Salome HOME
MEDCouplingUMesh::getAllTypes -> MEDCouplingUMesh::getAllGeoTypes
[tools/medcoupling.git] / src / MEDCoupling_Swig / MEDCouplingCommon.i
1 // Copyright (C) 2007-2013  CEA/DEN, EDF R&D
2 //
3 // This library is free software; you can redistribute it and/or
4 // modify it under the terms of the GNU Lesser General Public
5 // License as published by the Free Software Foundation; either
6 // version 2.1 of the License.
7 //
8 // This library is distributed in the hope that it will be useful,
9 // but WITHOUT ANY WARRANTY; without even the implied warranty of
10 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11 // Lesser General Public License for more details.
12 //
13 // You should have received a copy of the GNU Lesser General Public
14 // License along with this library; if not, write to the Free Software
15 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
16 //
17 // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
18 //
19 // Author : Anthony Geay (CEA/DEN)
20
21 %module MEDCoupling
22
23 %include std_vector.i
24 %include std_string.i
25
26 %{
27 #include "MEDCouplingMemArray.hxx"
28 #include "MEDCouplingUMesh.hxx"
29 #include "MEDCouplingExtrudedMesh.hxx"
30 #include "MEDCouplingCMesh.hxx"
31 #include "MEDCouplingCurveLinearMesh.hxx"
32 #include "MEDCoupling1GTUMesh.hxx"
33 #include "MEDCouplingField.hxx"
34 #include "MEDCouplingFieldDouble.hxx"
35 #include "MEDCouplingFieldTemplate.hxx"
36 #include "MEDCouplingGaussLocalization.hxx"
37 #include "MEDCouplingAutoRefCountObjectPtr.hxx"
38 #include "MEDCouplingMultiFields.hxx"
39 #include "MEDCouplingFieldOverTime.hxx"
40 #include "MEDCouplingDefinitionTime.hxx"
41 #include "MEDCouplingFieldDiscretization.hxx"
42 #include "MEDCouplingTypemaps.i"
43
44 #include "InterpKernelAutoPtr.hxx"
45
46 using namespace ParaMEDMEM;
47 using namespace INTERP_KERNEL;
48
49 %}
50
51 %template(ivec) std::vector<int>;
52 %template(dvec) std::vector<double>;
53 %template(svec) std::vector<std::string>;
54
55 ////////////////////
56 %typemap(out) ParaMEDMEM::MEDCouplingMesh*
57 {
58   $result=convertMesh($1,$owner);
59 }
60
61 %typemap(out) MEDCouplingMesh*
62 {
63   $result=convertMesh($1,$owner);
64 }
65 //$$$$$$$$$$$$$$$$$$
66
67 ////////////////////
68 %typemap(out) ParaMEDMEM::MEDCouplingPointSet*
69 {
70   $result=convertMesh($1,$owner);
71 }
72
73 %typemap(out) MEDCouplingPointSet*
74 {
75   $result=convertMesh($1,$owner);
76 }
77 //$$$$$$$$$$$$$$$$$$
78
79
80 ////////////////////
81 %typemap(out) ParaMEDMEM::MEDCoupling1GTUMesh*
82 {
83   $result=convertMesh($1,$owner);
84 }
85
86 %typemap(out) MEDCoupling1GTUMesh*
87 {
88   $result=convertMesh($1,$owner);
89 }
90 //$$$$$$$$$$$$$$$$$$
91
92 ////////////////////
93 %typemap(out) ParaMEDMEM::MEDCouplingStructuredMesh*
94 {
95   $result=convertMesh($1,$owner);
96 }
97
98 %typemap(out) MEDCouplingStructuredMesh*
99 {
100   $result=convertMesh($1,$owner);
101 }
102 //$$$$$$$$$$$$$$$$$$
103
104 ////////////////////
105 %typemap(out) ParaMEDMEM::MEDCouplingFieldDiscretization*
106 {
107   $result=convertFieldDiscretization($1,$owner);
108 }
109
110 %typemap(out) MEDCouplingFieldDiscretization*
111 {
112   $result=convertFieldDiscretization($1,$owner);
113 }
114 //$$$$$$$$$$$$$$$$$$
115
116 ////////////////////
117 %typemap(out) ParaMEDMEM::MEDCouplingMultiFields*
118 {
119   $result=convertMultiFields($1,$owner);
120 }
121
122 %typemap(out) MEDCouplingMultiFields*
123 {
124   $result=convertMultiFields($1,$owner);
125 }
126 //$$$$$$$$$$$$$$$$$$
127
128 #ifdef WITH_NUMPY
129 %init %{ import_array(); %}
130 #endif
131
132 %feature("autodoc", "1");
133 %feature("docstring");
134
135 %newobject ParaMEDMEM::MEDCouplingField::buildMeasureField;
136 %newobject ParaMEDMEM::MEDCouplingField::getLocalizationOfDiscr;
137 %newobject ParaMEDMEM::MEDCouplingField::computeTupleIdsToSelectFromCellIds;
138 %newobject ParaMEDMEM::MEDCouplingFieldDouble::New;
139 %newobject ParaMEDMEM::MEDCouplingFieldDouble::getArray;
140 %newobject ParaMEDMEM::MEDCouplingFieldDouble::getEndArray;
141 %newobject ParaMEDMEM::MEDCouplingFieldDouble::MergeFields;
142 %newobject ParaMEDMEM::MEDCouplingFieldDouble::MeldFields;
143 %newobject ParaMEDMEM::MEDCouplingFieldDouble::doublyContractedProduct;
144 %newobject ParaMEDMEM::MEDCouplingFieldDouble::determinant;
145 %newobject ParaMEDMEM::MEDCouplingFieldDouble::eigenValues;
146 %newobject ParaMEDMEM::MEDCouplingFieldDouble::eigenVectors;
147 %newobject ParaMEDMEM::MEDCouplingFieldDouble::inverse;
148 %newobject ParaMEDMEM::MEDCouplingFieldDouble::trace;
149 %newobject ParaMEDMEM::MEDCouplingFieldDouble::deviator;
150 %newobject ParaMEDMEM::MEDCouplingFieldDouble::magnitude;
151 %newobject ParaMEDMEM::MEDCouplingFieldDouble::maxPerTuple;
152 %newobject ParaMEDMEM::MEDCouplingFieldDouble::keepSelectedComponents;
153 %newobject ParaMEDMEM::MEDCouplingFieldDouble::extractSlice3D;
154 %newobject ParaMEDMEM::MEDCouplingFieldDouble::DotFields;
155 %newobject ParaMEDMEM::MEDCouplingFieldDouble::dot;
156 %newobject ParaMEDMEM::MEDCouplingFieldDouble::CrossProductFields;
157 %newobject ParaMEDMEM::MEDCouplingFieldDouble::crossProduct;
158 %newobject ParaMEDMEM::MEDCouplingFieldDouble::MaxFields;
159 %newobject ParaMEDMEM::MEDCouplingFieldDouble::max;
160 %newobject ParaMEDMEM::MEDCouplingFieldDouble::MinFields;
161 %newobject ParaMEDMEM::MEDCouplingFieldDouble::AddFields;
162 %newobject ParaMEDMEM::MEDCouplingFieldDouble::SubstractFields;
163 %newobject ParaMEDMEM::MEDCouplingFieldDouble::MultiplyFields;
164 %newobject ParaMEDMEM::MEDCouplingFieldDouble::DivideFields;
165 %newobject ParaMEDMEM::MEDCouplingFieldDouble::min;
166 %newobject ParaMEDMEM::MEDCouplingFieldDouble::negate;
167 %newobject ParaMEDMEM::MEDCouplingFieldDouble::getIdsInRange;
168 %newobject ParaMEDMEM::MEDCouplingFieldDouble::buildSubPart;
169 %newobject ParaMEDMEM::MEDCouplingFieldDouble::buildSubPartRange;
170 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__getitem__;
171 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__neg__;
172 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__add__;
173 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__sub__;
174 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__mul__;
175 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__div__;
176 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__pow__;
177 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__radd__;
178 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__rsub__;
179 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__rmul__;
180 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__rdiv__;
181 %newobject ParaMEDMEM::MEDCouplingFieldDouble::clone;
182 %newobject ParaMEDMEM::MEDCouplingFieldDouble::cloneWithMesh;
183 %newobject ParaMEDMEM::MEDCouplingFieldDouble::deepCpy;
184 %newobject ParaMEDMEM::MEDCouplingFieldDouble::buildNewTimeReprFromThis;
185 %newobject ParaMEDMEM::MEDCouplingFieldDouble::nodeToCellDiscretization;
186 %newobject ParaMEDMEM::MEDCouplingFieldDouble::getValueOnMulti;
187 %newobject ParaMEDMEM::MEDCouplingFieldTemplate::New;
188 %newobject ParaMEDMEM::MEDCouplingMesh::deepCpy;
189 %newobject ParaMEDMEM::MEDCouplingMesh::checkDeepEquivalOnSameNodesWith;
190 %newobject ParaMEDMEM::MEDCouplingMesh::checkTypeConsistencyAndContig;
191 %newobject ParaMEDMEM::MEDCouplingMesh::computeNbOfNodesPerCell;
192 %newobject ParaMEDMEM::MEDCouplingMesh::computeNbOfFacesPerCell;
193 %newobject ParaMEDMEM::MEDCouplingMesh::computeEffectiveNbOfNodesPerCell;
194 %newobject ParaMEDMEM::MEDCouplingMesh::buildPartRange;
195 %newobject ParaMEDMEM::MEDCouplingMesh::giveCellsWithType;
196 %newobject ParaMEDMEM::MEDCouplingMesh::getCoordinatesAndOwner;
197 %newobject ParaMEDMEM::MEDCouplingMesh::getBarycenterAndOwner;
198 %newobject ParaMEDMEM::MEDCouplingMesh::computeIsoBarycenterOfNodesPerCell;
199 %newobject ParaMEDMEM::MEDCouplingMesh::buildOrthogonalField;
200 %newobject ParaMEDMEM::MEDCouplingMesh::getCellIdsFullyIncludedInNodeIds;
201 %newobject ParaMEDMEM::MEDCouplingMesh::mergeMyselfWith;
202 %newobject ParaMEDMEM::MEDCouplingMesh::fillFromAnalytic;
203 %newobject ParaMEDMEM::MEDCouplingMesh::fillFromAnalytic2;
204 %newobject ParaMEDMEM::MEDCouplingMesh::fillFromAnalytic3;
205 %newobject ParaMEDMEM::MEDCouplingMesh::getMeasureField;
206 %newobject ParaMEDMEM::MEDCouplingMesh::simplexize;
207 %newobject ParaMEDMEM::MEDCouplingMesh::buildUnstructured;
208 %newobject ParaMEDMEM::MEDCouplingMesh::MergeMeshes;
209 %newobject ParaMEDMEM::MEDCouplingPointSet::zipCoordsTraducer;
210 %newobject ParaMEDMEM::MEDCouplingPointSet::getCellsInBoundingBox;
211 %newobject ParaMEDMEM::MEDCouplingPointSet::findBoundaryNodes;
212 %newobject ParaMEDMEM::MEDCouplingPointSet::buildBoundaryMesh;
213 %newobject ParaMEDMEM::MEDCouplingPointSet::MergeNodesArray;
214 %newobject ParaMEDMEM::MEDCouplingPointSet::buildPartOfMySelf2;
215 %newobject ParaMEDMEM::MEDCouplingPointSet::BuildInstanceFromMeshType;
216 %newobject ParaMEDMEM::MEDCouplingPointSet::zipConnectivityTraducer;
217 %newobject ParaMEDMEM::MEDCouplingPointSet::mergeMyselfWithOnSameCoords;
218 %newobject ParaMEDMEM::MEDCouplingPointSet::fillCellIdsToKeepFromNodeIds;
219 %newobject ParaMEDMEM::MEDCouplingPointSet::getCellIdsLyingOnNodes;
220 %newobject ParaMEDMEM::MEDCouplingPointSet::deepCpyConnectivityOnly;
221 %newobject ParaMEDMEM::MEDCouplingPointSet::getBoundingBoxForBBTree;
222 %newobject ParaMEDMEM::MEDCouplingPointSet::ComputeNbOfInteractionsWithSrcCells;
223 %newobject ParaMEDMEM::MEDCouplingPointSet::__getitem__;
224 %newobject ParaMEDMEM::MEDCouplingUMesh::New;
225 %newobject ParaMEDMEM::MEDCouplingUMesh::getNodalConnectivity;
226 %newobject ParaMEDMEM::MEDCouplingUMesh::getNodalConnectivityIndex;
227 %newobject ParaMEDMEM::MEDCouplingUMesh::clone;
228 %newobject ParaMEDMEM::MEDCouplingUMesh::__iter__;
229 %newobject ParaMEDMEM::MEDCouplingUMesh::cellsByType;
230 %newobject ParaMEDMEM::MEDCouplingUMesh::buildDescendingConnectivity;
231 %newobject ParaMEDMEM::MEDCouplingUMesh::buildDescendingConnectivity2;
232 %newobject ParaMEDMEM::MEDCouplingUMesh::explode3DMeshTo1D;
233 %newobject ParaMEDMEM::MEDCouplingUMesh::buildExtrudedMesh;
234 %newobject ParaMEDMEM::MEDCouplingUMesh::buildSpreadZonesWithPoly;
235 %newobject ParaMEDMEM::MEDCouplingUMesh::MergeUMeshes;
236 %newobject ParaMEDMEM::MEDCouplingUMesh::MergeUMeshesOnSameCoords;
237 %newobject ParaMEDMEM::MEDCouplingUMesh::ComputeSpreadZoneGradually;
238 %newobject ParaMEDMEM::MEDCouplingUMesh::ComputeSpreadZoneGraduallyFromSeed;
239 %newobject ParaMEDMEM::MEDCouplingUMesh::buildNewNumberingFromCommNodesFrmt;
240 %newobject ParaMEDMEM::MEDCouplingUMesh::rearrange2ConsecutiveCellTypes;
241 %newobject ParaMEDMEM::MEDCouplingUMesh::sortCellsInMEDFileFrmt;
242 %newobject ParaMEDMEM::MEDCouplingUMesh::getRenumArrForMEDFileFrmt;
243 %newobject ParaMEDMEM::MEDCouplingUMesh::convertCellArrayPerGeoType;
244 %newobject ParaMEDMEM::MEDCouplingUMesh::computeFetchedNodeIds;
245 %newobject ParaMEDMEM::MEDCouplingUMesh::getRenumArrForConsecutiveCellTypesSpec;
246 %newobject ParaMEDMEM::MEDCouplingUMesh::buildDirectionVectorField;
247 %newobject ParaMEDMEM::MEDCouplingUMesh::convertLinearCellsToQuadratic;
248 %newobject ParaMEDMEM::MEDCouplingUMesh::getEdgeRatioField;
249 %newobject ParaMEDMEM::MEDCouplingUMesh::getAspectRatioField;
250 %newobject ParaMEDMEM::MEDCouplingUMesh::getWarpField;
251 %newobject ParaMEDMEM::MEDCouplingUMesh::getSkewField;
252 %newobject ParaMEDMEM::MEDCouplingUMesh::getPartBarycenterAndOwner;
253 %newobject ParaMEDMEM::MEDCouplingUMesh::computePlaneEquationOf3DFaces;
254 %newobject ParaMEDMEM::MEDCouplingUMesh::getPartMeasureField;
255 %newobject ParaMEDMEM::MEDCouplingUMesh::buildPartOrthogonalField;
256 %newobject ParaMEDMEM::MEDCouplingUMesh::keepCellIdsByType;
257 %newobject ParaMEDMEM::MEDCouplingUMesh::Build0DMeshFromCoords;
258 %newobject ParaMEDMEM::MEDCouplingUMesh::findAndCorrectBadOriented3DExtrudedCells;
259 %newobject ParaMEDMEM::MEDCouplingUMesh::findAndCorrectBadOriented3DCells;
260 %newobject ParaMEDMEM::MEDCouplingUMesh::convertIntoSingleGeoTypeMesh;
261 %newobject ParaMEDMEM::MEDCouplingUMesh::convertNodalConnectivityToStaticGeoTypeMesh;
262 %newobject ParaMEDMEM::MEDCouplingUMesh::findCellIdsOnBoundary;
263 %newobject ParaMEDMEM::MEDCouplingUMesh::computeSkin;
264 %newobject ParaMEDMEM::MEDCouplingUMesh::buildSetInstanceFromThis;
265 %newobject ParaMEDMEM::MEDCouplingUMesh::getCellIdsCrossingPlane;
266 %newobject ParaMEDMEM::MEDCouplingUMesh::convexEnvelop2D;
267 %newobject ParaMEDMEM::MEDCouplingUMesh::ComputeRangesFromTypeDistribution;
268 %newobject ParaMEDMEM::MEDCouplingUMesh::buildUnionOf2DMesh;
269 %newobject ParaMEDMEM::MEDCouplingUMesh::buildUnionOf3DMesh;
270 %newobject ParaMEDMEM::MEDCouplingUMeshCellByTypeEntry::__iter__;
271 %newobject ParaMEDMEM::MEDCouplingUMeshCellEntry::__iter__;
272 %newobject ParaMEDMEM::MEDCoupling1GTUMesh::New;
273 %newobject ParaMEDMEM::MEDCoupling1GTUMesh::getNodalConnectivity;
274 %newobject ParaMEDMEM::MEDCoupling1GTUMesh::AggregateOnSameCoordsToUMesh;
275 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::New;
276 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::buildSetInstanceFromThis;
277 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::computeDualMesh;
278 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::explodeEachHexa8To6Quad4;
279 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::sortHexa8EachOther;
280 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::Merge1SGTUMeshes;
281 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::Merge1SGTUMeshesOnSameCoords;
282 %newobject ParaMEDMEM::MEDCoupling1DGTUMesh::New;
283 %newobject ParaMEDMEM::MEDCoupling1DGTUMesh::getNodalConnectivityIndex;
284 %newobject ParaMEDMEM::MEDCoupling1DGTUMesh::buildSetInstanceFromThis;
285 %newobject ParaMEDMEM::MEDCoupling1DGTUMesh::Merge1DGTUMeshes;
286 %newobject ParaMEDMEM::MEDCoupling1DGTUMesh::Merge1DGTUMeshesOnSameCoords;
287 %newobject ParaMEDMEM::MEDCouplingExtrudedMesh::New;
288 %newobject ParaMEDMEM::MEDCouplingExtrudedMesh::build3DUnstructuredMesh;
289 %newobject ParaMEDMEM::MEDCouplingStructuredMesh::buildStructuredSubPart;
290 %newobject ParaMEDMEM::MEDCouplingStructuredMesh::build1SGTUnstructured;
291 %newobject ParaMEDMEM::MEDCouplingStructuredMesh::BuildExplicitIdsFrom;
292 %newobject ParaMEDMEM::MEDCouplingStructuredMesh::Build1GTNodalConnectivity;
293 %newobject ParaMEDMEM::MEDCouplingCMesh::New;
294 %newobject ParaMEDMEM::MEDCouplingCMesh::clone;
295 %newobject ParaMEDMEM::MEDCouplingCMesh::getCoordsAt;
296 %newobject ParaMEDMEM::MEDCouplingCurveLinearMesh::New;
297 %newobject ParaMEDMEM::MEDCouplingCurveLinearMesh::clone;
298 %newobject ParaMEDMEM::MEDCouplingCurveLinearMesh::getCoords;
299 %newobject ParaMEDMEM::MEDCouplingMultiFields::New;
300 %newobject ParaMEDMEM::MEDCouplingMultiFields::deepCpy;
301 %newobject ParaMEDMEM::MEDCouplingFieldOverTime::New;
302
303 %feature("unref") MEDCouplingPointSet "$this->decrRef();"
304 %feature("unref") MEDCouplingMesh "$this->decrRef();"
305 %feature("unref") MEDCouplingUMesh "$this->decrRef();"
306 %feature("unref") MEDCoupling1GTUMesh "$this->decrRef();"
307 %feature("unref") MEDCoupling1SGTUMesh "$this->decrRef();"
308 %feature("unref") MEDCoupling1DGTUMesh "$this->decrRef();"
309 %feature("unref") MEDCouplingExtrudedMesh "$this->decrRef();"
310 %feature("unref") MEDCouplingCMesh "$this->decrRef();"
311 %feature("unref") MEDCouplingField "$this->decrRef();"
312 %feature("unref") MEDCouplingFieldDiscretizationP0 "$this->decrRef();"
313 %feature("unref") MEDCouplingFieldDiscretizationP1 "$this->decrRef();"
314 %feature("unref") MEDCouplingFieldDiscretizationGauss "$this->decrRef();"
315 %feature("unref") MEDCouplingFieldDiscretizationGaussNE "$this->decrRef();"
316 %feature("unref") MEDCouplingFieldDiscretizationKriging "$this->decrRef();"
317 %feature("unref") MEDCouplingFieldDouble "$this->decrRef();"
318 %feature("unref") MEDCouplingMultiFields "$this->decrRef();"
319 %feature("unref") MEDCouplingFieldTemplate "$this->decrRef();"
320 %feature("unref") MEDCouplingMultiFields "$this->decrRef();"
321
322 %rename(assign) *::operator=;
323 %ignore ParaMEDMEM::MEDCouplingGaussLocalization::pushTinySerializationIntInfo;
324 %ignore ParaMEDMEM::MEDCouplingGaussLocalization::pushTinySerializationDblInfo;
325 %ignore ParaMEDMEM::MEDCouplingGaussLocalization::fillWithValues;
326 %ignore ParaMEDMEM::MEDCouplingGaussLocalization::buildNewInstanceFromTinyInfo;
327
328 %nodefaultctor;
329
330 %rename (InterpKernelException) INTERP_KERNEL::Exception;
331
332 %include "MEDCouplingRefCountObject.i"
333 %include "MEDCouplingMemArray.i"
334
335 namespace ParaMEDMEM
336 {
337   typedef enum
338     {
339       ON_CELLS = 0,
340       ON_NODES = 1,
341       ON_GAUSS_PT = 2,
342       ON_GAUSS_NE = 3,
343       ON_NODES_KR = 4
344     } TypeOfField;
345
346   typedef enum
347     {
348       NO_TIME = 4,
349       ONE_TIME = 5,
350       LINEAR_TIME = 6,
351       CONST_ON_TIME_INTERVAL = 7
352     } TypeOfTimeDiscretization;
353
354   typedef enum
355     {
356       UNSTRUCTURED = 5,
357       CARTESIAN = 7,
358       EXTRUDED = 8,
359       CURVE_LINEAR = 9,
360       SINGLE_STATIC_GEO_TYPE_UNSTRUCTURED = 10,
361       SINGLE_DYNAMIC_GEO_TYPE_UNSTRUCTURED = 11
362     } MEDCouplingMeshType;
363
364   class DataArrayInt;
365   class DataArrayDouble;
366   class MEDCouplingUMesh;
367   class MEDCouplingFieldDouble;
368
369   %extend RefCountObject
370   {
371     std::string getHiddenCppPointer() const
372     {
373       std::ostringstream oss; oss << "C++ Pointer address is : " << self;
374       return oss.str();
375     }
376   }
377
378   %extend MEDCouplingGaussLocalization
379   {
380     std::string __str__() const throw(INTERP_KERNEL::Exception)
381     {
382       return self->getStringRepr();
383     }
384
385     std::string __repr__() const throw(INTERP_KERNEL::Exception)
386     {
387       std::ostringstream oss; oss << "MEDCouplingGaussLocalization C++ instance at " << self << "." << std::endl;
388       oss << self->getStringRepr();
389       return oss.str();
390     }
391   }
392
393   //== MEDCouplingMesh
394   
395   class MEDCouplingMesh : public RefCountObject, public TimeLabel
396   {
397   public:
398     void setName(const char *name);
399     std::string getName() const;
400     void setDescription(const char *descr);
401     std::string getDescription() const;
402     void setTime(double val, int iteration, int order);
403     void setTimeUnit(const char *unit);
404     const char *getTimeUnit() const;
405     virtual MEDCouplingMeshType getType() const throw(INTERP_KERNEL::Exception);
406     bool isStructured() const throw(INTERP_KERNEL::Exception);
407     virtual MEDCouplingMesh *deepCpy() const;
408     virtual bool isEqual(const MEDCouplingMesh *other, double prec) const throw(INTERP_KERNEL::Exception);
409     virtual bool isEqualWithoutConsideringStr(const MEDCouplingMesh *other, double prec) const throw(INTERP_KERNEL::Exception);
410     virtual void checkFastEquivalWith(const MEDCouplingMesh *other, double prec) const throw(INTERP_KERNEL::Exception);
411     virtual void copyTinyStringsFrom(const MEDCouplingMesh *other) throw(INTERP_KERNEL::Exception);
412     virtual void copyTinyInfoFrom(const MEDCouplingMesh *other) throw(INTERP_KERNEL::Exception);
413     virtual void checkCoherency() const throw(INTERP_KERNEL::Exception);
414     virtual void checkCoherency1(double eps=1e-12) const throw(INTERP_KERNEL::Exception);
415     virtual void checkCoherency2(double eps=1e-12) const throw(INTERP_KERNEL::Exception);
416     virtual int getNumberOfCells() const throw(INTERP_KERNEL::Exception);
417     virtual int getNumberOfNodes() const throw(INTERP_KERNEL::Exception);
418     virtual int getSpaceDimension() const throw(INTERP_KERNEL::Exception);
419     virtual int getMeshDimension() const throw(INTERP_KERNEL::Exception);
420     virtual DataArrayDouble *getCoordinatesAndOwner() const throw(INTERP_KERNEL::Exception);
421     virtual DataArrayDouble *getBarycenterAndOwner() const throw(INTERP_KERNEL::Exception);
422     virtual DataArrayDouble *computeIsoBarycenterOfNodesPerCell() const throw(INTERP_KERNEL::Exception);
423     virtual DataArrayInt *giveCellsWithType(INTERP_KERNEL::NormalizedCellType type) const throw(INTERP_KERNEL::Exception);
424     virtual DataArrayInt *computeNbOfNodesPerCell() const throw(INTERP_KERNEL::Exception);
425     virtual DataArrayInt *computeNbOfFacesPerCell() const throw(INTERP_KERNEL::Exception);
426     virtual DataArrayInt *computeEffectiveNbOfNodesPerCell() const throw(INTERP_KERNEL::Exception);
427     virtual MEDCouplingMesh *buildPartRange(int beginCellIds, int endCellIds, int stepCellIds) const throw(INTERP_KERNEL::Exception);
428     virtual int getNumberOfCellsWithType(INTERP_KERNEL::NormalizedCellType type) const throw(INTERP_KERNEL::Exception);
429     virtual INTERP_KERNEL::NormalizedCellType getTypeOfCell(int cellId) const throw(INTERP_KERNEL::Exception);
430     virtual std::string simpleRepr() const throw(INTERP_KERNEL::Exception);
431     virtual std::string advancedRepr() const throw(INTERP_KERNEL::Exception);
432     void writeVTK(const char *fileName, bool isBinary=true) const throw(INTERP_KERNEL::Exception);
433     // tools
434     virtual MEDCouplingFieldDouble *getMeasureField(bool isAbs) const throw(INTERP_KERNEL::Exception);
435     virtual MEDCouplingFieldDouble *getMeasureFieldOnNode(bool isAbs) const throw(INTERP_KERNEL::Exception);
436     virtual MEDCouplingFieldDouble *fillFromAnalytic(TypeOfField t, int nbOfComp, const char *func) const throw(INTERP_KERNEL::Exception);
437     virtual MEDCouplingFieldDouble *fillFromAnalytic2(TypeOfField t, int nbOfComp, const char *func) const throw(INTERP_KERNEL::Exception);
438     virtual MEDCouplingFieldDouble *fillFromAnalytic3(TypeOfField t, int nbOfComp, const std::vector<std::string>& varsOrder, const char *func) const throw(INTERP_KERNEL::Exception);
439     virtual MEDCouplingFieldDouble *buildOrthogonalField() const throw(INTERP_KERNEL::Exception);
440     virtual MEDCouplingUMesh *buildUnstructured() const throw(INTERP_KERNEL::Exception);
441     virtual MEDCouplingMesh *mergeMyselfWith(const MEDCouplingMesh *other) const throw(INTERP_KERNEL::Exception);
442     virtual bool areCompatibleForMerge(const MEDCouplingMesh *other) const throw(INTERP_KERNEL::Exception);
443     virtual DataArrayInt *simplexize(int policy) throw(INTERP_KERNEL::Exception);
444     static MEDCouplingMesh *MergeMeshes(const MEDCouplingMesh *mesh1, const MEDCouplingMesh *mesh2) throw(INTERP_KERNEL::Exception);
445     static bool IsStaticGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
446     static bool IsLinearGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
447     static INTERP_KERNEL::NormalizedCellType GetCorrespondingPolyType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
448     static int GetNumberOfNodesOfGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
449     static int GetDimensionOfGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
450     static const char *GetReprOfGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
451     %extend
452        {
453          std::string __str__() const throw(INTERP_KERNEL::Exception)
454          {
455            return self->simpleRepr();
456          }
457
458          PyObject *getTime() throw(INTERP_KERNEL::Exception)
459          {
460            int tmp1,tmp2;
461            double tmp0=self->getTime(tmp1,tmp2);
462            PyObject *res = PyList_New(3);
463            PyList_SetItem(res,0,SWIG_From_double(tmp0));
464            PyList_SetItem(res,1,SWIG_From_int(tmp1));
465            PyList_SetItem(res,2,SWIG_From_int(tmp2));
466            return res;
467          }
468
469          int getCellContainingPoint(PyObject *p, double eps) const throw(INTERP_KERNEL::Exception)
470          {
471            double val;
472            DataArrayDouble *a;
473            DataArrayDoubleTuple *aa;
474            std::vector<double> bb;
475            int sw;
476            int spaceDim=self->getSpaceDimension();
477            const char msg[]="Python wrap of MEDCouplingMesh::getCellContainingPoint : ";
478            const double *pos=convertObjToPossibleCpp5_Safe(p,sw,val,a,aa,bb,msg,1,spaceDim,true);
479            return self->getCellContainingPoint(pos,eps);
480          }
481
482          PyObject *getCellsContainingPoints(PyObject *p, int nbOfPoints, double eps) const throw(INTERP_KERNEL::Exception)
483          {
484            double val;
485            DataArrayDouble *a;
486            DataArrayDoubleTuple *aa;
487            std::vector<double> bb;
488            int sw;
489            int spaceDim=self->getSpaceDimension();
490            const char msg[]="Python wrap of MEDCouplingMesh::getCellsContainingPoint : ";
491            const double *pos=convertObjToPossibleCpp5_Safe(p,sw,val,a,aa,bb,msg,nbOfPoints,spaceDim,true);
492            MEDCouplingAutoRefCountObjectPtr<DataArrayInt> elts,eltsIndex;
493            self->getCellsContainingPoints(pos,nbOfPoints,eps,elts,eltsIndex);
494            PyObject *ret=PyTuple_New(2);
495            PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(elts.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
496            PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(eltsIndex.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
497            return ret;
498          }
499
500          PyObject *getCellsContainingPoints(PyObject *p, double eps) const throw(INTERP_KERNEL::Exception)
501          {
502            MEDCouplingAutoRefCountObjectPtr<DataArrayInt> elts,eltsIndex;
503            int spaceDim=self->getSpaceDimension();
504            void *da=0;
505            int res1=SWIG_ConvertPtr(p,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, 0 |  0 );
506            if (!SWIG_IsOK(res1))
507              {
508                int size;
509                INTERP_KERNEL::AutoCPtr<double> tmp=convertPyToNewDblArr2(p,&size);
510                int nbOfPoints=size/spaceDim;
511                if(size%spaceDim!=0)
512                  {
513                    throw INTERP_KERNEL::Exception("MEDCouplingMesh::getCellsContainingPoints : Invalid list length ! Must be a multiple of self.getSpaceDimension() !");
514                  }
515                self->getCellsContainingPoints(tmp,nbOfPoints,eps,elts,eltsIndex);
516              }
517            else
518              {
519                DataArrayDouble *da2=reinterpret_cast< DataArrayDouble * >(da);
520                if(!da2)
521                  throw INTERP_KERNEL::Exception("MEDCouplingMesh::getCellsContainingPoints : Not null DataArrayDouble instance expected !");
522                da2->checkAllocated();
523                int size=da2->getNumberOfTuples();
524                int nbOfCompo=da2->getNumberOfComponents();
525                if(nbOfCompo!=spaceDim)
526                  {
527                    throw INTERP_KERNEL::Exception("MEDCouplingMesh::getCellsContainingPoints : Invalid DataArrayDouble nb of components ! Expected same as self.getSpaceDimension() !");
528                  }
529                self->getCellsContainingPoints(da2->getConstPointer(),size,eps,elts,eltsIndex);
530              }
531            PyObject *ret=PyTuple_New(2);
532            PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(elts.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
533            PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(eltsIndex.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
534            return ret;
535          }
536
537          PyObject *getCellsContainingPoint(PyObject *p, double eps) const throw(INTERP_KERNEL::Exception)
538          {
539            double val;
540            DataArrayDouble *a;
541            DataArrayDoubleTuple *aa;
542            std::vector<double> bb;
543            int sw;
544            int spaceDim=self->getSpaceDimension();
545            const char msg[]="Python wrap of MEDCouplingUMesh::getCellsContainingPoint : ";
546            const double *pos=convertObjToPossibleCpp5_Safe(p,sw,val,a,aa,bb,msg,1,spaceDim,true);
547            std::vector<int> elts;
548            self->getCellsContainingPoint(pos,eps,elts);
549            DataArrayInt *ret=DataArrayInt::New();
550            ret->alloc((int)elts.size(),1);
551            std::copy(elts.begin(),elts.end(),ret->getPointer());
552            return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
553          }
554          
555          void renumberCells(PyObject *li, bool check=true) throw(INTERP_KERNEL::Exception)
556          {
557            int sw,sz(-1);
558            int v0; std::vector<int> v1;
559            const int *ids(convertObjToPossibleCpp1_Safe(li,sw,sz,v0,v1));
560            self->renumberCells(ids,check);
561          }
562
563          PyObject *checkGeoEquivalWith(const MEDCouplingMesh *other, int levOfCheck, double prec) const throw(INTERP_KERNEL::Exception)
564          {
565            DataArrayInt *cellCor, *nodeCor;
566            self->checkGeoEquivalWith(other,levOfCheck,prec,cellCor,nodeCor);
567            PyObject *res = PyList_New(2);
568            PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(cellCor),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, cellCor?SWIG_POINTER_OWN | 0:0 ));
569            PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(nodeCor),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, nodeCor?SWIG_POINTER_OWN | 0:0 ));
570            return res;
571          }
572
573          PyObject *checkDeepEquivalWith(const MEDCouplingMesh *other, int cellCompPol, double prec) const throw(INTERP_KERNEL::Exception)
574          {
575            DataArrayInt *cellCor=0,*nodeCor=0;
576            self->checkDeepEquivalWith(other,cellCompPol,prec,cellCor,nodeCor);
577            PyObject *res = PyList_New(2);
578            PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(cellCor),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, cellCor?SWIG_POINTER_OWN | 0:0 ));
579            PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(nodeCor),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, nodeCor?SWIG_POINTER_OWN | 0:0 ));
580            return res;
581          }
582          
583          DataArrayInt *checkDeepEquivalOnSameNodesWith(const MEDCouplingMesh *other, int cellCompPol, double prec) const throw(INTERP_KERNEL::Exception)
584          {
585            DataArrayInt *cellCor=0;
586            self->checkDeepEquivalOnSameNodesWith(other,cellCompPol,prec,cellCor);
587            return cellCor;
588          }
589
590          DataArrayInt *getCellIdsFullyIncludedInNodeIds(PyObject *li) const throw(INTERP_KERNEL::Exception)
591          {
592            void *da=0;
593            int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayInt, 0 |  0 );
594            if (!SWIG_IsOK(res1))
595              {
596                int size;
597                INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
598                return self->getCellIdsFullyIncludedInNodeIds(tmp,((const int *)tmp)+size);
599              }
600            else
601              {
602                DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
603                if(!da2)
604                  throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
605                da2->checkAllocated();
606                return self->getCellIdsFullyIncludedInNodeIds(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems());
607              }
608          }
609          PyObject *getNodeIdsOfCell(int cellId) const throw(INTERP_KERNEL::Exception)
610          {
611            std::vector<int> conn;
612            self->getNodeIdsOfCell(cellId,conn);
613            return convertIntArrToPyList2(conn);
614          }
615
616          PyObject *getCoordinatesOfNode(int nodeId) const throw(INTERP_KERNEL::Exception)
617          {
618            std::vector<double> coo;
619            self->getCoordinatesOfNode(nodeId,coo);
620            return convertDblArrToPyList2(coo);
621          }
622
623          void scale(PyObject *point, double factor) throw(INTERP_KERNEL::Exception)
624          {
625            double val;
626            DataArrayDouble *a;
627            DataArrayDoubleTuple *aa;
628            std::vector<double> bb;
629            int sw;
630            int spaceDim=self->getSpaceDimension();
631            const char msg[]="Python wrap of MEDCouplingPointSet::scale : ";
632            const double *pointPtr=convertObjToPossibleCpp5_Safe(point,sw,val,a,aa,bb,msg,1,spaceDim,true);
633            self->scale(pointPtr,factor);
634          }
635
636          PyObject *getBoundingBox() const throw(INTERP_KERNEL::Exception)
637          {
638            int spaceDim=self->getSpaceDimension();
639            INTERP_KERNEL::AutoPtr<double> tmp=new double[2*spaceDim];
640            self->getBoundingBox(tmp);
641            PyObject *ret=convertDblArrToPyListOfTuple(tmp,2,spaceDim);
642            return ret;
643          }
644
645          PyObject *isEqualIfNotWhy(const MEDCouplingMesh *other, double prec) const throw(INTERP_KERNEL::Exception)
646          {
647            std::string ret1;
648            bool ret0=self->isEqualIfNotWhy(other,prec,ret1);
649            PyObject *ret=PyTuple_New(2);
650            PyObject *ret0Py=ret0?Py_True:Py_False;
651            Py_XINCREF(ret0Py);
652            PyTuple_SetItem(ret,0,ret0Py);
653            PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
654            return ret;
655          }
656
657          PyObject *buildPart(PyObject *li) const throw(INTERP_KERNEL::Exception)
658          {
659            int szArr,sw,iTypppArr;
660            std::vector<int> stdvecTyyppArr;
661            const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
662            MEDCouplingMesh *ret=self->buildPart(tmp,tmp+szArr);
663            if(sw==3)//DataArrayInt
664              { 
665                void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
666                DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
667                std::string name=argpt->getName();
668                if(!name.empty())
669                  ret->setName(name.c_str());
670              }
671            return convertMesh(ret, SWIG_POINTER_OWN | 0 );
672          }
673         
674          PyObject *buildPartAndReduceNodes(PyObject *li) const throw(INTERP_KERNEL::Exception)
675          {
676            int szArr,sw,iTypppArr;
677            std::vector<int> stdvecTyyppArr;
678            DataArrayInt *arr=0;
679            const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
680            MEDCouplingMesh *ret=self->buildPartAndReduceNodes(tmp,tmp+szArr,arr);
681            if(sw==3)//DataArrayInt
682              { 
683                void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
684                DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
685                std::string name=argpt->getName();
686                if(!name.empty())
687                  ret->setName(name.c_str());
688              }
689            //
690            PyObject *res = PyList_New(2);
691            PyObject *obj0=convertMesh(ret, SWIG_POINTER_OWN | 0 );
692            PyObject *obj1=SWIG_NewPointerObj(SWIG_as_voidptr(arr),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
693            PyList_SetItem(res,0,obj0);
694            PyList_SetItem(res,1,obj1);
695            return res;
696          }
697
698          PyObject *buildPartRangeAndReduceNodes(int beginCellIds, int endCellIds, int stepCellIds) const throw(INTERP_KERNEL::Exception)
699          {
700            int a,b,c;
701            DataArrayInt *arr=0;
702            MEDCouplingMesh *ret=self->buildPartRangeAndReduceNodes(beginCellIds,endCellIds,stepCellIds,a,b,c,arr);
703            PyObject *res = PyTuple_New(2);
704            PyObject *obj0=convertMesh(ret, SWIG_POINTER_OWN | 0 );
705            PyObject *obj1=0;
706            if(arr)
707              obj1=SWIG_NewPointerObj(SWIG_as_voidptr(arr),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
708            else
709              obj1=PySlice_New(PyInt_FromLong(a),PyInt_FromLong(b),PyInt_FromLong(b));
710            PyTuple_SetItem(res,0,obj0);
711            PyTuple_SetItem(res,1,obj1);
712            return res;
713          }
714
715         PyObject *getDistributionOfTypes() const throw(INTERP_KERNEL::Exception)
716         {
717           std::vector<int> vals=self->getDistributionOfTypes();
718           if(vals.size()%3!=0)
719             throw INTERP_KERNEL::Exception("Internal Error detected in wrap python ! code returned by MEDCouplingMesh::getDistributionOfTypes is not so that %3==0 !");
720           PyObject *ret=PyList_New((int)vals.size()/3);
721           for(int j=0;j<(int)vals.size()/3;j++)
722              {
723                PyObject *ret1=PyList_New(3);
724                PyList_SetItem(ret1,0,SWIG_From_int(vals[3*j]));
725                PyList_SetItem(ret1,1,SWIG_From_int(vals[3*j+1]));
726                PyList_SetItem(ret1,2,SWIG_From_int(vals[3*j+2]));
727                PyList_SetItem(ret,j,ret1);
728              }
729           return ret;
730         }
731
732         DataArrayInt *checkTypeConsistencyAndContig(PyObject *li, PyObject *li2) const throw(INTERP_KERNEL::Exception)
733         {
734           std::vector<int> code;
735           std::vector<const DataArrayInt *> idsPerType;
736           convertFromPyObjVectorOfObj<const ParaMEDMEM::DataArrayInt *>(li2,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,"DataArrayInt",idsPerType);
737           convertPyToNewIntArr4(li,1,3,code);
738           return self->checkTypeConsistencyAndContig(code,idsPerType);
739         }
740
741         PyObject *splitProfilePerType(const DataArrayInt *profile) const throw(INTERP_KERNEL::Exception)
742         {
743           std::vector<int> code;
744           std::vector<DataArrayInt *> idsInPflPerType;
745           std::vector<DataArrayInt *> idsPerType;
746           self->splitProfilePerType(profile,code,idsInPflPerType,idsPerType);
747           PyObject *ret=PyTuple_New(3);
748           //
749           if(code.size()%3!=0)
750             throw INTERP_KERNEL::Exception("Internal Error detected in wrap python ! code returned by MEDCouplingMesh::splitProfilePerType is not so that %3==0 !");
751           PyObject *ret0=PyList_New((int)code.size()/3);
752           for(int j=0;j<(int)code.size()/3;j++)
753              {
754                PyObject *ret00=PyList_New(3);
755                PyList_SetItem(ret00,0,SWIG_From_int(code[3*j]));
756                PyList_SetItem(ret00,1,SWIG_From_int(code[3*j+1]));
757                PyList_SetItem(ret00,2,SWIG_From_int(code[3*j+2]));
758                PyList_SetItem(ret0,j,ret00);
759              }
760           PyTuple_SetItem(ret,0,ret0);
761           //
762           PyObject *ret1=PyList_New(idsInPflPerType.size());
763           for(std::size_t j=0;j<idsInPflPerType.size();j++)
764             PyList_SetItem(ret1,j,SWIG_NewPointerObj(SWIG_as_voidptr(idsInPflPerType[j]),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
765           PyTuple_SetItem(ret,1,ret1);
766           int n=idsPerType.size();
767           PyObject *ret2=PyList_New(n);
768           for(int i=0;i<n;i++)
769             PyList_SetItem(ret2,i,SWIG_NewPointerObj(SWIG_as_voidptr(idsPerType[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
770           PyTuple_SetItem(ret,2,ret2);
771           return ret;
772         }
773
774         void translate(PyObject *vector) throw(INTERP_KERNEL::Exception)
775         {
776           double val;
777           DataArrayDouble *a;
778           DataArrayDoubleTuple *aa;
779           std::vector<double> bb;
780           int sw;
781           int spaceDim=self->getSpaceDimension();
782           const char msg[]="Python wrap of MEDCouplingPointSet::translate : ";
783           const double *vectorPtr=convertObjToPossibleCpp5_Safe(vector,sw,val,a,aa,bb,msg,1,spaceDim,true);
784           self->translate(vectorPtr);
785         }
786
787          void rotate(PyObject *center, double alpha) throw(INTERP_KERNEL::Exception)
788          {
789            const char msg[]="Python wrap of MEDCouplingPointSet::rotate : ";
790            double val;
791            DataArrayDouble *a;
792            DataArrayDoubleTuple *aa;
793            std::vector<double> bb;
794            int sw;
795            int spaceDim=self->getSpaceDimension();
796            const double *centerPtr=convertObjToPossibleCpp5_Safe(center,sw,val,a,aa,bb,msg,1,spaceDim,true);
797            self->rotate(centerPtr,0,alpha);
798          }
799
800          void rotate(PyObject *center, PyObject *vector, double alpha) throw(INTERP_KERNEL::Exception)
801          {
802            const char msg[]="Python wrap of MEDCouplingPointSet::rotate : ";
803            double val,val2;
804            DataArrayDouble *a,*a2;
805            DataArrayDoubleTuple *aa,*aa2;
806            std::vector<double> bb,bb2;
807            int sw;
808            int spaceDim=self->getSpaceDimension();
809            const double *centerPtr=convertObjToPossibleCpp5_Safe(center,sw,val,a,aa,bb,msg,1,spaceDim,true);
810            const double *vectorPtr=convertObjToPossibleCpp5_Safe(vector,sw,val2,a2,aa2,bb2,msg,1,spaceDim,false);//vectorPtr can be null in case of space dim 2
811            self->rotate(centerPtr,vectorPtr,alpha);
812          }
813
814          PyObject *getAllGeoTypes() const throw(INTERP_KERNEL::Exception)
815          {
816            std::set<INTERP_KERNEL::NormalizedCellType> result=self->getAllGeoTypes();
817            std::set<INTERP_KERNEL::NormalizedCellType>::const_iterator iL=result.begin();
818            PyObject *res=PyList_New(result.size());
819            for(int i=0;iL!=result.end(); i++, iL++)
820              PyList_SetItem(res,i,PyInt_FromLong(*iL));
821            return res;
822          }
823          
824          static MEDCouplingMesh *MergeMeshes(PyObject *li) throw(INTERP_KERNEL::Exception)
825          {
826             std::vector<const ParaMEDMEM::MEDCouplingMesh *> tmp;
827             convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingMesh,"MEDCouplingMesh",tmp);
828             return MEDCouplingMesh::MergeMeshes(tmp);
829          }
830        }
831   };
832 }
833
834 //== MEDCouplingMesh End
835
836 %include "NormalizedGeometricTypes"
837 %include "MEDCouplingNatureOfFieldEnum"
838 //
839 namespace ParaMEDMEM
840 {
841   class MEDCouplingNatureOfField
842   {
843   public:
844     static const char *GetRepr(NatureOfField nat) throw(INTERP_KERNEL::Exception);
845     static std::string GetReprNoThrow(NatureOfField nat);
846     static std::string GetAllPossibilitiesStr();
847   };
848 }
849
850 // the MEDCouplingTimeDiscretization classes are not swigged : in case the file can help
851 // include "MEDCouplingTimeDiscretization.i"
852
853 namespace ParaMEDMEM
854 {
855   class MEDCouplingGaussLocalization
856   {
857   public:
858     MEDCouplingGaussLocalization(INTERP_KERNEL::NormalizedCellType type, const std::vector<double>& refCoo,
859                                  const std::vector<double>& gsCoo, const std::vector<double>& w) throw(INTERP_KERNEL::Exception);
860     MEDCouplingGaussLocalization(INTERP_KERNEL::NormalizedCellType typ) throw(INTERP_KERNEL::Exception);
861     INTERP_KERNEL::NormalizedCellType getType() const throw(INTERP_KERNEL::Exception);
862     void setType(INTERP_KERNEL::NormalizedCellType typ) throw(INTERP_KERNEL::Exception);
863     int getNumberOfGaussPt() const throw(INTERP_KERNEL::Exception);
864     int getDimension() const throw(INTERP_KERNEL::Exception);
865     int getNumberOfPtsInRefCell() const throw(INTERP_KERNEL::Exception);
866     std::string getStringRepr() const throw(INTERP_KERNEL::Exception);
867     void checkCoherency() const throw(INTERP_KERNEL::Exception);
868     bool isEqual(const MEDCouplingGaussLocalization& other, double eps) const throw(INTERP_KERNEL::Exception);
869     //
870     const std::vector<double>& getRefCoords() const throw(INTERP_KERNEL::Exception);
871     double getRefCoord(int ptIdInCell, int comp) const throw(INTERP_KERNEL::Exception);
872     const std::vector<double>& getGaussCoords() const throw(INTERP_KERNEL::Exception);
873     double getGaussCoord(int gaussPtIdInCell, int comp) const throw(INTERP_KERNEL::Exception);
874     const std::vector<double>& getWeights() const throw(INTERP_KERNEL::Exception);
875     double getWeight(int gaussPtIdInCell, double newVal) const throw(INTERP_KERNEL::Exception);
876     void setRefCoord(int ptIdInCell, int comp, double newVal) throw(INTERP_KERNEL::Exception);
877     void setGaussCoord(int gaussPtIdInCell, int comp, double newVal) throw(INTERP_KERNEL::Exception);
878     void setWeight(int gaussPtIdInCell, double newVal) throw(INTERP_KERNEL::Exception);
879     void setRefCoords(const std::vector<double>& refCoo) throw(INTERP_KERNEL::Exception);
880     void setGaussCoords(const std::vector<double>& gsCoo) throw(INTERP_KERNEL::Exception);
881     void setWeights(const std::vector<double>& w) throw(INTERP_KERNEL::Exception);
882     //
883     static bool AreAlmostEqual(const std::vector<double>& v1, const std::vector<double>& v2, double eps);
884   };
885 }
886
887 %include "MEDCouplingFieldDiscretization.i"
888
889 //== MEDCouplingPointSet
890
891 namespace ParaMEDMEM
892 {
893   class MEDCouplingPointSet : public ParaMEDMEM::MEDCouplingMesh
894     {
895     public:
896       void setCoords(const DataArrayDouble *coords) throw(INTERP_KERNEL::Exception);
897       DataArrayDouble *getCoordinatesAndOwner() const throw(INTERP_KERNEL::Exception);
898       bool areCoordsEqual(const MEDCouplingPointSet& other, double prec) const throw(INTERP_KERNEL::Exception);
899       void zipCoords() throw(INTERP_KERNEL::Exception);
900       double getCaracteristicDimension() const throw(INTERP_KERNEL::Exception);
901       void recenterForMaxPrecision(double eps) throw(INTERP_KERNEL::Exception);
902       void changeSpaceDimension(int newSpaceDim, double dftVal=0.) throw(INTERP_KERNEL::Exception);
903       void tryToShareSameCoords(const MEDCouplingPointSet& other, double epsilon) throw(INTERP_KERNEL::Exception);
904       virtual void shallowCopyConnectivityFrom(const MEDCouplingPointSet *other) throw(INTERP_KERNEL::Exception);
905       virtual MEDCouplingPointSet *buildPartOfMySelf2(int start, int end, int step) const throw(INTERP_KERNEL::Exception);
906       virtual void tryToShareSameCoordsPermute(const MEDCouplingPointSet& other, double epsilon) throw(INTERP_KERNEL::Exception);
907       static DataArrayDouble *MergeNodesArray(const MEDCouplingPointSet *m1, const MEDCouplingPointSet *m2) throw(INTERP_KERNEL::Exception);
908       static MEDCouplingPointSet *BuildInstanceFromMeshType(MEDCouplingMeshType type) throw(INTERP_KERNEL::Exception);
909       static DataArrayInt *ComputeNbOfInteractionsWithSrcCells(const MEDCouplingPointSet *srcMesh, const MEDCouplingPointSet *trgMesh, double eps) throw(INTERP_KERNEL::Exception);
910       virtual int getNumberOfNodesInCell(int cellId) const throw(INTERP_KERNEL::Exception);
911       virtual MEDCouplingPointSet *buildBoundaryMesh(bool keepCoords) const throw(INTERP_KERNEL::Exception);
912       virtual DataArrayInt *getCellsInBoundingBox(const INTERP_KERNEL::DirectedBoundingBox& bbox, double eps) throw(INTERP_KERNEL::Exception);
913       virtual DataArrayInt *zipCoordsTraducer() throw(INTERP_KERNEL::Exception);
914       virtual DataArrayInt *findBoundaryNodes() const;
915       virtual DataArrayInt *zipConnectivityTraducer(int compType, int startCellId=0) throw(INTERP_KERNEL::Exception);
916       virtual MEDCouplingPointSet *mergeMyselfWithOnSameCoords(const MEDCouplingPointSet *other) const throw(INTERP_KERNEL::Exception);
917       virtual void checkFullyDefined() const throw(INTERP_KERNEL::Exception);
918       virtual bool isEmptyMesh(const std::vector<int>& tinyInfo) const throw(INTERP_KERNEL::Exception);
919       virtual MEDCouplingPointSet *deepCpyConnectivityOnly() const throw(INTERP_KERNEL::Exception);
920       virtual DataArrayDouble *getBoundingBoxForBBTree() const throw(INTERP_KERNEL::Exception);
921       %extend 
922          {
923            std::string __str__() const throw(INTERP_KERNEL::Exception)
924            {
925              return self->simpleRepr();
926            }
927            
928            PyObject *buildNewNumberingFromCommonNodesFormat(const DataArrayInt *comm, const DataArrayInt *commIndex) const throw(INTERP_KERNEL::Exception)
929            {
930              int newNbOfNodes;
931              DataArrayInt *ret0=self->buildNewNumberingFromCommonNodesFormat(comm,commIndex,newNbOfNodes);
932              PyObject *res = PyList_New(2);
933              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
934              PyList_SetItem(res,1,SWIG_From_int(newNbOfNodes));
935              return res;
936            }
937            
938            PyObject *findCommonNodes(double prec, int limitTupleId=-1) const throw(INTERP_KERNEL::Exception)
939            {
940              DataArrayInt *comm, *commIndex;
941              self->findCommonNodes(prec,limitTupleId,comm,commIndex);
942              PyObject *res = PyList_New(2);
943              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(comm),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
944              PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(commIndex),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
945              return res;
946            }
947            
948            PyObject *getCoords() throw(INTERP_KERNEL::Exception)
949            {
950              DataArrayDouble *ret1=self->getCoords();
951              if (ret1)
952                 ret1->incrRef();
953              return SWIG_NewPointerObj((void*)ret1,SWIGTYPE_p_ParaMEDMEM__DataArrayDouble,SWIG_POINTER_OWN | 0);
954            }
955            
956            PyObject *buildPartOfMySelf(PyObject *li, bool keepCoords=true) const throw(INTERP_KERNEL::Exception)
957            {
958              int szArr,sw,iTypppArr;
959              std::vector<int> stdvecTyyppArr;
960              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
961              MEDCouplingPointSet *ret=self->buildPartOfMySelf(tmp,tmp+szArr,keepCoords);
962              if(sw==3)//DataArrayInt
963                { 
964                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
965                  DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
966                  std::string name=argpt->getName();
967                  if(!name.empty())
968                    ret->setName(name.c_str());
969                }
970              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
971            }
972            
973            PyObject *buildPartOfMySelfNode(PyObject *li, bool fullyIn) const throw(INTERP_KERNEL::Exception)
974            {
975              int szArr,sw,iTypppArr;
976              std::vector<int> stdvecTyyppArr;
977              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
978              MEDCouplingPointSet *ret=self->buildPartOfMySelfNode(tmp,tmp+szArr,fullyIn);
979              if(sw==3)//DataArrayInt
980                { 
981                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
982                  DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
983                  std::string name=argpt->getName();
984                  if(!name.empty())
985                    ret->setName(name.c_str());
986                }
987              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
988            }
989
990            virtual PyObject *buildPartOfMySelfKeepCoords(PyObject *li) const throw(INTERP_KERNEL::Exception)
991            {
992              int szArr,sw,iTypppArr;
993              std::vector<int> stdvecTyyppArr;
994              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
995              MEDCouplingPointSet *ret=self->buildPartOfMySelfKeepCoords(tmp,tmp+szArr);
996              if(sw==3)//DataArrayInt
997                { 
998                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
999                  DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
1000                  std::string name=argpt->getName();
1001                  if(!name.empty())
1002                    ret->setName(name.c_str());
1003                }
1004              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1005            }
1006
1007            virtual PyObject *buildPartOfMySelfKeepCoords2(int start, int end, int step) const throw(INTERP_KERNEL::Exception)
1008            {
1009              MEDCouplingPointSet *ret=self->buildPartOfMySelfKeepCoords2(start,end,step);
1010              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1011            }
1012
1013            PyObject *buildFacePartOfMySelfNode(PyObject *li, bool fullyIn) const throw(INTERP_KERNEL::Exception)
1014            {
1015              int szArr,sw,iTypppArr;
1016              std::vector<int> stdvecTyyppArr;
1017              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1018              MEDCouplingPointSet *ret=self->buildFacePartOfMySelfNode(tmp,tmp+szArr,fullyIn);
1019              if(sw==3)//DataArrayInt
1020                { 
1021                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
1022                  DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
1023                  std::string name=argpt->getName();
1024                  if(!name.empty())
1025                    ret->setName(name.c_str());
1026                }
1027              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1028            }
1029
1030            void renumberNodes(PyObject *li, int newNbOfNodes) throw(INTERP_KERNEL::Exception)
1031            {
1032              int szArr,sw,iTypppArr;
1033              std::vector<int> stdvecTyyppArr;
1034              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1035              self->renumberNodes(tmp,newNbOfNodes);
1036            }
1037
1038            void renumberNodes2(PyObject *li, int newNbOfNodes) throw(INTERP_KERNEL::Exception)
1039            {
1040              int szArr,sw,iTypppArr;
1041              std::vector<int> stdvecTyyppArr;
1042              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1043              self->renumberNodes2(tmp,newNbOfNodes);
1044            }
1045
1046            PyObject *findNodesOnLine(PyObject *pt, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
1047              {
1048                int spaceDim=self->getSpaceDimension();
1049                double val,val2;
1050                DataArrayDouble *a,*a2;
1051                DataArrayDoubleTuple *aa,*aa2;
1052                std::vector<double> bb,bb2;
1053                int sw;
1054                const char msg[]="Python wrap of MEDCouplingPointSet::findNodesOnLine : 1st paramater for point.";
1055                const char msg2[]="Python wrap of MEDCouplingPointSet::findNodesOnLine : 2nd paramater for vector.";
1056                const double *p=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,1,spaceDim,true);
1057                const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
1058                std::vector<int> nodes;
1059                self->findNodesOnLine(p,v,eps,nodes);
1060                DataArrayInt *ret=DataArrayInt::New();
1061                ret->alloc((int)nodes.size(),1);
1062                std::copy(nodes.begin(),nodes.end(),ret->getPointer());
1063                return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
1064              }
1065            PyObject *findNodesOnPlane(PyObject *pt, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
1066              {
1067                int spaceDim=self->getSpaceDimension();
1068                double val,val2;
1069                DataArrayDouble *a,*a2;
1070                DataArrayDoubleTuple *aa,*aa2;
1071                std::vector<double> bb,bb2;
1072                int sw;
1073                const char msg[]="Python wrap of MEDCouplingPointSet::findNodesOnPlane : 1st paramater for point.";
1074                const char msg2[]="Python wrap of MEDCouplingPointSet::findNodesOnPlane : 2nd paramater for vector.";
1075                const double *p=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,1,spaceDim,true);
1076                const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
1077                std::vector<int> nodes;
1078                self->findNodesOnPlane(p,v,eps,nodes);
1079                DataArrayInt *ret=DataArrayInt::New();
1080                ret->alloc((int)nodes.size(),1);
1081                std::copy(nodes.begin(),nodes.end(),ret->getPointer());
1082                return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
1083              }
1084            
1085            PyObject *getNodeIdsNearPoint(PyObject *pt, double eps) const throw(INTERP_KERNEL::Exception)
1086            {
1087              double val;
1088              DataArrayDouble *a;
1089              DataArrayDoubleTuple *aa;
1090              std::vector<double> bb;
1091              int sw;
1092              int spaceDim=self->getSpaceDimension();
1093              const char msg[]="Python wrap of MEDCouplingPointSet::getNodeIdsNearPoint : ";
1094              const double *pos=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,1,spaceDim,true);
1095              DataArrayInt *ret=self->getNodeIdsNearPoint(pos,eps);
1096              return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
1097            }
1098
1099            PyObject *getNodeIdsNearPoints(PyObject *pt, int nbOfPoints, double eps) const throw(INTERP_KERNEL::Exception)
1100            {
1101              DataArrayInt *c=0,*cI=0;
1102              //
1103              double val;
1104              DataArrayDouble *a;
1105              DataArrayDoubleTuple *aa;
1106              std::vector<double> bb;
1107              int sw;
1108              int spaceDim=self->getSpaceDimension();
1109              const char msg[]="Python wrap of MEDCouplingPointSet::getNodeIdsNearPoints : ";
1110              const double *pos=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,nbOfPoints,spaceDim,true);
1111              self->getNodeIdsNearPoints(pos,nbOfPoints,eps,c,cI);
1112              PyObject *ret=PyTuple_New(2);
1113              PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(c),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1114              PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cI),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1115              return ret;
1116            }
1117
1118            PyObject *getNodeIdsNearPoints(PyObject *pt, double eps) const throw(INTERP_KERNEL::Exception)
1119            {
1120              DataArrayInt *c=0,*cI=0;
1121              int spaceDim=self->getSpaceDimension();
1122              double val;
1123              DataArrayDouble *a;
1124              DataArrayDoubleTuple *aa;
1125              std::vector<double> bb;
1126              int sw;
1127              int nbOfTuples=-1;
1128              const double *ptPtr=convertObjToPossibleCpp5_Safe2(pt,sw,val,a,aa,bb,"Python wrap of MEDCouplingUMesh::getNodeIdsNearPoints",spaceDim,true,nbOfTuples);
1129              self->getNodeIdsNearPoints(ptPtr,nbOfTuples,eps,c,cI);
1130              //
1131              PyObject *ret=PyTuple_New(2);
1132              PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(c),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1133              PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cI),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1134              return ret;
1135            }
1136
1137            PyObject *getCellsInBoundingBox(PyObject *bbox, double eps) const throw(INTERP_KERNEL::Exception)
1138            {
1139              double val;
1140              DataArrayDouble *a;
1141              DataArrayDoubleTuple *aa;
1142              std::vector<double> bb;
1143              int sw;
1144              int spaceDim=self->getSpaceDimension();
1145              const char msg[]="Python wrap of MEDCouplingPointSet::getCellsInBoundingBox : ";
1146              const double *tmp=convertObjToPossibleCpp5_Safe(bbox,sw,val,a,aa,bb,msg,spaceDim,2,true);
1147              //
1148              DataArrayInt *elems=self->getCellsInBoundingBox(tmp,eps);
1149              return SWIG_NewPointerObj(SWIG_as_voidptr(elems),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
1150            }
1151
1152            void duplicateNodesInCoords(PyObject *li) throw(INTERP_KERNEL::Exception)
1153            {
1154              int sw;
1155              int singleVal;
1156              std::vector<int> multiVal;
1157              std::pair<int, std::pair<int,int> > slic;
1158              ParaMEDMEM::DataArrayInt *daIntTyypp=0;
1159              convertObjToPossibleCpp2(li,self->getNumberOfNodes(),sw,singleVal,multiVal,slic,daIntTyypp);
1160              switch(sw)
1161                {
1162                case 1:
1163                  return self->duplicateNodesInCoords(&singleVal,&singleVal+1);
1164                case 2:
1165                  return self->duplicateNodesInCoords(&multiVal[0],&multiVal[0]+multiVal.size());
1166                case 4:
1167                  return self->duplicateNodesInCoords(daIntTyypp->begin(),daIntTyypp->end());
1168                default:
1169                  throw INTERP_KERNEL::Exception("MEDCouplingPointSet::duplicateNodesInCoords : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
1170                }
1171            }
1172
1173            virtual PyObject *getReverseNodalConnectivity() const throw(INTERP_KERNEL::Exception)
1174            {
1175              MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d0=DataArrayInt::New();
1176              MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d1=DataArrayInt::New();
1177              self->getReverseNodalConnectivity(d0,d1);
1178              PyObject *ret=PyTuple_New(2);
1179              PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1180              PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1181              return ret;
1182            }
1183
1184            virtual PyObject *findCommonCells(int compType, int startCellId=0) const throw(INTERP_KERNEL::Exception)
1185            {
1186              DataArrayInt *v0=0,*v1=0;
1187              self->findCommonCells(compType,startCellId,v0,v1);
1188              PyObject *res = PyList_New(2);
1189              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(v0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1190              PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(v1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1191              return res;
1192            }
1193
1194       
1195            virtual void renumberNodesInConn(PyObject *li) throw(INTERP_KERNEL::Exception)
1196            {
1197              void *da=0;
1198              int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayInt, 0 | 0 );
1199              if (!SWIG_IsOK(res1))
1200                {
1201                  int size;
1202                  INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
1203                  self->renumberNodesInConn(tmp);
1204                }
1205              else
1206                {
1207                  DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
1208                  if(!da2)
1209                    throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
1210                  da2->checkAllocated();
1211                  self->renumberNodesInConn(da2->getConstPointer());
1212                }
1213            }
1214
1215            virtual PyObject *getNodeIdsInUse() const throw(INTERP_KERNEL::Exception)
1216            {
1217              int ret1=-1;
1218              DataArrayInt *ret0=self->getNodeIdsInUse(ret1);
1219              PyObject *ret=PyTuple_New(2);
1220              PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1221              PyTuple_SetItem(ret,1,PyInt_FromLong(ret1));
1222              return ret;
1223            }
1224
1225            virtual DataArrayInt *fillCellIdsToKeepFromNodeIds(PyObject *li, bool fullyIn) const
1226            {
1227              DataArrayInt *ret=0;
1228              //
1229              int szArr,sw,iTypppArr;
1230              std::vector<int> stdvecTyyppArr;
1231              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1232              self->fillCellIdsToKeepFromNodeIds(tmp,tmp+szArr,fullyIn,ret);
1233              return ret;
1234            }
1235
1236            virtual PyObject *mergeNodes(double precision) throw(INTERP_KERNEL::Exception)
1237            {
1238              bool ret1;
1239              int ret2;
1240              DataArrayInt *ret0=self->mergeNodes(precision,ret1,ret2);
1241              PyObject *res = PyList_New(3);
1242              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1243              PyList_SetItem(res,1,SWIG_From_bool(ret1));
1244              PyList_SetItem(res,2,SWIG_From_int(ret2));
1245              return res;
1246            }
1247            
1248            virtual PyObject *mergeNodes2(double precision) throw(INTERP_KERNEL::Exception)
1249            {
1250              bool ret1;
1251              int ret2;
1252              DataArrayInt *ret0=self->mergeNodes2(precision,ret1,ret2);
1253              PyObject *res = PyList_New(3);
1254              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1255              PyList_SetItem(res,1,SWIG_From_bool(ret1));
1256              PyList_SetItem(res,2,SWIG_From_int(ret2));
1257              return res;
1258            }
1259            
1260            DataArrayInt *getCellIdsLyingOnNodes(PyObject *li, bool fullyIn) const throw(INTERP_KERNEL::Exception)
1261            {
1262              void *da=0;
1263              int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayInt, 0 |  0 );
1264              if (!SWIG_IsOK(res1))
1265                {
1266                  int size;
1267                  INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
1268                  return self->getCellIdsLyingOnNodes(tmp,((const int *)tmp)+size,fullyIn);
1269                }
1270              else
1271                {
1272                  DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
1273                  if(!da2)
1274                    throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
1275                  da2->checkAllocated();
1276                  return self->getCellIdsLyingOnNodes(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems(),fullyIn);
1277                }
1278            }
1279
1280            MEDCouplingPointSet *__getitem__(PyObject *listOrDataArrI) throw(INTERP_KERNEL::Exception)
1281            {
1282              int sw;
1283              int singleVal;
1284              std::vector<int> multiVal;
1285              std::pair<int, std::pair<int,int> > slic;
1286              ParaMEDMEM::DataArrayInt *daIntTyypp=0;
1287              int nbc=self->getNumberOfCells();
1288              convertObjToPossibleCpp2(listOrDataArrI,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
1289              switch(sw)
1290                {
1291                case 1:
1292                  {
1293                    if(singleVal>=nbc)
1294                      {
1295                        std::ostringstream oss;
1296                        oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1297                        throw INTERP_KERNEL::Exception(oss.str().c_str());
1298                      }
1299                    if(singleVal>=0)
1300                      return self->buildPartOfMySelf(&singleVal,&singleVal+1,true);
1301                    else
1302                      {
1303                        if(nbc+singleVal>0)
1304                          {
1305                            int tmp=nbc+singleVal;
1306                            return self->buildPartOfMySelf(&tmp,&tmp+1,true);
1307                          }
1308                        else
1309                          {
1310                            std::ostringstream oss;
1311                            oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1312                            throw INTERP_KERNEL::Exception(oss.str().c_str());
1313                          }
1314                      }
1315                  }
1316                case 2:
1317                  {
1318                    return static_cast<MEDCouplingPointSet *>(self->buildPartOfMySelf(&multiVal[0],&multiVal[0]+multiVal.size(),true));
1319                  }
1320                case 3:
1321                  {
1322                    return self->buildPartOfMySelf2(slic.first,slic.second.first,slic.second.second,true);
1323                  }
1324                case 4:
1325                  {
1326                    if(!daIntTyypp)
1327                      throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__getitem__ : null instance has been given in input !");
1328                    daIntTyypp->checkAllocated();
1329                    return self->buildPartOfMySelf(daIntTyypp->begin(),daIntTyypp->end(),true);
1330                  }
1331                default:
1332                  throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__getitem__ : unrecognized type in input ! Possibilities are : int, list or tuple of int DataArrayInt instance !");
1333                }
1334            }
1335            
1336            static void Rotate2DAlg(PyObject *center, double angle, int nbNodes, PyObject *coords) throw(INTERP_KERNEL::Exception)
1337            {
1338              int sz;
1339              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1340              INTERP_KERNEL::AutoCPtr<double> coo=convertPyToNewDblArr2(coords,&sz);
1341              ParaMEDMEM::MEDCouplingPointSet::Rotate2DAlg(c,angle,nbNodes,coo);
1342              for(int i=0;i<sz;i++)
1343                PyList_SetItem(coords,i,PyFloat_FromDouble(coo[i]));
1344            }
1345            
1346            static void Rotate2DAlg(PyObject *center, double angle, PyObject *coords) throw(INTERP_KERNEL::Exception)
1347            {
1348              int sz;
1349              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1350              int sw,nbNodes=0;
1351              double val0;  ParaMEDMEM::DataArrayDouble *val1=0; ParaMEDMEM::DataArrayDoubleTuple *val2=0;
1352              std::vector<double> val3;
1353              const double *coo=convertObjToPossibleCpp5_Safe2(coords,sw,val0,val1,val2,val3,
1354                                                             "Rotate2DAlg",2,true,nbNodes);
1355              if(sw!=2 && sw!=3)
1356                throw INTERP_KERNEL::Exception("Invalid call to MEDCouplingPointSet::Rotate2DAlg : try another overload method !");
1357              ParaMEDMEM::MEDCouplingPointSet::Rotate2DAlg(c,angle,nbNodes,const_cast<double *>(coo));
1358            }
1359            
1360            static void Rotate3DAlg(PyObject *center, PyObject *vect, double angle, int nbNodes, PyObject *coords) throw(INTERP_KERNEL::Exception)
1361            {
1362              int sz,sz2;
1363              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1364              INTERP_KERNEL::AutoCPtr<double> coo=convertPyToNewDblArr2(coords,&sz);
1365              INTERP_KERNEL::AutoCPtr<double> v=convertPyToNewDblArr2(vect,&sz2);
1366              ParaMEDMEM::MEDCouplingPointSet::Rotate3DAlg(c,v,angle,nbNodes,coo);
1367              for(int i=0;i<sz;i++)
1368                PyList_SetItem(coords,i,PyFloat_FromDouble(coo[i]));
1369            }
1370            
1371            static void Rotate3DAlg(PyObject *center, PyObject *vect, double angle, PyObject *coords) throw(INTERP_KERNEL::Exception)
1372            {
1373              int sz,sz2;
1374              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1375              int sw,nbNodes=0;
1376              double val0;  ParaMEDMEM::DataArrayDouble *val1=0; ParaMEDMEM::DataArrayDoubleTuple *val2=0;
1377              std::vector<double> val3;
1378              const double *coo=convertObjToPossibleCpp5_Safe2(coords,sw,val0,val1,val2,val3,
1379                                                             "Rotate3DAlg",3,true,nbNodes);
1380              if(sw!=2 && sw!=3)
1381                throw INTERP_KERNEL::Exception("Invalid call to MEDCouplingPointSet::Rotate3DAlg : try another overload method !");
1382              INTERP_KERNEL::AutoCPtr<double> v=convertPyToNewDblArr2(vect,&sz2);
1383              ParaMEDMEM::MEDCouplingPointSet::Rotate3DAlg(c,v,angle,nbNodes,const_cast<double *>(coo));
1384            }
1385          }
1386     };
1387
1388   //== MEDCouplingPointSet End
1389
1390   class MEDCouplingUMeshCell
1391   {
1392   public:
1393     INTERP_KERNEL::NormalizedCellType getType() const;
1394     %extend
1395       {
1396         std::string __str__() const throw(INTERP_KERNEL::Exception)
1397         {
1398           return self->repr();
1399         }
1400
1401         PyObject *getAllConn() const throw(INTERP_KERNEL::Exception)
1402         {
1403           int ret2;
1404           const int *r=self->getAllConn(ret2);
1405           PyObject *ret=PyTuple_New(ret2);
1406           for(int i=0;i<ret2;i++)
1407             PyTuple_SetItem(ret,i,PyInt_FromLong(r[i]));
1408           return ret;
1409         }
1410       }
1411   };
1412
1413   class MEDCouplingUMeshCellIterator
1414   {
1415   public:
1416     %extend
1417       {
1418         PyObject *next()
1419         {
1420           MEDCouplingUMeshCell *ret=self->nextt();
1421           if(ret)
1422             return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMeshCell,0|0);
1423           else
1424             {
1425               PyErr_SetString(PyExc_StopIteration,"No more data.");
1426               return 0;
1427             }
1428         }
1429       }
1430   };
1431
1432   class MEDCouplingUMeshCellByTypeIterator
1433   {
1434   public:
1435     ~MEDCouplingUMeshCellByTypeIterator();
1436     %extend
1437       {
1438         PyObject *next()
1439         {
1440           MEDCouplingUMeshCellEntry *ret=self->nextt();
1441           if(ret)
1442             return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMeshCellEntry,SWIG_POINTER_OWN | 0);
1443           else
1444             {
1445               PyErr_SetString(PyExc_StopIteration,"No more data.");
1446               return 0;
1447             }
1448         }
1449       }
1450   };
1451
1452   class MEDCouplingUMeshCellByTypeEntry
1453   {
1454   public:
1455     ~MEDCouplingUMeshCellByTypeEntry();
1456     %extend
1457       {
1458         MEDCouplingUMeshCellByTypeIterator *__iter__()
1459         {
1460           return self->iterator();
1461         }
1462       }
1463   };
1464
1465   class MEDCouplingUMeshCellEntry
1466   {
1467   public:
1468     INTERP_KERNEL::NormalizedCellType getType() const;
1469     int getNumberOfElems() const;
1470     %extend
1471       {
1472         MEDCouplingUMeshCellIterator *__iter__()
1473         {
1474           return self->iterator();
1475         }
1476       }
1477   };
1478   
1479   //== MEDCouplingUMesh
1480
1481   class MEDCouplingUMesh : public ParaMEDMEM::MEDCouplingPointSet
1482   {
1483   public:
1484     static MEDCouplingUMesh *New() throw(INTERP_KERNEL::Exception);
1485     static MEDCouplingUMesh *New(const char *meshName, int meshDim) throw(INTERP_KERNEL::Exception);
1486     MEDCouplingUMesh *clone(bool recDeepCpy) const;
1487     void checkCoherency() const throw(INTERP_KERNEL::Exception);
1488     void setMeshDimension(int meshDim) throw(INTERP_KERNEL::Exception);
1489     void allocateCells(int nbOfCells=0) throw(INTERP_KERNEL::Exception);
1490     void finishInsertingCells() throw(INTERP_KERNEL::Exception);
1491     MEDCouplingUMeshCellByTypeEntry *cellsByType() throw(INTERP_KERNEL::Exception);
1492     void setConnectivity(DataArrayInt *conn, DataArrayInt *connIndex, bool isComputingTypes=true) throw(INTERP_KERNEL::Exception);
1493     INTERP_KERNEL::NormalizedCellType getTypeOfCell(int cellId) const throw(INTERP_KERNEL::Exception);
1494     void setPartOfMySelf2(int start, int end, int step, const MEDCouplingUMesh& otherOnSameCoordsThanThis) throw(INTERP_KERNEL::Exception);
1495     int getMeshLength() const throw(INTERP_KERNEL::Exception);
1496     void computeTypes() throw(INTERP_KERNEL::Exception);
1497     std::string reprConnectivityOfThis() const throw(INTERP_KERNEL::Exception);
1498     MEDCouplingUMesh *buildSetInstanceFromThis(int spaceDim) const throw(INTERP_KERNEL::Exception);
1499     //tools
1500     void shiftNodeNumbersInConn(int delta) throw(INTERP_KERNEL::Exception);
1501     std::vector<bool> getQuadraticStatus() const throw(INTERP_KERNEL::Exception);
1502     DataArrayInt *findCellIdsOnBoundary() const throw(INTERP_KERNEL::Exception);
1503     MEDCouplingUMesh *computeSkin() const throw(INTERP_KERNEL::Exception);
1504     bool checkConsecutiveCellTypes() const throw(INTERP_KERNEL::Exception);
1505     bool checkConsecutiveCellTypesForMEDFileFrmt() const throw(INTERP_KERNEL::Exception);
1506     DataArrayInt *rearrange2ConsecutiveCellTypes() throw(INTERP_KERNEL::Exception);
1507     DataArrayInt *sortCellsInMEDFileFrmt() throw(INTERP_KERNEL::Exception);
1508     DataArrayInt *getRenumArrForMEDFileFrmt() const throw(INTERP_KERNEL::Exception);
1509     DataArrayInt *convertCellArrayPerGeoType(const DataArrayInt *da) const throw(INTERP_KERNEL::Exception);
1510     DataArrayInt *computeFetchedNodeIds() const throw(INTERP_KERNEL::Exception);
1511     MEDCouplingUMesh *buildDescendingConnectivity(DataArrayInt *desc, DataArrayInt *descIndx, DataArrayInt *revDesc, DataArrayInt *revDescIndx) const throw(INTERP_KERNEL::Exception);
1512     MEDCouplingUMesh *buildDescendingConnectivity2(DataArrayInt *desc, DataArrayInt *descIndx, DataArrayInt *revDesc, DataArrayInt *revDescIndx) const throw(INTERP_KERNEL::Exception);
1513     MEDCouplingUMesh *explode3DMeshTo1D(DataArrayInt *desc, DataArrayInt *descIndx, DataArrayInt *revDesc, DataArrayInt *revDescIndx) const throw(INTERP_KERNEL::Exception);
1514     void orientCorrectlyPolyhedrons() throw(INTERP_KERNEL::Exception);
1515     bool isPresenceOfQuadratic() const throw(INTERP_KERNEL::Exception);
1516     MEDCouplingFieldDouble *buildDirectionVectorField() const throw(INTERP_KERNEL::Exception);
1517     bool isContiguous1D() const throw(INTERP_KERNEL::Exception);
1518     void tessellate2D(double eps) throw(INTERP_KERNEL::Exception);
1519     void tessellate2DCurve(double eps) throw(INTERP_KERNEL::Exception);
1520     void convertQuadraticCellsToLinear() throw(INTERP_KERNEL::Exception);
1521     DataArrayInt *convertLinearCellsToQuadratic(int conversionType=0) throw(INTERP_KERNEL::Exception);
1522     void convertDegeneratedCells() throw(INTERP_KERNEL::Exception);
1523     bool areOnlySimplexCells() const throw(INTERP_KERNEL::Exception);
1524     MEDCouplingFieldDouble *getEdgeRatioField() const throw(INTERP_KERNEL::Exception);
1525     MEDCouplingFieldDouble *getAspectRatioField() const throw(INTERP_KERNEL::Exception);
1526     MEDCouplingFieldDouble *getWarpField() const throw(INTERP_KERNEL::Exception);
1527     MEDCouplingFieldDouble *getSkewField() const throw(INTERP_KERNEL::Exception);
1528     DataArrayDouble *computePlaneEquationOf3DFaces() const throw(INTERP_KERNEL::Exception);
1529     DataArrayInt *convexEnvelop2D() throw(INTERP_KERNEL::Exception);
1530     std::string cppRepr() const throw(INTERP_KERNEL::Exception);
1531     DataArrayInt *findAndCorrectBadOriented3DExtrudedCells() throw(INTERP_KERNEL::Exception);
1532     DataArrayInt *findAndCorrectBadOriented3DCells() throw(INTERP_KERNEL::Exception);
1533     ParaMEDMEM::MEDCoupling1GTUMesh *convertIntoSingleGeoTypeMesh() const throw(INTERP_KERNEL::Exception);
1534     DataArrayInt *convertNodalConnectivityToStaticGeoTypeMesh() const throw(INTERP_KERNEL::Exception);
1535     DataArrayInt *buildUnionOf2DMesh() const throw(INTERP_KERNEL::Exception);
1536     DataArrayInt *buildUnionOf3DMesh() const throw(INTERP_KERNEL::Exception);
1537     static MEDCouplingUMesh *Build0DMeshFromCoords(DataArrayDouble *da) throw(INTERP_KERNEL::Exception);
1538     static MEDCouplingUMesh *MergeUMeshes(const MEDCouplingUMesh *mesh1, const MEDCouplingUMesh *mesh2) throw(INTERP_KERNEL::Exception);
1539     static MEDCouplingUMesh *MergeUMeshesOnSameCoords(const MEDCouplingUMesh *mesh1, const MEDCouplingUMesh *mesh2) throw(INTERP_KERNEL::Exception);
1540     static DataArrayInt *ComputeSpreadZoneGradually(const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn) throw(INTERP_KERNEL::Exception);
1541     static DataArrayInt *ComputeRangesFromTypeDistribution(const std::vector<int>& code) throw(INTERP_KERNEL::Exception);
1542     %extend {
1543       MEDCouplingUMesh() throw(INTERP_KERNEL::Exception)
1544       {
1545         return MEDCouplingUMesh::New();
1546       }
1547       
1548       MEDCouplingUMesh(const char *meshName, int meshDim) throw(INTERP_KERNEL::Exception)
1549       {
1550         return MEDCouplingUMesh::New(meshName,meshDim);
1551       }
1552       
1553       std::string __str__() const throw(INTERP_KERNEL::Exception)
1554       {
1555         return self->simpleRepr();
1556       }
1557       
1558       std::string __repr__() const throw(INTERP_KERNEL::Exception)
1559       {
1560         std::ostringstream oss;
1561         self->reprQuickOverview(oss);
1562         return oss.str();
1563       }
1564       
1565       MEDCouplingUMeshCellIterator *__iter__() throw(INTERP_KERNEL::Exception)
1566       {
1567         return self->cellIterator();
1568       }
1569       
1570       void setPartOfMySelf(PyObject *li, const MEDCouplingUMesh& otherOnSameCoordsThanThis) throw(INTERP_KERNEL::Exception)
1571       {
1572         int sw;
1573         int singleVal;
1574         std::vector<int> multiVal;
1575         std::pair<int, std::pair<int,int> > slic;
1576         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
1577         int nbc=self->getNumberOfCells();
1578         convertObjToPossibleCpp2(li,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
1579         switch(sw)
1580           {
1581           case 1:
1582             {
1583               if(singleVal>=nbc)
1584                 {
1585                   std::ostringstream oss;
1586                   oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1587                   throw INTERP_KERNEL::Exception(oss.str().c_str());
1588                 }
1589               if(singleVal>=0)
1590                 {
1591                   self->setPartOfMySelf(&singleVal,&singleVal+1,otherOnSameCoordsThanThis);
1592                   break;
1593                 }
1594               else
1595                 {
1596                   if(nbc+singleVal>0)
1597                     {
1598                       int tmp=nbc+singleVal;
1599                       self->setPartOfMySelf(&tmp,&tmp+1,otherOnSameCoordsThanThis);
1600                       break;
1601                     }
1602                   else
1603                     {
1604                       std::ostringstream oss;
1605                       oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1606                       throw INTERP_KERNEL::Exception(oss.str().c_str());
1607                     }
1608                 }
1609             }
1610           case 2:
1611             {
1612               self->setPartOfMySelf(&multiVal[0],&multiVal[0]+multiVal.size(),otherOnSameCoordsThanThis);
1613               break;
1614             }
1615           case 4:
1616             {
1617               if(!daIntTyypp)
1618                 throw INTERP_KERNEL::Exception("MEDCouplingUMesh::setPartOfMySelf : null instance has been given in input !");
1619               daIntTyypp->checkAllocated();
1620               self->setPartOfMySelf(daIntTyypp->begin(),daIntTyypp->end(),otherOnSameCoordsThanThis);
1621               break;
1622             }
1623           default:
1624             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::setPartOfMySelf : unrecognized type in input ! Possibilities are : int, list or tuple of int DataArrayInt instance !");
1625           }
1626       }
1627
1628       void __setitem__(PyObject *li, const MEDCouplingUMesh& otherOnSameCoordsThanThis) throw(INTERP_KERNEL::Exception)
1629       {
1630         int sw;
1631         int singleVal;
1632         std::vector<int> multiVal;
1633         std::pair<int, std::pair<int,int> > slic;
1634         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
1635         int nbc=self->getNumberOfCells();
1636         convertObjToPossibleCpp2(li,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
1637         switch(sw)
1638           {
1639           case 1:
1640             {
1641               if(singleVal>=nbc)
1642                 {
1643                   std::ostringstream oss;
1644                   oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1645                   throw INTERP_KERNEL::Exception(oss.str().c_str());
1646                 }
1647               if(singleVal>=0)
1648                 {
1649                   self->setPartOfMySelf(&singleVal,&singleVal+1,otherOnSameCoordsThanThis);
1650                   break;
1651                 }
1652               else
1653                 {
1654                   if(nbc+singleVal>0)
1655                     {
1656                       int tmp=nbc+singleVal;
1657                       self->setPartOfMySelf(&tmp,&tmp+1,otherOnSameCoordsThanThis);
1658                       break;
1659                     }
1660                   else
1661                     {
1662                       std::ostringstream oss;
1663                       oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1664                       throw INTERP_KERNEL::Exception(oss.str().c_str());
1665                     }
1666                 }
1667             }
1668           case 2:
1669             {
1670               self->setPartOfMySelf(&multiVal[0],&multiVal[0]+multiVal.size(),otherOnSameCoordsThanThis);
1671               break;
1672             }
1673           case 3:
1674             {
1675               self->setPartOfMySelf2(slic.first,slic.second.first,slic.second.second,otherOnSameCoordsThanThis);
1676               break;
1677             }
1678           case 4:
1679             {
1680               if(!daIntTyypp)
1681                 throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__setitem__ : null instance has been given in input !");
1682               daIntTyypp->checkAllocated();
1683               self->setPartOfMySelf(daIntTyypp->begin(),daIntTyypp->end(),otherOnSameCoordsThanThis);
1684               break;
1685             }
1686           default:
1687             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__setitem__ : unrecognized type in input ! Possibilities are : int, list or tuple of int, slice, DataArrayInt instance !");
1688           }
1689       }
1690
1691       void insertNextCell(INTERP_KERNEL::NormalizedCellType type, int size, PyObject *li) throw(INTERP_KERNEL::Exception)
1692       {
1693         int szArr,sw,iTypppArr;
1694         std::vector<int> stdvecTyyppArr;
1695         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1696         if(size>szArr)
1697           {
1698             std::ostringstream oss; oss << "Wrap of MEDCouplingUMesh::insertNextCell : request of connectivity with length " << size << " whereas the length of input is " << szArr << " !";
1699             throw INTERP_KERNEL::Exception(oss.str().c_str());
1700           }
1701         self->insertNextCell(type,size,tmp);
1702       }
1703
1704       void insertNextCell(INTERP_KERNEL::NormalizedCellType type, PyObject *li) throw(INTERP_KERNEL::Exception)
1705       {
1706         int szArr,sw,iTypppArr;
1707         std::vector<int> stdvecTyyppArr;
1708         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1709         self->insertNextCell(type,szArr,tmp);
1710       }
1711       
1712       DataArrayInt *getNodalConnectivity() throw(INTERP_KERNEL::Exception)
1713       {
1714         DataArrayInt *ret=self->getNodalConnectivity();
1715         if(ret)
1716           ret->incrRef();
1717         return ret;
1718       }
1719       DataArrayInt *getNodalConnectivityIndex() throw(INTERP_KERNEL::Exception)
1720       {
1721         DataArrayInt *ret=self->getNodalConnectivityIndex();
1722         if(ret)
1723           ret->incrRef();
1724         return ret;
1725       }
1726       
1727       static PyObject *ComputeSpreadZoneGraduallyFromSeed(PyObject *seed, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn, int nbOfDepthPeeling=-1) throw(INTERP_KERNEL::Exception)
1728       {
1729         int szArr,sw,iTypppArr;
1730         std::vector<int> stdvecTyyppArr;
1731         const int *seedPtr=convertObjToPossibleCpp1_Safe(seed,sw,szArr,iTypppArr,stdvecTyyppArr);
1732         int nbOfDepthPeelingPerformed=0;
1733         DataArrayInt *ret0=MEDCouplingUMesh::ComputeSpreadZoneGraduallyFromSeed(seedPtr,seedPtr+szArr,arrIn,arrIndxIn,nbOfDepthPeeling,nbOfDepthPeelingPerformed);
1734         PyObject *res=PyTuple_New(2);
1735         PyTuple_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1736         PyTuple_SetItem(res,1,PyInt_FromLong(nbOfDepthPeelingPerformed));
1737         return res;
1738       }
1739
1740       static PyObject *FindCommonCellsAlg(int compType, int startCellId, const DataArrayInt *nodal, const DataArrayInt *nodalI, const DataArrayInt *revNodal, const DataArrayInt *revNodalI) throw(INTERP_KERNEL::Exception)
1741       {
1742         DataArrayInt *v0=0,*v1=0;
1743         MEDCouplingUMesh::FindCommonCellsAlg(compType,startCellId,nodal,nodalI,revNodal,revNodalI,v0,v1);
1744         PyObject *res = PyList_New(2);
1745         PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(v0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1746         PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(v1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1747         return res;
1748       }
1749       
1750       PyObject *distanceToPoint(PyObject *point) const throw(INTERP_KERNEL::Exception)
1751       {
1752         double val;
1753         DataArrayDouble *a;
1754         DataArrayDoubleTuple *aa;
1755         std::vector<double> bb;
1756         int sw;
1757         int nbOfCompo=self->getSpaceDimension();
1758         const double *pt=convertObjToPossibleCpp5_Safe(point,sw,val,a,aa,bb,"Python wrap of MEDCouplingUMesh::distanceToPoint",1,nbOfCompo,true);
1759         //
1760         int cellId=-1;
1761         double ret0=self->distanceToPoint(pt,pt+nbOfCompo,cellId);
1762         PyObject *ret=PyTuple_New(2);
1763         PyTuple_SetItem(ret,0,PyFloat_FromDouble(ret0));
1764         PyTuple_SetItem(ret,1,PyInt_FromLong(cellId));
1765         return ret;
1766       }
1767
1768       PyObject *distanceToPoints(const DataArrayDouble *pts) const throw(INTERP_KERNEL::Exception)
1769       {
1770         DataArrayInt *ret1=0;
1771         DataArrayDouble *ret0=self->distanceToPoints(pts,ret1);
1772         PyObject *ret=PyTuple_New(2);
1773         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
1774         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1775         return ret;
1776       }
1777
1778       PyObject *tetrahedrize(int policy) throw(INTERP_KERNEL::Exception)
1779       {
1780         int ret2(-1);
1781         DataArrayInt *ret1(0);
1782         MEDCoupling1SGTUMesh *ret0(self->tetrahedrize(policy,ret1,ret2));
1783         PyObject *ret=PyTuple_New(3);
1784         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__MEDCoupling1SGTUMesh, SWIG_POINTER_OWN | 0 ));
1785         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1786         PyTuple_SetItem(ret,2,PyInt_FromLong(ret2));
1787         return ret;
1788       }
1789       
1790       PyObject *checkButterflyCells(double eps=1e-12) throw(INTERP_KERNEL::Exception)
1791       {
1792         std::vector<int> cells;
1793         self->checkButterflyCells(cells,eps);
1794         DataArrayInt *ret=DataArrayInt::New();
1795         ret->alloc((int)cells.size(),1);
1796         std::copy(cells.begin(),cells.end(),ret->getPointer());
1797         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
1798       }
1799
1800       PyObject *splitByType() const throw(INTERP_KERNEL::Exception)
1801       {
1802         std::vector<MEDCouplingUMesh *> ms=self->splitByType();
1803         int sz=ms.size();
1804         PyObject *ret = PyList_New(sz);
1805         for(int i=0;i<sz;i++)
1806           PyList_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(ms[i]),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
1807         return ret;
1808       }
1809
1810       PyObject *partitionBySpreadZone() const throw(INTERP_KERNEL::Exception)
1811       {
1812         std::vector<DataArrayInt *> retCpp=self->partitionBySpreadZone();
1813         int sz=retCpp.size();
1814         PyObject *ret=PyList_New(sz);
1815         for(int i=0;i<sz;i++)
1816           PyList_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(retCpp[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1817         return ret;
1818       }
1819
1820       PyObject *keepSpecifiedCells(INTERP_KERNEL::NormalizedCellType type, PyObject *ids) const throw(INTERP_KERNEL::Exception)
1821       {
1822         int size;
1823         INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(ids,&size);
1824         MEDCouplingUMesh *ret=self->keepSpecifiedCells(type,tmp,tmp+size);
1825         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 );
1826       }
1827
1828       bool checkConsecutiveCellTypesAndOrder(PyObject *li) const throw(INTERP_KERNEL::Exception)
1829       {
1830         int sz;
1831         INTERP_KERNEL::AutoPtr<INTERP_KERNEL::NormalizedCellType> order=(INTERP_KERNEL::NormalizedCellType *)convertPyToNewIntArr2(li,&sz);
1832         bool ret=self->checkConsecutiveCellTypesAndOrder(order,order+sz);
1833         return ret;
1834       }
1835
1836       DataArrayInt *getRenumArrForConsecutiveCellTypesSpec(PyObject *li) const throw(INTERP_KERNEL::Exception)
1837       {
1838         int sz;
1839         INTERP_KERNEL::AutoPtr<INTERP_KERNEL::NormalizedCellType> order=(INTERP_KERNEL::NormalizedCellType *)convertPyToNewIntArr2(li,&sz);
1840         DataArrayInt *ret=self->getRenumArrForConsecutiveCellTypesSpec(order,(INTERP_KERNEL::NormalizedCellType *)order+sz);
1841         return ret;
1842       }
1843
1844       PyObject *findNodesToDuplicate(const MEDCouplingUMesh& otherDimM1OnSameCoords) const throw(INTERP_KERNEL::Exception)
1845       {
1846         DataArrayInt *tmp0=0,*tmp1=0,*tmp2=0;
1847         self->findNodesToDuplicate(otherDimM1OnSameCoords,tmp0,tmp1,tmp2);
1848         PyObject *ret=PyTuple_New(3);
1849         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(tmp0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1850         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1851         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(tmp2),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1852         return ret;
1853       }
1854
1855       PyObject *findCellIdsLyingOn(const MEDCouplingUMesh& otherDimM1OnSameCoords) const throw(INTERP_KERNEL::Exception)
1856       {
1857         DataArrayInt *tmp0=0,*tmp1=0;
1858         self->findCellIdsLyingOn(otherDimM1OnSameCoords,tmp0,tmp1);
1859         PyObject *ret=PyTuple_New(2);
1860         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(tmp0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1861         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1862         return ret;
1863       }
1864
1865       void duplicateNodes(PyObject *li) throw(INTERP_KERNEL::Exception)
1866       {
1867         int sw;
1868         int singleVal;
1869         std::vector<int> multiVal;
1870         std::pair<int, std::pair<int,int> > slic;
1871         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
1872         convertObjToPossibleCpp2(li,self->getNumberOfNodes(),sw,singleVal,multiVal,slic,daIntTyypp);
1873         switch(sw)
1874           {
1875           case 1:
1876             return self->duplicateNodes(&singleVal,&singleVal+1);
1877           case 2:
1878             return self->duplicateNodes(&multiVal[0],&multiVal[0]+multiVal.size());
1879           case 4:
1880             return self->duplicateNodes(daIntTyypp->begin(),daIntTyypp->end());
1881           default:
1882             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::duplicateNodes : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
1883           }
1884       }
1885
1886       void duplicateNodesInConn(PyObject *li, int offset) throw(INTERP_KERNEL::Exception)
1887       {
1888         int sw;
1889         int singleVal;
1890         std::vector<int> multiVal;
1891         std::pair<int, std::pair<int,int> > slic;
1892         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
1893         convertObjToPossibleCpp2(li,self->getNumberOfNodes(),sw,singleVal,multiVal,slic,daIntTyypp);
1894         switch(sw)
1895           {
1896           case 1:
1897             return self->duplicateNodesInConn(&singleVal,&singleVal+1,offset);
1898           case 2:
1899             return self->duplicateNodesInConn(&multiVal[0],&multiVal[0]+multiVal.size(),offset);
1900           case 4:
1901             return self->duplicateNodesInConn(daIntTyypp->begin(),daIntTyypp->end(),offset);
1902           default:
1903             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::duplicateNodesInConn : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
1904           }
1905       }
1906
1907       PyObject *getLevArrPerCellTypes(PyObject *li) const throw(INTERP_KERNEL::Exception)
1908       {
1909         int sz;
1910         INTERP_KERNEL::AutoPtr<INTERP_KERNEL::NormalizedCellType> order=(INTERP_KERNEL::NormalizedCellType *)convertPyToNewIntArr2(li,&sz);
1911         DataArrayInt *tmp0,*tmp1=0;
1912         tmp0=self->getLevArrPerCellTypes(order,(INTERP_KERNEL::NormalizedCellType *)order+sz,tmp1);
1913         PyObject *ret=PyTuple_New(2);
1914         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(tmp0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1915         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1916         return ret;
1917       }
1918
1919       PyObject *convertNodalConnectivityToDynamicGeoTypeMesh() const throw(INTERP_KERNEL::Exception)
1920       {
1921         DataArrayInt *ret0=0,*ret1=0;
1922         self->convertNodalConnectivityToDynamicGeoTypeMesh(ret0,ret1);
1923         PyObject *ret=PyTuple_New(2);
1924         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1925         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1926         return ret;
1927       }
1928
1929       static PyObject *AggregateSortedByTypeMeshesOnSameCoords(PyObject *ms) throw(INTERP_KERNEL::Exception)
1930       {
1931         std::vector<const ParaMEDMEM::MEDCouplingUMesh *> meshes;
1932         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingUMesh *>(ms,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
1933         DataArrayInt *ret1=0,*ret2=0;
1934         MEDCouplingUMesh *ret0=MEDCouplingUMesh::AggregateSortedByTypeMeshesOnSameCoords(meshes,ret1,ret2);
1935         PyObject *ret=PyTuple_New(3);
1936         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
1937         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1938         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(ret2),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1939         return ret;
1940       }
1941
1942       static PyObject *MergeUMeshesOnSameCoords(PyObject *ms) throw(INTERP_KERNEL::Exception)
1943       {
1944         std::vector<const ParaMEDMEM::MEDCouplingUMesh *> meshes;
1945         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingUMesh *>(ms,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
1946         MEDCouplingUMesh *ret=MEDCouplingUMesh::MergeUMeshesOnSameCoords(meshes);
1947         return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1948       }
1949
1950       static PyObject *FuseUMeshesOnSameCoords(PyObject *ms, int compType) throw(INTERP_KERNEL::Exception)
1951       {
1952         int sz;
1953         std::vector<const MEDCouplingUMesh *> meshes;
1954         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingUMesh *>(ms,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
1955         std::vector<DataArrayInt *> corr;
1956         MEDCouplingUMesh *um=MEDCouplingUMesh::FuseUMeshesOnSameCoords(meshes,compType,corr);
1957         sz=corr.size();
1958         PyObject *ret1=PyList_New(sz);
1959         for(int i=0;i<sz;i++)
1960           PyList_SetItem(ret1,i,SWIG_NewPointerObj(SWIG_as_voidptr(corr[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1961         PyObject *ret=PyList_New(2);
1962         PyList_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(um),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
1963         PyList_SetItem(ret,1,ret1);
1964         return ret;
1965       }
1966
1967       static void PutUMeshesOnSameAggregatedCoords(PyObject *ms) throw(INTERP_KERNEL::Exception)
1968       {
1969         std::vector<MEDCouplingUMesh *> meshes;
1970         convertFromPyObjVectorOfObj<ParaMEDMEM::MEDCouplingUMesh *>(ms,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
1971         MEDCouplingUMesh::PutUMeshesOnSameAggregatedCoords(meshes);
1972       }
1973
1974       static void MergeNodesOnUMeshesSharingSameCoords(PyObject *ms, double eps) throw(INTERP_KERNEL::Exception)
1975       {
1976         std::vector<MEDCouplingUMesh *> meshes;
1977         convertFromPyObjVectorOfObj<ParaMEDMEM::MEDCouplingUMesh *>(ms,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
1978         MEDCouplingUMesh::MergeNodesOnUMeshesSharingSameCoords(meshes,eps);
1979       }
1980
1981       static bool RemoveIdsFromIndexedArrays(PyObject *li, DataArrayInt *arr, DataArrayInt *arrIndx, int offsetForRemoval=0) throw(INTERP_KERNEL::Exception)
1982       {
1983         int sw;
1984         int singleVal;
1985         std::vector<int> multiVal;
1986         std::pair<int, std::pair<int,int> > slic;
1987         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
1988         if(!arrIndx)
1989           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::RemoveIdsFromIndexedArrays : null pointer as arrIndex !");
1990         convertObjToPossibleCpp2(li,arrIndx->getNumberOfTuples()-1,sw,singleVal,multiVal,slic,daIntTyypp);
1991         switch(sw)
1992           {
1993           case 1:
1994             return MEDCouplingUMesh::RemoveIdsFromIndexedArrays(&singleVal,&singleVal+1,arr,arrIndx,offsetForRemoval);
1995           case 2:
1996             return MEDCouplingUMesh::RemoveIdsFromIndexedArrays(&multiVal[0],&multiVal[0]+multiVal.size(),arr,arrIndx,offsetForRemoval);
1997           case 4:
1998             return MEDCouplingUMesh::RemoveIdsFromIndexedArrays(daIntTyypp->begin(),daIntTyypp->end(),arr,arrIndx,offsetForRemoval);
1999           default:
2000             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::RemoveIdsFromIndexedArrays : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2001           }
2002       }
2003       
2004       static PyObject *ExtractFromIndexedArrays(PyObject *li, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn) throw(INTERP_KERNEL::Exception)
2005       {
2006         DataArrayInt *arrOut=0,*arrIndexOut=0;
2007         int sw;
2008         int singleVal;
2009         std::vector<int> multiVal;
2010         std::pair<int, std::pair<int,int> > slic;
2011         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
2012         if(!arrIndxIn)
2013           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::ExtractFromIndexedArrays : null pointer as arrIndxIn !");
2014         convertObjToPossibleCpp2(li,arrIndxIn->getNumberOfTuples()-1,sw,singleVal,multiVal,slic,daIntTyypp);
2015         switch(sw)
2016           {
2017           case 1:
2018             {
2019               MEDCouplingUMesh::ExtractFromIndexedArrays(&singleVal,&singleVal+1,arrIn,arrIndxIn,arrOut,arrIndexOut);
2020               break;
2021             }
2022           case 2:
2023             {
2024               MEDCouplingUMesh::ExtractFromIndexedArrays(&multiVal[0],&multiVal[0]+multiVal.size(),arrIn,arrIndxIn,arrOut,arrIndexOut);
2025               break;
2026             }
2027           case 4:
2028             {
2029               MEDCouplingUMesh::ExtractFromIndexedArrays(daIntTyypp->begin(),daIntTyypp->end(),arrIn,arrIndxIn,arrOut,arrIndexOut);
2030               break;
2031             }
2032           default:
2033             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::ExtractFromIndexedArrays : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2034           }
2035         PyObject *ret=PyTuple_New(2);
2036         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(arrOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2037         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(arrIndexOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2038         return ret;
2039       }
2040
2041       static PyObject *ExtractFromIndexedArrays2(int strt, int stp, int step, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn) throw(INTERP_KERNEL::Exception)
2042       {
2043         DataArrayInt *arrOut=0,*arrIndexOut=0;
2044         MEDCouplingUMesh::ExtractFromIndexedArrays2(strt,stp,step,arrIn,arrIndxIn,arrOut,arrIndexOut);
2045         PyObject *ret=PyTuple_New(2);
2046         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(arrOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2047         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(arrIndexOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2048         return ret;
2049       }
2050
2051       static PyObject *ExtractFromIndexedArrays2(PyObject *slic, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn) throw(INTERP_KERNEL::Exception)
2052       {
2053         if(!PySlice_Check(slic))
2054           throw INTERP_KERNEL::Exception("ExtractFromIndexedArrays2 (wrap) : the first param is not a pyslice !");
2055         Py_ssize_t strt=2,stp=2,step=2;
2056         PySliceObject *sliC=reinterpret_cast<PySliceObject *>(slic);
2057         if(!arrIndxIn)
2058           throw INTERP_KERNEL::Exception("ExtractFromIndexedArrays2 (wrap) : last array is null !");
2059         arrIndxIn->checkAllocated();
2060         if(arrIndxIn->getNumberOfComponents()!=1)
2061           throw INTERP_KERNEL::Exception("ExtractFromIndexedArrays2 (wrap) : number of components of last argument must be equal to one !");
2062         if(PySlice_GetIndices(sliC,arrIndxIn->getNumberOfTuples(),&strt,&stp,&step)!=0)
2063           throw INTERP_KERNEL::Exception("ExtractFromIndexedArrays2 (wrap) : Invalid slice regarding nb of elements !");
2064         DataArrayInt *arrOut=0,*arrIndexOut=0;
2065         MEDCouplingUMesh::ExtractFromIndexedArrays2(strt,stp,step,arrIn,arrIndxIn,arrOut,arrIndexOut);
2066         PyObject *ret=PyTuple_New(2);
2067         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(arrOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2068         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(arrIndexOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2069         return ret;
2070       }
2071
2072       static PyObject *SetPartOfIndexedArrays(PyObject *li,
2073                                               const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn,
2074                                               const DataArrayInt *srcArr, const DataArrayInt *srcArrIndex) throw(INTERP_KERNEL::Exception)
2075       {
2076         DataArrayInt *arrOut=0,*arrIndexOut=0;
2077         int sw;
2078         int singleVal;
2079         std::vector<int> multiVal;
2080         std::pair<int, std::pair<int,int> > slic;
2081         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
2082         if(!arrIndxIn)
2083           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArrays : null pointer as arrIndex !");
2084         convertObjToPossibleCpp2(li,arrIndxIn->getNumberOfTuples()-1,sw,singleVal,multiVal,slic,daIntTyypp);
2085         switch(sw)
2086           {
2087           case 1:
2088             {
2089               MEDCouplingUMesh::SetPartOfIndexedArrays(&singleVal,&singleVal+1,arrIn,arrIndxIn,srcArr,srcArrIndex,arrOut,arrIndexOut);
2090               break;
2091             }
2092           case 2:
2093             {
2094               MEDCouplingUMesh::SetPartOfIndexedArrays(&multiVal[0],&multiVal[0]+multiVal.size(),arrIn,arrIndxIn,srcArr,srcArrIndex,arrOut,arrIndexOut);
2095               break;
2096             }
2097           case 4:
2098             {
2099               MEDCouplingUMesh::SetPartOfIndexedArrays(daIntTyypp->begin(),daIntTyypp->end(),arrIn,arrIndxIn,srcArr,srcArrIndex,arrOut,arrIndexOut);
2100               break;
2101             }
2102           default:
2103             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArrays : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2104           }
2105         PyObject *ret=PyTuple_New(2);
2106         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(arrOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2107         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(arrIndexOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2108         return ret;
2109       }
2110
2111       static void SetPartOfIndexedArraysSameIdx(PyObject *li, DataArrayInt *arrIn, const DataArrayInt *arrIndxIn,
2112                                                 const DataArrayInt *srcArr, const DataArrayInt *srcArrIndex) throw(INTERP_KERNEL::Exception)
2113       {
2114         int sw;
2115         int singleVal;
2116         std::vector<int> multiVal;
2117         std::pair<int, std::pair<int,int> > slic;
2118         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
2119         if(!arrIndxIn)
2120           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx : null pointer as arrIndex !");
2121         convertObjToPossibleCpp2(li,arrIndxIn->getNumberOfTuples()-1,sw,singleVal,multiVal,slic,daIntTyypp);
2122         switch(sw)
2123           {
2124           case 1:
2125             {
2126               MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx(&singleVal,&singleVal+1,arrIn,arrIndxIn,srcArr,srcArrIndex);
2127               break;
2128             }
2129           case 2:
2130             {
2131               MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx(&multiVal[0],&multiVal[0]+multiVal.size(),arrIn,arrIndxIn,srcArr,srcArrIndex);
2132               break;
2133             }
2134           case 4:
2135             {
2136               MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx(daIntTyypp->begin(),daIntTyypp->end(),arrIn,arrIndxIn,srcArr,srcArrIndex);
2137               break;
2138             }
2139           default:
2140             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2141           }
2142       }
2143
2144       PyObject *are2DCellsNotCorrectlyOriented(PyObject *vec, bool polyOnly) const throw(INTERP_KERNEL::Exception)
2145       {
2146         double val;
2147         DataArrayDouble *a;
2148         DataArrayDoubleTuple *aa;
2149         std::vector<double> bb;
2150         int sw;
2151         int spaceDim=self->getSpaceDimension();
2152         const char msg[]="Python wrap of MEDCouplingUMesh::are2DCellsNotCorrectlyOriented : ";
2153         const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val,a,aa,bb,msg,1,spaceDim,true);
2154         //
2155         std::vector<int> cells;
2156         self->are2DCellsNotCorrectlyOriented(v,polyOnly,cells);
2157         DataArrayInt *ret=DataArrayInt::New();
2158         ret->alloc((int)cells.size(),1);
2159         std::copy(cells.begin(),cells.end(),ret->getPointer());
2160         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
2161       }
2162
2163       void orientCorrectly2DCells(PyObject *vec, bool polyOnly) throw(INTERP_KERNEL::Exception)
2164       {
2165         double val;
2166         DataArrayDouble *a;
2167         DataArrayDoubleTuple *aa;
2168         std::vector<double> bb;
2169         int sw;
2170         int spaceDim=self->getSpaceDimension();
2171         const char msg[]="Python wrap of MEDCouplingUMesh::orientCorrectly2DCells : ";
2172         const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val,a,aa,bb,msg,1,spaceDim,true);
2173         self->orientCorrectly2DCells(v,polyOnly);
2174       }
2175       
2176       PyObject *arePolyhedronsNotCorrectlyOriented() const throw(INTERP_KERNEL::Exception)
2177       {
2178         std::vector<int> cells;
2179         self->arePolyhedronsNotCorrectlyOriented(cells);
2180         DataArrayInt *ret=DataArrayInt::New();
2181         ret->alloc((int)cells.size(),1);
2182         std::copy(cells.begin(),cells.end(),ret->getPointer());
2183         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
2184       }
2185
2186       PyObject *getFastAveragePlaneOfThis() const throw(INTERP_KERNEL::Exception)
2187       {
2188         double vec[3];
2189         double pos[3];
2190         self->getFastAveragePlaneOfThis(vec,pos);
2191         double vals[6];
2192         std::copy(vec,vec+3,vals);
2193         std::copy(pos,pos+3,vals+3);
2194         return convertDblArrToPyListOfTuple(vals,3,2);
2195       }
2196       
2197       static MEDCouplingUMesh *MergeUMeshes(PyObject *li) throw(INTERP_KERNEL::Exception)
2198       {
2199         std::vector<const ParaMEDMEM::MEDCouplingUMesh *> tmp;
2200         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingUMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",tmp);
2201         return MEDCouplingUMesh::MergeUMeshes(tmp);
2202       }
2203
2204       PyObject *areCellsIncludedIn(const MEDCouplingUMesh *other, int compType) const throw(INTERP_KERNEL::Exception)
2205       {
2206         DataArrayInt *ret1;
2207         bool ret0=self->areCellsIncludedIn(other,compType,ret1);
2208         PyObject *ret=PyTuple_New(2);
2209         PyObject *ret0Py=ret0?Py_True:Py_False;
2210         Py_XINCREF(ret0Py);
2211         PyTuple_SetItem(ret,0,ret0Py);
2212         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2213         return ret;
2214       }
2215
2216       PyObject *areCellsIncludedIn2(const MEDCouplingUMesh *other) const throw(INTERP_KERNEL::Exception)
2217       {
2218         DataArrayInt *ret1;
2219         bool ret0=self->areCellsIncludedIn2(other,ret1);
2220         PyObject *ret=PyTuple_New(2);
2221         PyObject *ret0Py=ret0?Py_True:Py_False;
2222         Py_XINCREF(ret0Py);
2223         PyTuple_SetItem(ret,0,ret0Py);
2224         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2225         return ret;
2226       }
2227
2228       PyObject *explode3DMeshTo1D() const throw(INTERP_KERNEL::Exception)
2229       {
2230         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d0=DataArrayInt::New();
2231         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d1=DataArrayInt::New();
2232         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d2=DataArrayInt::New();
2233         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d3=DataArrayInt::New();
2234         MEDCouplingUMesh *m=self->explode3DMeshTo1D(d0,d1,d2,d3);
2235         PyObject *ret=PyTuple_New(5);
2236         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2237         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2238         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2239         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2240         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2241         return ret;
2242       }
2243
2244       PyObject *buildDescendingConnectivity() const throw(INTERP_KERNEL::Exception)
2245       {
2246         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d0=DataArrayInt::New();
2247         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d1=DataArrayInt::New();
2248         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d2=DataArrayInt::New();
2249         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d3=DataArrayInt::New();
2250         MEDCouplingUMesh *m=self->buildDescendingConnectivity(d0,d1,d2,d3);
2251         PyObject *ret=PyTuple_New(5);
2252         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2253         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2254         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2255         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2256         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2257         return ret;
2258       }
2259
2260       PyObject *buildDescendingConnectivity2() const throw(INTERP_KERNEL::Exception)
2261       {
2262         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d0=DataArrayInt::New();
2263         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d1=DataArrayInt::New();
2264         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d2=DataArrayInt::New();
2265         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d3=DataArrayInt::New();
2266         MEDCouplingUMesh *m=self->buildDescendingConnectivity2(d0,d1,d2,d3);
2267         PyObject *ret=PyTuple_New(5);
2268         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2269         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2270         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2271         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2272         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2273         return ret;
2274       }
2275       
2276       PyObject *computeNeighborsOfCells() const throw(INTERP_KERNEL::Exception)
2277       {
2278         DataArrayInt *neighbors=0,*neighborsIdx=0;
2279         self->computeNeighborsOfCells(neighbors,neighborsIdx);
2280         PyObject *ret=PyTuple_New(2);
2281         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(neighbors),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2282         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(neighborsIdx),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2283         return ret;
2284       }
2285
2286       static PyObject *ComputeNeighborsOfCellsAdv(const DataArrayInt *desc, const DataArrayInt *descI, const DataArrayInt *revDesc, const DataArrayInt *revDescI) throw(INTERP_KERNEL::Exception)
2287       {
2288         DataArrayInt *neighbors=0,*neighborsIdx=0;
2289         MEDCouplingUMesh::ComputeNeighborsOfCellsAdv(desc,descI,revDesc,revDescI,neighbors,neighborsIdx);
2290         PyObject *ret=PyTuple_New(2);
2291         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(neighbors),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2292         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(neighborsIdx),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2293         return ret;
2294       }
2295
2296       PyObject *emulateMEDMEMBDC(const MEDCouplingUMesh *nM1LevMesh)
2297       {
2298         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d0=DataArrayInt::New();
2299         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d1=DataArrayInt::New();
2300         DataArrayInt *d2,*d3,*d4,*dd5;
2301         MEDCouplingUMesh *mOut=self->emulateMEDMEMBDC(nM1LevMesh,d0,d1,d2,d3,d4,dd5);
2302         PyObject *ret=PyTuple_New(7);
2303         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(mOut),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2304         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2305         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2306         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2307         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2308         PyTuple_SetItem(ret,5,SWIG_NewPointerObj(SWIG_as_voidptr(d4),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2309         PyTuple_SetItem(ret,6,SWIG_NewPointerObj(SWIG_as_voidptr(dd5),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2310         return ret;
2311       }
2312
2313       DataArrayDouble *getPartBarycenterAndOwner(DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2314       {
2315         if(!da)
2316           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2317         da->checkAllocated();
2318         return self->getPartBarycenterAndOwner(da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2319       }
2320
2321       DataArrayDouble *getPartMeasureField(bool isAbs, DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2322       {
2323         if(!da)
2324           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2325         da->checkAllocated();
2326         return self->getPartMeasureField(isAbs,da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2327       }
2328
2329       MEDCouplingFieldDouble *buildPartOrthogonalField(DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2330       {
2331         if(!da)
2332           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2333         da->checkAllocated();
2334         return self->buildPartOrthogonalField(da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2335       }
2336
2337       PyObject *getTypesOfPart(DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2338       {
2339         if(!da)
2340           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2341         da->checkAllocated();
2342         std::set<INTERP_KERNEL::NormalizedCellType> result=self->getTypesOfPart(da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2343         std::set<INTERP_KERNEL::NormalizedCellType>::const_iterator iL=result.begin();
2344         PyObject *res = PyList_New(result.size());
2345         for (int i=0;iL!=result.end(); i++, iL++)
2346           PyList_SetItem(res,i,PyInt_FromLong(*iL));
2347         return res;
2348       }
2349
2350       DataArrayInt *keepCellIdsByType(INTERP_KERNEL::NormalizedCellType type, DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2351       {
2352         if(!da)
2353           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2354         da->checkAllocated();
2355         DataArrayInt *ret=self->keepCellIdsByType(type,da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2356         ret->setName(da->getName().c_str());
2357         return ret;
2358       }
2359
2360       static PyObject *Intersect2DMeshes(const MEDCouplingUMesh *m1, const MEDCouplingUMesh *m2, double eps) throw(INTERP_KERNEL::Exception)
2361       {
2362         DataArrayInt *cellNb1=0,*cellNb2=0;
2363         MEDCouplingUMesh *mret=MEDCouplingUMesh::Intersect2DMeshes(m1,m2,eps,cellNb1,cellNb2);
2364         PyObject *ret=PyTuple_New(3);
2365         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(mret),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2366         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellNb1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2367         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(cellNb2),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2368         return ret;
2369       }
2370
2371       PyObject *buildSlice3D(PyObject *origin, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
2372       {
2373         int spaceDim=self->getSpaceDimension();
2374         if(spaceDim!=3)
2375           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingUMesh::buildSlice3D : works only for spaceDim 3 !");
2376         double val,val2;
2377         DataArrayDouble *a,*a2;
2378         DataArrayDoubleTuple *aa,*aa2;
2379         std::vector<double> bb,bb2;
2380         int sw;
2381         const char msg[]="Python wrap of MEDCouplingUMesh::buildSlice3D : 1st paramater for origin.";
2382         const char msg2[]="Python wrap of MEDCouplingUMesh::buildSlice3D : 2nd paramater for vector.";
2383         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
2384         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
2385         //
2386         DataArrayInt *cellIds=0;
2387         MEDCouplingUMesh *ret0=self->buildSlice3D(orig,vect,eps,cellIds);
2388         PyObject *ret=PyTuple_New(2);
2389         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2390         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellIds),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2391         return ret;
2392       }
2393
2394       PyObject *buildSlice3DSurf(PyObject *origin, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
2395       {
2396         int spaceDim=self->getSpaceDimension();
2397         if(spaceDim!=3)
2398           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingUMesh::buildSlice3DSurf : works only for spaceDim 3 !");
2399         double val,val2;
2400         DataArrayDouble *a,*a2;
2401         DataArrayDoubleTuple *aa,*aa2;
2402         std::vector<double> bb,bb2;
2403         int sw;
2404         const char msg[]="Python wrap of MEDCouplingUMesh::buildSlice3DSurf : 1st paramater for origin.";
2405         const char msg2[]="Python wrap of MEDCouplingUMesh::buildSlice3DSurf : 2nd paramater for vector.";
2406         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
2407         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
2408         //
2409         DataArrayInt *cellIds=0;
2410         MEDCouplingUMesh *ret0=self->buildSlice3DSurf(orig,vect,eps,cellIds);
2411         PyObject *ret=PyTuple_New(2);
2412         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2413         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellIds),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2414         return ret;
2415       }
2416
2417       DataArrayInt *getCellIdsCrossingPlane(PyObject *origin, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
2418       {
2419         int spaceDim=self->getSpaceDimension();
2420         if(spaceDim!=3)
2421           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingUMesh::getCellIdsCrossingPlane : works only for spaceDim 3 !");
2422         double val,val2;
2423         DataArrayDouble *a,*a2;
2424         DataArrayDoubleTuple *aa,*aa2;
2425         std::vector<double> bb,bb2;
2426         int sw;
2427         const char msg[]="Python wrap of MEDCouplingUMesh::getCellIdsCrossingPlane : 1st paramater for origin.";
2428         const char msg2[]="Python wrap of MEDCouplingUMesh::getCellIdsCrossingPlane : 2nd paramater for vector.";
2429         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
2430         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
2431         return self->getCellIdsCrossingPlane(orig,vect,eps);
2432       }
2433
2434       void convertToPolyTypes(PyObject *li) throw(INTERP_KERNEL::Exception)
2435       {
2436         int sw;
2437         int pos1;
2438         std::vector<int> pos2;
2439         DataArrayInt *pos3=0;
2440         DataArrayIntTuple *pos4=0;
2441         convertObjToPossibleCpp1(li,sw,pos1,pos2,pos3,pos4);
2442         switch(sw)
2443           {
2444           case 1:
2445             {
2446               self->convertToPolyTypes(&pos1,&pos1+1);
2447               return;
2448             }
2449           case 2:
2450             {
2451               if(pos2.empty())
2452                 return;
2453               self->convertToPolyTypes(&pos2[0],&pos2[0]+pos2.size());
2454               return ;
2455             }
2456           case 3:
2457             {
2458               self->convertToPolyTypes(pos3->begin(),pos3->end());
2459               return ;
2460             }
2461           default:
2462             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::convertToPolyTypes : unexpected input array type recognized !");
2463           }
2464       }
2465     }
2466     void convertAllToPoly();
2467     void convertExtrudedPolyhedra() throw(INTERP_KERNEL::Exception);
2468     bool unPolyze() throw(INTERP_KERNEL::Exception);
2469     void simplifyPolyhedra(double eps) throw(INTERP_KERNEL::Exception);
2470     MEDCouplingUMesh *buildSpreadZonesWithPoly() const throw(INTERP_KERNEL::Exception);
2471     MEDCouplingUMesh *buildExtrudedMesh(const MEDCouplingUMesh *mesh1D, int policy) throw(INTERP_KERNEL::Exception);
2472   };
2473
2474   //== MEDCouplingUMesh End
2475
2476   //== MEDCouplingExtrudedMesh
2477
2478   class MEDCouplingExtrudedMesh : public ParaMEDMEM::MEDCouplingMesh
2479   {
2480   public:
2481     static MEDCouplingExtrudedMesh *New(const MEDCouplingUMesh *mesh3D, const MEDCouplingUMesh *mesh2D, int cell2DId) throw(INTERP_KERNEL::Exception);
2482     MEDCouplingUMesh *build3DUnstructuredMesh() const throw(INTERP_KERNEL::Exception);
2483     %extend {
2484       MEDCouplingExtrudedMesh(const MEDCouplingUMesh *mesh3D, const MEDCouplingUMesh *mesh2D, int cell2DId) throw(INTERP_KERNEL::Exception)
2485       {
2486         return MEDCouplingExtrudedMesh::New(mesh3D,mesh2D,cell2DId);
2487       }
2488       
2489       std::string __str__() const throw(INTERP_KERNEL::Exception)
2490       {
2491         return self->simpleRepr();
2492       }
2493
2494       std::string __repr__() const throw(INTERP_KERNEL::Exception)
2495       {
2496         std::ostringstream oss;
2497         self->reprQuickOverview(oss);
2498         return oss.str();
2499       }
2500       
2501       PyObject *getMesh2D() const throw(INTERP_KERNEL::Exception)
2502       {
2503         MEDCouplingUMesh *ret=self->getMesh2D();
2504         if(ret)
2505           ret->incrRef();
2506         return convertMesh(ret, SWIG_POINTER_OWN | 0 );
2507       }
2508       PyObject *getMesh1D() const throw(INTERP_KERNEL::Exception)
2509       {
2510         MEDCouplingUMesh *ret=self->getMesh1D();
2511         if(ret)
2512           ret->incrRef();
2513         return convertMesh(ret, SWIG_POINTER_OWN | 0 );
2514       }
2515       PyObject *getMesh3DIds() const throw(INTERP_KERNEL::Exception)
2516       {
2517         DataArrayInt *ret=self->getMesh3DIds();
2518         if(ret)
2519           ret->incrRef();
2520         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
2521       } 
2522     }
2523   };
2524
2525   //== MEDCouplingExtrudedMesh End
2526
2527   class MEDCoupling1GTUMesh : public ParaMEDMEM::MEDCouplingPointSet
2528   {
2529   public:
2530     static MEDCoupling1GTUMesh *New(const char *name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
2531     static MEDCoupling1GTUMesh *New(const MEDCouplingUMesh *m) throw(INTERP_KERNEL::Exception);
2532     INTERP_KERNEL::NormalizedCellType getCellModelEnum() const throw(INTERP_KERNEL::Exception);
2533     int getNodalConnectivityLength() const throw(INTERP_KERNEL::Exception);
2534     virtual void allocateCells(int nbOfCells=0) throw(INTERP_KERNEL::Exception);
2535     virtual void checkCoherencyOfConnectivity() const throw(INTERP_KERNEL::Exception);
2536     %extend
2537     {
2538       virtual void insertNextCell(PyObject *li) throw(INTERP_KERNEL::Exception)
2539       {
2540         int szArr,sw,iTypppArr;
2541         std::vector<int> stdvecTyyppArr;
2542         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
2543         self->insertNextCell(tmp,tmp+szArr);
2544       }
2545
2546       virtual DataArrayInt *getNodalConnectivity() const throw(INTERP_KERNEL::Exception)
2547       {
2548         DataArrayInt *ret=self->getNodalConnectivity();
2549         if(ret) ret->incrRef();
2550         return ret;
2551       }
2552       
2553       static MEDCouplingUMesh *AggregateOnSameCoordsToUMesh(PyObject *li) throw(INTERP_KERNEL::Exception)
2554       {
2555         std::vector< const MEDCoupling1GTUMesh *> parts;
2556         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCoupling1GTUMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCoupling1GTUMesh,"MEDCoupling1GTUMesh",parts);
2557         return MEDCoupling1GTUMesh::AggregateOnSameCoordsToUMesh(parts);
2558       }
2559     }
2560   };
2561
2562   //== MEDCoupling1SGTUMesh
2563
2564   class MEDCoupling1SGTUMesh : public ParaMEDMEM::MEDCoupling1GTUMesh
2565   {
2566   public:
2567     static MEDCoupling1SGTUMesh *New(const char *name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
2568     static MEDCoupling1SGTUMesh *New(const MEDCouplingUMesh *m) throw(INTERP_KERNEL::Exception);
2569     void setNodalConnectivity(DataArrayInt *nodalConn) throw(INTERP_KERNEL::Exception);
2570     int getNumberOfNodesPerCell() const throw(INTERP_KERNEL::Exception);
2571     static MEDCoupling1SGTUMesh *Merge1SGTUMeshes(const MEDCoupling1SGTUMesh *mesh1, const MEDCoupling1SGTUMesh *mesh2) throw(INTERP_KERNEL::Exception);
2572     MEDCoupling1SGTUMesh *buildSetInstanceFromThis(int spaceDim) const throw(INTERP_KERNEL::Exception);
2573     MEDCoupling1GTUMesh *computeDualMesh() const throw(INTERP_KERNEL::Exception);
2574     MEDCoupling1SGTUMesh *explodeEachHexa8To6Quad4() const throw(INTERP_KERNEL::Exception);
2575     DataArrayInt *sortHexa8EachOther() throw(INTERP_KERNEL::Exception);
2576     %extend
2577     {
2578       MEDCoupling1SGTUMesh(const char *name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception)
2579       {
2580         return MEDCoupling1SGTUMesh::New(name,type);
2581       }
2582
2583       MEDCoupling1SGTUMesh(const MEDCouplingUMesh *m) throw(INTERP_KERNEL::Exception)
2584       {
2585         return MEDCoupling1SGTUMesh::New(m);
2586       }
2587
2588       std::string __str__() const throw(INTERP_KERNEL::Exception)
2589       {
2590         return self->simpleRepr();
2591       }
2592       
2593       std::string __repr__() const throw(INTERP_KERNEL::Exception)
2594       {
2595         std::ostringstream oss;
2596         self->reprQuickOverview(oss);
2597         return oss.str();
2598       }
2599
2600       static MEDCoupling1SGTUMesh *Merge1SGTUMeshes(PyObject *li) throw(INTERP_KERNEL::Exception)
2601       {
2602         std::vector<const ParaMEDMEM::MEDCoupling1SGTUMesh *> tmp;
2603         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCoupling1SGTUMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCoupling1SGTUMesh,"MEDCoupling1SGTUMesh",tmp);
2604         return MEDCoupling1SGTUMesh::Merge1SGTUMeshes(tmp);
2605       }
2606       
2607       static MEDCoupling1SGTUMesh *Merge1SGTUMeshesOnSameCoords(PyObject *li) throw(INTERP_KERNEL::Exception)
2608       {
2609         std::vector<const ParaMEDMEM::MEDCoupling1SGTUMesh *> tmp;
2610         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCoupling1SGTUMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCoupling1SGTUMesh,"MEDCoupling1SGTUMesh",tmp);
2611         return MEDCoupling1SGTUMesh::Merge1SGTUMeshesOnSameCoords(tmp);
2612       }
2613     }
2614   };
2615   
2616   //== MEDCoupling1SGTUMesh End
2617
2618   //== MEDCoupling1DGTUMesh
2619
2620   class MEDCoupling1DGTUMesh : public ParaMEDMEM::MEDCoupling1GTUMesh
2621   {
2622   public:
2623     static MEDCoupling1DGTUMesh *New(const char *name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
2624     static MEDCoupling1DGTUMesh *New(const MEDCouplingUMesh *m) throw(INTERP_KERNEL::Exception);
2625     void setNodalConnectivity(DataArrayInt *nodalConn, DataArrayInt *nodalConnIndex) throw(INTERP_KERNEL::Exception);
2626     MEDCoupling1DGTUMesh *buildSetInstanceFromThis(int spaceDim) const throw(INTERP_KERNEL::Exception);
2627     bool isPacked() const throw(INTERP_KERNEL::Exception);
2628     %extend
2629     {
2630       MEDCoupling1DGTUMesh(const char *name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception)
2631       {
2632         return MEDCoupling1DGTUMesh::New(name,type);
2633       }
2634
2635       MEDCoupling1DGTUMesh(const MEDCouplingUMesh *m) throw(INTERP_KERNEL::Exception)
2636       {
2637         return MEDCoupling1DGTUMesh::New(m);
2638       }
2639
2640       std::string __str__() const throw(INTERP_KERNEL::Exception)
2641       {
2642         return self->simpleRepr();
2643       }
2644       
2645       std::string __repr__() const throw(INTERP_KERNEL::Exception)
2646       {
2647         std::ostringstream oss;
2648         self->reprQuickOverview(oss);
2649         return oss.str();
2650       }
2651
2652       DataArrayInt *getNodalConnectivityIndex() const throw(INTERP_KERNEL::Exception)
2653       {
2654         DataArrayInt *ret=self->getNodalConnectivityIndex();
2655         if(ret) ret->incrRef();
2656         return ret;
2657       }
2658
2659       PyObject *retrievePackedNodalConnectivity() const throw(INTERP_KERNEL::Exception)
2660       {
2661         DataArrayInt *ret1=0,*ret2=0;
2662         bool ret0=self->retrievePackedNodalConnectivity(ret1,ret2);
2663         PyObject *ret0Py=ret0?Py_True:Py_False;
2664         Py_XINCREF(ret0Py);
2665         PyObject *ret=PyTuple_New(3);
2666         PyTuple_SetItem(ret,0,ret0Py);
2667         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2668         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(ret2),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2669         return ret;
2670       }
2671       
2672       PyObject *copyWithNodalConnectivityPacked() const throw(INTERP_KERNEL::Exception)
2673       {
2674         bool ret1;
2675         MEDCoupling1DGTUMesh *ret0=self->copyWithNodalConnectivityPacked(ret1);
2676         PyObject *ret=PyTuple_New(2);
2677         PyObject *ret1Py=ret1?Py_True:Py_False; Py_XINCREF(ret1Py);
2678         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__MEDCoupling1DGTUMesh, SWIG_POINTER_OWN | 0 ));
2679         PyTuple_SetItem(ret,1,ret1Py);
2680         return ret;
2681       }
2682
2683       static MEDCoupling1DGTUMesh *Merge1DGTUMeshes(PyObject *li) throw(INTERP_KERNEL::Exception)
2684       {
2685         std::vector<const ParaMEDMEM::MEDCoupling1DGTUMesh *> tmp;
2686         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCoupling1DGTUMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCoupling1DGTUMesh,"MEDCoupling1DGTUMesh",tmp);
2687         return MEDCoupling1DGTUMesh::Merge1DGTUMeshes(tmp);
2688       }
2689       
2690       static MEDCoupling1DGTUMesh *Merge1DGTUMeshesOnSameCoords(PyObject *li) throw(INTERP_KERNEL::Exception)
2691       {
2692         std::vector<const ParaMEDMEM::MEDCoupling1DGTUMesh *> tmp;
2693         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCoupling1DGTUMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCoupling1DGTUMesh,"MEDCoupling1DGTUMesh",tmp);
2694         return MEDCoupling1DGTUMesh::Merge1DGTUMeshesOnSameCoords(tmp);
2695       }
2696       
2697       static DataArrayInt *AggregateNodalConnAndShiftNodeIds(PyObject *li, const std::vector<int>& offsetInNodeIdsPerElt) throw(INTERP_KERNEL::Exception)
2698       {
2699         std::vector<const ParaMEDMEM::DataArrayInt *> tmp;
2700         convertFromPyObjVectorOfObj<const ParaMEDMEM::DataArrayInt *>(li,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,"DataArrayInt",tmp);
2701         return MEDCoupling1DGTUMesh::AggregateNodalConnAndShiftNodeIds(tmp,offsetInNodeIdsPerElt);
2702       }
2703     }
2704   };
2705
2706   //== MEDCoupling1DGTUMeshEnd
2707
2708   class MEDCouplingStructuredMesh : public ParaMEDMEM::MEDCouplingMesh
2709   {
2710   public:
2711     int getCellIdFromPos(int i, int j, int k) const throw(INTERP_KERNEL::Exception);
2712     int getNodeIdFromPos(int i, int j, int k) const throw(INTERP_KERNEL::Exception);
2713     virtual std::vector<int> getNodeGridStructure() const throw(INTERP_KERNEL::Exception);
2714     std::vector<int> getCellGridStructure() const throw(INTERP_KERNEL::Exception);
2715     MEDCoupling1SGTUMesh *build1SGTUnstructured() const throw(INTERP_KERNEL::Exception);
2716     static INTERP_KERNEL::NormalizedCellType GetGeoTypeGivenMeshDimension(int meshDim) throw(INTERP_KERNEL::Exception);
2717     %extend
2718     {
2719       virtual MEDCouplingStructuredMesh *buildStructuredSubPart(PyObject *cellPart) const throw(INTERP_KERNEL::Exception)
2720       {
2721         int tmpp1=-1,tmpp2=-1;
2722         std::vector<int> tmp=fillArrayWithPyListInt2(cellPart,tmpp1,tmpp2);
2723         std::vector< std::pair<int,int> > inp;
2724         if(tmpp2==2)
2725           {
2726             inp.resize(tmpp1);
2727             for(int i=0;i<tmpp1;i++)
2728               { inp[i].first=tmp[2*i]; inp[i].second=tmp[2*i+1]; }
2729           }
2730         else if(tmpp2==1)
2731           {
2732             if(tmpp1%2!=0)
2733               throw INTERP_KERNEL::Exception("Wrap of MEDCouplingStructuredMesh.buildStructuredSubPart : invalid input size ! Must be even size !");
2734             inp.resize(tmpp1/2);
2735             for(int i=0;i<tmpp1/2;i++)
2736               { inp[i].first=tmp[2*i]; inp[i].second=tmp[2*i+1]; }
2737           }
2738         else
2739           throw INTERP_KERNEL::Exception("Wrap of MEDCouplingStructuredMesh.buildStructuredSubPart : invalid input size !");
2740         return self->buildStructuredSubPart(inp);
2741       }
2742
2743       static DataArrayInt *BuildExplicitIdsFrom(PyObject *st, PyObject *part) throw(INTERP_KERNEL::Exception)
2744       {
2745         int tmpp1=-1,tmpp2=-1;
2746         std::vector<int> tmp=fillArrayWithPyListInt2(part,tmpp1,tmpp2);
2747         std::vector< std::pair<int,int> > inp;
2748         if(tmpp2==2)
2749           {
2750             inp.resize(tmpp1);
2751             for(int i=0;i<tmpp1;i++)
2752               { inp[i].first=tmp[2*i]; inp[i].second=tmp[2*i+1]; }
2753           }
2754         else if(tmpp2==1)
2755           {
2756             if(tmpp1%2!=0)
2757               throw INTERP_KERNEL::Exception("Wrap of MEDCouplingStructuredMesh.BuildExplicitIdsFrom : invalid input size ! Must be even size !");
2758             inp.resize(tmpp1/2);
2759             for(int i=0;i<tmpp1/2;i++)
2760               { inp[i].first=tmp[2*i]; inp[i].second=tmp[2*i+1]; }
2761           }
2762         else
2763           throw INTERP_KERNEL::Exception("Wrap of MEDCouplingStructuredMesh.BuildExplicitIdsFrom : invalid input size !");
2764         //
2765         int szArr,sw,iTypppArr;
2766         std::vector<int> stdvecTyyppArr;
2767         const int *tmp4=convertObjToPossibleCpp1_Safe(st,sw,szArr,iTypppArr,stdvecTyyppArr);
2768         std::vector<int> tmp5(tmp4,tmp4+szArr);
2769         //
2770         return MEDCouplingStructuredMesh::BuildExplicitIdsFrom(tmp5,inp);
2771       }
2772
2773       static DataArrayInt *Build1GTNodalConnectivity(PyObject *li) throw(INTERP_KERNEL::Exception)
2774       {
2775         int szArr,sw,iTypppArr;
2776         std::vector<int> stdvecTyyppArr;
2777         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
2778         return MEDCouplingStructuredMesh::Build1GTNodalConnectivity(tmp,tmp+szArr);
2779       }
2780
2781       static PyObject *IsPartStructured(PyObject *li, PyObject *st) throw(INTERP_KERNEL::Exception)
2782       {
2783         int szArr,sw,iTypppArr;
2784         std::vector<int> stdvecTyyppArr;
2785         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
2786         int szArr2,sw2,iTypppArr2;
2787         std::vector<int> stdvecTyyppArr2;
2788         const int *tmp2=convertObjToPossibleCpp1_Safe(st,sw2,szArr2,iTypppArr2,stdvecTyyppArr2);
2789         std::vector<int> tmp3(tmp2,tmp2+szArr2);
2790         std::vector< std::pair<int,int> > partCompactFormat;
2791         bool ret0=MEDCouplingStructuredMesh::IsPartStructured(tmp,tmp+szArr,tmp3,partCompactFormat);
2792         PyObject *ret=PyTuple_New(2);
2793         PyObject *ret0Py=ret0?Py_True:Py_False; Py_XINCREF(ret0Py);
2794         PyTuple_SetItem(ret,0,ret0Py);
2795         PyObject *ret1Py=PyList_New(partCompactFormat.size());
2796         for(std::size_t i=0;i<partCompactFormat.size();i++)
2797           {
2798             PyObject *tmp4=PyTuple_New(2);
2799             PyTuple_SetItem(tmp4,0,PyInt_FromLong(partCompactFormat[i].first));
2800             PyTuple_SetItem(tmp4,1,PyInt_FromLong(partCompactFormat[i].second));
2801             PyList_SetItem(ret1Py,i,tmp4);
2802           }
2803         PyTuple_SetItem(ret,1,ret1Py);
2804         return ret;
2805       }
2806     }
2807   };
2808
2809   //== MEDCouplingCMesh
2810   
2811   class MEDCouplingCMesh : public ParaMEDMEM::MEDCouplingStructuredMesh
2812   {
2813   public:
2814     static MEDCouplingCMesh *New();
2815     static MEDCouplingCMesh *New(const char *meshName);
2816     MEDCouplingCMesh *clone(bool recDeepCpy) const;
2817     void setCoords(const DataArrayDouble *coordsX,
2818                    const DataArrayDouble *coordsY=0,
2819                    const DataArrayDouble *coordsZ=0) throw(INTERP_KERNEL::Exception);
2820     void setCoordsAt(int i, const DataArrayDouble *arr) throw(INTERP_KERNEL::Exception);
2821     %extend {
2822       MEDCouplingCMesh()
2823       {
2824         return MEDCouplingCMesh::New();
2825       }
2826       MEDCouplingCMesh(const char *meshName)
2827       {
2828         return MEDCouplingCMesh::New(meshName);
2829       }
2830       std::string __str__() const throw(INTERP_KERNEL::Exception)
2831       {
2832         return self->simpleRepr();
2833       }
2834       std::string __repr__() const throw(INTERP_KERNEL::Exception)
2835       {
2836         std::ostringstream oss;
2837         self->reprQuickOverview(oss);
2838         return oss.str();
2839       }
2840       DataArrayDouble *getCoordsAt(int i) throw(INTERP_KERNEL::Exception)
2841       {
2842         DataArrayDouble *ret=self->getCoordsAt(i);
2843         if(ret)
2844           ret->incrRef();
2845         return ret;
2846       }
2847     }
2848   };
2849
2850   //== MEDCouplingCMesh End
2851
2852   //== MEDCouplingCurveLinearMesh
2853
2854   class MEDCouplingCurveLinearMesh : public ParaMEDMEM::MEDCouplingStructuredMesh
2855   {
2856   public:
2857     static MEDCouplingCurveLinearMesh *New();
2858     static MEDCouplingCurveLinearMesh *New(const char *meshName);
2859     MEDCouplingCurveLinearMesh *clone(bool recDeepCpy) const;
2860     void setCoords(const DataArrayDouble *coords) throw(INTERP_KERNEL::Exception);
2861     %extend {
2862       MEDCouplingCurveLinearMesh()
2863       {
2864         return MEDCouplingCurveLinearMesh::New();
2865       }
2866       MEDCouplingCurveLinearMesh(const char *meshName)
2867       {
2868         return MEDCouplingCurveLinearMesh::New(meshName);
2869       }
2870       std::string __str__() const throw(INTERP_KERNEL::Exception) 
2871       {
2872         return self->simpleRepr();
2873       }
2874       std::string __repr__() const throw(INTERP_KERNEL::Exception)
2875       {
2876         std::ostringstream oss;
2877         self->reprQuickOverview(oss);
2878         return oss.str();
2879       }
2880       DataArrayDouble *getCoords() throw(INTERP_KERNEL::Exception)
2881       {
2882         DataArrayDouble *ret=self->getCoords();
2883         if(ret)
2884           ret->incrRef();
2885         return ret;
2886       }
2887       void setNodeGridStructure(PyObject *gridStruct) throw(INTERP_KERNEL::Exception)
2888       {
2889         int szArr,sw,iTypppArr;
2890         std::vector<int> stdvecTyyppArr;
2891         const int *tmp=convertObjToPossibleCpp1_Safe(gridStruct,sw,szArr,iTypppArr,stdvecTyyppArr);
2892         self->setNodeGridStructure(tmp,tmp+szArr);
2893       }
2894     }
2895   };
2896
2897   //== MEDCouplingCurveLinearMesh End
2898 }
2899
2900 namespace ParaMEDMEM
2901 {
2902   class MEDCouplingField : public ParaMEDMEM::RefCountObject, public ParaMEDMEM::TimeLabel
2903   {
2904   public:
2905     virtual void checkCoherency() const throw(INTERP_KERNEL::Exception);
2906     virtual bool areCompatibleForMerge(const MEDCouplingField *other) const throw(INTERP_KERNEL::Exception);
2907     virtual bool isEqual(const MEDCouplingField *other, double meshPrec, double valsPrec) const throw(INTERP_KERNEL::Exception);
2908     virtual bool isEqualWithoutConsideringStr(const MEDCouplingField *other, double meshPrec, double valsPrec) const throw(INTERP_KERNEL::Exception);
2909     virtual void copyTinyStringsFrom(const MEDCouplingField *other) throw(INTERP_KERNEL::Exception);
2910     void setMesh(const ParaMEDMEM::MEDCouplingMesh *mesh) throw(INTERP_KERNEL::Exception);
2911     void setName(const char *name) throw(INTERP_KERNEL::Exception);
2912     std::string getDescription() const throw(INTERP_KERNEL::Exception);
2913     void setDescription(const char *desc) throw(INTERP_KERNEL::Exception);
2914     std::string getName() const throw(INTERP_KERNEL::Exception);
2915     TypeOfField getTypeOfField() const throw(INTERP_KERNEL::Exception);
2916     NatureOfField getNature() const throw(INTERP_KERNEL::Exception);
2917     virtual void setNature(NatureOfField nat) throw(INTERP_KERNEL::Exception);
2918     DataArrayDouble *getLocalizationOfDiscr() const throw(INTERP_KERNEL::Exception);
2919     MEDCouplingFieldDouble *buildMeasureField(bool isAbs) const throw(INTERP_KERNEL::Exception);
2920     int getNumberOfTuplesExpected() const throw(INTERP_KERNEL::Exception);
2921     int getNumberOfMeshPlacesExpected() const throw(INTERP_KERNEL::Exception);
2922     void setGaussLocalizationOnType(INTERP_KERNEL::NormalizedCellType type, const std::vector<double>& refCoo,
2923                                     const std::vector<double>& gsCoo, const std::vector<double>& wg) throw(INTERP_KERNEL::Exception);
2924     void clearGaussLocalizations() throw(INTERP_KERNEL::Exception);
2925     MEDCouplingGaussLocalization& getGaussLocalization(int locId) throw(INTERP_KERNEL::Exception);
2926     int getNbOfGaussLocalization() const throw(INTERP_KERNEL::Exception);
2927     int getGaussLocalizationIdOfOneCell(int cellId) const throw(INTERP_KERNEL::Exception);
2928     const MEDCouplingGaussLocalization& getGaussLocalization(int locId) const throw(INTERP_KERNEL::Exception);
2929     int getGaussLocalizationIdOfOneType(INTERP_KERNEL::NormalizedCellType type) const throw(INTERP_KERNEL::Exception);
2930     void setDiscretization(MEDCouplingFieldDiscretization *newDisc);
2931     %extend {
2932       PyObject *getMesh() const throw(INTERP_KERNEL::Exception)
2933       {
2934         MEDCouplingMesh *ret1=const_cast<MEDCouplingMesh *>(self->getMesh());
2935         if(ret1)
2936           ret1->incrRef();
2937         return convertMesh(ret1,SWIG_POINTER_OWN | 0 );
2938       }
2939
2940       PyObject *getDiscretization() throw(INTERP_KERNEL::Exception)
2941       {
2942         MEDCouplingFieldDiscretization *ret=self->getDiscretization();
2943         if(ret)
2944           ret->incrRef();
2945         return convertFieldDiscretization(ret,SWIG_POINTER_OWN | 0 );
2946       }
2947
2948       PyObject *getGaussLocalizationIdsOfOneType(INTERP_KERNEL::NormalizedCellType type) const throw(INTERP_KERNEL::Exception)
2949       {
2950         std::set<int> ret=self->getGaussLocalizationIdsOfOneType(type);
2951         return convertIntArrToPyList3(ret);
2952       }
2953
2954       PyObject *isEqualIfNotWhy(const MEDCouplingField *other, double meshPrec, double valsPrec) const throw(INTERP_KERNEL::Exception)
2955       {
2956         std::string ret1;
2957         bool ret0=self->isEqualIfNotWhy(other,meshPrec,valsPrec,ret1);
2958         PyObject *ret=PyTuple_New(2);
2959         PyObject *ret0Py=ret0?Py_True:Py_False;
2960         Py_XINCREF(ret0Py);
2961         PyTuple_SetItem(ret,0,ret0Py);
2962         PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
2963         return ret;
2964       }
2965
2966       PyObject *buildSubMeshData(PyObject *li) const throw(INTERP_KERNEL::Exception)
2967       {
2968         DataArrayInt *ret1=0;
2969         MEDCouplingMesh *ret0=0;
2970         void *da=0;
2971         int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayInt, 0 |  0 );
2972         if (!SWIG_IsOK(res1))
2973           {
2974             int size;
2975             INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
2976             ret0=self->buildSubMeshData(tmp,tmp+size,ret1);
2977           }
2978         else
2979           {
2980             DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
2981             if(!da2)
2982               throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2983             da2->checkAllocated();
2984             ret0=self->buildSubMeshData(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems(),ret1);
2985           }
2986         PyObject *res = PyList_New(2);
2987         PyList_SetItem(res,0,convertMesh(ret0, SWIG_POINTER_OWN | 0 ));
2988         PyList_SetItem(res,1,SWIG_NewPointerObj((void*)ret1,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,SWIG_POINTER_OWN | 0));
2989         return res;
2990       }
2991
2992       PyObject *buildSubMeshDataRange(int begin, int end, int step) const throw(INTERP_KERNEL::Exception)
2993       {
2994         DataArrayInt *ret1=0;
2995         int bb,ee,ss;
2996         MEDCouplingMesh *ret0=self->buildSubMeshDataRange(begin,end,step,bb,ee,ss,ret1);
2997         PyObject *res=PyTuple_New(2);
2998         PyTuple_SetItem(res,0,convertMesh(ret0, SWIG_POINTER_OWN | 0 ));
2999         if(ret1)
3000           PyTuple_SetItem(res,1,SWIG_NewPointerObj((void*)ret1,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,SWIG_POINTER_OWN | 0));
3001         else
3002           {
3003             PyObject *res1=PySlice_New(PyInt_FromLong(bb),PyInt_FromLong(ee),PyInt_FromLong(ss));
3004             PyTuple_SetItem(res,1,res1);
3005           }
3006         return res;
3007       }
3008
3009       DataArrayInt *computeTupleIdsToSelectFromCellIds(PyObject *cellIds) const
3010       {
3011         int sw,sz(-1);
3012         int v0; std::vector<int> v1;
3013         const int *cellIdsBg(convertObjToPossibleCpp1_Safe(cellIds,sw,sz,v0,v1));
3014         return self->computeTupleIdsToSelectFromCellIds(cellIdsBg,cellIdsBg+sz);
3015       }
3016
3017       void setGaussLocalizationOnCells(PyObject *li, const std::vector<double>& refCoo,
3018                                        const std::vector<double>& gsCoo, const std::vector<double>& wg) throw(INTERP_KERNEL::Exception)
3019       {
3020         void *da=0;
3021         int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayInt, 0 |  0 );
3022         if (!SWIG_IsOK(res1))
3023           {
3024             int size;
3025             INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
3026             self->setGaussLocalizationOnCells(tmp,((int *)tmp)+size,refCoo,gsCoo,wg);
3027           }
3028         else
3029           {
3030             DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
3031             if(!da2)
3032               throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
3033             da2->checkAllocated();
3034             self->setGaussLocalizationOnCells(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems(),refCoo,gsCoo,wg);
3035           }
3036       }
3037
3038       PyObject *getCellIdsHavingGaussLocalization(int locId) const throw(INTERP_KERNEL::Exception)
3039       {
3040         std::vector<int> tmp;
3041         self->getCellIdsHavingGaussLocalization(locId,tmp);
3042         DataArrayInt *ret=DataArrayInt::New();
3043         ret->alloc((int)tmp.size(),1);
3044         std::copy(tmp.begin(),tmp.end(),ret->getPointer());
3045         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
3046       }
3047       
3048       int getNumberOfTuplesExpectedRegardingCode(PyObject *code, PyObject *idsPerType) const throw(INTERP_KERNEL::Exception)
3049       {
3050         std::vector<int> inp0;
3051         convertPyToNewIntArr4(code,1,3,inp0);
3052         std::vector<const DataArrayInt *> inp1;
3053         convertFromPyObjVectorOfObj<const ParaMEDMEM::DataArrayInt *>(idsPerType,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,"DataArrayInt",inp1);
3054         return self->getNumberOfTuplesExpectedRegardingCode(inp0,inp1);
3055       }
3056     }
3057   };
3058   
3059   class MEDCouplingFieldTemplate : public ParaMEDMEM::MEDCouplingField
3060   {
3061   public:
3062     static MEDCouplingFieldTemplate *New(const MEDCouplingFieldDouble& f) throw(INTERP_KERNEL::Exception);
3063     static MEDCouplingFieldTemplate *New(TypeOfField type);
3064     std::string simpleRepr() const throw(INTERP_KERNEL::Exception);
3065     std::string advancedRepr() const throw(INTERP_KERNEL::Exception);
3066     %extend
3067        {
3068          MEDCouplingFieldTemplate(const MEDCouplingFieldDouble& f) throw(INTERP_KERNEL::Exception)
3069          {
3070            return MEDCouplingFieldTemplate::New(f);
3071          }
3072          
3073          MEDCouplingFieldTemplate(TypeOfField type) throw(INTERP_KERNEL::Exception)
3074          {
3075            return MEDCouplingFieldTemplate::New(type);
3076          }
3077          
3078          std::string __str__() const throw(INTERP_KERNEL::Exception)
3079          {
3080            return self->simpleRepr();
3081          }
3082          
3083          std::string __repr__() const throw(INTERP_KERNEL::Exception)
3084          {
3085            std::ostringstream oss;
3086            self->reprQuickOverview(oss);
3087            return oss.str();
3088          }
3089        }
3090   };
3091   
3092   class MEDCouplingFieldDouble : public ParaMEDMEM::MEDCouplingField
3093   {
3094   public:
3095     static MEDCouplingFieldDouble *New(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME);
3096     static MEDCouplingFieldDouble *New(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME);
3097     void setTimeUnit(const char *unit);
3098     const char *getTimeUnit() const;
3099     void synchronizeTimeWithSupport() throw(INTERP_KERNEL::Exception);
3100     void copyTinyAttrFrom(const MEDCouplingFieldDouble *other) throw(INTERP_KERNEL::Exception);
3101     void copyAllTinyAttrFrom(const MEDCouplingFieldDouble *other) throw(INTERP_KERNEL::Exception);
3102     std::string simpleRepr() const throw(INTERP_KERNEL::Exception);
3103     std::string advancedRepr() const throw(INTERP_KERNEL::Exception);
3104     void writeVTK(const char *fileName, bool isBinary=true) const throw(INTERP_KERNEL::Exception);
3105     MEDCouplingFieldDouble *clone(bool recDeepCpy) const;
3106     MEDCouplingFieldDouble *cloneWithMesh(bool recDeepCpy) const;
3107     MEDCouplingFieldDouble *deepCpy() const;
3108     MEDCouplingFieldDouble *buildNewTimeReprFromThis(TypeOfTimeDiscretization td, bool deepCpy) const throw(INTERP_KERNEL::Exception);
3109     MEDCouplingFieldDouble *nodeToCellDiscretization() const throw(INTERP_KERNEL::Exception);
3110     TypeOfTimeDiscretization getTimeDiscretization() const throw(INTERP_KERNEL::Exception);
3111     double getIJ(int tupleId, int compoId) const throw(INTERP_KERNEL::Exception);
3112     double getIJK(int cellId, int nodeIdInCell, int compoId) const throw(INTERP_KERNEL::Exception);
3113     void synchronizeTimeWithMesh() throw(INTERP_KERNEL::Exception);
3114     void setArray(DataArrayDouble *array) throw(INTERP_KERNEL::Exception);
3115     void setEndArray(DataArrayDouble *array) throw(INTERP_KERNEL::Exception);
3116     void setTime(double val, int iteration, int order) throw(INTERP_KERNEL::Exception);
3117     void setStartTime(double val, int iteration, int order) throw(INTERP_KERNEL::Exception);
3118     void setEndTime(double val, int iteration, int order) throw(INTERP_KERNEL::Exception);
3119     void applyLin(double a, double b, int compoId) throw(INTERP_KERNEL::Exception);
3120     int getNumberOfComponents() const throw(INTERP_KERNEL::Exception);
3121     int getNumberOfTuples() const throw(INTERP_KERNEL::Exception);
3122     int getNumberOfValues() const throw(INTERP_KERNEL::Exception);
3123     void setTimeTolerance(double val) throw(INTERP_KERNEL::Exception);
3124     double getTimeTolerance() const throw(INTERP_KERNEL::Exception);
3125     void setIteration(int it) throw(INTERP_KERNEL::Exception);
3126     void setEndIteration(int it) throw(INTERP_KERNEL::Exception);
3127     void setOrder(int order) throw(INTERP_KERNEL::Exception);
3128     void setEndOrder(int order) throw(INTERP_KERNEL::Exception);
3129     void setTimeValue(double val) throw(INTERP_KERNEL::Exception);
3130     void setEndTimeValue(double val) throw(INTERP_KERNEL::Exception);
3131     void changeUnderlyingMesh(const MEDCouplingMesh *other, int levOfCheck, double precOnMesh, double eps=1e-15) throw(INTERP_KERNEL::Exception);
3132     void substractInPlaceDM(const MEDCouplingFieldDouble *f, int levOfCheck, double precOnMesh, double eps=1e-15) throw(INTERP_KERNEL::Exception);
3133     bool mergeNodes(double eps, double epsOnVals=1e-15) throw(INTERP_KERNEL::Exception);
3134     bool mergeNodes2(double eps, double epsOnVals=1e-15) throw(INTERP_KERNEL::Exception);
3135     bool zipCoords(double epsOnVals=1e-15) throw(INTERP_KERNEL::Exception);
3136     bool zipConnectivity(int compType,double epsOnVals=1e-15) throw(INTERP_KERNEL::Exception);
3137     bool simplexize(int policy) throw(INTERP_KERNEL::Exception);
3138     MEDCouplingFieldDouble *doublyContractedProduct() const throw(INTERP_KERNEL::Exception);
3139     MEDCouplingFieldDouble *determinant() const throw(INTERP_KERNEL::Exception);
3140     MEDCouplingFieldDouble *eigenValues() const throw(INTERP_KERNEL::Exception);
3141     MEDCouplingFieldDouble *eigenVectors() const throw(INTERP_KERNEL::Exception);
3142     MEDCouplingFieldDouble *inverse() const throw(INTERP_KERNEL::Exception);
3143     MEDCouplingFieldDouble *trace() const throw(INTERP_KERNEL::Exception);
3144     MEDCouplingFieldDouble *deviator() const throw(INTERP_KERNEL::Exception);
3145     MEDCouplingFieldDouble *magnitude() const throw(INTERP_KERNEL::Exception);
3146     MEDCouplingFieldDouble *maxPerTuple() const throw(INTERP_KERNEL::Exception);
3147     void changeNbOfComponents(int newNbOfComp, double dftValue=0.) throw(INTERP_KERNEL::Exception);
3148     void sortPerTuple(bool asc) throw(INTERP_KERNEL::Exception);
3149     MEDCouplingFieldDouble &operator=(double value) throw(INTERP_KERNEL::Exception);
3150     void fillFromAnalytic(int nbOfComp, const char *func) throw(INTERP_KERNEL::Exception);
3151     void fillFromAnalytic2(int nbOfComp, const char *func) throw(INTERP_KERNEL::Exception);
3152     void fillFromAnalytic3(int nbOfComp, const std::vector<std::string>& varsOrder, const char *func) throw(INTERP_KERNEL::Exception);
3153     void applyFunc(int nbOfComp, const char *func) throw(INTERP_KERNEL::Exception);
3154     void applyFunc2(int nbOfComp, const char *func) throw(INTERP_KERNEL::Exception);
3155     void applyFunc3(int nbOfComp, const std::vector<std::string>& varsOrder, const char *func) throw(INTERP_KERNEL::Exception);
3156     void applyFunc(int nbOfComp, double val) throw(INTERP_KERNEL::Exception);
3157     void applyFunc(const char *func) throw(INTERP_KERNEL::Exception);
3158     void applyFuncFast32(const char *func) throw(INTERP_KERNEL::Exception);
3159     void applyFuncFast64(const char *func) throw(INTERP_KERNEL::Exception);
3160     double accumulate(int compId) const throw(INTERP_KERNEL::Exception);
3161     double getMaxValue() const throw(INTERP_KERNEL::Exception);
3162     double getMinValue() const throw(INTERP_KERNEL::Exception);
3163     double getAverageValue() const throw(INTERP_KERNEL::Exception);
3164     double norm2() const throw(INTERP_KERNEL::Exception);
3165     double normMax() const throw(INTERP_KERNEL::Exception);
3166     //do not put a default value to isWAbs because confusion in python with overloaded getWeightedAverageValue method
3167     double getWeightedAverageValue(int compId, bool isWAbs) const throw(INTERP_KERNEL::Exception);
3168     double integral(int compId, bool isWAbs) const throw(INTERP_KERNEL::Exception);
3169     double normL1(int compId) const throw(INTERP_KERNEL::Exception);
3170     double normL2(int compId) const throw(INTERP_KERNEL::Exception);
3171     DataArrayInt *getIdsInRange(double vmin, double vmax) const throw(INTERP_KERNEL::Exception);
3172     MEDCouplingFieldDouble *buildSubPartRange(int begin, int end, int step) const throw(INTERP_KERNEL::Exception);
3173     static MEDCouplingFieldDouble *MergeFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3174     static MEDCouplingFieldDouble *MeldFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3175     static MEDCouplingFieldDouble *DotFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3176     MEDCouplingFieldDouble *dot(const MEDCouplingFieldDouble& other) const throw(INTERP_KERNEL::Exception);
3177     static MEDCouplingFieldDouble *CrossProductFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3178     MEDCouplingFieldDouble *crossProduct(const MEDCouplingFieldDouble& other) const throw(INTERP_KERNEL::Exception);
3179     static MEDCouplingFieldDouble *MaxFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3180     MEDCouplingFieldDouble *max(const MEDCouplingFieldDouble& other) const throw(INTERP_KERNEL::Exception);
3181     static MEDCouplingFieldDouble *MinFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3182     static MEDCouplingFieldDouble *AddFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3183     static MEDCouplingFieldDouble *SubstractFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3184     static MEDCouplingFieldDouble *MultiplyFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3185     static MEDCouplingFieldDouble *DivideFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3186     MEDCouplingFieldDouble *min(const MEDCouplingFieldDouble& other) const throw(INTERP_KERNEL::Exception);
3187     MEDCouplingFieldDouble *negate() const throw(INTERP_KERNEL::Exception);
3188     %extend {
3189       MEDCouplingFieldDouble(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME)
3190       {
3191         return MEDCouplingFieldDouble::New(type,td);
3192       }
3193
3194       MEDCouplingFieldDouble(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME)
3195       {
3196         return MEDCouplingFieldDouble::New(ft,td);
3197       }
3198
3199       std::string __str__() const throw(INTERP_KERNEL::Exception)
3200       {
3201         return self->simpleRepr();
3202       }
3203
3204       std::string __repr__() const throw(INTERP_KERNEL::Exception)
3205       {
3206         std::ostringstream oss;
3207         self->reprQuickOverview(oss);
3208         return oss.str();
3209       }
3210
3211       DataArrayDouble *getArray() throw(INTERP_KERNEL::Exception)
3212       {
3213         DataArrayDouble *ret=self->getArray();
3214         if(ret)
3215           ret->incrRef();
3216         return ret;
3217       }
3218
3219       PyObject *getArrays() const throw(INTERP_KERNEL::Exception)
3220       {
3221         std::vector<DataArrayDouble *> arrs=self->getArrays();
3222         for(std::vector<DataArrayDouble *>::iterator it=arrs.begin();it!=arrs.end();it++)
3223           if(*it)
3224             (*it)->incrRef();
3225         int sz=arrs.size();
3226         PyObject *ret=PyTuple_New(sz);
3227         for(int i=0;i<sz;i++)
3228           {
3229             if(arrs[i])
3230               PyTuple_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(arrs[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
3231             else
3232               PyTuple_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, 0 | 0 ));
3233           }
3234         return ret;
3235       }
3236
3237       void setArrays(PyObject *ls) throw(INTERP_KERNEL::Exception)
3238       {
3239         std::vector<const DataArrayDouble *> tmp;
3240         convertFromPyObjVectorOfObj<const DataArrayDouble *>(ls,SWIGTYPE_p_ParaMEDMEM__DataArrayDouble,"DataArrayDouble",tmp);
3241         int sz=tmp.size();
3242         std::vector<DataArrayDouble *> arrs(sz);
3243         for(int i=0;i<sz;i++)
3244           arrs[i]=const_cast<DataArrayDouble *>(tmp[i]);
3245         self->setArrays(arrs);
3246       }
3247
3248       DataArrayDouble *getEndArray() throw(INTERP_KERNEL::Exception)
3249       {
3250         DataArrayDouble *ret=self->getEndArray();
3251         if(ret)
3252           ret->incrRef();
3253         return ret;
3254       }
3255
3256       PyObject *getValueOn(PyObject *sl) const throw(INTERP_KERNEL::Exception)
3257       {
3258         double val;
3259         DataArrayDouble *a;
3260         DataArrayDoubleTuple *aa;
3261         std::vector<double> bb;
3262         int sw;
3263         const MEDCouplingMesh *mesh=self->getMesh();
3264         if(!mesh)
3265           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingFieldDouble::getValueOn : no underlying mesh !");
3266         int spaceDim=mesh->getSpaceDimension();
3267         const char msg[]="Python wrap of MEDCouplingFieldDouble::getValueOn : ";
3268         const double *spaceLoc=convertObjToPossibleCpp5_Safe(sl,sw,val,a,aa,bb,msg,1,spaceDim,true);
3269         //
3270         int sz=self->getNumberOfComponents();
3271         INTERP_KERNEL::AutoPtr<double> res=new double[sz];
3272         self->getValueOn(spaceLoc,res);
3273         return convertDblArrToPyList(res,sz);
3274       }
3275
3276        PyObject *getValueOnPos(int i, int j, int k) const throw(INTERP_KERNEL::Exception)
3277        {
3278          int sz=self->getNumberOfComponents();
3279          INTERP_KERNEL::AutoPtr<double> res=new double[sz];
3280          self->getValueOnPos(i,j,k,res);
3281          return convertDblArrToPyList(res,sz);
3282        }
3283
3284       DataArrayDouble *getValueOnMulti(PyObject *locs) const throw(INTERP_KERNEL::Exception)
3285       {
3286         const MEDCouplingMesh *mesh(self->getMesh());
3287         if(!mesh)
3288           throw INTERP_KERNEL::Exception("Python wrap MEDCouplingFieldDouble::getValueOnMulti : lying on a null mesh !");
3289         //
3290         int sw,nbPts;
3291         double v0; ParaMEDMEM::DataArrayDouble *v1(0); ParaMEDMEM::DataArrayDoubleTuple *v2(0); std::vector<double> v3;
3292         const double *inp=convertObjToPossibleCpp5_Safe2(locs,sw,v0,v1,v2,v3,"wrap of MEDCouplingFieldDouble::getValueOnMulti",
3293                                                          mesh->getSpaceDimension(),true,nbPts);
3294         return self->getValueOnMulti(inp,nbPts);
3295       }
3296
3297       PyObject *getValueOn(PyObject *sl, double time) const throw(INTERP_KERNEL::Exception)
3298       {
3299         double val;
3300         DataArrayDouble *a;
3301         DataArrayDoubleTuple *aa;
3302         std::vector<double> bb;
3303         int sw;
3304         const MEDCouplingMesh *mesh=self->getMesh();
3305         if(!mesh)
3306           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingFieldDouble::getValueOn : no underlying mesh !");
3307         int spaceDim=mesh->getSpaceDimension();
3308         const char msg[]="Python wrap of MEDCouplingFieldDouble::getValueOn : ";
3309         const double *spaceLoc=convertObjToPossibleCpp5_Safe(sl,sw,val,a,aa,bb,msg,1,spaceDim,true);
3310         //
3311         //
3312         int sz=self->getNumberOfComponents();
3313         INTERP_KERNEL::AutoPtr<double> res=new double[sz];
3314         self->getValueOn(spaceLoc,time,res);
3315         return convertDblArrToPyList(res,sz);
3316       }
3317
3318       void setValues(PyObject *li, PyObject *nbOfTuples=0, PyObject *nbOfComp=0) throw(INTERP_KERNEL::Exception)
3319       {
3320         if(self->getArray()!=0)
3321           ParaMEDMEM_DataArrayDouble_setValues__SWIG_0(self->getArray(),li,nbOfTuples,nbOfComp);
3322         else
3323           {
3324             MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> arr=DataArrayDouble::New();
3325             ParaMEDMEM_DataArrayDouble_setValues__SWIG_0(arr,li,nbOfTuples,nbOfComp);
3326             self->setArray(arr);
3327           }
3328       }
3329       
3330       PyObject *getTime() throw(INTERP_KERNEL::Exception)
3331       {
3332         int tmp1,tmp2;
3333         double tmp0=self->getTime(tmp1,tmp2);
3334         PyObject *res = PyList_New(3);
3335         PyList_SetItem(res,0,SWIG_From_double(tmp0));
3336         PyList_SetItem(res,1,SWIG_From_int(tmp1));
3337         PyList_SetItem(res,2,SWIG_From_int(tmp2));
3338         return res;
3339       }
3340
3341       PyObject *getStartTime() throw(INTERP_KERNEL::Exception)
3342       {
3343         int tmp1,tmp2;
3344         double tmp0=self->getStartTime(tmp1,tmp2);
3345         PyObject *res = PyList_New(3);
3346         PyList_SetItem(res,0,SWIG_From_double(tmp0));
3347         PyList_SetItem(res,1,SWIG_From_int(tmp1));
3348         PyList_SetItem(res,2,SWIG_From_int(tmp2));
3349         return res;
3350       }
3351
3352       PyObject *getEndTime() throw(INTERP_KERNEL::Exception)
3353       {
3354         int tmp1,tmp2;
3355         double tmp0=self->getEndTime(tmp1,tmp2);
3356         PyObject *res = PyList_New(3);
3357         PyList_SetItem(res,0,SWIG_From_double(tmp0));
3358         PyList_SetItem(res,1,SWIG_From_int(tmp1));
3359         PyList_SetItem(res,2,SWIG_From_int(tmp2));
3360         return res;
3361       }
3362       PyObject *accumulate() const throw(INTERP_KERNEL::Exception)
3363       {
3364         int sz=self->getNumberOfComponents();
3365         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
3366         self->accumulate(tmp);
3367         return convertDblArrToPyList(tmp,sz);
3368       }
3369       PyObject *integral(bool isWAbs) const throw(INTERP_KERNEL::Exception)
3370       {
3371         int sz=self->getNumberOfComponents();
3372         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
3373         self->integral(isWAbs,tmp);
3374         return convertDblArrToPyList(tmp,sz);
3375       }
3376       PyObject *getWeightedAverageValue(bool isWAbs=true) const throw(INTERP_KERNEL::Exception)
3377       {
3378         int sz=self->getNumberOfComponents();
3379         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
3380         self->getWeightedAverageValue(tmp,isWAbs);
3381         return convertDblArrToPyList(tmp,sz);
3382       }
3383       PyObject *normL1() const throw(INTERP_KERNEL::Exception)
3384       {
3385         int sz=self->getNumberOfComponents();
3386         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
3387         self->normL1(tmp);
3388         return convertDblArrToPyList(tmp,sz);
3389       }
3390       PyObject *normL2() const throw(INTERP_KERNEL::Exception)
3391       {
3392         int sz=self->getNumberOfComponents();
3393         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
3394         self->normL2(tmp);
3395         return convertDblArrToPyList(tmp,sz);
3396       }
3397       void renumberCells(PyObject *li, bool check=true) throw(INTERP_KERNEL::Exception)
3398       {
3399         int szArr,sw,iTypppArr;
3400         std::vector<int> stdvecTyyppArr;
3401         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3402         self->renumberCells(tmp,check);
3403       }
3404       
3405       void renumberCellsWithoutMesh(PyObject *li, bool check=true) throw(INTERP_KERNEL::Exception)
3406       {
3407         int szArr,sw,iTypppArr;
3408         std::vector<int> stdvecTyyppArr;
3409         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3410         self->renumberCellsWithoutMesh(tmp,check);
3411       }
3412       
3413       void renumberNodes(PyObject *li, double eps=1e-15) throw(INTERP_KERNEL::Exception)
3414       {
3415         int szArr,sw,iTypppArr;
3416         std::vector<int> stdvecTyyppArr;
3417         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3418         self->renumberNodes(tmp,eps);
3419       }
3420
3421       void renumberNodesWithoutMesh(PyObject *li, int newNbOfNodes, double eps=1e-15) throw(INTERP_KERNEL::Exception)
3422       {
3423         int szArr,sw,iTypppArr;
3424         std::vector<int> stdvecTyyppArr;
3425         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3426         self->renumberNodesWithoutMesh(tmp,newNbOfNodes,eps);
3427       }
3428
3429       MEDCouplingFieldDouble *buildSubPart(PyObject *li) const throw(INTERP_KERNEL::Exception)
3430       {
3431         int sw;
3432         int singleVal;
3433         std::vector<int> multiVal;
3434         std::pair<int, std::pair<int,int> > slic;
3435         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
3436         const MEDCouplingMesh *mesh=self->getMesh();
3437         if(!mesh)
3438           throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::buildSubPart : field lies on a null mesh !");
3439         int nbc=mesh->getNumberOfCells();
3440         convertObjToPossibleCpp2(li,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
3441         switch(sw)
3442           {
3443           case 1:
3444             {
3445               if(singleVal>=nbc)
3446                 {
3447                   std::ostringstream oss;
3448                   oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
3449                   throw INTERP_KERNEL::Exception(oss.str().c_str());
3450                 }
3451               if(singleVal>=0)
3452                 return self->buildSubPart(&singleVal,&singleVal+1);
3453               else
3454                 {
3455                   if(nbc+singleVal>0)
3456                     {
3457                       int tmp=nbc+singleVal;
3458                       return self->buildSubPart(&tmp,&tmp+1);
3459                     }
3460                   else
3461                     {
3462                       std::ostringstream oss;
3463                       oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
3464                       throw INTERP_KERNEL::Exception(oss.str().c_str());
3465                     }
3466                 }
3467             }
3468           case 2:
3469             {
3470               return self->buildSubPart(&multiVal[0],&multiVal[0]+multiVal.size());
3471             }
3472           case 3:
3473             {
3474               return self->buildSubPartRange(slic.first,slic.second.first,slic.second.second);
3475             }
3476           case 4:
3477             {
3478               if(!daIntTyypp)
3479                 throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::buildSubPart : null instance has been given in input !");
3480               daIntTyypp->checkAllocated();
3481               return self->buildSubPart(daIntTyypp->begin(),daIntTyypp->end());
3482             }
3483           default:
3484             throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::buildSubPart : unrecognized type in input ! Possibilities are : int, list or tuple of int DataArrayInt instance !");
3485           }
3486       }
3487
3488       MEDCouplingFieldDouble *__getitem__(PyObject *li) const throw(INTERP_KERNEL::Exception)
3489       {
3490         const char msg[]="MEDCouplingFieldDouble::__getitem__ : invalid call  Available API are : \n-myField[dataArrayInt]\n-myField[slice]\n-myField[pythonListOfCellIds]\n-myField[integer]\n-myField[dataArrayInt,1]\n-myField[slice,1]\n-myField[pythonListOfCellIds,1]\n-myField[integer,1]\n";
3491         if(PyTuple_Check(li))
3492           {
3493             Py_ssize_t sz=PyTuple_Size(li);
3494             if(sz!=2)
3495               throw INTERP_KERNEL::Exception(msg);
3496             PyObject *elt0=PyTuple_GetItem(li,0),*elt1=PyTuple_GetItem(li,1);
3497             int sw;
3498             int singleVal;
3499             std::vector<int> multiVal;
3500             std::pair<int, std::pair<int,int> > slic;
3501             ParaMEDMEM::DataArrayInt *daIntTyypp=0;
3502             if(!self->getArray())
3503               throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::__getitem__ : no array set on field to deduce number of components !");
3504             try
3505               { convertObjToPossibleCpp2(elt1,self->getArray()->getNumberOfComponents(),sw,singleVal,multiVal,slic,daIntTyypp); }
3506             catch(INTERP_KERNEL::Exception& e)
3507               { std::ostringstream oss; oss << "MEDCouplingFieldDouble::__getitem__ : invalid type in 2nd parameter (compo) !" << e.what(); throw INTERP_KERNEL::Exception(oss.str().c_str()); }
3508             MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret0=ParaMEDMEM_MEDCouplingFieldDouble_buildSubPart(self,elt0);
3509             DataArrayDouble *ret0Arr=ret0->getArray();
3510             if(!ret0Arr)
3511               throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::__getitem__ : no array exists to apply restriction on component on it !");
3512             switch(sw)
3513               {
3514               case 1:
3515                 {
3516                   std::vector<int> v2(1,singleVal);
3517                   MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aarr=static_cast<DataArrayDouble *>(ret0Arr->keepSelectedComponents(v2));
3518                   ret0->setArray(aarr);
3519                   return ret0.retn();
3520                 }
3521               case 2:
3522                 {
3523                   MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aarr=static_cast<DataArrayDouble *>(ret0Arr->keepSelectedComponents(multiVal));
3524                   ret0->setArray(aarr);
3525                   return ret0.retn();
3526                 }
3527               case 3:
3528                 {
3529                   int nbOfComp=DataArray::GetNumberOfItemGivenBESRelative(slic.first,slic.second.first,slic.second.second,"MEDCouplingFieldDouble::__getitem__ : invalid range in 2nd parameter (components) !");
3530                   std::vector<int> v2(nbOfComp);
3531                   for(int i=0;i<nbOfComp;i++)
3532                     v2[i]=slic.first+i*slic.second.second;
3533                   MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aarr=static_cast<DataArrayDouble *>(ret0Arr->keepSelectedComponents(v2));
3534                   ret0->setArray(aarr);
3535                   return ret0.retn();
3536                 }
3537               default:
3538                 throw INTERP_KERNEL::Exception(msg);
3539               }
3540             
3541           }
3542         else
3543           return ParaMEDMEM_MEDCouplingFieldDouble_buildSubPart(self,li);
3544       }
3545
3546       PyObject *getMaxValue2() const throw(INTERP_KERNEL::Exception)
3547       {
3548         DataArrayInt *tmp;
3549         double r1=self->getMaxValue2(tmp);
3550         PyObject *ret=PyTuple_New(2);
3551         PyTuple_SetItem(ret,0,PyFloat_FromDouble(r1));
3552         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
3553         return ret;
3554       }
3555       
3556       PyObject *getMinValue2() const throw(INTERP_KERNEL::Exception)
3557       {
3558         DataArrayInt *tmp;
3559         double r1=self->getMinValue2(tmp);
3560         PyObject *ret=PyTuple_New(2);
3561         PyTuple_SetItem(ret,0,PyFloat_FromDouble(r1));
3562         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
3563         return ret;
3564       }
3565       
3566       MEDCouplingFieldDouble *keepSelectedComponents(PyObject *li) const throw(INTERP_KERNEL::Exception)
3567       {
3568         std::vector<int> tmp;
3569         convertPyToNewIntArr3(li,tmp);
3570         return self->keepSelectedComponents(tmp);
3571       }
3572
3573       void setSelectedComponents(const MEDCouplingFieldDouble *f, PyObject *li) throw(INTERP_KERNEL::Exception)
3574       {
3575         std::vector<int> tmp;
3576         convertPyToNewIntArr3(li,tmp);
3577         self->setSelectedComponents(f,tmp);
3578       }
3579
3580       MEDCouplingFieldDouble *extractSlice3D(PyObject *origin, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
3581       {
3582         double val,val2;
3583         DataArrayDouble *a,*a2;
3584         DataArrayDoubleTuple *aa,*aa2;
3585         std::vector<double> bb,bb2;
3586         int sw;
3587         int spaceDim=3;
3588         const char msg[]="Python wrap of MEDCouplingFieldDouble::extractSlice3D : 1st paramater for origin.";
3589         const char msg2[]="Python wrap of MEDCouplingFieldDouble::extractSlice3D : 2nd paramater for vector.";
3590         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
3591         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
3592         //
3593         return self->extractSlice3D(orig,vect,eps);
3594       }
3595
3596       MEDCouplingFieldDouble *__add__(PyObject *obj) throw(INTERP_KERNEL::Exception)
3597       {
3598         return ParaMEDMEM_MEDCouplingFieldDouble___add__Impl(self,obj);
3599       }
3600
3601       MEDCouplingFieldDouble *__radd__(PyObject *obj) throw(INTERP_KERNEL::Exception)
3602       {
3603         return ParaMEDMEM_MEDCouplingFieldDouble___radd__Impl(self,obj);
3604       }
3605
3606       MEDCouplingFieldDouble *__sub__(PyObject *obj) throw(INTERP_KERNEL::Exception)
3607       {
3608         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__sub__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
3609         const char msg2[]="in MEDCouplingFieldDouble.__sub__ : self field has no Array of values set !";
3610         void *argp;
3611         //
3612         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
3613           {
3614             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
3615             if(other)
3616               return (*self)-(*other);
3617             else
3618               throw INTERP_KERNEL::Exception(msg);
3619           }
3620         //
3621         double val;
3622         DataArrayDouble *a;
3623         DataArrayDoubleTuple *aa;
3624         std::vector<double> bb;
3625         int sw;
3626         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
3627         switch(sw)
3628           {
3629           case 1:
3630             {
3631               if(!self->getArray())
3632                 throw INTERP_KERNEL::Exception(msg2);
3633               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=self->getArray()->deepCpy();
3634               ret->applyLin(1.,-val);
3635               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3636               ret2->setArray(ret);
3637               return ret2.retn();
3638             }
3639           case 2:
3640             {
3641               if(!self->getArray())
3642                 throw INTERP_KERNEL::Exception(msg2);
3643               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Substract(self->getArray(),a);
3644               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3645               ret2->setArray(ret);
3646               return ret2.retn();
3647             }
3648           case 3:
3649             {
3650               if(!self->getArray())
3651                 throw INTERP_KERNEL::Exception(msg2);
3652               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
3653               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Substract(self->getArray(),aaa);
3654               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3655               ret2->setArray(ret);
3656               return ret2.retn();
3657             }
3658           case 4:
3659             {
3660               if(!self->getArray())
3661                 throw INTERP_KERNEL::Exception(msg2);
3662               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
3663               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Substract(self->getArray(),aaa);
3664               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3665               ret2->setArray(ret);
3666               return ret2.retn();
3667             }
3668           default:
3669             { throw INTERP_KERNEL::Exception(msg); }
3670           }
3671       }
3672
3673       MEDCouplingFieldDouble *__rsub__(PyObject *obj) throw(INTERP_KERNEL::Exception)
3674       {
3675         return ParaMEDMEM_MEDCouplingFieldDouble___rsub__Impl(self,obj);
3676       }
3677
3678       MEDCouplingFieldDouble *__mul__(PyObject *obj) throw(INTERP_KERNEL::Exception)
3679       {
3680         return ParaMEDMEM_MEDCouplingFieldDouble___mul__Impl(self,obj);
3681       }
3682
3683       MEDCouplingFieldDouble *__rmul__(PyObject *obj) throw(INTERP_KERNEL::Exception)
3684       {
3685         return ParaMEDMEM_MEDCouplingFieldDouble___rmul__Impl(self,obj);
3686       }
3687
3688       MEDCouplingFieldDouble *__div__(PyObject *obj) throw(INTERP_KERNEL::Exception)
3689       {
3690         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__div__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
3691         const char msg2[]="in MEDCouplingFieldDouble.__div__ : self field has no Array of values set !";
3692         void *argp;
3693         //
3694         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
3695           {
3696             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
3697             if(other)
3698               return (*self)/(*other);
3699             else
3700               throw INTERP_KERNEL::Exception(msg);
3701           }
3702         //
3703         double val;
3704         DataArrayDouble *a;
3705         DataArrayDoubleTuple *aa;
3706         std::vector<double> bb;
3707         int sw;
3708         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
3709         switch(sw)
3710           {
3711           case 1:
3712             {
3713               if(val==0.)
3714                 throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble.__div__ : trying to divide by zero !");
3715               if(!self->getArray())
3716                 throw INTERP_KERNEL::Exception(msg2);
3717               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=self->getArray()->deepCpy();
3718               ret->applyLin(1./val,0);
3719               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3720               ret2->setArray(ret);
3721               return ret2.retn();
3722             }
3723           case 2:
3724             {
3725               if(!self->getArray())
3726                 throw INTERP_KERNEL::Exception(msg2);
3727               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Divide(self->getArray(),a);
3728               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3729               ret2->setArray(ret);
3730               return ret2.retn();
3731             }
3732           case 3:
3733             {
3734               if(!self->getArray())
3735                 throw INTERP_KERNEL::Exception(msg2);
3736               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
3737               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Divide(self->getArray(),aaa);
3738               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3739               ret2->setArray(ret);
3740               return ret2.retn();
3741             }
3742           case 4:
3743             {
3744               if(!self->getArray())
3745                 throw INTERP_KERNEL::Exception(msg2);
3746               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
3747               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Divide(self->getArray(),aaa);
3748               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3749               ret2->setArray(ret);
3750               return ret2.retn();
3751             }
3752           default:
3753             { throw INTERP_KERNEL::Exception(msg); }
3754           }
3755       }
3756
3757       MEDCouplingFieldDouble *__rdiv__(PyObject *obj) throw(INTERP_KERNEL::Exception)
3758       {
3759         return ParaMEDMEM_MEDCouplingFieldDouble___rdiv__Impl(self,obj);
3760       }
3761
3762       MEDCouplingFieldDouble *__pow__(PyObject *obj) throw(INTERP_KERNEL::Exception)
3763       {
3764         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__pow__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
3765         const char msg2[]="in MEDCouplingFieldDouble.__pow__ : self field has no Array of values set !";
3766         void *argp;
3767         //
3768         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
3769           {
3770             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
3771             if(other)
3772               return (*self)^(*other);
3773             else
3774               throw INTERP_KERNEL::Exception(msg);
3775           }
3776         //
3777         double val;
3778         DataArrayDouble *a;
3779         DataArrayDoubleTuple *aa;
3780         std::vector<double> bb;
3781         int sw;
3782         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
3783         switch(sw)
3784           {
3785           case 1:
3786             {
3787               if(!self->getArray())
3788                 throw INTERP_KERNEL::Exception(msg2);
3789               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=self->getArray()->deepCpy();
3790               ret->applyPow(val);
3791               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3792               ret2->setArray(ret);
3793               return ret2.retn();
3794             }
3795           case 2:
3796             {
3797               if(!self->getArray())
3798                 throw INTERP_KERNEL::Exception(msg2);
3799               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Pow(self->getArray(),a);
3800               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3801               ret2->setArray(ret);
3802               return ret2.retn();
3803             }
3804           case 3:
3805             {
3806               if(!self->getArray())
3807                 throw INTERP_KERNEL::Exception(msg2);
3808               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
3809               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Pow(self->getArray(),aaa);
3810               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3811               ret2->setArray(ret);
3812               return ret2.retn();
3813             }
3814           case 4:
3815             {
3816               if(!self->getArray())
3817                 throw INTERP_KERNEL::Exception(msg2);
3818               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
3819               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Pow(self->getArray(),aaa);
3820               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3821               ret2->setArray(ret);
3822               return ret2.retn();
3823             }
3824           default:
3825             { throw INTERP_KERNEL::Exception(msg); }
3826           }
3827       }
3828
3829       MEDCouplingFieldDouble *__neg__() const throw(INTERP_KERNEL::Exception)
3830       {
3831         return self->negate();
3832       }
3833
3834       PyObject *___iadd___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
3835       {
3836         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__iadd__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
3837         const char msg2[]="in MEDCouplingFieldDouble.__iadd__ : self field has no Array of values set !";
3838         void *argp;
3839         //
3840         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
3841           {
3842             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
3843             if(other)
3844               {
3845                 *self+=*other;
3846                 Py_XINCREF(trueSelf);
3847                 return trueSelf;
3848               }
3849             else
3850               throw INTERP_KERNEL::Exception(msg);
3851           }
3852         //
3853         double val;
3854         DataArrayDouble *a;
3855         DataArrayDoubleTuple *aa;
3856         std::vector<double> bb;
3857         int sw;
3858         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
3859         switch(sw)
3860           {
3861           case 1:
3862             {
3863               if(!self->getArray())
3864                 throw INTERP_KERNEL::Exception(msg2);
3865               self->getArray()->applyLin(1.,val);
3866               Py_XINCREF(trueSelf);
3867               return trueSelf;
3868             }
3869           case 2:
3870             {
3871               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3872               ret2->setArray(a);
3873               *self+=*ret2;
3874               Py_XINCREF(trueSelf);
3875               return trueSelf;
3876             }
3877           case 3:
3878             {
3879               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
3880               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3881               ret2->setArray(aaa);
3882               *self+=*ret2;
3883               Py_XINCREF(trueSelf);
3884               return trueSelf;
3885             }
3886           case 4:
3887             {
3888               if(!self->getArray())
3889                 throw INTERP_KERNEL::Exception(msg2);
3890               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
3891               self->getArray()->addEqual(aaa);
3892               Py_XINCREF(trueSelf);
3893               return trueSelf;
3894             }
3895           default:
3896             { throw INTERP_KERNEL::Exception(msg); }
3897           }
3898       }
3899
3900       PyObject *___isub___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
3901       {
3902         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__isub__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
3903         const char msg2[]="in MEDCouplingFieldDouble.__isub__ : self field has no Array of values set !";
3904         void *argp;
3905         //
3906         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
3907           {
3908             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
3909             if(other)
3910               {
3911                 *self-=*other;
3912                 Py_XINCREF(trueSelf);
3913                 return trueSelf;
3914               }
3915             else
3916               throw INTERP_KERNEL::Exception(msg);
3917           }
3918         //
3919         double val;
3920         DataArrayDouble *a;
3921         DataArrayDoubleTuple *aa;
3922         std::vector<double> bb;
3923         int sw;
3924         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
3925         switch(sw)
3926           {
3927           case 1:
3928             {
3929               if(!self->getArray())
3930                 throw INTERP_KERNEL::Exception(msg2);
3931               self->getArray()->applyLin(1.,-val);
3932               Py_XINCREF(trueSelf);
3933               return trueSelf;
3934             }
3935           case 2:
3936             {
3937               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3938               ret2->setArray(a);
3939               *self-=*ret2;
3940               Py_XINCREF(trueSelf);
3941               return trueSelf;
3942             }
3943           case 3:
3944             {
3945               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
3946               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3947               ret2->setArray(aaa);
3948               *self-=*ret2;
3949               Py_XINCREF(trueSelf);
3950               return trueSelf;
3951             }
3952           case 4:
3953             {
3954               if(!self->getArray())
3955                 throw INTERP_KERNEL::Exception(msg2);
3956               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
3957               self->getArray()->substractEqual(aaa);
3958               Py_XINCREF(trueSelf);
3959               return trueSelf;
3960             }
3961           default:
3962             { throw INTERP_KERNEL::Exception(msg); }
3963           }
3964       }
3965
3966       PyObject *___imul___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
3967       {
3968         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__imul__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
3969         const char msg2[]="in MEDCouplingFieldDouble.__imul__ : self field has no Array of values set !";
3970         void *argp;
3971         //
3972         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
3973           {
3974             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
3975             if(other)
3976               {
3977                 *self*=*other;
3978                 Py_XINCREF(trueSelf);
3979                 return trueSelf;
3980               }
3981             else
3982               throw INTERP_KERNEL::Exception(msg);
3983           }
3984         //
3985         double val;
3986         DataArrayDouble *a;
3987         DataArrayDoubleTuple *aa;
3988         std::vector<double> bb;
3989         int sw;
3990         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
3991         switch(sw)
3992           {
3993           case 1:
3994             {
3995               if(!self->getArray())
3996                 throw INTERP_KERNEL::Exception(msg2);
3997               self->getArray()->applyLin(val,0);
3998               Py_XINCREF(trueSelf);
3999               return trueSelf;
4000             }
4001           case 2:
4002             {
4003               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4004               ret2->setArray(a);
4005               *self*=*ret2;
4006               Py_XINCREF(trueSelf);
4007               return trueSelf;
4008             }
4009           case 3:
4010             {
4011               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4012               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4013               ret2->setArray(aaa);
4014               *self*=*ret2;
4015               Py_XINCREF(trueSelf);
4016               return trueSelf;
4017             }
4018           case 4:
4019             {
4020               if(!self->getArray())
4021                 throw INTERP_KERNEL::Exception(msg2);
4022               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4023               self->getArray()->multiplyEqual(aaa);
4024               Py_XINCREF(trueSelf);
4025               return trueSelf;
4026             }
4027           default:
4028             { throw INTERP_KERNEL::Exception(msg); }
4029           }
4030       }
4031
4032       PyObject *___idiv___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
4033       {
4034         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__idiv__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4035         const char msg2[]="in MEDCouplingFieldDouble.__idiv__ : self field has no Array of values set !";
4036         void *argp;
4037         //
4038         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
4039           {
4040             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
4041             if(other)
4042               {
4043                 *self/=*other;
4044                 Py_XINCREF(trueSelf);
4045                 return trueSelf;
4046               }
4047             else
4048               throw INTERP_KERNEL::Exception(msg);
4049           }
4050         //
4051         double val;
4052         DataArrayDouble *a;
4053         DataArrayDoubleTuple *aa;
4054         std::vector<double> bb;
4055         int sw;
4056         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
4057         switch(sw)
4058           {
4059           case 1:
4060             {
4061               if(val==0.)
4062                 throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble.__idiv__ : trying to divide by zero !");
4063               if(!self->getArray())
4064                 throw INTERP_KERNEL::Exception(msg2);
4065               self->getArray()->applyLin(1./val,0);
4066               Py_XINCREF(trueSelf);
4067               return trueSelf;
4068             }
4069           case 2:
4070             {
4071               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4072               ret2->setArray(a);
4073               *self/=*ret2;
4074               Py_XINCREF(trueSelf);
4075               return trueSelf;
4076             }
4077           case 3:
4078             {
4079               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4080               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4081               ret2->setArray(aaa);
4082               *self/=*ret2;
4083               Py_XINCREF(trueSelf);
4084               return trueSelf;
4085             }
4086           case 4:
4087             {
4088               if(!self->getArray())
4089                 throw INTERP_KERNEL::Exception(msg2);
4090               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4091               self->getArray()->divideEqual(aaa);
4092               Py_XINCREF(trueSelf);
4093               return trueSelf;
4094             }
4095           default:
4096             { throw INTERP_KERNEL::Exception(msg); }
4097           }
4098       }
4099
4100       PyObject *___ipow___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
4101       {
4102         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__ipow__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4103         const char msg2[]="in MEDCouplingFieldDouble.__ipow__ : self field has no Array of values set !";
4104         void *argp;
4105         //
4106         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
4107           {
4108             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
4109             if(other)
4110               {
4111                 *self^=*other;
4112                 Py_XINCREF(trueSelf);
4113                 return trueSelf;
4114               }
4115             else
4116               throw INTERP_KERNEL::Exception(msg);
4117           }
4118         //
4119         double val;
4120         DataArrayDouble *a;
4121         DataArrayDoubleTuple *aa;
4122         std::vector<double> bb;
4123         int sw;
4124         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
4125         switch(sw)
4126           {
4127           case 1:
4128             {
4129               if(!self->getArray())
4130                 throw INTERP_KERNEL::Exception(msg2);
4131               self->getArray()->applyPow(val);
4132               Py_XINCREF(trueSelf);
4133               return trueSelf;
4134             }
4135           case 2:
4136             {
4137               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4138               ret2->setArray(a);
4139               *self^=*ret2;
4140               Py_XINCREF(trueSelf);
4141               return trueSelf;
4142             }
4143           case 3:
4144             {
4145               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4146               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4147               ret2->setArray(aaa);
4148               *self^=*ret2;
4149               Py_XINCREF(trueSelf);
4150               return trueSelf;
4151             }
4152           case 4:
4153             {
4154               if(!self->getArray())
4155                 throw INTERP_KERNEL::Exception(msg2);
4156               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4157               self->getArray()->powEqual(aaa);
4158               Py_XINCREF(trueSelf);
4159               return trueSelf;
4160             }
4161           default:
4162             { throw INTERP_KERNEL::Exception(msg); }
4163           }
4164       }
4165
4166       static MEDCouplingFieldDouble *MergeFields(PyObject *li) throw(INTERP_KERNEL::Exception)
4167       {
4168         std::vector<const MEDCouplingFieldDouble *> tmp;
4169         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4170         return MEDCouplingFieldDouble::MergeFields(tmp);
4171       }
4172
4173       static void WriteVTK(const char *fileName, PyObject *li, bool isBinary=true) throw(INTERP_KERNEL::Exception)
4174       {
4175         std::vector<const MEDCouplingFieldDouble *> tmp;
4176         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4177         MEDCouplingFieldDouble::WriteVTK(fileName,tmp,isBinary);
4178       }
4179     }
4180   };
4181
4182   class MEDCouplingMultiFields : public RefCountObject, public TimeLabel
4183   {
4184   public:
4185     int getNumberOfFields() const;
4186     MEDCouplingMultiFields *deepCpy() const;
4187     virtual std::string simpleRepr() const throw(INTERP_KERNEL::Exception);
4188     virtual std::string advancedRepr() const throw(INTERP_KERNEL::Exception);
4189     virtual bool isEqual(const MEDCouplingMultiFields *other, double meshPrec, double valsPrec) const;
4190     virtual bool isEqualWithoutConsideringStr(const MEDCouplingMultiFields *other, double meshPrec, double valsPrec) const;
4191     virtual void checkCoherency() const throw(INTERP_KERNEL::Exception);
4192     %extend
4193        {
4194          std::string __str__() const throw(INTERP_KERNEL::Exception)
4195          {
4196            return self->simpleRepr();
4197          }
4198          static MEDCouplingMultiFields *New(PyObject *li) throw(INTERP_KERNEL::Exception)
4199          {
4200            std::vector<const ParaMEDMEM::MEDCouplingFieldDouble *> tmp;
4201            convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4202            int sz=tmp.size();
4203            std::vector<MEDCouplingFieldDouble *> fs(sz);
4204            for(int i=0;i<sz;i++)
4205              fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
4206            return MEDCouplingMultiFields::New(fs);
4207          }
4208          MEDCouplingMultiFields(PyObject *li) throw(INTERP_KERNEL::Exception)
4209          {
4210            std::vector<const ParaMEDMEM::MEDCouplingFieldDouble *> tmp;
4211            convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4212            int sz=tmp.size();
4213            std::vector<MEDCouplingFieldDouble *> fs(sz);
4214            for(int i=0;i<sz;i++)
4215              fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
4216            return MEDCouplingMultiFields::New(fs);
4217          }
4218          PyObject *getFields() const
4219          {
4220            std::vector<const MEDCouplingFieldDouble *> fields=self->getFields();
4221            int sz=fields.size();
4222            PyObject *res = PyList_New(sz);
4223            for(int i=0;i<sz;i++)
4224              {
4225                if(fields[i])
4226                  {
4227                    fields[i]->incrRef();
4228                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(fields[i]),SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble, SWIG_POINTER_OWN | 0 ));
4229                  }
4230                else
4231                  {
4232                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble, 0 ));
4233                  }
4234              }
4235            return res;
4236          }
4237          PyObject *getFieldAtPos(int id) const throw(INTERP_KERNEL::Exception)
4238          {
4239            const MEDCouplingFieldDouble *ret=self->getFieldAtPos(id);
4240            if(ret)
4241              {
4242                ret->incrRef();
4243                return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble, SWIG_POINTER_OWN | 0 );
4244              }
4245            else
4246              return SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble, 0 );
4247          }
4248          PyObject *getMeshes() const throw(INTERP_KERNEL::Exception)
4249          {
4250            std::vector<MEDCouplingMesh *> ms=self->getMeshes();
4251            int sz=ms.size();
4252            PyObject *res = PyList_New(sz);
4253            for(int i=0;i<sz;i++)
4254              {
4255                if(ms[i])
4256                  {
4257                    ms[i]->incrRef();
4258                    PyList_SetItem(res,i,convertMesh(ms[i], SWIG_POINTER_OWN | 0 ));
4259                  }
4260                else
4261                  {
4262                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, 0 ));
4263                  }
4264              }
4265            return res;
4266          }
4267          PyObject *getDifferentMeshes() const throw(INTERP_KERNEL::Exception)
4268          {
4269            std::vector<int> refs;
4270            std::vector<MEDCouplingMesh *> ms=self->getDifferentMeshes(refs);
4271            int sz=ms.size();
4272            PyObject *res = PyList_New(sz);
4273            for(int i=0;i<sz;i++)
4274              {
4275                if(ms[i])
4276                  {
4277                    ms[i]->incrRef();
4278                    PyList_SetItem(res,i,convertMesh(ms[i], SWIG_POINTER_OWN | 0 ));
4279                  }
4280                else
4281                  {
4282                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, 0 ));
4283                  }
4284              }
4285            //
4286            PyObject *ret=PyTuple_New(2);
4287            PyTuple_SetItem(ret,0,res);
4288            PyTuple_SetItem(ret,1,convertIntArrToPyList2(refs));
4289            return ret;
4290          }
4291          PyObject *getArrays() const throw(INTERP_KERNEL::Exception)
4292          {
4293            std::vector<DataArrayDouble *> ms=self->getArrays();
4294            int sz=ms.size();
4295            PyObject *res = PyList_New(sz);
4296            for(int i=0;i<sz;i++)
4297              {
4298                if(ms[i])
4299                  {
4300                    ms[i]->incrRef();
4301                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(ms[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
4302                  }
4303                else
4304                  {
4305                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, 0 ));
4306                  }
4307              }
4308            return res;
4309          }
4310          PyObject *getDifferentArrays() const throw(INTERP_KERNEL::Exception)
4311          {
4312            std::vector< std::vector<int> > refs;
4313            std::vector<DataArrayDouble *> ms=self->getDifferentArrays(refs);
4314            int sz=ms.size();
4315            PyObject *res = PyList_New(sz);
4316            PyObject *res2 = PyList_New(sz);
4317            for(int i=0;i<sz;i++)
4318              {
4319                if(ms[i])
4320                  {
4321                    ms[i]->incrRef();
4322                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(ms[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
4323                  }
4324                else
4325                  {
4326                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, 0 ));
4327                  }
4328                PyList_SetItem(res2,i,convertIntArrToPyList2(refs[i]));
4329              }
4330            //
4331            PyObject *ret=PyTuple_New(2);
4332            PyTuple_SetItem(ret,0,res);
4333            PyTuple_SetItem(ret,1,res2);
4334            return ret;
4335          }
4336        }
4337   };
4338   
4339   class MEDCouplingDefinitionTime
4340   {
4341   public:
4342     MEDCouplingDefinitionTime();
4343     void assign(const MEDCouplingDefinitionTime& other);
4344     bool isEqual(const MEDCouplingDefinitionTime& other) const;
4345     double getTimeResolution() const;
4346     std::vector<double> getHotSpotsTime() const;
4347     %extend
4348       {
4349         std::string __str__() const throw(INTERP_KERNEL::Exception)
4350           {
4351             std::ostringstream oss;
4352             self->appendRepr(oss);
4353             return oss.str();
4354           }
4355
4356         PyObject *getIdsOnTimeRight(double tm) const throw(INTERP_KERNEL::Exception)
4357         {
4358           int meshId,arrId,arrIdInField,fieldId;
4359           self->getIdsOnTimeRight(tm,meshId,arrId,arrIdInField,fieldId);
4360           PyObject *res=PyList_New(4);
4361           PyList_SetItem(res,0,PyInt_FromLong(meshId));
4362           PyList_SetItem(res,1,PyInt_FromLong(arrId));
4363           PyList_SetItem(res,2,PyInt_FromLong(arrIdInField));
4364           PyList_SetItem(res,3,PyInt_FromLong(fieldId));
4365           return res;
4366         }
4367
4368         PyObject *getIdsOnTimeLeft(double tm) const throw(INTERP_KERNEL::Exception)
4369         {
4370           int meshId,arrId,arrIdInField,fieldId;
4371           self->getIdsOnTimeLeft(tm,meshId,arrId,arrIdInField,fieldId);
4372           PyObject *res=PyList_New(4);
4373           PyList_SetItem(res,0,PyInt_FromLong(meshId));
4374           PyList_SetItem(res,1,PyInt_FromLong(arrId));
4375           PyList_SetItem(res,2,PyInt_FromLong(arrIdInField));
4376           PyList_SetItem(res,3,PyInt_FromLong(fieldId));
4377           return res;
4378         }
4379       }
4380   };
4381
4382   class MEDCouplingFieldOverTime : public MEDCouplingMultiFields
4383   {
4384   public:
4385     double getTimeTolerance() const throw(INTERP_KERNEL::Exception);
4386     MEDCouplingDefinitionTime getDefinitionTimeZone() const;
4387     
4388     %extend
4389       {
4390         MEDCouplingFieldOverTime(PyObject *li) throw(INTERP_KERNEL::Exception)
4391           {
4392             std::vector<const ParaMEDMEM::MEDCouplingFieldDouble *> tmp;
4393             convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4394             int sz=tmp.size();
4395             std::vector<MEDCouplingFieldDouble *> fs(sz);
4396             for(int i=0;i<sz;i++)
4397               fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
4398             return MEDCouplingFieldOverTime::New(fs);
4399           }
4400         std::string __str__() const throw(INTERP_KERNEL::Exception)
4401           {
4402             return self->simpleRepr();
4403           }
4404         static MEDCouplingFieldOverTime *New(PyObject *li) throw(INTERP_KERNEL::Exception)
4405         {
4406           std::vector<const ParaMEDMEM::MEDCouplingFieldDouble *> tmp;
4407           convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4408            int sz=tmp.size();
4409            std::vector<MEDCouplingFieldDouble *> fs(sz);
4410            for(int i=0;i<sz;i++)
4411              fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
4412            return MEDCouplingFieldOverTime::New(fs);
4413          }
4414       }
4415   };
4416 }
4417
4418 %pythoncode %{
4419 import os
4420 __filename=os.environ.get('PYTHONSTARTUP')
4421 if __filename and os.path.isfile(__filename):
4422   execfile(__filename)
4423   pass
4424 %}