(mesh);
5939       }
5940     }
5941   };
5942
5943   class MEDCouplingDataForGodFather : public RefCountObject
5944   {
5945   public:
5946     virtual void synchronizeFineToCoarse();
5947     virtual void synchronizeFineToCoarseBetween(mcIdType fromLev, mcIdType toLev);
5948     virtual void synchronizeCoarseToFine();
5949     virtual void synchronizeCoarseToFineBetween(mcIdType fromLev, mcIdType toLev);
5950     virtual void synchronizeAllGhostZones();
5951     virtual void synchronizeAllGhostZonesOfDirectChidrenOf(const MEDCouplingCartesianAMRMeshGen *mesh);
5952     virtual void synchronizeAllGhostZonesAtASpecifiedLevel(mcIdType level);
5953     virtual void synchronizeAllGhostZonesAtASpecifiedLevelUsingOnlyFather(mcIdType level);
5954     virtual void alloc();
5955     virtual void dealloc();
5956     %extend
5957     {
5958       MEDCouplingCartesianAMRMesh *getMyGodFather()
5959       {
5960         MEDCouplingCartesianAMRMesh *ret(self->getMyGodFather());
5961         if(ret)
5962           ret->incrRef();
5963         return ret;
5964       }
5965     }
5966   };
5967   
5968   class MEDCouplingAMRAttribute : public MEDCouplingDataForGodFather, public TimeLabel
5969   {
5970   public:
5971     mcIdType getNumberOfLevels() const;
5972     MEDCouplingAMRAttribute *deepCopy() const;
5973     MEDCouplingAMRAttribute *deepCpyWithoutGodFather() const;
5974     MEDCouplingFieldDouble *buildCellFieldOnRecurseWithoutOverlapWithoutGhost(MEDCouplingCartesianAMRMeshGen *mesh, const std::string& fieldName) const;
5975     MEDCouplingFieldDouble *buildCellFieldOnWithGhost(MEDCouplingCartesianAMRMeshGen *mesh, const std::string& fieldName) const;
5976     MEDCouplingFieldDouble *buildCellFieldOnWithoutGhost(MEDCouplingCartesianAMRMeshGen *mesh, const std::string& fieldName) const;
5977     bool changeGodFather(MEDCouplingCartesianAMRMesh *gf);
5978     MEDCouplingAMRAttribute *projectTo(MEDCouplingCartesianAMRMesh *targetGF) const;
5979     std::string writeVTHB(const std::string& fileName) const;
5980     %extend
5981     {
5982       static MEDCouplingAMRAttribute *New(MEDCouplingCartesianAMRMesh *gf, PyObject *fieldNames, mcIdType ghostLev)
5983       {
5984         std::vector< std::pair<std::string,int> > fieldNamesCpp0;
5985         std::vector< std::pair<std::string, std::vector<std::string> > > fieldNamesCpp1;
5986         MEDCouplingAMRAttribute *ret(0);
5987         try
5988           {
5989             convertPyToVectorPairStringInt(fieldNames,fieldNamesCpp0);
5990             ret=MEDCouplingAMRAttribute::New(gf,fieldNamesCpp0,ghostLev);
5991           }
5992         catch(INTERP_KERNEL::Exception&)
5993           {
5994             convertPyToVectorPairStringVecString(fieldNames,fieldNamesCpp1);
5995             ret=MEDCouplingAMRAttribute::New(gf,fieldNamesCpp1,ghostLev);
5996           }
5997         return ret;
5998       }
5999
6000       MEDCouplingAMRAttribute(MEDCouplingCartesianAMRMesh *gf, PyObject *fieldNames, mcIdType ghostLev)
6001       {
6002         return MEDCoupling_MEDCouplingAMRAttribute_New(gf,fieldNames,ghostLev);
6003       }
6004
6005       DataArrayDouble *getFieldOn(MEDCouplingCartesianAMRMeshGen *mesh, const std::string& fieldName) const
6006       {
6007         const DataArrayDouble *ret(self->getFieldOn(mesh,fieldName));
6008         DataArrayDouble *ret2(const_cast<DataArrayDouble *>(ret));
6009         if(ret2)
6010           ret2->incrRef();
6011         return ret2;
6012       }
6013
6014       void spillInfoOnComponents(PyObject *compNames)
6015       {
6016         std::vector< std::vector<std::string> > compNamesCpp;
6017         convertPyToVectorOfVectorOfString(compNames,compNamesCpp);
6018         self->spillInfoOnComponents(compNamesCpp);
6019       }
6020
6021       void spillNatures(PyObject *nfs)
6022       {
6023         std::vector<mcIdType> inp0;
6024         if(!fillIntVector(nfs,inp0))
6025           throw INTERP_KERNEL::Exception("wrap of MEDCouplingAMRAttribute::spillNatures : vector of NatureOfField enum expected !");
6026         std::size_t sz(inp0.size());
6027         std::vector<NatureOfField> inp00(sz);
6028         for(std::size_t i=0;i<sz;i++)
6029           inp00[i]=(NatureOfField)inp0[i];
6030         self->spillNatures(inp00);
6031       }
6032       
6033       PyObject *retrieveFieldsOn(MEDCouplingCartesianAMRMeshGen *mesh) const
6034       {
6035         std::vector<DataArrayDouble *> ret(self->retrieveFieldsOn(mesh));
6036         std::size_t sz(ret.size());
6037         PyObject *retPy(PyList_New(sz));
6038         for(std::size_t i=0;i<sz;i++)
6039           PyList_SetItem(retPy,i,SWIG_NewPointerObj(SWIG_as_voidptr(ret[i]),SWIGTYPE_p_MEDCoupling__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
6040         return retPy;
6041       }
6042     }
6043   };
6044
6045   class DenseMatrix : public RefCountObject, public TimeLabel
6046   {
6047   public:
6048     static DenseMatrix *New(mcIdType nbRows, mcIdType nbCols);
6049     static DenseMatrix *New(DataArrayDouble *array, mcIdType nbRows, mcIdType nbCols);
6050     DenseMatrix *deepCopy() const;
6051     DenseMatrix *shallowCpy() const;
6052     //
6053     mcIdType getNumberOfRows() const;
6054     mcIdType getNumberOfCols() const;
6055     mcIdType getNbOfElems() const;
6056     void reBuild(DataArrayDouble *array, mcIdType nbRows=-1, mcIdType nbCols=-1);
6057     void reShape(mcIdType nbRows, mcIdType nbCols);
6058     void transpose();
6059     //
6060     bool isEqual(const DenseMatrix& other, double eps) const;
6061     DataArrayDouble *matVecMult(const DataArrayDouble *vec) const;
6062     static DataArrayDouble *MatVecMult(const DenseMatrix *mat, const DataArrayDouble *vec);
6063     %extend
6064     {
6065       DenseMatrix(mcIdType nbRows, mcIdType nbCols)
6066       {
6067         return DenseMatrix::New(nbRows,nbCols);
6068       }
6069
6070       DenseMatrix(DataArrayDouble *array, mcIdType nbRows, mcIdType nbCols)
6071       {
6072         return DenseMatrix::New(array,nbRows,nbCols);
6073       }
6074
6075       PyObject *isEqualIfNotWhy(const DenseMatrix& other, double eps) const
6076       {
6077         std::string ret1;
6078         bool ret0=self->isEqualIfNotWhy(other,eps,ret1);
6079         PyObject *ret=PyTuple_New(2);
6080         PyObject *ret0Py=ret0?Py_True:Py_False;
6081         Py_XINCREF(ret0Py);
6082         PyTuple_SetItem(ret,0,ret0Py);
6083         PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
6084         return ret;
6085       }
6086
6087       DataArrayDouble *getData()
6088       {
6089         DataArrayDouble *ret(self->getData());
6090         if(ret)
6091           ret->incrRef();
6092         return ret;
6093       }
6094
6095       DenseMatrix *__add__(const DenseMatrix *other)
6096       {
6097         return MEDCoupling::DenseMatrix::Add(self,other);
6098       }
6099
6100       DenseMatrix *__sub__(const DenseMatrix *other)
6101       {
6102         return MEDCoupling::DenseMatrix::Substract(self,other);
6103       }
6104
6105       DenseMatrix *__mul__(const DenseMatrix *other)
6106       {
6107         return MEDCoupling::DenseMatrix::Multiply(self,other);
6108       }
6109
6110       DenseMatrix *__mul__(const DataArrayDouble *other)
6111       {
6112         return MEDCoupling::DenseMatrix::Multiply(self,other);
6113       }
6114
6115       PyObject *___iadd___(PyObject *trueSelf, const DenseMatrix *other)
6116       {
6117         self->addEqual(other);
6118         Py_XINCREF(trueSelf);
6119         return trueSelf;
6120       }
6121
6122       PyObject *___isub___(PyObject *trueSelf, const DenseMatrix *other)
6123       {
6124         self->substractEqual(other);
6125         Py_XINCREF(trueSelf);
6126         return trueSelf;
6127       }
6128 #ifdef WITH_NUMPY
6129       PyObject *toNumPyMatrix() // not const. It is not a bug !
6130       {
6131         PyObject *obj(ToNumPyArrayUnderground<DataArrayDouble,double>(self->getData(),NPY_DOUBLE,"DataArrayDouble",self->getNumberOfRows(),self->getNumberOfCols()));
6132         return obj;
6133       }
6134 #endif
6135     }
6136   };
6137 }
6138
6139 %pythoncode %{
6140 def MEDCouplingUMeshReduce(self):
6141     return MEDCouplingStdReduceFunct,(MEDCouplingUMesh,((),(self.__getstate__()),))
6142 def MEDCouplingCMeshReduce(self):
6143     return MEDCouplingStdReduceFunct,(MEDCouplingCMesh,((),(self.__getstate__()),))
6144 def MEDCouplingIMeshReduce(self):
6145     return MEDCouplingStdReduceFunct,(MEDCouplingIMesh,((),(self.__getstate__()),))
6146 def MEDCouplingMappedExtrudedMeshReduce(self):
6147     return MEDCouplingStdReduceFunct,(MEDCouplingMappedExtrudedMesh,((),(self.__getstate__()),))
6148 def MEDCouplingCurveLinearMeshReduce(self):
6149     return MEDCouplingStdReduceFunct,(MEDCouplingCurveLinearMesh,((),(self.__getstate__()),))
6150 def MEDCoupling1SGTUMeshReduce(self):
6151     return MEDCouplingStdReduceFunct,(MEDCoupling1SGTUMesh,((),(self.__getstate__()),))
6152 def MEDCoupling1DGTUMeshReduce(self):
6153     return MEDCouplingStdReduceFunct,(MEDCoupling1DGTUMesh,((),(self.__getstate__()),))
6154 def MEDCouplingFieldDoubleReduce(self):
6155     self.checkConsistencyLight()
6156     d=(self.getTypeOfField(),self.getTimeDiscretization())
6157     return MEDCouplingStdReduceFunct,(MEDCouplingFieldDouble,(d,(self.__getstate__()),))
6158 def MEDCouplingFieldInt32Reduce(self):
6159     self.checkConsistencyLight()
6160     d=(self.getTypeOfField(),self.getTimeDiscretization())
6161     return MEDCouplingStdReduceFunct,(MEDCouplingFieldInt32,(d,(self.__getstate__()),))
6162 def MEDCouplingFieldInt64Reduce(self):
6163     self.checkConsistencyLight()
6164     d=(self.getTypeOfField(),self.getTimeDiscretization())
6165     return MEDCouplingStdReduceFunct,(MEDCouplingFieldInt64,(d,(self.__getstate__()),))
6166 def MEDCouplingFieldFloatReduce(self):
6167     self.checkConsistencyLight()
6168     d=(self.getTypeOfField(),self.getTimeDiscretization())
6169     return MEDCouplingStdReduceFunct,(MEDCouplingFieldFloat,(d,(self.__getstate__()),))
6170 def MEDCouplingFTReduceFunct(cls,params):
6171     a,b=params
6172     ret=object.__new__(cls)
6173     ret.__init__(*a)
6174     return ret
6175     
6176 def MEDCouplingFieldTemplateReduce(self):
6177     ret = MEDCouplingFieldDouble(self)
6178     nbTuples = self.getNumberOfTuplesExpected()
6179     arr = DataArrayDouble(nbTuples) ; arr[:] = 0.
6180     ret.setArray(arr)
6181     return MEDCouplingFTReduceFunct,(MEDCouplingFieldTemplate,((ret,),()))
6182 #
6183 # Forwarding DataArrayInt functions to MEDCouplingUMesh:
6184 #
6185 MEDCouplingUMesh.ExtractFromIndexedArrays           = DataArrayInt.ExtractFromIndexedArrays
6186 MEDCouplingUMesh.ExtractFromIndexedArraysSlice      = DataArrayInt.ExtractFromIndexedArraysSlice
6187 MEDCouplingUMesh.SetPartOfIndexedArrays             = DataArrayInt.SetPartOfIndexedArrays
6188 MEDCouplingUMesh.SetPartOfIndexedArraysSameIdx      = DataArrayInt.SetPartOfIndexedArraysSameIdx
6189 MEDCouplingUMesh.RemoveIdsFromIndexedArrays         = DataArrayInt.RemoveIdsFromIndexedArrays
6190 MEDCouplingFieldInt = MEDCouplingFieldInt32
6191
6192 if MEDCouplingUse64BitIDs():
6193   MEDCouplingFieldID = MEDCouplingFieldInt64
6194 else:
6195   MEDCouplingFieldID = MEDCouplingFieldInt32
6196
6197 %}
6198
6199 %pythoncode %{
6200 import os
6201 __filename=os.environ.get('PYTHONSTARTUP')
6202 if __filename and os.path.isfile(__filename):
6203     with open(__filename) as __fp:
6204         exec(__fp.read())
6205 %}