Salome HOME
f4798c174ea641c2d3c072464ed5e16cae8ba1bb
[tools/medcoupling.git] / src / MEDCoupling_Swig / MEDCouplingCommon.i
1 // Copyright (C) 2007-2014  CEA/DEN, EDF R&D
2 //
3 // This library is free software; you can redistribute it and/or
4 // modify it under the terms of the GNU Lesser General Public
5 // License as published by the Free Software Foundation; either
6 // version 2.1 of the License, or (at your option) any later version.
7 //
8 // This library is distributed in the hope that it will be useful,
9 // but WITHOUT ANY WARRANTY; without even the implied warranty of
10 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11 // Lesser General Public License for more details.
12 //
13 // You should have received a copy of the GNU Lesser General Public
14 // License along with this library; if not, write to the Free Software
15 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
16 //
17 // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
18 //
19 // Author : Anthony Geay (CEA/DEN)
20
21 %module MEDCoupling
22
23 %include std_vector.i
24 %include std_string.i
25
26 %{
27 #include "MEDCouplingMemArray.hxx"
28 #include "MEDCouplingUMesh.hxx"
29 #include "MEDCouplingExtrudedMesh.hxx"
30 #include "MEDCouplingCMesh.hxx"
31 #include "MEDCouplingIMesh.hxx"
32 #include "MEDCouplingCurveLinearMesh.hxx"
33 #include "MEDCoupling1GTUMesh.hxx"
34 #include "MEDCouplingField.hxx"
35 #include "MEDCouplingFieldDouble.hxx"
36 #include "MEDCouplingFieldTemplate.hxx"
37 #include "MEDCouplingGaussLocalization.hxx"
38 #include "MEDCouplingAutoRefCountObjectPtr.hxx"
39 #include "MEDCouplingMultiFields.hxx"
40 #include "MEDCouplingFieldOverTime.hxx"
41 #include "MEDCouplingDefinitionTime.hxx"
42 #include "MEDCouplingFieldDiscretization.hxx"
43 #include "MEDCouplingCartesianAMRMesh.hxx"
44 #include "MEDCouplingAMRAttribute.hxx"
45 #include "MEDCouplingMatrix.hxx"
46 #include "MEDCouplingTypemaps.i"
47
48 #include "InterpKernelAutoPtr.hxx"
49 #include "BoxSplittingOptions.hxx"
50
51 using namespace ParaMEDMEM;
52 using namespace INTERP_KERNEL;
53
54 %}
55
56 %template(ivec) std::vector<int>;
57 %template(dvec) std::vector<double>;
58 %template(svec) std::vector<std::string>;
59
60 ////////////////////
61 %typemap(out) ParaMEDMEM::MEDCouplingMesh*
62 {
63   $result=convertMesh($1,$owner);
64 }
65
66 %typemap(out) MEDCouplingMesh*
67 {
68   $result=convertMesh($1,$owner);
69 }
70 //$$$$$$$$$$$$$$$$$$
71
72 ////////////////////
73 %typemap(out) ParaMEDMEM::MEDCouplingPointSet*
74 {
75   $result=convertMesh($1,$owner);
76 }
77
78 %typemap(out) MEDCouplingPointSet*
79 {
80   $result=convertMesh($1,$owner);
81 }
82 //$$$$$$$$$$$$$$$$$$
83
84 ////////////////////
85 %typemap(out) MEDCouplingCartesianAMRPatchGen*
86 {
87   $result=convertCartesianAMRPatch($1,$owner);
88 }
89 //$$$$$$$$$$$$$$$$$$
90
91 ////////////////////
92 %typemap(out) MEDCouplingCartesianAMRMeshGen*
93 {
94   $result=convertCartesianAMRMesh($1,$owner);
95 }
96 //$$$$$$$$$$$$$$$$$$
97
98 ////////////////////
99 %typemap(out) MEDCouplingDataForGodFather*
100 {
101   $result=convertDataForGodFather($1,$owner);
102 }
103 //$$$$$$$$$$$$$$$$$$
104
105 ////////////////////
106 %typemap(out) ParaMEDMEM::MEDCoupling1GTUMesh*
107 {
108   $result=convertMesh($1,$owner);
109 }
110
111 %typemap(out) MEDCoupling1GTUMesh*
112 {
113   $result=convertMesh($1,$owner);
114 }
115 //$$$$$$$$$$$$$$$$$$
116
117 ////////////////////
118 %typemap(out) ParaMEDMEM::MEDCouplingStructuredMesh*
119 {
120   $result=convertMesh($1,$owner);
121 }
122
123 %typemap(out) MEDCouplingStructuredMesh*
124 {
125   $result=convertMesh($1,$owner);
126 }
127 //$$$$$$$$$$$$$$$$$$
128
129 ////////////////////
130 %typemap(out) ParaMEDMEM::MEDCouplingFieldDiscretization*
131 {
132   $result=convertFieldDiscretization($1,$owner);
133 }
134
135 %typemap(out) MEDCouplingFieldDiscretization*
136 {
137   $result=convertFieldDiscretization($1,$owner);
138 }
139 //$$$$$$$$$$$$$$$$$$
140
141 ////////////////////
142 %typemap(out) ParaMEDMEM::MEDCouplingMultiFields*
143 {
144   $result=convertMultiFields($1,$owner);
145 }
146
147 %typemap(out) MEDCouplingMultiFields*
148 {
149   $result=convertMultiFields($1,$owner);
150 }
151 //$$$$$$$$$$$$$$$$$$
152
153 #ifdef WITH_NUMPY
154 %init %{ import_array(); %}
155 #endif
156
157 %feature("autodoc", "1");
158 %feature("docstring");
159
160 %newobject ParaMEDMEM::MEDCouplingField::buildMeasureField;
161 %newobject ParaMEDMEM::MEDCouplingField::getLocalizationOfDiscr;
162 %newobject ParaMEDMEM::MEDCouplingField::computeTupleIdsToSelectFromCellIds;
163 %newobject ParaMEDMEM::MEDCouplingFieldDouble::New;
164 %newobject ParaMEDMEM::MEDCouplingFieldDouble::getArray;
165 %newobject ParaMEDMEM::MEDCouplingFieldDouble::getEndArray;
166 %newobject ParaMEDMEM::MEDCouplingFieldDouble::MergeFields;
167 %newobject ParaMEDMEM::MEDCouplingFieldDouble::MeldFields;
168 %newobject ParaMEDMEM::MEDCouplingFieldDouble::doublyContractedProduct;
169 %newobject ParaMEDMEM::MEDCouplingFieldDouble::determinant;
170 %newobject ParaMEDMEM::MEDCouplingFieldDouble::eigenValues;
171 %newobject ParaMEDMEM::MEDCouplingFieldDouble::eigenVectors;
172 %newobject ParaMEDMEM::MEDCouplingFieldDouble::inverse;
173 %newobject ParaMEDMEM::MEDCouplingFieldDouble::trace;
174 %newobject ParaMEDMEM::MEDCouplingFieldDouble::deviator;
175 %newobject ParaMEDMEM::MEDCouplingFieldDouble::magnitude;
176 %newobject ParaMEDMEM::MEDCouplingFieldDouble::maxPerTuple;
177 %newobject ParaMEDMEM::MEDCouplingFieldDouble::keepSelectedComponents;
178 %newobject ParaMEDMEM::MEDCouplingFieldDouble::extractSlice3D;
179 %newobject ParaMEDMEM::MEDCouplingFieldDouble::DotFields;
180 %newobject ParaMEDMEM::MEDCouplingFieldDouble::dot;
181 %newobject ParaMEDMEM::MEDCouplingFieldDouble::CrossProductFields;
182 %newobject ParaMEDMEM::MEDCouplingFieldDouble::crossProduct;
183 %newobject ParaMEDMEM::MEDCouplingFieldDouble::MaxFields;
184 %newobject ParaMEDMEM::MEDCouplingFieldDouble::max;
185 %newobject ParaMEDMEM::MEDCouplingFieldDouble::MinFields;
186 %newobject ParaMEDMEM::MEDCouplingFieldDouble::AddFields;
187 %newobject ParaMEDMEM::MEDCouplingFieldDouble::SubstractFields;
188 %newobject ParaMEDMEM::MEDCouplingFieldDouble::MultiplyFields;
189 %newobject ParaMEDMEM::MEDCouplingFieldDouble::DivideFields;
190 %newobject ParaMEDMEM::MEDCouplingFieldDouble::min;
191 %newobject ParaMEDMEM::MEDCouplingFieldDouble::negate;
192 %newobject ParaMEDMEM::MEDCouplingFieldDouble::getIdsInRange;
193 %newobject ParaMEDMEM::MEDCouplingFieldDouble::buildSubPart;
194 %newobject ParaMEDMEM::MEDCouplingFieldDouble::buildSubPartRange;
195 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__getitem__;
196 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__neg__;
197 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__add__;
198 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__sub__;
199 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__mul__;
200 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__div__;
201 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__pow__;
202 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__radd__;
203 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__rsub__;
204 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__rmul__;
205 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__rdiv__;
206 %newobject ParaMEDMEM::MEDCouplingFieldDouble::clone;
207 %newobject ParaMEDMEM::MEDCouplingFieldDouble::cloneWithMesh;
208 %newobject ParaMEDMEM::MEDCouplingFieldDouble::deepCpy;
209 %newobject ParaMEDMEM::MEDCouplingFieldDouble::buildNewTimeReprFromThis;
210 %newobject ParaMEDMEM::MEDCouplingFieldDouble::nodeToCellDiscretization;
211 %newobject ParaMEDMEM::MEDCouplingFieldDouble::cellToNodeDiscretization;
212 %newobject ParaMEDMEM::MEDCouplingFieldDouble::getValueOnMulti;
213 %newobject ParaMEDMEM::MEDCouplingFieldTemplate::New;
214 %newobject ParaMEDMEM::MEDCouplingMesh::deepCpy;
215 %newobject ParaMEDMEM::MEDCouplingMesh::checkDeepEquivalOnSameNodesWith;
216 %newobject ParaMEDMEM::MEDCouplingMesh::checkTypeConsistencyAndContig;
217 %newobject ParaMEDMEM::MEDCouplingMesh::computeNbOfNodesPerCell;
218 %newobject ParaMEDMEM::MEDCouplingMesh::computeNbOfFacesPerCell;
219 %newobject ParaMEDMEM::MEDCouplingMesh::computeEffectiveNbOfNodesPerCell;
220 %newobject ParaMEDMEM::MEDCouplingMesh::buildPartRange;
221 %newobject ParaMEDMEM::MEDCouplingMesh::giveCellsWithType;
222 %newobject ParaMEDMEM::MEDCouplingMesh::getCoordinatesAndOwner;
223 %newobject ParaMEDMEM::MEDCouplingMesh::getBarycenterAndOwner;
224 %newobject ParaMEDMEM::MEDCouplingMesh::computeIsoBarycenterOfNodesPerCell;
225 %newobject ParaMEDMEM::MEDCouplingMesh::buildOrthogonalField;
226 %newobject ParaMEDMEM::MEDCouplingMesh::getCellIdsFullyIncludedInNodeIds;
227 %newobject ParaMEDMEM::MEDCouplingMesh::mergeMyselfWith;
228 %newobject ParaMEDMEM::MEDCouplingMesh::fillFromAnalytic;
229 %newobject ParaMEDMEM::MEDCouplingMesh::fillFromAnalytic2;
230 %newobject ParaMEDMEM::MEDCouplingMesh::fillFromAnalytic3;
231 %newobject ParaMEDMEM::MEDCouplingMesh::getMeasureField;
232 %newobject ParaMEDMEM::MEDCouplingMesh::simplexize;
233 %newobject ParaMEDMEM::MEDCouplingMesh::buildUnstructured;
234 %newobject ParaMEDMEM::MEDCouplingMesh::MergeMeshes;
235 %newobject ParaMEDMEM::MEDCouplingPointSet::zipCoordsTraducer;
236 %newobject ParaMEDMEM::MEDCouplingPointSet::getCellsInBoundingBox;
237 %newobject ParaMEDMEM::MEDCouplingPointSet::findBoundaryNodes;
238 %newobject ParaMEDMEM::MEDCouplingPointSet::buildBoundaryMesh;
239 %newobject ParaMEDMEM::MEDCouplingPointSet::MergeNodesArray;
240 %newobject ParaMEDMEM::MEDCouplingPointSet::buildPartOfMySelf2;
241 %newobject ParaMEDMEM::MEDCouplingPointSet::BuildInstanceFromMeshType;
242 %newobject ParaMEDMEM::MEDCouplingPointSet::zipConnectivityTraducer;
243 %newobject ParaMEDMEM::MEDCouplingPointSet::mergeMyselfWithOnSameCoords;
244 %newobject ParaMEDMEM::MEDCouplingPointSet::fillCellIdsToKeepFromNodeIds;
245 %newobject ParaMEDMEM::MEDCouplingPointSet::getCellIdsLyingOnNodes;
246 %newobject ParaMEDMEM::MEDCouplingPointSet::deepCpyConnectivityOnly;
247 %newobject ParaMEDMEM::MEDCouplingPointSet::getBoundingBoxForBBTree;
248 %newobject ParaMEDMEM::MEDCouplingPointSet::ComputeNbOfInteractionsWithSrcCells;
249 %newobject ParaMEDMEM::MEDCouplingPointSet::__getitem__;
250 %newobject ParaMEDMEM::MEDCouplingUMesh::New;
251 %newobject ParaMEDMEM::MEDCouplingUMesh::getNodalConnectivity;
252 %newobject ParaMEDMEM::MEDCouplingUMesh::getNodalConnectivityIndex;
253 %newobject ParaMEDMEM::MEDCouplingUMesh::clone;
254 %newobject ParaMEDMEM::MEDCouplingUMesh::__iter__;
255 %newobject ParaMEDMEM::MEDCouplingUMesh::cellsByType;
256 %newobject ParaMEDMEM::MEDCouplingUMesh::buildDescendingConnectivity;
257 %newobject ParaMEDMEM::MEDCouplingUMesh::buildDescendingConnectivity2;
258 %newobject ParaMEDMEM::MEDCouplingUMesh::explode3DMeshTo1D;
259 %newobject ParaMEDMEM::MEDCouplingUMesh::buildExtrudedMesh;
260 %newobject ParaMEDMEM::MEDCouplingUMesh::buildSpreadZonesWithPoly;
261 %newobject ParaMEDMEM::MEDCouplingUMesh::MergeUMeshes;
262 %newobject ParaMEDMEM::MEDCouplingUMesh::MergeUMeshesOnSameCoords;
263 %newobject ParaMEDMEM::MEDCouplingUMesh::ComputeSpreadZoneGradually;
264 %newobject ParaMEDMEM::MEDCouplingUMesh::ComputeSpreadZoneGraduallyFromSeed;
265 %newobject ParaMEDMEM::MEDCouplingUMesh::buildNewNumberingFromCommNodesFrmt;
266 %newobject ParaMEDMEM::MEDCouplingUMesh::conformize2D;
267 %newobject ParaMEDMEM::MEDCouplingUMesh::colinearize2D;
268 %newobject ParaMEDMEM::MEDCouplingUMesh::rearrange2ConsecutiveCellTypes;
269 %newobject ParaMEDMEM::MEDCouplingUMesh::sortCellsInMEDFileFrmt;
270 %newobject ParaMEDMEM::MEDCouplingUMesh::getRenumArrForMEDFileFrmt;
271 %newobject ParaMEDMEM::MEDCouplingUMesh::convertCellArrayPerGeoType;
272 %newobject ParaMEDMEM::MEDCouplingUMesh::computeFetchedNodeIds;
273 %newobject ParaMEDMEM::MEDCouplingUMesh::getRenumArrForConsecutiveCellTypesSpec;
274 %newobject ParaMEDMEM::MEDCouplingUMesh::buildDirectionVectorField;
275 %newobject ParaMEDMEM::MEDCouplingUMesh::convertLinearCellsToQuadratic;
276 %newobject ParaMEDMEM::MEDCouplingUMesh::getEdgeRatioField;
277 %newobject ParaMEDMEM::MEDCouplingUMesh::getAspectRatioField;
278 %newobject ParaMEDMEM::MEDCouplingUMesh::getWarpField;
279 %newobject ParaMEDMEM::MEDCouplingUMesh::getSkewField;
280 %newobject ParaMEDMEM::MEDCouplingUMesh::getPartBarycenterAndOwner;
281 %newobject ParaMEDMEM::MEDCouplingUMesh::computePlaneEquationOf3DFaces;
282 %newobject ParaMEDMEM::MEDCouplingUMesh::getPartMeasureField;
283 %newobject ParaMEDMEM::MEDCouplingUMesh::buildPartOrthogonalField;
284 %newobject ParaMEDMEM::MEDCouplingUMesh::keepCellIdsByType;
285 %newobject ParaMEDMEM::MEDCouplingUMesh::Build0DMeshFromCoords;
286 %newobject ParaMEDMEM::MEDCouplingUMesh::findAndCorrectBadOriented3DExtrudedCells;
287 %newobject ParaMEDMEM::MEDCouplingUMesh::findAndCorrectBadOriented3DCells;
288 %newobject ParaMEDMEM::MEDCouplingUMesh::convertIntoSingleGeoTypeMesh;
289 %newobject ParaMEDMEM::MEDCouplingUMesh::convertNodalConnectivityToStaticGeoTypeMesh;
290 %newobject ParaMEDMEM::MEDCouplingUMesh::findCellIdsOnBoundary;
291 %newobject ParaMEDMEM::MEDCouplingUMesh::computeSkin;
292 %newobject ParaMEDMEM::MEDCouplingUMesh::buildSetInstanceFromThis;
293 %newobject ParaMEDMEM::MEDCouplingUMesh::getCellIdsCrossingPlane;
294 %newobject ParaMEDMEM::MEDCouplingUMesh::convexEnvelop2D;
295 %newobject ParaMEDMEM::MEDCouplingUMesh::ComputeRangesFromTypeDistribution;
296 %newobject ParaMEDMEM::MEDCouplingUMesh::buildUnionOf2DMesh;
297 %newobject ParaMEDMEM::MEDCouplingUMesh::buildUnionOf3DMesh;
298 %newobject ParaMEDMEM::MEDCouplingUMesh::getBoundingBoxForBBTreeFast;
299 %newobject ParaMEDMEM::MEDCouplingUMesh::getBoundingBoxForBBTree2DQuadratic;
300 %newobject ParaMEDMEM::MEDCouplingUMesh::getBoundingBoxForBBTree1DQuadratic;
301 %newobject ParaMEDMEM::MEDCouplingUMeshCellByTypeEntry::__iter__;
302 %newobject ParaMEDMEM::MEDCouplingUMeshCellEntry::__iter__;
303 %newobject ParaMEDMEM::MEDCoupling1GTUMesh::New;
304 %newobject ParaMEDMEM::MEDCoupling1GTUMesh::getNodalConnectivity;
305 %newobject ParaMEDMEM::MEDCoupling1GTUMesh::AggregateOnSameCoordsToUMesh;
306 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::New;
307 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::buildSetInstanceFromThis;
308 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::computeDualMesh;
309 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::explodeEachHexa8To6Quad4;
310 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::sortHexa8EachOther;
311 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::Merge1SGTUMeshes;
312 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::Merge1SGTUMeshesOnSameCoords;
313 %newobject ParaMEDMEM::MEDCoupling1DGTUMesh::New;
314 %newobject ParaMEDMEM::MEDCoupling1DGTUMesh::getNodalConnectivityIndex;
315 %newobject ParaMEDMEM::MEDCoupling1DGTUMesh::buildSetInstanceFromThis;
316 %newobject ParaMEDMEM::MEDCoupling1DGTUMesh::Merge1DGTUMeshes;
317 %newobject ParaMEDMEM::MEDCoupling1DGTUMesh::Merge1DGTUMeshesOnSameCoords;
318 %newobject ParaMEDMEM::MEDCouplingExtrudedMesh::New;
319 %newobject ParaMEDMEM::MEDCouplingExtrudedMesh::build3DUnstructuredMesh;
320 %newobject ParaMEDMEM::MEDCouplingStructuredMesh::buildStructuredSubPart;
321 %newobject ParaMEDMEM::MEDCouplingStructuredMesh::build1SGTUnstructured;
322 %newobject ParaMEDMEM::MEDCouplingStructuredMesh::build1SGTSubLevelMesh;
323 %newobject ParaMEDMEM::MEDCouplingStructuredMesh::BuildExplicitIdsFrom;
324 %newobject ParaMEDMEM::MEDCouplingStructuredMesh::ExtractFieldOfDoubleFrom;
325 %newobject ParaMEDMEM::MEDCouplingStructuredMesh::Build1GTNodalConnectivity;
326 %newobject ParaMEDMEM::MEDCouplingStructuredMesh::Build1GTNodalConnectivityOfSubLevelMesh;
327 %newobject ParaMEDMEM::MEDCouplingCMesh::New;
328 %newobject ParaMEDMEM::MEDCouplingCMesh::clone;
329 %newobject ParaMEDMEM::MEDCouplingCMesh::getCoordsAt;
330 %newobject ParaMEDMEM::MEDCouplingIMesh::New;
331 %newobject ParaMEDMEM::MEDCouplingIMesh::asSingleCell;
332 %newobject ParaMEDMEM::MEDCouplingIMesh::buildWithGhost;
333 %newobject ParaMEDMEM::MEDCouplingIMesh::convertToCartesian;
334 %newobject ParaMEDMEM::MEDCouplingCurveLinearMesh::New;
335 %newobject ParaMEDMEM::MEDCouplingCurveLinearMesh::clone;
336 %newobject ParaMEDMEM::MEDCouplingCurveLinearMesh::getCoords;
337 %newobject ParaMEDMEM::MEDCouplingMultiFields::New;
338 %newobject ParaMEDMEM::MEDCouplingMultiFields::deepCpy;
339 %newobject ParaMEDMEM::MEDCouplingFieldOverTime::New;
340 %newobject ParaMEDMEM::MEDCouplingCartesianAMRPatchGen::getMesh;
341 %newobject ParaMEDMEM::MEDCouplingCartesianAMRPatchGen::__getitem__;
342 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::buildUnstructured;
343 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::extractGhostFrom;
344 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::buildMeshFromPatchEnvelop;
345 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::buildMeshOfDirectChildrenOnly;
346 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::getImageMesh;
347 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::getGodFather;
348 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::getFather;
349 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::getPatch;
350 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::createCellFieldOnPatch;
351 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::findPatchesInTheNeighborhoodOf;
352 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::__getitem__;
353 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMesh::New;
354 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMesh::getDataConst;
355 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMesh::getData;
356 %newobject ParaMEDMEM::MEDCouplingAMRAttribute::New;
357 %newobject ParaMEDMEM::MEDCouplingAMRAttribute::getFieldOn;
358 %newobject ParaMEDMEM::MEDCouplingAMRAttribute::buildCellFieldOnRecurseWithoutOverlapWithoutGhost;
359 %newobject ParaMEDMEM::MEDCouplingAMRAttribute::buildCellFieldOnWithGhost;
360 %newobject ParaMEDMEM::DenseMatrix::New;
361 %newobject ParaMEDMEM::DenseMatrix::deepCpy;
362 %newobject ParaMEDMEM::DenseMatrix::shallowCpy;
363 %newobject ParaMEDMEM::DenseMatrix::getData;
364 %newobject ParaMEDMEM::DenseMatrix::matVecMult;
365 %newobject ParaMEDMEM::DenseMatrix::MatVecMult;
366 %newobject ParaMEDMEM::DenseMatrix::__add__;
367 %newobject ParaMEDMEM::DenseMatrix::__sub__;
368 %newobject ParaMEDMEM::DenseMatrix::__mul__;
369
370 %feature("unref") MEDCouplingPointSet "$this->decrRef();"
371 %feature("unref") MEDCouplingMesh "$this->decrRef();"
372 %feature("unref") MEDCouplingUMesh "$this->decrRef();"
373 %feature("unref") MEDCoupling1GTUMesh "$this->decrRef();"
374 %feature("unref") MEDCoupling1SGTUMesh "$this->decrRef();"
375 %feature("unref") MEDCoupling1DGTUMesh "$this->decrRef();"
376 %feature("unref") MEDCouplingExtrudedMesh "$this->decrRef();"
377 %feature("unref") MEDCouplingCMesh "$this->decrRef();"
378 %feature("unref") MEDCouplingIMesh "$this->decrRef();"
379 %feature("unref") MEDCouplingCurveLinearMesh "$this->decrRef();"
380 %feature("unref") MEDCouplingField "$this->decrRef();"
381 %feature("unref") MEDCouplingFieldDiscretizationP0 "$this->decrRef();"
382 %feature("unref") MEDCouplingFieldDiscretizationP1 "$this->decrRef();"
383 %feature("unref") MEDCouplingFieldDiscretizationGauss "$this->decrRef();"
384 %feature("unref") MEDCouplingFieldDiscretizationGaussNE "$this->decrRef();"
385 %feature("unref") MEDCouplingFieldDiscretizationKriging "$this->decrRef();"
386 %feature("unref") MEDCouplingFieldDouble "$this->decrRef();"
387 %feature("unref") MEDCouplingMultiFields "$this->decrRef();"
388 %feature("unref") MEDCouplingFieldTemplate "$this->decrRef();"
389 %feature("unref") MEDCouplingMultiFields "$this->decrRef();"
390 %feature("unref") MEDCouplingCartesianAMRMeshGen "$this->decrRef();"
391 %feature("unref") MEDCouplingCartesianAMRMesh "$this->decrRef();"
392 %feature("unref") MEDCouplingCartesianAMRMeshSub "$this->decrRef();"
393 %feature("unref") MEDCouplingCartesianAMRPatchGen "$this->decrRef();"
394 %feature("unref") MEDCouplingCartesianAMRPatchGF "$this->decrRef();"
395 %feature("unref") MEDCouplingCartesianAMRPatch "$this->decrRef();"
396 %feature("unref") MEDCouplingDataForGodFather "$this->decrRef();"
397 %feature("unref") MEDCouplingAMRAttribute "$this->decrRef();"
398 %feature("unref") DenseMatrix "$this->decrRef();"
399
400 %rename(assign) *::operator=;
401 %ignore ParaMEDMEM::MEDCouplingGaussLocalization::pushTinySerializationIntInfo;
402 %ignore ParaMEDMEM::MEDCouplingGaussLocalization::pushTinySerializationDblInfo;
403 %ignore ParaMEDMEM::MEDCouplingGaussLocalization::fillWithValues;
404 %ignore ParaMEDMEM::MEDCouplingGaussLocalization::buildNewInstanceFromTinyInfo;
405
406 %nodefaultctor;
407
408 %rename (InterpKernelException) INTERP_KERNEL::Exception;
409
410 %include "MEDCouplingRefCountObject.i"
411 %include "MEDCouplingMemArray.i"
412
413 namespace INTERP_KERNEL
414
415   /*!
416    * \class BoxSplittingOptions
417    * Class defining the options for box splitting used for AMR algorithm like creation of patches following a criterion.
418    */
419   class BoxSplittingOptions
420   {
421   public:
422     BoxSplittingOptions();
423     void init() throw(INTERP_KERNEL::Exception);
424     double getEffeciency() const throw(INTERP_KERNEL::Exception);
425     void setEffeciency(double effeciency) throw(INTERP_KERNEL::Exception);
426     double getEffeciencySnd() const throw(INTERP_KERNEL::Exception);
427     void setEffeciencySnd(double effeciencySnd) throw(INTERP_KERNEL::Exception);
428     int getMinCellDirection() const throw(INTERP_KERNEL::Exception);
429     void setMinCellDirection(int minCellDirection) throw(INTERP_KERNEL::Exception);
430     int getMaxCells() const throw(INTERP_KERNEL::Exception);
431     void setMaxCells(int maxCells) throw(INTERP_KERNEL::Exception);
432     void copyOptions(const BoxSplittingOptions & other) throw(INTERP_KERNEL::Exception);
433     std::string printOptions() const throw(INTERP_KERNEL::Exception);
434     %extend
435     {
436       std::string __str__() const throw(INTERP_KERNEL::Exception)
437       {
438         return self->printOptions();
439       }
440     }
441   };
442 }
443
444 namespace ParaMEDMEM
445 {
446   typedef enum
447     {
448       ON_CELLS = 0,
449       ON_NODES = 1,
450       ON_GAUSS_PT = 2,
451       ON_GAUSS_NE = 3,
452       ON_NODES_KR = 4
453     } TypeOfField;
454
455   typedef enum
456     {
457       NO_TIME = 4,
458       ONE_TIME = 5,
459       LINEAR_TIME = 6,
460       CONST_ON_TIME_INTERVAL = 7
461     } TypeOfTimeDiscretization;
462
463   typedef enum
464     {
465       UNSTRUCTURED = 5,
466       CARTESIAN = 7,
467       EXTRUDED = 8,
468       CURVE_LINEAR = 9,
469       SINGLE_STATIC_GEO_TYPE_UNSTRUCTURED = 10,
470       SINGLE_DYNAMIC_GEO_TYPE_UNSTRUCTURED = 11,
471       IMAGE_GRID = 12
472     } MEDCouplingMeshType;
473
474   class DataArrayInt;
475   class DataArrayDouble;
476   class MEDCouplingUMesh;
477   class MEDCouplingFieldDouble;
478
479   %extend RefCountObject
480   {
481     std::string getHiddenCppPointer() const
482     {
483       std::ostringstream oss; oss << "C++ Pointer address is : " << self;
484       return oss.str();
485     }
486   }
487
488   %extend MEDCouplingGaussLocalization
489   {
490     std::string __str__() const throw(INTERP_KERNEL::Exception)
491     {
492       return self->getStringRepr();
493     }
494
495     std::string __repr__() const throw(INTERP_KERNEL::Exception)
496     {
497       std::ostringstream oss; oss << "MEDCouplingGaussLocalization C++ instance at " << self << "." << std::endl;
498       oss << self->getStringRepr();
499       return oss.str();
500     }
501   }
502
503   //== MEDCouplingMesh
504   
505   class MEDCouplingMesh : public RefCountObject, public TimeLabel
506   {
507   public:
508     void setName(const std::string& name);
509     std::string getName() const;
510     void setDescription(const std::string& descr);
511     std::string getDescription() const;
512     void setTime(double val, int iteration, int order);
513     void setTimeUnit(const std::string& unit);
514     std::string getTimeUnit() const;
515     virtual MEDCouplingMeshType getType() const throw(INTERP_KERNEL::Exception);
516     bool isStructured() const throw(INTERP_KERNEL::Exception);
517     virtual MEDCouplingMesh *deepCpy() const;
518     virtual bool isEqual(const MEDCouplingMesh *other, double prec) const throw(INTERP_KERNEL::Exception);
519     virtual bool isEqualWithoutConsideringStr(const MEDCouplingMesh *other, double prec) const throw(INTERP_KERNEL::Exception);
520     virtual void checkFastEquivalWith(const MEDCouplingMesh *other, double prec) const throw(INTERP_KERNEL::Exception);
521     virtual void copyTinyStringsFrom(const MEDCouplingMesh *other) throw(INTERP_KERNEL::Exception);
522     virtual void copyTinyInfoFrom(const MEDCouplingMesh *other) throw(INTERP_KERNEL::Exception);
523     virtual void checkCoherency() const throw(INTERP_KERNEL::Exception);
524     virtual void checkCoherency1(double eps=1e-12) const throw(INTERP_KERNEL::Exception);
525     virtual void checkCoherency2(double eps=1e-12) const throw(INTERP_KERNEL::Exception);
526     virtual int getNumberOfCells() const throw(INTERP_KERNEL::Exception);
527     virtual int getNumberOfNodes() const throw(INTERP_KERNEL::Exception);
528     virtual int getSpaceDimension() const throw(INTERP_KERNEL::Exception);
529     virtual int getMeshDimension() const throw(INTERP_KERNEL::Exception);
530     virtual DataArrayDouble *getCoordinatesAndOwner() const throw(INTERP_KERNEL::Exception);
531     virtual DataArrayDouble *getBarycenterAndOwner() const throw(INTERP_KERNEL::Exception);
532     virtual DataArrayDouble *computeIsoBarycenterOfNodesPerCell() const throw(INTERP_KERNEL::Exception);
533     virtual DataArrayInt *giveCellsWithType(INTERP_KERNEL::NormalizedCellType type) const throw(INTERP_KERNEL::Exception);
534     virtual DataArrayInt *computeNbOfNodesPerCell() const throw(INTERP_KERNEL::Exception);
535     virtual DataArrayInt *computeNbOfFacesPerCell() const throw(INTERP_KERNEL::Exception);
536     virtual DataArrayInt *computeEffectiveNbOfNodesPerCell() const throw(INTERP_KERNEL::Exception);
537     virtual MEDCouplingMesh *buildPartRange(int beginCellIds, int endCellIds, int stepCellIds) const throw(INTERP_KERNEL::Exception);
538     virtual int getNumberOfCellsWithType(INTERP_KERNEL::NormalizedCellType type) const throw(INTERP_KERNEL::Exception);
539     virtual INTERP_KERNEL::NormalizedCellType getTypeOfCell(int cellId) const throw(INTERP_KERNEL::Exception);
540     virtual std::string simpleRepr() const throw(INTERP_KERNEL::Exception);
541     virtual std::string advancedRepr() const throw(INTERP_KERNEL::Exception);
542     void writeVTK(const std::string& fileName, bool isBinary=true) const throw(INTERP_KERNEL::Exception);
543     // tools
544     virtual MEDCouplingFieldDouble *getMeasureField(bool isAbs) const throw(INTERP_KERNEL::Exception);
545     virtual MEDCouplingFieldDouble *getMeasureFieldOnNode(bool isAbs) const throw(INTERP_KERNEL::Exception);
546     virtual MEDCouplingFieldDouble *fillFromAnalytic(TypeOfField t, int nbOfComp, const std::string& func) const throw(INTERP_KERNEL::Exception);
547     virtual MEDCouplingFieldDouble *fillFromAnalytic2(TypeOfField t, int nbOfComp, const std::string& func) const throw(INTERP_KERNEL::Exception);
548     virtual MEDCouplingFieldDouble *fillFromAnalytic3(TypeOfField t, int nbOfComp, const std::vector<std::string>& varsOrder, const std::string& func) const throw(INTERP_KERNEL::Exception);
549     virtual MEDCouplingFieldDouble *buildOrthogonalField() const throw(INTERP_KERNEL::Exception);
550     virtual MEDCouplingUMesh *buildUnstructured() const throw(INTERP_KERNEL::Exception);
551     virtual MEDCouplingMesh *mergeMyselfWith(const MEDCouplingMesh *other) const throw(INTERP_KERNEL::Exception);
552     virtual bool areCompatibleForMerge(const MEDCouplingMesh *other) const throw(INTERP_KERNEL::Exception);
553     virtual DataArrayInt *simplexize(int policy) throw(INTERP_KERNEL::Exception);
554     static MEDCouplingMesh *MergeMeshes(const MEDCouplingMesh *mesh1, const MEDCouplingMesh *mesh2) throw(INTERP_KERNEL::Exception);
555     static bool IsStaticGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
556     static bool IsLinearGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
557     static INTERP_KERNEL::NormalizedCellType GetCorrespondingPolyType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
558     static int GetNumberOfNodesOfGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
559     static int GetDimensionOfGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
560     static const char *GetReprOfGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
561     %extend
562        {
563          std::string __str__() const throw(INTERP_KERNEL::Exception)
564          {
565            return self->simpleRepr();
566          }
567
568          PyObject *getTime() throw(INTERP_KERNEL::Exception)
569          {
570            int tmp1,tmp2;
571            double tmp0=self->getTime(tmp1,tmp2);
572            PyObject *res = PyList_New(3);
573            PyList_SetItem(res,0,SWIG_From_double(tmp0));
574            PyList_SetItem(res,1,SWIG_From_int(tmp1));
575            PyList_SetItem(res,2,SWIG_From_int(tmp2));
576            return res;
577          }
578
579          int getCellContainingPoint(PyObject *p, double eps) const throw(INTERP_KERNEL::Exception)
580          {
581            double val;
582            DataArrayDouble *a;
583            DataArrayDoubleTuple *aa;
584            std::vector<double> bb;
585            int sw;
586            int spaceDim=self->getSpaceDimension();
587            const char msg[]="Python wrap of MEDCouplingMesh::getCellContainingPoint : ";
588            const double *pos=convertObjToPossibleCpp5_Safe(p,sw,val,a,aa,bb,msg,1,spaceDim,true);
589            return self->getCellContainingPoint(pos,eps);
590          }
591
592          PyObject *getCellsContainingPoints(PyObject *p, int nbOfPoints, double eps) const throw(INTERP_KERNEL::Exception)
593          {
594            double val;
595            DataArrayDouble *a;
596            DataArrayDoubleTuple *aa;
597            std::vector<double> bb;
598            int sw;
599            int spaceDim=self->getSpaceDimension();
600            const char msg[]="Python wrap of MEDCouplingMesh::getCellsContainingPoint : ";
601            const double *pos=convertObjToPossibleCpp5_Safe(p,sw,val,a,aa,bb,msg,nbOfPoints,spaceDim,true);
602            MEDCouplingAutoRefCountObjectPtr<DataArrayInt> elts,eltsIndex;
603            self->getCellsContainingPoints(pos,nbOfPoints,eps,elts,eltsIndex);
604            PyObject *ret=PyTuple_New(2);
605            PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(elts.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
606            PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(eltsIndex.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
607            return ret;
608          }
609
610          PyObject *getCellsContainingPoints(PyObject *p, double eps) const throw(INTERP_KERNEL::Exception)
611          {
612            MEDCouplingAutoRefCountObjectPtr<DataArrayInt> elts,eltsIndex;
613            int spaceDim=self->getSpaceDimension();
614            void *da=0;
615            int res1=SWIG_ConvertPtr(p,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, 0 |  0 );
616            if (!SWIG_IsOK(res1))
617              {
618                int size;
619                INTERP_KERNEL::AutoCPtr<double> tmp=convertPyToNewDblArr2(p,&size);
620                int nbOfPoints=size/spaceDim;
621                if(size%spaceDim!=0)
622                  {
623                    throw INTERP_KERNEL::Exception("MEDCouplingMesh::getCellsContainingPoints : Invalid list length ! Must be a multiple of self.getSpaceDimension() !");
624                  }
625                self->getCellsContainingPoints(tmp,nbOfPoints,eps,elts,eltsIndex);
626              }
627            else
628              {
629                DataArrayDouble *da2=reinterpret_cast< DataArrayDouble * >(da);
630                if(!da2)
631                  throw INTERP_KERNEL::Exception("MEDCouplingMesh::getCellsContainingPoints : Not null DataArrayDouble instance expected !");
632                da2->checkAllocated();
633                int size=da2->getNumberOfTuples();
634                int nbOfCompo=da2->getNumberOfComponents();
635                if(nbOfCompo!=spaceDim)
636                  {
637                    throw INTERP_KERNEL::Exception("MEDCouplingMesh::getCellsContainingPoints : Invalid DataArrayDouble nb of components ! Expected same as self.getSpaceDimension() !");
638                  }
639                self->getCellsContainingPoints(da2->getConstPointer(),size,eps,elts,eltsIndex);
640              }
641            PyObject *ret=PyTuple_New(2);
642            PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(elts.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
643            PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(eltsIndex.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
644            return ret;
645          }
646
647          PyObject *getCellsContainingPoint(PyObject *p, double eps) const throw(INTERP_KERNEL::Exception)
648          {
649            double val;
650            DataArrayDouble *a;
651            DataArrayDoubleTuple *aa;
652            std::vector<double> bb;
653            int sw;
654            int spaceDim=self->getSpaceDimension();
655            const char msg[]="Python wrap of MEDCouplingUMesh::getCellsContainingPoint : ";
656            const double *pos=convertObjToPossibleCpp5_Safe(p,sw,val,a,aa,bb,msg,1,spaceDim,true);
657            std::vector<int> elts;
658            self->getCellsContainingPoint(pos,eps,elts);
659            DataArrayInt *ret=DataArrayInt::New();
660            ret->alloc((int)elts.size(),1);
661            std::copy(elts.begin(),elts.end(),ret->getPointer());
662            return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
663          }
664          
665          virtual PyObject *getReverseNodalConnectivity() const throw(INTERP_KERNEL::Exception)
666          {
667            MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d0=DataArrayInt::New();
668            MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d1=DataArrayInt::New();
669            self->getReverseNodalConnectivity(d0,d1);
670            PyObject *ret=PyTuple_New(2);
671            PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
672            PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
673            return ret;
674          }
675          
676          void renumberCells(PyObject *li, bool check=true) throw(INTERP_KERNEL::Exception)
677          {
678            int sw,sz(-1);
679            int v0; std::vector<int> v1;
680            const int *ids(convertObjToPossibleCpp1_Safe(li,sw,sz,v0,v1));
681            self->renumberCells(ids,check);
682          }
683
684          PyObject *checkGeoEquivalWith(const MEDCouplingMesh *other, int levOfCheck, double prec) const throw(INTERP_KERNEL::Exception)
685          {
686            DataArrayInt *cellCor, *nodeCor;
687            self->checkGeoEquivalWith(other,levOfCheck,prec,cellCor,nodeCor);
688            PyObject *res = PyList_New(2);
689            PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(cellCor),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, cellCor?SWIG_POINTER_OWN | 0:0 ));
690            PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(nodeCor),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, nodeCor?SWIG_POINTER_OWN | 0:0 ));
691            return res;
692          }
693
694          PyObject *checkDeepEquivalWith(const MEDCouplingMesh *other, int cellCompPol, double prec) const throw(INTERP_KERNEL::Exception)
695          {
696            DataArrayInt *cellCor=0,*nodeCor=0;
697            self->checkDeepEquivalWith(other,cellCompPol,prec,cellCor,nodeCor);
698            PyObject *res = PyList_New(2);
699            PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(cellCor),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, cellCor?SWIG_POINTER_OWN | 0:0 ));
700            PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(nodeCor),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, nodeCor?SWIG_POINTER_OWN | 0:0 ));
701            return res;
702          }
703          
704          DataArrayInt *checkDeepEquivalOnSameNodesWith(const MEDCouplingMesh *other, int cellCompPol, double prec) const throw(INTERP_KERNEL::Exception)
705          {
706            DataArrayInt *cellCor=0;
707            self->checkDeepEquivalOnSameNodesWith(other,cellCompPol,prec,cellCor);
708            return cellCor;
709          }
710
711          DataArrayInt *getCellIdsFullyIncludedInNodeIds(PyObject *li) const throw(INTERP_KERNEL::Exception)
712          {
713            void *da=0;
714            int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayInt, 0 |  0 );
715            if (!SWIG_IsOK(res1))
716              {
717                int size;
718                INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
719                return self->getCellIdsFullyIncludedInNodeIds(tmp,((const int *)tmp)+size);
720              }
721            else
722              {
723                DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
724                if(!da2)
725                  throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
726                da2->checkAllocated();
727                return self->getCellIdsFullyIncludedInNodeIds(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems());
728              }
729          }
730          PyObject *getNodeIdsOfCell(int cellId) const throw(INTERP_KERNEL::Exception)
731          {
732            std::vector<int> conn;
733            self->getNodeIdsOfCell(cellId,conn);
734            return convertIntArrToPyList2(conn);
735          }
736
737          PyObject *getCoordinatesOfNode(int nodeId) const throw(INTERP_KERNEL::Exception)
738          {
739            std::vector<double> coo;
740            self->getCoordinatesOfNode(nodeId,coo);
741            return convertDblArrToPyList2(coo);
742          }
743
744          void scale(PyObject *point, double factor) throw(INTERP_KERNEL::Exception)
745          {
746            double val;
747            DataArrayDouble *a;
748            DataArrayDoubleTuple *aa;
749            std::vector<double> bb;
750            int sw;
751            int spaceDim=self->getSpaceDimension();
752            const char msg[]="Python wrap of MEDCouplingPointSet::scale : ";
753            const double *pointPtr=convertObjToPossibleCpp5_Safe(point,sw,val,a,aa,bb,msg,1,spaceDim,true);
754            self->scale(pointPtr,factor);
755          }
756
757          PyObject *getBoundingBox() const throw(INTERP_KERNEL::Exception)
758          {
759            int spaceDim=self->getSpaceDimension();
760            INTERP_KERNEL::AutoPtr<double> tmp=new double[2*spaceDim];
761            self->getBoundingBox(tmp);
762            PyObject *ret=convertDblArrToPyListOfTuple(tmp,2,spaceDim);
763            return ret;
764          }
765
766          PyObject *isEqualIfNotWhy(const MEDCouplingMesh *other, double prec) const throw(INTERP_KERNEL::Exception)
767          {
768            std::string ret1;
769            bool ret0=self->isEqualIfNotWhy(other,prec,ret1);
770            PyObject *ret=PyTuple_New(2);
771            PyObject *ret0Py=ret0?Py_True:Py_False;
772            Py_XINCREF(ret0Py);
773            PyTuple_SetItem(ret,0,ret0Py);
774            PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
775            return ret;
776          }
777
778          PyObject *buildPart(PyObject *li) const throw(INTERP_KERNEL::Exception)
779          {
780            int szArr,sw,iTypppArr;
781            std::vector<int> stdvecTyyppArr;
782            const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
783            MEDCouplingMesh *ret=self->buildPart(tmp,tmp+szArr);
784            if(sw==3)//DataArrayInt
785              { 
786                void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
787                DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
788                std::string name=argpt->getName();
789                if(!name.empty())
790                  ret->setName(name.c_str());
791              }
792            return convertMesh(ret, SWIG_POINTER_OWN | 0 );
793          }
794         
795          PyObject *buildPartAndReduceNodes(PyObject *li) const throw(INTERP_KERNEL::Exception)
796          {
797            int szArr,sw,iTypppArr;
798            std::vector<int> stdvecTyyppArr;
799            DataArrayInt *arr=0;
800            const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
801            MEDCouplingMesh *ret=self->buildPartAndReduceNodes(tmp,tmp+szArr,arr);
802            if(sw==3)//DataArrayInt
803              { 
804                void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
805                DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
806                std::string name=argpt->getName();
807                if(!name.empty())
808                  ret->setName(name.c_str());
809              }
810            //
811            PyObject *res = PyList_New(2);
812            PyObject *obj0=convertMesh(ret, SWIG_POINTER_OWN | 0 );
813            PyObject *obj1=SWIG_NewPointerObj(SWIG_as_voidptr(arr),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
814            PyList_SetItem(res,0,obj0);
815            PyList_SetItem(res,1,obj1);
816            return res;
817          }
818
819          PyObject *buildPartRangeAndReduceNodes(int beginCellIds, int endCellIds, int stepCellIds) const throw(INTERP_KERNEL::Exception)
820          {
821            int a,b,c;
822            DataArrayInt *arr=0;
823            MEDCouplingMesh *ret=self->buildPartRangeAndReduceNodes(beginCellIds,endCellIds,stepCellIds,a,b,c,arr);
824            PyObject *res = PyTuple_New(2);
825            PyObject *obj0=convertMesh(ret, SWIG_POINTER_OWN | 0 );
826            PyObject *obj1=0;
827            if(arr)
828              obj1=SWIG_NewPointerObj(SWIG_as_voidptr(arr),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
829            else
830              obj1=PySlice_New(PyInt_FromLong(a),PyInt_FromLong(b),PyInt_FromLong(b));
831            PyTuple_SetItem(res,0,obj0);
832            PyTuple_SetItem(res,1,obj1);
833            return res;
834          }
835
836         PyObject *getDistributionOfTypes() const throw(INTERP_KERNEL::Exception)
837         {
838           std::vector<int> vals=self->getDistributionOfTypes();
839           if(vals.size()%3!=0)
840             throw INTERP_KERNEL::Exception("Internal Error detected in wrap python ! code returned by MEDCouplingMesh::getDistributionOfTypes is not so that %3==0 !");
841           PyObject *ret=PyList_New((int)vals.size()/3);
842           for(int j=0;j<(int)vals.size()/3;j++)
843              {
844                PyObject *ret1=PyList_New(3);
845                PyList_SetItem(ret1,0,SWIG_From_int(vals[3*j]));
846                PyList_SetItem(ret1,1,SWIG_From_int(vals[3*j+1]));
847                PyList_SetItem(ret1,2,SWIG_From_int(vals[3*j+2]));
848                PyList_SetItem(ret,j,ret1);
849              }
850           return ret;
851         }
852
853         DataArrayInt *checkTypeConsistencyAndContig(PyObject *li, PyObject *li2) const throw(INTERP_KERNEL::Exception)
854         {
855           std::vector<int> code;
856           std::vector<const DataArrayInt *> idsPerType;
857           convertFromPyObjVectorOfObj<const ParaMEDMEM::DataArrayInt *>(li2,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,"DataArrayInt",idsPerType);
858           convertPyToNewIntArr4(li,1,3,code);
859           return self->checkTypeConsistencyAndContig(code,idsPerType);
860         }
861
862         PyObject *splitProfilePerType(const DataArrayInt *profile) const throw(INTERP_KERNEL::Exception)
863         {
864           std::vector<int> code;
865           std::vector<DataArrayInt *> idsInPflPerType;
866           std::vector<DataArrayInt *> idsPerType;
867           self->splitProfilePerType(profile,code,idsInPflPerType,idsPerType);
868           PyObject *ret=PyTuple_New(3);
869           //
870           if(code.size()%3!=0)
871             throw INTERP_KERNEL::Exception("Internal Error detected in wrap python ! code returned by MEDCouplingMesh::splitProfilePerType is not so that %3==0 !");
872           PyObject *ret0=PyList_New((int)code.size()/3);
873           for(int j=0;j<(int)code.size()/3;j++)
874              {
875                PyObject *ret00=PyList_New(3);
876                PyList_SetItem(ret00,0,SWIG_From_int(code[3*j]));
877                PyList_SetItem(ret00,1,SWIG_From_int(code[3*j+1]));
878                PyList_SetItem(ret00,2,SWIG_From_int(code[3*j+2]));
879                PyList_SetItem(ret0,j,ret00);
880              }
881           PyTuple_SetItem(ret,0,ret0);
882           //
883           PyObject *ret1=PyList_New(idsInPflPerType.size());
884           for(std::size_t j=0;j<idsInPflPerType.size();j++)
885             PyList_SetItem(ret1,j,SWIG_NewPointerObj(SWIG_as_voidptr(idsInPflPerType[j]),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
886           PyTuple_SetItem(ret,1,ret1);
887           int n=idsPerType.size();
888           PyObject *ret2=PyList_New(n);
889           for(int i=0;i<n;i++)
890             PyList_SetItem(ret2,i,SWIG_NewPointerObj(SWIG_as_voidptr(idsPerType[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
891           PyTuple_SetItem(ret,2,ret2);
892           return ret;
893         }
894
895         void translate(PyObject *vector) throw(INTERP_KERNEL::Exception)
896         {
897           double val;
898           DataArrayDouble *a;
899           DataArrayDoubleTuple *aa;
900           std::vector<double> bb;
901           int sw;
902           int spaceDim=self->getSpaceDimension();
903           const char msg[]="Python wrap of MEDCouplingPointSet::translate : ";
904           const double *vectorPtr=convertObjToPossibleCpp5_Safe(vector,sw,val,a,aa,bb,msg,1,spaceDim,true);
905           self->translate(vectorPtr);
906         }
907
908          void rotate(PyObject *center, double alpha) throw(INTERP_KERNEL::Exception)
909          {
910            const char msg[]="Python wrap of MEDCouplingPointSet::rotate : ";
911            double val;
912            DataArrayDouble *a;
913            DataArrayDoubleTuple *aa;
914            std::vector<double> bb;
915            int sw;
916            int spaceDim=self->getSpaceDimension();
917            const double *centerPtr=convertObjToPossibleCpp5_Safe(center,sw,val,a,aa,bb,msg,1,spaceDim,true);
918            self->rotate(centerPtr,0,alpha);
919          }
920
921          void rotate(PyObject *center, PyObject *vector, double alpha) throw(INTERP_KERNEL::Exception)
922          {
923            const char msg[]="Python wrap of MEDCouplingPointSet::rotate : ";
924            double val,val2;
925            DataArrayDouble *a,*a2;
926            DataArrayDoubleTuple *aa,*aa2;
927            std::vector<double> bb,bb2;
928            int sw;
929            int spaceDim=self->getSpaceDimension();
930            const double *centerPtr=convertObjToPossibleCpp5_Safe(center,sw,val,a,aa,bb,msg,1,spaceDim,true);
931            const double *vectorPtr=convertObjToPossibleCpp5_Safe(vector,sw,val2,a2,aa2,bb2,msg,1,spaceDim,false);//vectorPtr can be null in case of space dim 2
932            self->rotate(centerPtr,vectorPtr,alpha);
933          }
934
935          PyObject *getAllGeoTypes() const throw(INTERP_KERNEL::Exception)
936          {
937            std::set<INTERP_KERNEL::NormalizedCellType> result=self->getAllGeoTypes();
938            std::set<INTERP_KERNEL::NormalizedCellType>::const_iterator iL=result.begin();
939            PyObject *res=PyList_New(result.size());
940            for(int i=0;iL!=result.end(); i++, iL++)
941              PyList_SetItem(res,i,PyInt_FromLong(*iL));
942            return res;
943          }
944          
945          static MEDCouplingMesh *MergeMeshes(PyObject *li) throw(INTERP_KERNEL::Exception)
946          {
947             std::vector<const ParaMEDMEM::MEDCouplingMesh *> tmp;
948             convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingMesh,"MEDCouplingMesh",tmp);
949             return MEDCouplingMesh::MergeMeshes(tmp);
950          }
951        }
952   };
953 }
954
955 //== MEDCouplingMesh End
956
957 %include "NormalizedGeometricTypes"
958 %include "MEDCouplingNatureOfFieldEnum"
959 //
960 namespace ParaMEDMEM
961 {
962   class MEDCouplingNatureOfField
963   {
964   public:
965     static const char *GetRepr(NatureOfField nat) throw(INTERP_KERNEL::Exception);
966     static std::string GetReprNoThrow(NatureOfField nat);
967     static std::string GetAllPossibilitiesStr();
968   };
969 }
970
971 // the MEDCouplingTimeDiscretization classes are not swigged : in case the file can help
972 // include "MEDCouplingTimeDiscretization.i"
973
974 namespace ParaMEDMEM
975 {
976   class MEDCouplingGaussLocalization
977   {
978   public:
979     MEDCouplingGaussLocalization(INTERP_KERNEL::NormalizedCellType type, const std::vector<double>& refCoo,
980                                  const std::vector<double>& gsCoo, const std::vector<double>& w) throw(INTERP_KERNEL::Exception);
981     MEDCouplingGaussLocalization(INTERP_KERNEL::NormalizedCellType typ) throw(INTERP_KERNEL::Exception);
982     INTERP_KERNEL::NormalizedCellType getType() const throw(INTERP_KERNEL::Exception);
983     void setType(INTERP_KERNEL::NormalizedCellType typ) throw(INTERP_KERNEL::Exception);
984     int getNumberOfGaussPt() const throw(INTERP_KERNEL::Exception);
985     int getDimension() const throw(INTERP_KERNEL::Exception);
986     int getNumberOfPtsInRefCell() const throw(INTERP_KERNEL::Exception);
987     std::string getStringRepr() const throw(INTERP_KERNEL::Exception);
988     void checkCoherency() const throw(INTERP_KERNEL::Exception);
989     bool isEqual(const MEDCouplingGaussLocalization& other, double eps) const throw(INTERP_KERNEL::Exception);
990     //
991     const std::vector<double>& getRefCoords() const throw(INTERP_KERNEL::Exception);
992     double getRefCoord(int ptIdInCell, int comp) const throw(INTERP_KERNEL::Exception);
993     const std::vector<double>& getGaussCoords() const throw(INTERP_KERNEL::Exception);
994     double getGaussCoord(int gaussPtIdInCell, int comp) const throw(INTERP_KERNEL::Exception);
995     const std::vector<double>& getWeights() const throw(INTERP_KERNEL::Exception);
996     double getWeight(int gaussPtIdInCell, double newVal) const throw(INTERP_KERNEL::Exception);
997     void setRefCoord(int ptIdInCell, int comp, double newVal) throw(INTERP_KERNEL::Exception);
998     void setGaussCoord(int gaussPtIdInCell, int comp, double newVal) throw(INTERP_KERNEL::Exception);
999     void setWeight(int gaussPtIdInCell, double newVal) throw(INTERP_KERNEL::Exception);
1000     void setRefCoords(const std::vector<double>& refCoo) throw(INTERP_KERNEL::Exception);
1001     void setGaussCoords(const std::vector<double>& gsCoo) throw(INTERP_KERNEL::Exception);
1002     void setWeights(const std::vector<double>& w) throw(INTERP_KERNEL::Exception);
1003     //
1004     static bool AreAlmostEqual(const std::vector<double>& v1, const std::vector<double>& v2, double eps);
1005   };
1006 }
1007
1008 %include "MEDCouplingFieldDiscretization.i"
1009
1010 //== MEDCouplingPointSet
1011
1012 namespace ParaMEDMEM
1013 {
1014   class MEDCouplingPointSet : public ParaMEDMEM::MEDCouplingMesh
1015     {
1016     public:
1017       void setCoords(const DataArrayDouble *coords) throw(INTERP_KERNEL::Exception);
1018       DataArrayDouble *getCoordinatesAndOwner() const throw(INTERP_KERNEL::Exception);
1019       bool areCoordsEqual(const MEDCouplingPointSet& other, double prec) const throw(INTERP_KERNEL::Exception);
1020       void zipCoords() throw(INTERP_KERNEL::Exception);
1021       double getCaracteristicDimension() const throw(INTERP_KERNEL::Exception);
1022       void recenterForMaxPrecision(double eps) throw(INTERP_KERNEL::Exception);
1023       void changeSpaceDimension(int newSpaceDim, double dftVal=0.) throw(INTERP_KERNEL::Exception);
1024       void tryToShareSameCoords(const MEDCouplingPointSet& other, double epsilon) throw(INTERP_KERNEL::Exception);
1025       virtual void shallowCopyConnectivityFrom(const MEDCouplingPointSet *other) throw(INTERP_KERNEL::Exception);
1026       virtual MEDCouplingPointSet *buildPartOfMySelf2(int start, int end, int step) const throw(INTERP_KERNEL::Exception);
1027       virtual void tryToShareSameCoordsPermute(const MEDCouplingPointSet& other, double epsilon) throw(INTERP_KERNEL::Exception);
1028       static DataArrayDouble *MergeNodesArray(const MEDCouplingPointSet *m1, const MEDCouplingPointSet *m2) throw(INTERP_KERNEL::Exception);
1029       static MEDCouplingPointSet *BuildInstanceFromMeshType(MEDCouplingMeshType type) throw(INTERP_KERNEL::Exception);
1030       static DataArrayInt *ComputeNbOfInteractionsWithSrcCells(const MEDCouplingPointSet *srcMesh, const MEDCouplingPointSet *trgMesh, double eps) throw(INTERP_KERNEL::Exception);
1031       virtual int getNumberOfNodesInCell(int cellId) const throw(INTERP_KERNEL::Exception);
1032       virtual MEDCouplingPointSet *buildBoundaryMesh(bool keepCoords) const throw(INTERP_KERNEL::Exception);
1033       virtual DataArrayInt *getCellsInBoundingBox(const INTERP_KERNEL::DirectedBoundingBox& bbox, double eps) throw(INTERP_KERNEL::Exception);
1034       virtual DataArrayInt *zipCoordsTraducer() throw(INTERP_KERNEL::Exception);
1035       virtual DataArrayInt *findBoundaryNodes() const;
1036       virtual DataArrayInt *zipConnectivityTraducer(int compType, int startCellId=0) throw(INTERP_KERNEL::Exception);
1037       virtual MEDCouplingPointSet *mergeMyselfWithOnSameCoords(const MEDCouplingPointSet *other) const throw(INTERP_KERNEL::Exception);
1038       virtual void checkFullyDefined() const throw(INTERP_KERNEL::Exception);
1039       virtual bool isEmptyMesh(const std::vector<int>& tinyInfo) const throw(INTERP_KERNEL::Exception);
1040       virtual MEDCouplingPointSet *deepCpyConnectivityOnly() const throw(INTERP_KERNEL::Exception);
1041       virtual DataArrayDouble *getBoundingBoxForBBTree(double arcDetEps=1e-12) const throw(INTERP_KERNEL::Exception);
1042       %extend 
1043          {
1044            std::string __str__() const throw(INTERP_KERNEL::Exception)
1045            {
1046              return self->simpleRepr();
1047            }
1048            
1049            PyObject *buildNewNumberingFromCommonNodesFormat(const DataArrayInt *comm, const DataArrayInt *commIndex) const throw(INTERP_KERNEL::Exception)
1050            {
1051              int newNbOfNodes;
1052              DataArrayInt *ret0=self->buildNewNumberingFromCommonNodesFormat(comm,commIndex,newNbOfNodes);
1053              PyObject *res = PyList_New(2);
1054              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1055              PyList_SetItem(res,1,SWIG_From_int(newNbOfNodes));
1056              return res;
1057            }
1058            
1059            PyObject *findCommonNodes(double prec, int limitTupleId=-1) const throw(INTERP_KERNEL::Exception)
1060            {
1061              DataArrayInt *comm, *commIndex;
1062              self->findCommonNodes(prec,limitTupleId,comm,commIndex);
1063              PyObject *res = PyList_New(2);
1064              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(comm),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1065              PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(commIndex),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1066              return res;
1067            }
1068            
1069            PyObject *getCoords() throw(INTERP_KERNEL::Exception)
1070            {
1071              DataArrayDouble *ret1=self->getCoords();
1072              if (ret1)
1073                 ret1->incrRef();
1074              return SWIG_NewPointerObj((void*)ret1,SWIGTYPE_p_ParaMEDMEM__DataArrayDouble,SWIG_POINTER_OWN | 0);
1075            }
1076            
1077            PyObject *buildPartOfMySelf(PyObject *li, bool keepCoords=true) const throw(INTERP_KERNEL::Exception)
1078            {
1079              int szArr,sw,iTypppArr;
1080              std::vector<int> stdvecTyyppArr;
1081              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1082              MEDCouplingPointSet *ret=self->buildPartOfMySelf(tmp,tmp+szArr,keepCoords);
1083              if(sw==3)//DataArrayInt
1084                { 
1085                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
1086                  DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
1087                  std::string name=argpt->getName();
1088                  if(!name.empty())
1089                    ret->setName(name.c_str());
1090                }
1091              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1092            }
1093            
1094            PyObject *buildPartOfMySelfNode(PyObject *li, bool fullyIn) const throw(INTERP_KERNEL::Exception)
1095            {
1096              int szArr,sw,iTypppArr;
1097              std::vector<int> stdvecTyyppArr;
1098              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1099              MEDCouplingPointSet *ret=self->buildPartOfMySelfNode(tmp,tmp+szArr,fullyIn);
1100              if(sw==3)//DataArrayInt
1101                { 
1102                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
1103                  DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
1104                  std::string name=argpt->getName();
1105                  if(!name.empty())
1106                    ret->setName(name.c_str());
1107                }
1108              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1109            }
1110
1111            virtual PyObject *buildPartOfMySelfKeepCoords(PyObject *li) const throw(INTERP_KERNEL::Exception)
1112            {
1113              int szArr,sw,iTypppArr;
1114              std::vector<int> stdvecTyyppArr;
1115              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1116              MEDCouplingPointSet *ret=self->buildPartOfMySelfKeepCoords(tmp,tmp+szArr);
1117              if(sw==3)//DataArrayInt
1118                { 
1119                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
1120                  DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
1121                  std::string name=argpt->getName();
1122                  if(!name.empty())
1123                    ret->setName(name.c_str());
1124                }
1125              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1126            }
1127
1128            virtual PyObject *buildPartOfMySelfKeepCoords2(int start, int end, int step) const throw(INTERP_KERNEL::Exception)
1129            {
1130              MEDCouplingPointSet *ret=self->buildPartOfMySelfKeepCoords2(start,end,step);
1131              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1132            }
1133
1134            PyObject *buildFacePartOfMySelfNode(PyObject *li, bool fullyIn) const throw(INTERP_KERNEL::Exception)
1135            {
1136              int szArr,sw,iTypppArr;
1137              std::vector<int> stdvecTyyppArr;
1138              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1139              MEDCouplingPointSet *ret=self->buildFacePartOfMySelfNode(tmp,tmp+szArr,fullyIn);
1140              if(sw==3)//DataArrayInt
1141                { 
1142                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
1143                  DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
1144                  std::string name=argpt->getName();
1145                  if(!name.empty())
1146                    ret->setName(name.c_str());
1147                }
1148              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1149            }
1150
1151            void renumberNodes(PyObject *li, int newNbOfNodes) throw(INTERP_KERNEL::Exception)
1152            {
1153              int szArr,sw,iTypppArr;
1154              std::vector<int> stdvecTyyppArr;
1155              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1156              self->renumberNodes(tmp,newNbOfNodes);
1157            }
1158
1159            void renumberNodes2(PyObject *li, int newNbOfNodes) throw(INTERP_KERNEL::Exception)
1160            {
1161              int szArr,sw,iTypppArr;
1162              std::vector<int> stdvecTyyppArr;
1163              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1164              self->renumberNodes2(tmp,newNbOfNodes);
1165            }
1166
1167            PyObject *findNodesOnLine(PyObject *pt, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
1168              {
1169                int spaceDim=self->getSpaceDimension();
1170                double val,val2;
1171                DataArrayDouble *a,*a2;
1172                DataArrayDoubleTuple *aa,*aa2;
1173                std::vector<double> bb,bb2;
1174                int sw;
1175                const char msg[]="Python wrap of MEDCouplingPointSet::findNodesOnLine : 1st paramater for point.";
1176                const char msg2[]="Python wrap of MEDCouplingPointSet::findNodesOnLine : 2nd paramater for vector.";
1177                const double *p=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,1,spaceDim,true);
1178                const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
1179                std::vector<int> nodes;
1180                self->findNodesOnLine(p,v,eps,nodes);
1181                DataArrayInt *ret=DataArrayInt::New();
1182                ret->alloc((int)nodes.size(),1);
1183                std::copy(nodes.begin(),nodes.end(),ret->getPointer());
1184                return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
1185              }
1186            PyObject *findNodesOnPlane(PyObject *pt, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
1187              {
1188                int spaceDim=self->getSpaceDimension();
1189                double val,val2;
1190                DataArrayDouble *a,*a2;
1191                DataArrayDoubleTuple *aa,*aa2;
1192                std::vector<double> bb,bb2;
1193                int sw;
1194                const char msg[]="Python wrap of MEDCouplingPointSet::findNodesOnPlane : 1st paramater for point.";
1195                const char msg2[]="Python wrap of MEDCouplingPointSet::findNodesOnPlane : 2nd paramater for vector.";
1196                const double *p=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,1,spaceDim,true);
1197                const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
1198                std::vector<int> nodes;
1199                self->findNodesOnPlane(p,v,eps,nodes);
1200                DataArrayInt *ret=DataArrayInt::New();
1201                ret->alloc((int)nodes.size(),1);
1202                std::copy(nodes.begin(),nodes.end(),ret->getPointer());
1203                return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
1204              }
1205            
1206            PyObject *getNodeIdsNearPoint(PyObject *pt, double eps) const throw(INTERP_KERNEL::Exception)
1207            {
1208              double val;
1209              DataArrayDouble *a;
1210              DataArrayDoubleTuple *aa;
1211              std::vector<double> bb;
1212              int sw;
1213              int spaceDim=self->getSpaceDimension();
1214              const char msg[]="Python wrap of MEDCouplingPointSet::getNodeIdsNearPoint : ";
1215              const double *pos=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,1,spaceDim,true);
1216              DataArrayInt *ret=self->getNodeIdsNearPoint(pos,eps);
1217              return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
1218            }
1219
1220            PyObject *getNodeIdsNearPoints(PyObject *pt, int nbOfPoints, double eps) const throw(INTERP_KERNEL::Exception)
1221            {
1222              DataArrayInt *c=0,*cI=0;
1223              //
1224              double val;
1225              DataArrayDouble *a;
1226              DataArrayDoubleTuple *aa;
1227              std::vector<double> bb;
1228              int sw;
1229              int spaceDim=self->getSpaceDimension();
1230              const char msg[]="Python wrap of MEDCouplingPointSet::getNodeIdsNearPoints : ";
1231              const double *pos=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,nbOfPoints,spaceDim,true);
1232              self->getNodeIdsNearPoints(pos,nbOfPoints,eps,c,cI);
1233              PyObject *ret=PyTuple_New(2);
1234              PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(c),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1235              PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cI),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1236              return ret;
1237            }
1238
1239            PyObject *getNodeIdsNearPoints(PyObject *pt, double eps) const throw(INTERP_KERNEL::Exception)
1240            {
1241              DataArrayInt *c=0,*cI=0;
1242              int spaceDim=self->getSpaceDimension();
1243              double val;
1244              DataArrayDouble *a;
1245              DataArrayDoubleTuple *aa;
1246              std::vector<double> bb;
1247              int sw;
1248              int nbOfTuples=-1;
1249              const double *ptPtr=convertObjToPossibleCpp5_Safe2(pt,sw,val,a,aa,bb,"Python wrap of MEDCouplingUMesh::getNodeIdsNearPoints",spaceDim,true,nbOfTuples);
1250              self->getNodeIdsNearPoints(ptPtr,nbOfTuples,eps,c,cI);
1251              //
1252              PyObject *ret=PyTuple_New(2);
1253              PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(c),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1254              PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cI),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1255              return ret;
1256            }
1257
1258            PyObject *getCellsInBoundingBox(PyObject *bbox, double eps) const throw(INTERP_KERNEL::Exception)
1259            {
1260              double val;
1261              DataArrayDouble *a;
1262              DataArrayDoubleTuple *aa;
1263              std::vector<double> bb;
1264              int sw;
1265              int spaceDim=self->getSpaceDimension();
1266              const char msg[]="Python wrap of MEDCouplingPointSet::getCellsInBoundingBox : ";
1267              const double *tmp=convertObjToPossibleCpp5_Safe(bbox,sw,val,a,aa,bb,msg,spaceDim,2,true);
1268              //
1269              DataArrayInt *elems=self->getCellsInBoundingBox(tmp,eps);
1270              return SWIG_NewPointerObj(SWIG_as_voidptr(elems),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
1271            }
1272
1273            void duplicateNodesInCoords(PyObject *li) throw(INTERP_KERNEL::Exception)
1274            {
1275              int sw;
1276              int singleVal;
1277              std::vector<int> multiVal;
1278              std::pair<int, std::pair<int,int> > slic;
1279              ParaMEDMEM::DataArrayInt *daIntTyypp=0;
1280              convertObjToPossibleCpp2(li,self->getNumberOfNodes(),sw,singleVal,multiVal,slic,daIntTyypp);
1281              switch(sw)
1282                {
1283                case 1:
1284                  return self->duplicateNodesInCoords(&singleVal,&singleVal+1);
1285                case 2:
1286                  return self->duplicateNodesInCoords(&multiVal[0],&multiVal[0]+multiVal.size());
1287                case 4:
1288                  return self->duplicateNodesInCoords(daIntTyypp->begin(),daIntTyypp->end());
1289                default:
1290                  throw INTERP_KERNEL::Exception("MEDCouplingPointSet::duplicateNodesInCoords : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
1291                }
1292            }
1293
1294            virtual PyObject *findCommonCells(int compType, int startCellId=0) const throw(INTERP_KERNEL::Exception)
1295            {
1296              DataArrayInt *v0=0,*v1=0;
1297              self->findCommonCells(compType,startCellId,v0,v1);
1298              PyObject *res = PyList_New(2);
1299              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(v0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1300              PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(v1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1301              return res;
1302            }
1303
1304       
1305            virtual void renumberNodesInConn(PyObject *li) throw(INTERP_KERNEL::Exception)
1306            {
1307              void *da=0;
1308              int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayInt, 0 | 0 );
1309              if (!SWIG_IsOK(res1))
1310                {
1311                  int size;
1312                  INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
1313                  self->renumberNodesInConn(tmp);
1314                }
1315              else
1316                {
1317                  DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
1318                  if(!da2)
1319                    throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
1320                  da2->checkAllocated();
1321                  self->renumberNodesInConn(da2->getConstPointer());
1322                }
1323            }
1324
1325            virtual PyObject *getNodeIdsInUse() const throw(INTERP_KERNEL::Exception)
1326            {
1327              int ret1=-1;
1328              DataArrayInt *ret0=self->getNodeIdsInUse(ret1);
1329              PyObject *ret=PyTuple_New(2);
1330              PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1331              PyTuple_SetItem(ret,1,PyInt_FromLong(ret1));
1332              return ret;
1333            }
1334
1335            virtual DataArrayInt *fillCellIdsToKeepFromNodeIds(PyObject *li, bool fullyIn) const
1336            {
1337              DataArrayInt *ret=0;
1338              //
1339              int szArr,sw,iTypppArr;
1340              std::vector<int> stdvecTyyppArr;
1341              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1342              self->fillCellIdsToKeepFromNodeIds(tmp,tmp+szArr,fullyIn,ret);
1343              return ret;
1344            }
1345
1346            virtual PyObject *mergeNodes(double precision) throw(INTERP_KERNEL::Exception)
1347            {
1348              bool ret1;
1349              int ret2;
1350              DataArrayInt *ret0=self->mergeNodes(precision,ret1,ret2);
1351              PyObject *res = PyList_New(3);
1352              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1353              PyList_SetItem(res,1,SWIG_From_bool(ret1));
1354              PyList_SetItem(res,2,SWIG_From_int(ret2));
1355              return res;
1356            }
1357            
1358            virtual PyObject *mergeNodes2(double precision) throw(INTERP_KERNEL::Exception)
1359            {
1360              bool ret1;
1361              int ret2;
1362              DataArrayInt *ret0=self->mergeNodes2(precision,ret1,ret2);
1363              PyObject *res = PyList_New(3);
1364              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1365              PyList_SetItem(res,1,SWIG_From_bool(ret1));
1366              PyList_SetItem(res,2,SWIG_From_int(ret2));
1367              return res;
1368            }
1369            
1370            DataArrayInt *getCellIdsLyingOnNodes(PyObject *li, bool fullyIn) const throw(INTERP_KERNEL::Exception)
1371            {
1372              void *da=0;
1373              int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayInt, 0 |  0 );
1374              if (!SWIG_IsOK(res1))
1375                {
1376                  int size;
1377                  INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
1378                  return self->getCellIdsLyingOnNodes(tmp,((const int *)tmp)+size,fullyIn);
1379                }
1380              else
1381                {
1382                  DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
1383                  if(!da2)
1384                    throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
1385                  da2->checkAllocated();
1386                  return self->getCellIdsLyingOnNodes(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems(),fullyIn);
1387                }
1388            }
1389
1390            MEDCouplingPointSet *__getitem__(PyObject *listOrDataArrI) throw(INTERP_KERNEL::Exception)
1391            {
1392              int sw;
1393              int singleVal;
1394              std::vector<int> multiVal;
1395              std::pair<int, std::pair<int,int> > slic;
1396              ParaMEDMEM::DataArrayInt *daIntTyypp=0;
1397              int nbc=self->getNumberOfCells();
1398              convertObjToPossibleCpp2(listOrDataArrI,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
1399              switch(sw)
1400                {
1401                case 1:
1402                  {
1403                    if(singleVal>=nbc)
1404                      {
1405                        std::ostringstream oss;
1406                        oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1407                        throw INTERP_KERNEL::Exception(oss.str().c_str());
1408                      }
1409                    if(singleVal>=0)
1410                      return self->buildPartOfMySelf(&singleVal,&singleVal+1,true);
1411                    else
1412                      {
1413                        if(nbc+singleVal>0)
1414                          {
1415                            int tmp=nbc+singleVal;
1416                            return self->buildPartOfMySelf(&tmp,&tmp+1,true);
1417                          }
1418                        else
1419                          {
1420                            std::ostringstream oss;
1421                            oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1422                            throw INTERP_KERNEL::Exception(oss.str().c_str());
1423                          }
1424                      }
1425                  }
1426                case 2:
1427                  {
1428                    return static_cast<MEDCouplingPointSet *>(self->buildPartOfMySelf(&multiVal[0],&multiVal[0]+multiVal.size(),true));
1429                  }
1430                case 3:
1431                  {
1432                    return self->buildPartOfMySelf2(slic.first,slic.second.first,slic.second.second,true);
1433                  }
1434                case 4:
1435                  {
1436                    if(!daIntTyypp)
1437                      throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__getitem__ : null instance has been given in input !");
1438                    daIntTyypp->checkAllocated();
1439                    return self->buildPartOfMySelf(daIntTyypp->begin(),daIntTyypp->end(),true);
1440                  }
1441                default:
1442                  throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__getitem__ : unrecognized type in input ! Possibilities are : int, list or tuple of int DataArrayInt instance !");
1443                }
1444            }
1445            
1446            static void Rotate2DAlg(PyObject *center, double angle, int nbNodes, PyObject *coords) throw(INTERP_KERNEL::Exception)
1447            {
1448              int sz;
1449              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1450              INTERP_KERNEL::AutoCPtr<double> coo=convertPyToNewDblArr2(coords,&sz);
1451              ParaMEDMEM::MEDCouplingPointSet::Rotate2DAlg(c,angle,nbNodes,coo);
1452              for(int i=0;i<sz;i++)
1453                PyList_SetItem(coords,i,PyFloat_FromDouble(coo[i]));
1454            }
1455            
1456            static void Rotate2DAlg(PyObject *center, double angle, PyObject *coords) throw(INTERP_KERNEL::Exception)
1457            {
1458              int sz;
1459              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1460              int sw,nbNodes=0;
1461              double val0;  ParaMEDMEM::DataArrayDouble *val1=0; ParaMEDMEM::DataArrayDoubleTuple *val2=0;
1462              std::vector<double> val3;
1463              const double *coo=convertObjToPossibleCpp5_Safe2(coords,sw,val0,val1,val2,val3,
1464                                                             "Rotate2DAlg",2,true,nbNodes);
1465              if(sw!=2 && sw!=3)
1466                throw INTERP_KERNEL::Exception("Invalid call to MEDCouplingPointSet::Rotate2DAlg : try another overload method !");
1467              ParaMEDMEM::MEDCouplingPointSet::Rotate2DAlg(c,angle,nbNodes,const_cast<double *>(coo));
1468            }
1469            
1470            static void Rotate3DAlg(PyObject *center, PyObject *vect, double angle, int nbNodes, PyObject *coords) throw(INTERP_KERNEL::Exception)
1471            {
1472              int sz,sz2;
1473              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1474              INTERP_KERNEL::AutoCPtr<double> coo=convertPyToNewDblArr2(coords,&sz);
1475              INTERP_KERNEL::AutoCPtr<double> v=convertPyToNewDblArr2(vect,&sz2);
1476              ParaMEDMEM::MEDCouplingPointSet::Rotate3DAlg(c,v,angle,nbNodes,coo);
1477              for(int i=0;i<sz;i++)
1478                PyList_SetItem(coords,i,PyFloat_FromDouble(coo[i]));
1479            }
1480            
1481            static void Rotate3DAlg(PyObject *center, PyObject *vect, double angle, PyObject *coords) throw(INTERP_KERNEL::Exception)
1482            {
1483              int sz,sz2;
1484              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1485              int sw,nbNodes=0;
1486              double val0;  ParaMEDMEM::DataArrayDouble *val1=0; ParaMEDMEM::DataArrayDoubleTuple *val2=0;
1487              std::vector<double> val3;
1488              const double *coo=convertObjToPossibleCpp5_Safe2(coords,sw,val0,val1,val2,val3,
1489                                                             "Rotate3DAlg",3,true,nbNodes);
1490              if(sw!=2 && sw!=3)
1491                throw INTERP_KERNEL::Exception("Invalid call to MEDCouplingPointSet::Rotate3DAlg : try another overload method !");
1492              INTERP_KERNEL::AutoCPtr<double> v=convertPyToNewDblArr2(vect,&sz2);
1493              ParaMEDMEM::MEDCouplingPointSet::Rotate3DAlg(c,v,angle,nbNodes,const_cast<double *>(coo));
1494            }
1495          }
1496     };
1497
1498   //== MEDCouplingPointSet End
1499
1500   class MEDCouplingUMeshCell
1501   {
1502   public:
1503     INTERP_KERNEL::NormalizedCellType getType() const;
1504     %extend
1505       {
1506         std::string __str__() const throw(INTERP_KERNEL::Exception)
1507         {
1508           return self->repr();
1509         }
1510
1511         PyObject *getAllConn() const throw(INTERP_KERNEL::Exception)
1512         {
1513           int ret2;
1514           const int *r=self->getAllConn(ret2);
1515           PyObject *ret=PyTuple_New(ret2);
1516           for(int i=0;i<ret2;i++)
1517             PyTuple_SetItem(ret,i,PyInt_FromLong(r[i]));
1518           return ret;
1519         }
1520       }
1521   };
1522
1523   class MEDCouplingUMeshCellIterator
1524   {
1525   public:
1526     %extend
1527       {
1528         PyObject *next()
1529         {
1530           MEDCouplingUMeshCell *ret=self->nextt();
1531           if(ret)
1532             return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMeshCell,0|0);
1533           else
1534             {
1535               PyErr_SetString(PyExc_StopIteration,"No more data.");
1536               return 0;
1537             }
1538         }
1539       }
1540   };
1541
1542   class MEDCouplingUMeshCellByTypeIterator
1543   {
1544   public:
1545     ~MEDCouplingUMeshCellByTypeIterator();
1546     %extend
1547       {
1548         PyObject *next()
1549         {
1550           MEDCouplingUMeshCellEntry *ret=self->nextt();
1551           if(ret)
1552             return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMeshCellEntry,SWIG_POINTER_OWN | 0);
1553           else
1554             {
1555               PyErr_SetString(PyExc_StopIteration,"No more data.");
1556               return 0;
1557             }
1558         }
1559       }
1560   };
1561
1562   class MEDCouplingUMeshCellByTypeEntry
1563   {
1564   public:
1565     ~MEDCouplingUMeshCellByTypeEntry();
1566     %extend
1567       {
1568         MEDCouplingUMeshCellByTypeIterator *__iter__()
1569         {
1570           return self->iterator();
1571         }
1572       }
1573   };
1574
1575   class MEDCouplingUMeshCellEntry
1576   {
1577   public:
1578     INTERP_KERNEL::NormalizedCellType getType() const;
1579     int getNumberOfElems() const;
1580     %extend
1581       {
1582         MEDCouplingUMeshCellIterator *__iter__()
1583         {
1584           return self->iterator();
1585         }
1586       }
1587   };
1588   
1589   //== MEDCouplingUMesh
1590
1591   class MEDCouplingUMesh : public ParaMEDMEM::MEDCouplingPointSet
1592   {
1593   public:
1594     static MEDCouplingUMesh *New() throw(INTERP_KERNEL::Exception);
1595     static MEDCouplingUMesh *New(const char *meshName, int meshDim) throw(INTERP_KERNEL::Exception);
1596     MEDCouplingUMesh *clone(bool recDeepCpy) const;
1597     void checkCoherency() const throw(INTERP_KERNEL::Exception);
1598     void setMeshDimension(int meshDim) throw(INTERP_KERNEL::Exception);
1599     void allocateCells(int nbOfCells=0) throw(INTERP_KERNEL::Exception);
1600     void finishInsertingCells() throw(INTERP_KERNEL::Exception);
1601     MEDCouplingUMeshCellByTypeEntry *cellsByType() throw(INTERP_KERNEL::Exception);
1602     void setConnectivity(DataArrayInt *conn, DataArrayInt *connIndex, bool isComputingTypes=true) throw(INTERP_KERNEL::Exception);
1603     INTERP_KERNEL::NormalizedCellType getTypeOfCell(int cellId) const throw(INTERP_KERNEL::Exception);
1604     void setPartOfMySelf2(int start, int end, int step, const MEDCouplingUMesh& otherOnSameCoordsThanThis) throw(INTERP_KERNEL::Exception);
1605     int getMeshLength() const throw(INTERP_KERNEL::Exception);
1606     void computeTypes() throw(INTERP_KERNEL::Exception);
1607     std::string reprConnectivityOfThis() const throw(INTERP_KERNEL::Exception);
1608     MEDCouplingUMesh *buildSetInstanceFromThis(int spaceDim) const throw(INTERP_KERNEL::Exception);
1609     //tools
1610     DataArrayInt *conformize2D(double eps) throw(INTERP_KERNEL::Exception);
1611     DataArrayInt *colinearize2D(double eps) throw(INTERP_KERNEL::Exception);
1612     void shiftNodeNumbersInConn(int delta) throw(INTERP_KERNEL::Exception);
1613     std::vector<bool> getQuadraticStatus() const throw(INTERP_KERNEL::Exception);
1614     DataArrayInt *findCellIdsOnBoundary() const throw(INTERP_KERNEL::Exception);
1615     MEDCouplingUMesh *computeSkin() const throw(INTERP_KERNEL::Exception);
1616     bool checkConsecutiveCellTypes() const throw(INTERP_KERNEL::Exception);
1617     bool checkConsecutiveCellTypesForMEDFileFrmt() const throw(INTERP_KERNEL::Exception);
1618     DataArrayInt *rearrange2ConsecutiveCellTypes() throw(INTERP_KERNEL::Exception);
1619     DataArrayInt *sortCellsInMEDFileFrmt() throw(INTERP_KERNEL::Exception);
1620     DataArrayInt *getRenumArrForMEDFileFrmt() const throw(INTERP_KERNEL::Exception);
1621     DataArrayInt *convertCellArrayPerGeoType(const DataArrayInt *da) const throw(INTERP_KERNEL::Exception);
1622     DataArrayInt *computeFetchedNodeIds() const throw(INTERP_KERNEL::Exception);
1623     MEDCouplingUMesh *buildDescendingConnectivity(DataArrayInt *desc, DataArrayInt *descIndx, DataArrayInt *revDesc, DataArrayInt *revDescIndx) const throw(INTERP_KERNEL::Exception);
1624     MEDCouplingUMesh *buildDescendingConnectivity2(DataArrayInt *desc, DataArrayInt *descIndx, DataArrayInt *revDesc, DataArrayInt *revDescIndx) const throw(INTERP_KERNEL::Exception);
1625     MEDCouplingUMesh *explode3DMeshTo1D(DataArrayInt *desc, DataArrayInt *descIndx, DataArrayInt *revDesc, DataArrayInt *revDescIndx) const throw(INTERP_KERNEL::Exception);
1626     void orientCorrectlyPolyhedrons() throw(INTERP_KERNEL::Exception);
1627     bool isPresenceOfQuadratic() const throw(INTERP_KERNEL::Exception);
1628     bool isFullyQuadratic() const throw(INTERP_KERNEL::Exception);
1629     MEDCouplingFieldDouble *buildDirectionVectorField() const throw(INTERP_KERNEL::Exception);
1630     bool isContiguous1D() const throw(INTERP_KERNEL::Exception);
1631     void tessellate2D(double eps) throw(INTERP_KERNEL::Exception);
1632     void tessellate2DCurve(double eps) throw(INTERP_KERNEL::Exception);
1633     void convertQuadraticCellsToLinear() throw(INTERP_KERNEL::Exception);
1634     DataArrayInt *convertLinearCellsToQuadratic(int conversionType=0) throw(INTERP_KERNEL::Exception);
1635     void convertDegeneratedCells() throw(INTERP_KERNEL::Exception);
1636     bool areOnlySimplexCells() const throw(INTERP_KERNEL::Exception);
1637     MEDCouplingFieldDouble *getEdgeRatioField() const throw(INTERP_KERNEL::Exception);
1638     MEDCouplingFieldDouble *getAspectRatioField() const throw(INTERP_KERNEL::Exception);
1639     MEDCouplingFieldDouble *getWarpField() const throw(INTERP_KERNEL::Exception);
1640     MEDCouplingFieldDouble *getSkewField() const throw(INTERP_KERNEL::Exception);
1641     DataArrayDouble *computePlaneEquationOf3DFaces() const throw(INTERP_KERNEL::Exception);
1642     DataArrayInt *convexEnvelop2D() throw(INTERP_KERNEL::Exception);
1643     std::string cppRepr() const throw(INTERP_KERNEL::Exception);
1644     DataArrayInt *findAndCorrectBadOriented3DExtrudedCells() throw(INTERP_KERNEL::Exception);
1645     DataArrayInt *findAndCorrectBadOriented3DCells() throw(INTERP_KERNEL::Exception);
1646     ParaMEDMEM::MEDCoupling1GTUMesh *convertIntoSingleGeoTypeMesh() const throw(INTERP_KERNEL::Exception);
1647     DataArrayInt *convertNodalConnectivityToStaticGeoTypeMesh() const throw(INTERP_KERNEL::Exception);
1648     DataArrayInt *buildUnionOf2DMesh() const throw(INTERP_KERNEL::Exception);
1649     DataArrayInt *buildUnionOf3DMesh() const throw(INTERP_KERNEL::Exception);
1650     DataArrayDouble *getBoundingBoxForBBTreeFast() const throw(INTERP_KERNEL::Exception);
1651     DataArrayDouble *getBoundingBoxForBBTree2DQuadratic(double arcDetEps=1e-12) const throw(INTERP_KERNEL::Exception);
1652     DataArrayDouble *getBoundingBoxForBBTree1DQuadratic(double arcDetEps=1e-12) const throw(INTERP_KERNEL::Exception);
1653     int split2DCells(const DataArrayInt *desc, const DataArrayInt *descI, const DataArrayInt *subNodesInSeg, const DataArrayInt *subNodesInSegI, const DataArrayInt *midOpt=0, const DataArrayInt *midOptI=0) throw(INTERP_KERNEL::Exception);
1654     static MEDCouplingUMesh *Build0DMeshFromCoords(DataArrayDouble *da) throw(INTERP_KERNEL::Exception);
1655     static MEDCouplingUMesh *MergeUMeshes(const MEDCouplingUMesh *mesh1, const MEDCouplingUMesh *mesh2) throw(INTERP_KERNEL::Exception);
1656     static MEDCouplingUMesh *MergeUMeshesOnSameCoords(const MEDCouplingUMesh *mesh1, const MEDCouplingUMesh *mesh2) throw(INTERP_KERNEL::Exception);
1657     static DataArrayInt *ComputeSpreadZoneGradually(const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn) throw(INTERP_KERNEL::Exception);
1658     static DataArrayInt *ComputeRangesFromTypeDistribution(const std::vector<int>& code) throw(INTERP_KERNEL::Exception);
1659     %extend {
1660       MEDCouplingUMesh() throw(INTERP_KERNEL::Exception)
1661       {
1662         return MEDCouplingUMesh::New();
1663       }
1664       
1665       MEDCouplingUMesh(const char *meshName, int meshDim) throw(INTERP_KERNEL::Exception)
1666       {
1667         return MEDCouplingUMesh::New(meshName,meshDim);
1668       }
1669       
1670       std::string __str__() const throw(INTERP_KERNEL::Exception)
1671       {
1672         return self->simpleRepr();
1673       }
1674       
1675       std::string __repr__() const throw(INTERP_KERNEL::Exception)
1676       {
1677         std::ostringstream oss;
1678         self->reprQuickOverview(oss);
1679         return oss.str();
1680       }
1681       
1682       MEDCouplingUMeshCellIterator *__iter__() throw(INTERP_KERNEL::Exception)
1683       {
1684         return self->cellIterator();
1685       }
1686
1687       PyObject *getAllGeoTypesSorted() const throw(INTERP_KERNEL::Exception)
1688       {
1689         std::vector<INTERP_KERNEL::NormalizedCellType> result=self->getAllGeoTypesSorted();
1690         std::vector<INTERP_KERNEL::NormalizedCellType>::const_iterator iL=result.begin();
1691         PyObject *res=PyList_New(result.size());
1692         for(int i=0;iL!=result.end(); i++, iL++)
1693           PyList_SetItem(res,i,PyInt_FromLong(*iL));
1694         return res;
1695       }
1696       
1697       void setPartOfMySelf(PyObject *li, const MEDCouplingUMesh& otherOnSameCoordsThanThis) throw(INTERP_KERNEL::Exception)
1698       {
1699         int sw;
1700         int singleVal;
1701         std::vector<int> multiVal;
1702         std::pair<int, std::pair<int,int> > slic;
1703         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
1704         int nbc=self->getNumberOfCells();
1705         convertObjToPossibleCpp2(li,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
1706         switch(sw)
1707           {
1708           case 1:
1709             {
1710               if(singleVal>=nbc)
1711                 {
1712                   std::ostringstream oss;
1713                   oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1714                   throw INTERP_KERNEL::Exception(oss.str().c_str());
1715                 }
1716               if(singleVal>=0)
1717                 {
1718                   self->setPartOfMySelf(&singleVal,&singleVal+1,otherOnSameCoordsThanThis);
1719                   break;
1720                 }
1721               else
1722                 {
1723                   if(nbc+singleVal>0)
1724                     {
1725                       int tmp=nbc+singleVal;
1726                       self->setPartOfMySelf(&tmp,&tmp+1,otherOnSameCoordsThanThis);
1727                       break;
1728                     }
1729                   else
1730                     {
1731                       std::ostringstream oss;
1732                       oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1733                       throw INTERP_KERNEL::Exception(oss.str().c_str());
1734                     }
1735                 }
1736             }
1737           case 2:
1738             {
1739               self->setPartOfMySelf(&multiVal[0],&multiVal[0]+multiVal.size(),otherOnSameCoordsThanThis);
1740               break;
1741             }
1742           case 4:
1743             {
1744               if(!daIntTyypp)
1745                 throw INTERP_KERNEL::Exception("MEDCouplingUMesh::setPartOfMySelf : null instance has been given in input !");
1746               daIntTyypp->checkAllocated();
1747               self->setPartOfMySelf(daIntTyypp->begin(),daIntTyypp->end(),otherOnSameCoordsThanThis);
1748               break;
1749             }
1750           default:
1751             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::setPartOfMySelf : unrecognized type in input ! Possibilities are : int, list or tuple of int DataArrayInt instance !");
1752           }
1753       }
1754
1755       void __setitem__(PyObject *li, const MEDCouplingUMesh& otherOnSameCoordsThanThis) throw(INTERP_KERNEL::Exception)
1756       {
1757         int sw;
1758         int singleVal;
1759         std::vector<int> multiVal;
1760         std::pair<int, std::pair<int,int> > slic;
1761         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
1762         int nbc=self->getNumberOfCells();
1763         convertObjToPossibleCpp2(li,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
1764         switch(sw)
1765           {
1766           case 1:
1767             {
1768               if(singleVal>=nbc)
1769                 {
1770                   std::ostringstream oss;
1771                   oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1772                   throw INTERP_KERNEL::Exception(oss.str().c_str());
1773                 }
1774               if(singleVal>=0)
1775                 {
1776                   self->setPartOfMySelf(&singleVal,&singleVal+1,otherOnSameCoordsThanThis);
1777                   break;
1778                 }
1779               else
1780                 {
1781                   if(nbc+singleVal>0)
1782                     {
1783                       int tmp=nbc+singleVal;
1784                       self->setPartOfMySelf(&tmp,&tmp+1,otherOnSameCoordsThanThis);
1785                       break;
1786                     }
1787                   else
1788                     {
1789                       std::ostringstream oss;
1790                       oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1791                       throw INTERP_KERNEL::Exception(oss.str().c_str());
1792                     }
1793                 }
1794             }
1795           case 2:
1796             {
1797               self->setPartOfMySelf(&multiVal[0],&multiVal[0]+multiVal.size(),otherOnSameCoordsThanThis);
1798               break;
1799             }
1800           case 3:
1801             {
1802               self->setPartOfMySelf2(slic.first,slic.second.first,slic.second.second,otherOnSameCoordsThanThis);
1803               break;
1804             }
1805           case 4:
1806             {
1807               if(!daIntTyypp)
1808                 throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__setitem__ : null instance has been given in input !");
1809               daIntTyypp->checkAllocated();
1810               self->setPartOfMySelf(daIntTyypp->begin(),daIntTyypp->end(),otherOnSameCoordsThanThis);
1811               break;
1812             }
1813           default:
1814             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__setitem__ : unrecognized type in input ! Possibilities are : int, list or tuple of int, slice, DataArrayInt instance !");
1815           }
1816       }
1817
1818       void insertNextCell(INTERP_KERNEL::NormalizedCellType type, int size, PyObject *li) throw(INTERP_KERNEL::Exception)
1819       {
1820         int szArr,sw,iTypppArr;
1821         std::vector<int> stdvecTyyppArr;
1822         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1823         if(size>szArr)
1824           {
1825             std::ostringstream oss; oss << "Wrap of MEDCouplingUMesh::insertNextCell : request of connectivity with length " << size << " whereas the length of input is " << szArr << " !";
1826             throw INTERP_KERNEL::Exception(oss.str().c_str());
1827           }
1828         self->insertNextCell(type,size,tmp);
1829       }
1830
1831       void insertNextCell(INTERP_KERNEL::NormalizedCellType type, PyObject *li) throw(INTERP_KERNEL::Exception)
1832       {
1833         int szArr,sw,iTypppArr;
1834         std::vector<int> stdvecTyyppArr;
1835         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1836         self->insertNextCell(type,szArr,tmp);
1837       }
1838       
1839       DataArrayInt *getNodalConnectivity() throw(INTERP_KERNEL::Exception)
1840       {
1841         DataArrayInt *ret=self->getNodalConnectivity();
1842         if(ret)
1843           ret->incrRef();
1844         return ret;
1845       }
1846       DataArrayInt *getNodalConnectivityIndex() throw(INTERP_KERNEL::Exception)
1847       {
1848         DataArrayInt *ret=self->getNodalConnectivityIndex();
1849         if(ret)
1850           ret->incrRef();
1851         return ret;
1852       }
1853       
1854       static PyObject *ComputeSpreadZoneGraduallyFromSeed(PyObject *seed, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn, int nbOfDepthPeeling=-1) throw(INTERP_KERNEL::Exception)
1855       {
1856         int szArr,sw,iTypppArr;
1857         std::vector<int> stdvecTyyppArr;
1858         const int *seedPtr=convertObjToPossibleCpp1_Safe(seed,sw,szArr,iTypppArr,stdvecTyyppArr);
1859         int nbOfDepthPeelingPerformed=0;
1860         DataArrayInt *ret0=MEDCouplingUMesh::ComputeSpreadZoneGraduallyFromSeed(seedPtr,seedPtr+szArr,arrIn,arrIndxIn,nbOfDepthPeeling,nbOfDepthPeelingPerformed);
1861         PyObject *res=PyTuple_New(2);
1862         PyTuple_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1863         PyTuple_SetItem(res,1,PyInt_FromLong(nbOfDepthPeelingPerformed));
1864         return res;
1865       }
1866
1867       static PyObject *FindCommonCellsAlg(int compType, int startCellId, const DataArrayInt *nodal, const DataArrayInt *nodalI, const DataArrayInt *revNodal, const DataArrayInt *revNodalI) throw(INTERP_KERNEL::Exception)
1868       {
1869         DataArrayInt *v0=0,*v1=0;
1870         MEDCouplingUMesh::FindCommonCellsAlg(compType,startCellId,nodal,nodalI,revNodal,revNodalI,v0,v1);
1871         PyObject *res = PyList_New(2);
1872         PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(v0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1873         PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(v1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1874         return res;
1875       }
1876       
1877       PyObject *distanceToPoint(PyObject *point) const throw(INTERP_KERNEL::Exception)
1878       {
1879         double val;
1880         DataArrayDouble *a;
1881         DataArrayDoubleTuple *aa;
1882         std::vector<double> bb;
1883         int sw;
1884         int nbOfCompo=self->getSpaceDimension();
1885         const double *pt=convertObjToPossibleCpp5_Safe(point,sw,val,a,aa,bb,"Python wrap of MEDCouplingUMesh::distanceToPoint",1,nbOfCompo,true);
1886         //
1887         int cellId=-1;
1888         double ret0=self->distanceToPoint(pt,pt+nbOfCompo,cellId);
1889         PyObject *ret=PyTuple_New(2);
1890         PyTuple_SetItem(ret,0,PyFloat_FromDouble(ret0));
1891         PyTuple_SetItem(ret,1,PyInt_FromLong(cellId));
1892         return ret;
1893       }
1894
1895       PyObject *distanceToPoints(const DataArrayDouble *pts) const throw(INTERP_KERNEL::Exception)
1896       {
1897         DataArrayInt *ret1=0;
1898         DataArrayDouble *ret0=self->distanceToPoints(pts,ret1);
1899         PyObject *ret=PyTuple_New(2);
1900         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
1901         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1902         return ret;
1903       }
1904
1905       PyObject *tetrahedrize(int policy) throw(INTERP_KERNEL::Exception)
1906       {
1907         int ret2(-1);
1908         DataArrayInt *ret1(0);
1909         MEDCoupling1SGTUMesh *ret0(self->tetrahedrize(policy,ret1,ret2));
1910         PyObject *ret=PyTuple_New(3);
1911         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__MEDCoupling1SGTUMesh, SWIG_POINTER_OWN | 0 ));
1912         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1913         PyTuple_SetItem(ret,2,PyInt_FromLong(ret2));
1914         return ret;
1915       }
1916       
1917       PyObject *checkButterflyCells(double eps=1e-12) throw(INTERP_KERNEL::Exception)
1918       {
1919         std::vector<int> cells;
1920         self->checkButterflyCells(cells,eps);
1921         DataArrayInt *ret=DataArrayInt::New();
1922         ret->alloc((int)cells.size(),1);
1923         std::copy(cells.begin(),cells.end(),ret->getPointer());
1924         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
1925       }
1926
1927       PyObject *splitByType() const throw(INTERP_KERNEL::Exception)
1928       {
1929         std::vector<MEDCouplingUMesh *> ms=self->splitByType();
1930         int sz=ms.size();
1931         PyObject *ret = PyList_New(sz);
1932         for(int i=0;i<sz;i++)
1933           PyList_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(ms[i]),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
1934         return ret;
1935       }
1936
1937       PyObject *partitionBySpreadZone() const throw(INTERP_KERNEL::Exception)
1938       {
1939         std::vector<DataArrayInt *> retCpp=self->partitionBySpreadZone();
1940         int sz=retCpp.size();
1941         PyObject *ret=PyList_New(sz);
1942         for(int i=0;i<sz;i++)
1943           PyList_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(retCpp[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1944         return ret;
1945       }
1946
1947       PyObject *keepSpecifiedCells(INTERP_KERNEL::NormalizedCellType type, PyObject *ids) const throw(INTERP_KERNEL::Exception)
1948       {
1949         int size;
1950         INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(ids,&size);
1951         MEDCouplingUMesh *ret=self->keepSpecifiedCells(type,tmp,tmp+size);
1952         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 );
1953       }
1954
1955       bool checkConsecutiveCellTypesAndOrder(PyObject *li) const throw(INTERP_KERNEL::Exception)
1956       {
1957         int sz;
1958         INTERP_KERNEL::AutoPtr<INTERP_KERNEL::NormalizedCellType> order=(INTERP_KERNEL::NormalizedCellType *)convertPyToNewIntArr2(li,&sz);
1959         bool ret=self->checkConsecutiveCellTypesAndOrder(order,order+sz);
1960         return ret;
1961       }
1962
1963       DataArrayInt *getRenumArrForConsecutiveCellTypesSpec(PyObject *li) const throw(INTERP_KERNEL::Exception)
1964       {
1965         int sz;
1966         INTERP_KERNEL::AutoPtr<INTERP_KERNEL::NormalizedCellType> order=(INTERP_KERNEL::NormalizedCellType *)convertPyToNewIntArr2(li,&sz);
1967         DataArrayInt *ret=self->getRenumArrForConsecutiveCellTypesSpec(order,(INTERP_KERNEL::NormalizedCellType *)order+sz);
1968         return ret;
1969       }
1970
1971       PyObject *findNodesToDuplicate(const MEDCouplingUMesh& otherDimM1OnSameCoords) const throw(INTERP_KERNEL::Exception)
1972       {
1973         DataArrayInt *tmp0=0,*tmp1=0,*tmp2=0;
1974         self->findNodesToDuplicate(otherDimM1OnSameCoords,tmp0,tmp1,tmp2);
1975         PyObject *ret=PyTuple_New(3);
1976         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(tmp0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1977         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1978         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(tmp2),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1979         return ret;
1980       }
1981
1982       PyObject *findCellIdsLyingOn(const MEDCouplingUMesh& otherDimM1OnSameCoords) const throw(INTERP_KERNEL::Exception)
1983       {
1984         DataArrayInt *tmp0=0,*tmp1=0;
1985         self->findCellIdsLyingOn(otherDimM1OnSameCoords,tmp0,tmp1);
1986         PyObject *ret=PyTuple_New(2);
1987         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(tmp0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1988         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1989         return ret;
1990       }
1991
1992       void duplicateNodes(PyObject *li) throw(INTERP_KERNEL::Exception)
1993       {
1994         int sw;
1995         int singleVal;
1996         std::vector<int> multiVal;
1997         std::pair<int, std::pair<int,int> > slic;
1998         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
1999         convertObjToPossibleCpp2(li,self->getNumberOfNodes(),sw,singleVal,multiVal,slic,daIntTyypp);
2000         switch(sw)
2001           {
2002           case 1:
2003             return self->duplicateNodes(&singleVal,&singleVal+1);
2004           case 2:
2005             return self->duplicateNodes(&multiVal[0],&multiVal[0]+multiVal.size());
2006           case 4:
2007             return self->duplicateNodes(daIntTyypp->begin(),daIntTyypp->end());
2008           default:
2009             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::duplicateNodes : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2010           }
2011       }
2012
2013       void duplicateNodesInConn(PyObject *li, int offset) throw(INTERP_KERNEL::Exception)
2014       {
2015         int sw;
2016         int singleVal;
2017         std::vector<int> multiVal;
2018         std::pair<int, std::pair<int,int> > slic;
2019         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
2020         convertObjToPossibleCpp2(li,self->getNumberOfNodes(),sw,singleVal,multiVal,slic,daIntTyypp);
2021         switch(sw)
2022           {
2023           case 1:
2024             return self->duplicateNodesInConn(&singleVal,&singleVal+1,offset);
2025           case 2:
2026             return self->duplicateNodesInConn(&multiVal[0],&multiVal[0]+multiVal.size(),offset);
2027           case 4:
2028             return self->duplicateNodesInConn(daIntTyypp->begin(),daIntTyypp->end(),offset);
2029           default:
2030             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::duplicateNodesInConn : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2031           }
2032       }
2033
2034       PyObject *getLevArrPerCellTypes(PyObject *li) const throw(INTERP_KERNEL::Exception)
2035       {
2036         int sz;
2037         INTERP_KERNEL::AutoPtr<INTERP_KERNEL::NormalizedCellType> order=(INTERP_KERNEL::NormalizedCellType *)convertPyToNewIntArr2(li,&sz);
2038         DataArrayInt *tmp0,*tmp1=0;
2039         tmp0=self->getLevArrPerCellTypes(order,(INTERP_KERNEL::NormalizedCellType *)order+sz,tmp1);
2040         PyObject *ret=PyTuple_New(2);
2041         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(tmp0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2042         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2043         return ret;
2044       }
2045
2046       PyObject *convertNodalConnectivityToDynamicGeoTypeMesh() const throw(INTERP_KERNEL::Exception)
2047       {
2048         DataArrayInt *ret0=0,*ret1=0;
2049         self->convertNodalConnectivityToDynamicGeoTypeMesh(ret0,ret1);
2050         PyObject *ret=PyTuple_New(2);
2051         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2052         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2053         return ret;
2054       }
2055
2056       static PyObject *AggregateSortedByTypeMeshesOnSameCoords(PyObject *ms) throw(INTERP_KERNEL::Exception)
2057       {
2058         std::vector<const ParaMEDMEM::MEDCouplingUMesh *> meshes;
2059         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingUMesh *>(ms,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2060         DataArrayInt *ret1=0,*ret2=0;
2061         MEDCouplingUMesh *ret0=MEDCouplingUMesh::AggregateSortedByTypeMeshesOnSameCoords(meshes,ret1,ret2);
2062         PyObject *ret=PyTuple_New(3);
2063         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2064         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2065         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(ret2),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2066         return ret;
2067       }
2068
2069       static PyObject *MergeUMeshesOnSameCoords(PyObject *ms) throw(INTERP_KERNEL::Exception)
2070       {
2071         std::vector<const ParaMEDMEM::MEDCouplingUMesh *> meshes;
2072         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingUMesh *>(ms,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2073         MEDCouplingUMesh *ret=MEDCouplingUMesh::MergeUMeshesOnSameCoords(meshes);
2074         return convertMesh(ret, SWIG_POINTER_OWN | 0 );
2075       }
2076
2077       static PyObject *FuseUMeshesOnSameCoords(PyObject *ms, int compType) throw(INTERP_KERNEL::Exception)
2078       {
2079         int sz;
2080         std::vector<const MEDCouplingUMesh *> meshes;
2081         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingUMesh *>(ms,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2082         std::vector<DataArrayInt *> corr;
2083         MEDCouplingUMesh *um=MEDCouplingUMesh::FuseUMeshesOnSameCoords(meshes,compType,corr);
2084         sz=corr.size();
2085         PyObject *ret1=PyList_New(sz);
2086         for(int i=0;i<sz;i++)
2087           PyList_SetItem(ret1,i,SWIG_NewPointerObj(SWIG_as_voidptr(corr[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2088         PyObject *ret=PyList_New(2);
2089         PyList_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(um),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2090         PyList_SetItem(ret,1,ret1);
2091         return ret;
2092       }
2093
2094       static void PutUMeshesOnSameAggregatedCoords(PyObject *ms) throw(INTERP_KERNEL::Exception)
2095       {
2096         std::vector<MEDCouplingUMesh *> meshes;
2097         convertFromPyObjVectorOfObj<ParaMEDMEM::MEDCouplingUMesh *>(ms,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2098         MEDCouplingUMesh::PutUMeshesOnSameAggregatedCoords(meshes);
2099       }
2100
2101       static void MergeNodesOnUMeshesSharingSameCoords(PyObject *ms, double eps) throw(INTERP_KERNEL::Exception)
2102       {
2103         std::vector<MEDCouplingUMesh *> meshes;
2104         convertFromPyObjVectorOfObj<ParaMEDMEM::MEDCouplingUMesh *>(ms,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2105         MEDCouplingUMesh::MergeNodesOnUMeshesSharingSameCoords(meshes,eps);
2106       }
2107
2108       static bool RemoveIdsFromIndexedArrays(PyObject *li, DataArrayInt *arr, DataArrayInt *arrIndx, int offsetForRemoval=0) throw(INTERP_KERNEL::Exception)
2109       {
2110         int sw;
2111         int singleVal;
2112         std::vector<int> multiVal;
2113         std::pair<int, std::pair<int,int> > slic;
2114         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
2115         if(!arrIndx)
2116           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::RemoveIdsFromIndexedArrays : null pointer as arrIndex !");
2117         convertObjToPossibleCpp2(li,arrIndx->getNumberOfTuples()-1,sw,singleVal,multiVal,slic,daIntTyypp);
2118         switch(sw)
2119           {
2120           case 1:
2121             return MEDCouplingUMesh::RemoveIdsFromIndexedArrays(&singleVal,&singleVal+1,arr,arrIndx,offsetForRemoval);
2122           case 2:
2123             return MEDCouplingUMesh::RemoveIdsFromIndexedArrays(&multiVal[0],&multiVal[0]+multiVal.size(),arr,arrIndx,offsetForRemoval);
2124           case 4:
2125             return MEDCouplingUMesh::RemoveIdsFromIndexedArrays(daIntTyypp->begin(),daIntTyypp->end(),arr,arrIndx,offsetForRemoval);
2126           default:
2127             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::RemoveIdsFromIndexedArrays : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2128           }
2129       }
2130       
2131       static PyObject *ExtractFromIndexedArrays(PyObject *li, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn) throw(INTERP_KERNEL::Exception)
2132       {
2133         DataArrayInt *arrOut=0,*arrIndexOut=0;
2134         int sw;
2135         int singleVal;
2136         std::vector<int> multiVal;
2137         std::pair<int, std::pair<int,int> > slic;
2138         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
2139         if(!arrIndxIn)
2140           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::ExtractFromIndexedArrays : null pointer as arrIndxIn !");
2141         convertObjToPossibleCpp2(li,arrIndxIn->getNumberOfTuples()-1,sw,singleVal,multiVal,slic,daIntTyypp);
2142         switch(sw)
2143           {
2144           case 1:
2145             {
2146               MEDCouplingUMesh::ExtractFromIndexedArrays(&singleVal,&singleVal+1,arrIn,arrIndxIn,arrOut,arrIndexOut);
2147               break;
2148             }
2149           case 2:
2150             {
2151               MEDCouplingUMesh::ExtractFromIndexedArrays(&multiVal[0],&multiVal[0]+multiVal.size(),arrIn,arrIndxIn,arrOut,arrIndexOut);
2152               break;
2153             }
2154           case 4:
2155             {
2156               MEDCouplingUMesh::ExtractFromIndexedArrays(daIntTyypp->begin(),daIntTyypp->end(),arrIn,arrIndxIn,arrOut,arrIndexOut);
2157               break;
2158             }
2159           default:
2160             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::ExtractFromIndexedArrays : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2161           }
2162         PyObject *ret=PyTuple_New(2);
2163         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(arrOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2164         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(arrIndexOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2165         return ret;
2166       }
2167
2168       static PyObject *ExtractFromIndexedArrays2(int strt, int stp, int step, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn) throw(INTERP_KERNEL::Exception)
2169       {
2170         DataArrayInt *arrOut=0,*arrIndexOut=0;
2171         MEDCouplingUMesh::ExtractFromIndexedArrays2(strt,stp,step,arrIn,arrIndxIn,arrOut,arrIndexOut);
2172         PyObject *ret=PyTuple_New(2);
2173         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(arrOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2174         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(arrIndexOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2175         return ret;
2176       }
2177
2178       static PyObject *ExtractFromIndexedArrays2(PyObject *slic, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn) throw(INTERP_KERNEL::Exception)
2179       {
2180         if(!PySlice_Check(slic))
2181           throw INTERP_KERNEL::Exception("ExtractFromIndexedArrays2 (wrap) : the first param is not a pyslice !");
2182         Py_ssize_t strt=2,stp=2,step=2;
2183         PySliceObject *sliC=reinterpret_cast<PySliceObject *>(slic);
2184         if(!arrIndxIn)
2185           throw INTERP_KERNEL::Exception("ExtractFromIndexedArrays2 (wrap) : last array is null !");
2186         arrIndxIn->checkAllocated();
2187         if(arrIndxIn->getNumberOfComponents()!=1)
2188           throw INTERP_KERNEL::Exception("ExtractFromIndexedArrays2 (wrap) : number of components of last argument must be equal to one !");
2189         GetIndicesOfSlice(sliC,arrIndxIn->getNumberOfTuples(),&strt,&stp,&step,"ExtractFromIndexedArrays2 (wrap) : Invalid slice regarding nb of elements !");
2190         DataArrayInt *arrOut=0,*arrIndexOut=0;
2191         MEDCouplingUMesh::ExtractFromIndexedArrays2(strt,stp,step,arrIn,arrIndxIn,arrOut,arrIndexOut);
2192         PyObject *ret=PyTuple_New(2);
2193         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(arrOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2194         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(arrIndexOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2195         return ret;
2196       }
2197
2198       static PyObject *SetPartOfIndexedArrays(PyObject *li,
2199                                               const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn,
2200                                               const DataArrayInt *srcArr, const DataArrayInt *srcArrIndex) throw(INTERP_KERNEL::Exception)
2201       {
2202         DataArrayInt *arrOut=0,*arrIndexOut=0;
2203         int sw;
2204         int singleVal;
2205         std::vector<int> multiVal;
2206         std::pair<int, std::pair<int,int> > slic;
2207         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
2208         if(!arrIndxIn)
2209           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArrays : null pointer as arrIndex !");
2210         convertObjToPossibleCpp2(li,arrIndxIn->getNumberOfTuples()-1,sw,singleVal,multiVal,slic,daIntTyypp);
2211         switch(sw)
2212           {
2213           case 1:
2214             {
2215               MEDCouplingUMesh::SetPartOfIndexedArrays(&singleVal,&singleVal+1,arrIn,arrIndxIn,srcArr,srcArrIndex,arrOut,arrIndexOut);
2216               break;
2217             }
2218           case 2:
2219             {
2220               MEDCouplingUMesh::SetPartOfIndexedArrays(&multiVal[0],&multiVal[0]+multiVal.size(),arrIn,arrIndxIn,srcArr,srcArrIndex,arrOut,arrIndexOut);
2221               break;
2222             }
2223           case 4:
2224             {
2225               MEDCouplingUMesh::SetPartOfIndexedArrays(daIntTyypp->begin(),daIntTyypp->end(),arrIn,arrIndxIn,srcArr,srcArrIndex,arrOut,arrIndexOut);
2226               break;
2227             }
2228           default:
2229             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArrays : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2230           }
2231         PyObject *ret=PyTuple_New(2);
2232         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(arrOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2233         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(arrIndexOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2234         return ret;
2235       }
2236
2237       static void SetPartOfIndexedArraysSameIdx(PyObject *li, DataArrayInt *arrIn, const DataArrayInt *arrIndxIn,
2238                                                 const DataArrayInt *srcArr, const DataArrayInt *srcArrIndex) throw(INTERP_KERNEL::Exception)
2239       {
2240         int sw;
2241         int singleVal;
2242         std::vector<int> multiVal;
2243         std::pair<int, std::pair<int,int> > slic;
2244         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
2245         if(!arrIndxIn)
2246           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx : null pointer as arrIndex !");
2247         convertObjToPossibleCpp2(li,arrIndxIn->getNumberOfTuples()-1,sw,singleVal,multiVal,slic,daIntTyypp);
2248         switch(sw)
2249           {
2250           case 1:
2251             {
2252               MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx(&singleVal,&singleVal+1,arrIn,arrIndxIn,srcArr,srcArrIndex);
2253               break;
2254             }
2255           case 2:
2256             {
2257               MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx(&multiVal[0],&multiVal[0]+multiVal.size(),arrIn,arrIndxIn,srcArr,srcArrIndex);
2258               break;
2259             }
2260           case 4:
2261             {
2262               MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx(daIntTyypp->begin(),daIntTyypp->end(),arrIn,arrIndxIn,srcArr,srcArrIndex);
2263               break;
2264             }
2265           default:
2266             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2267           }
2268       }
2269
2270       PyObject *are2DCellsNotCorrectlyOriented(PyObject *vec, bool polyOnly) const throw(INTERP_KERNEL::Exception)
2271       {
2272         double val;
2273         DataArrayDouble *a;
2274         DataArrayDoubleTuple *aa;
2275         std::vector<double> bb;
2276         int sw;
2277         int spaceDim=self->getSpaceDimension();
2278         const char msg[]="Python wrap of MEDCouplingUMesh::are2DCellsNotCorrectlyOriented : ";
2279         const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val,a,aa,bb,msg,1,spaceDim,true);
2280         //
2281         std::vector<int> cells;
2282         self->are2DCellsNotCorrectlyOriented(v,polyOnly,cells);
2283         DataArrayInt *ret=DataArrayInt::New();
2284         ret->alloc((int)cells.size(),1);
2285         std::copy(cells.begin(),cells.end(),ret->getPointer());
2286         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
2287       }
2288
2289       void orientCorrectly2DCells(PyObject *vec, bool polyOnly) throw(INTERP_KERNEL::Exception)
2290       {
2291         double val;
2292         DataArrayDouble *a;
2293         DataArrayDoubleTuple *aa;
2294         std::vector<double> bb;
2295         int sw;
2296         int spaceDim=self->getSpaceDimension();
2297         const char msg[]="Python wrap of MEDCouplingUMesh::orientCorrectly2DCells : ";
2298         const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val,a,aa,bb,msg,1,spaceDim,true);
2299         self->orientCorrectly2DCells(v,polyOnly);
2300       }
2301       
2302       PyObject *arePolyhedronsNotCorrectlyOriented() const throw(INTERP_KERNEL::Exception)
2303       {
2304         std::vector<int> cells;
2305         self->arePolyhedronsNotCorrectlyOriented(cells);
2306         DataArrayInt *ret=DataArrayInt::New();
2307         ret->alloc((int)cells.size(),1);
2308         std::copy(cells.begin(),cells.end(),ret->getPointer());
2309         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
2310       }
2311
2312       PyObject *getFastAveragePlaneOfThis() const throw(INTERP_KERNEL::Exception)
2313       {
2314         double vec[3];
2315         double pos[3];
2316         self->getFastAveragePlaneOfThis(vec,pos);
2317         double vals[6];
2318         std::copy(vec,vec+3,vals);
2319         std::copy(pos,pos+3,vals+3);
2320         return convertDblArrToPyListOfTuple(vals,3,2);
2321       }
2322       
2323       static MEDCouplingUMesh *MergeUMeshes(PyObject *li) throw(INTERP_KERNEL::Exception)
2324       {
2325         std::vector<const ParaMEDMEM::MEDCouplingUMesh *> tmp;
2326         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingUMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",tmp);
2327         return MEDCouplingUMesh::MergeUMeshes(tmp);
2328       }
2329
2330       PyObject *areCellsIncludedIn(const MEDCouplingUMesh *other, int compType) const throw(INTERP_KERNEL::Exception)
2331       {
2332         DataArrayInt *ret1;
2333         bool ret0=self->areCellsIncludedIn(other,compType,ret1);
2334         PyObject *ret=PyTuple_New(2);
2335         PyObject *ret0Py=ret0?Py_True:Py_False;
2336         Py_XINCREF(ret0Py);
2337         PyTuple_SetItem(ret,0,ret0Py);
2338         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2339         return ret;
2340       }
2341
2342       PyObject *areCellsIncludedIn2(const MEDCouplingUMesh *other) const throw(INTERP_KERNEL::Exception)
2343       {
2344         DataArrayInt *ret1;
2345         bool ret0=self->areCellsIncludedIn2(other,ret1);
2346         PyObject *ret=PyTuple_New(2);
2347         PyObject *ret0Py=ret0?Py_True:Py_False;
2348         Py_XINCREF(ret0Py);
2349         PyTuple_SetItem(ret,0,ret0Py);
2350         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2351         return ret;
2352       }
2353
2354       PyObject *explode3DMeshTo1D() const throw(INTERP_KERNEL::Exception)
2355       {
2356         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d0=DataArrayInt::New();
2357         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d1=DataArrayInt::New();
2358         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d2=DataArrayInt::New();
2359         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d3=DataArrayInt::New();
2360         MEDCouplingUMesh *m=self->explode3DMeshTo1D(d0,d1,d2,d3);
2361         PyObject *ret=PyTuple_New(5);
2362         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2363         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2364         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2365         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2366         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2367         return ret;
2368       }
2369
2370       PyObject *buildDescendingConnectivity() const throw(INTERP_KERNEL::Exception)
2371       {
2372         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d0=DataArrayInt::New();
2373         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d1=DataArrayInt::New();
2374         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d2=DataArrayInt::New();
2375         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d3=DataArrayInt::New();
2376         MEDCouplingUMesh *m=self->buildDescendingConnectivity(d0,d1,d2,d3);
2377         PyObject *ret=PyTuple_New(5);
2378         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2379         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2380         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2381         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2382         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2383         return ret;
2384       }
2385
2386       PyObject *buildDescendingConnectivity2() const throw(INTERP_KERNEL::Exception)
2387       {
2388         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d0=DataArrayInt::New();
2389         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d1=DataArrayInt::New();
2390         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d2=DataArrayInt::New();
2391         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d3=DataArrayInt::New();
2392         MEDCouplingUMesh *m=self->buildDescendingConnectivity2(d0,d1,d2,d3);
2393         PyObject *ret=PyTuple_New(5);
2394         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2395         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2396         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2397         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2398         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2399         return ret;
2400       }
2401       
2402       PyObject *computeNeighborsOfCells() const throw(INTERP_KERNEL::Exception)
2403       {
2404         DataArrayInt *neighbors=0,*neighborsIdx=0;
2405         self->computeNeighborsOfCells(neighbors,neighborsIdx);
2406         PyObject *ret=PyTuple_New(2);
2407         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(neighbors),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2408         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(neighborsIdx),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2409         return ret;
2410       }
2411
2412       PyObject *computeNeighborsOfNodes() const throw(INTERP_KERNEL::Exception)
2413       {
2414         DataArrayInt *neighbors=0,*neighborsIdx=0;
2415         self->computeNeighborsOfNodes(neighbors,neighborsIdx);
2416         PyObject *ret=PyTuple_New(2);
2417         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(neighbors),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2418         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(neighborsIdx),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2419         return ret;
2420       }
2421
2422       static PyObject *ComputeNeighborsOfCellsAdv(const DataArrayInt *desc, const DataArrayInt *descI, const DataArrayInt *revDesc, const DataArrayInt *revDescI) throw(INTERP_KERNEL::Exception)
2423       {
2424         DataArrayInt *neighbors=0,*neighborsIdx=0;
2425         MEDCouplingUMesh::ComputeNeighborsOfCellsAdv(desc,descI,revDesc,revDescI,neighbors,neighborsIdx);
2426         PyObject *ret=PyTuple_New(2);
2427         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(neighbors),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2428         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(neighborsIdx),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2429         return ret;
2430       }
2431
2432       PyObject *emulateMEDMEMBDC(const MEDCouplingUMesh *nM1LevMesh)
2433       {
2434         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d0=DataArrayInt::New();
2435         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d1=DataArrayInt::New();
2436         DataArrayInt *d2,*d3,*d4,*dd5;
2437         MEDCouplingUMesh *mOut=self->emulateMEDMEMBDC(nM1LevMesh,d0,d1,d2,d3,d4,dd5);
2438         PyObject *ret=PyTuple_New(7);
2439         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(mOut),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2440         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2441         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2442         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2443         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2444         PyTuple_SetItem(ret,5,SWIG_NewPointerObj(SWIG_as_voidptr(d4),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2445         PyTuple_SetItem(ret,6,SWIG_NewPointerObj(SWIG_as_voidptr(dd5),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2446         return ret;
2447       }
2448
2449       DataArrayDouble *getPartBarycenterAndOwner(DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2450       {
2451         if(!da)
2452           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2453         da->checkAllocated();
2454         return self->getPartBarycenterAndOwner(da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2455       }
2456
2457       DataArrayDouble *getPartMeasureField(bool isAbs, DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2458       {
2459         if(!da)
2460           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2461         da->checkAllocated();
2462         return self->getPartMeasureField(isAbs,da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2463       }
2464
2465       MEDCouplingFieldDouble *buildPartOrthogonalField(DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2466       {
2467         if(!da)
2468           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2469         da->checkAllocated();
2470         return self->buildPartOrthogonalField(da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2471       }
2472
2473       PyObject *getTypesOfPart(DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2474       {
2475         if(!da)
2476           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2477         da->checkAllocated();
2478         std::set<INTERP_KERNEL::NormalizedCellType> result=self->getTypesOfPart(da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2479         std::set<INTERP_KERNEL::NormalizedCellType>::const_iterator iL=result.begin();
2480         PyObject *res = PyList_New(result.size());
2481         for (int i=0;iL!=result.end(); i++, iL++)
2482           PyList_SetItem(res,i,PyInt_FromLong(*iL));
2483         return res;
2484       }
2485
2486       DataArrayInt *keepCellIdsByType(INTERP_KERNEL::NormalizedCellType type, DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2487       {
2488         if(!da)
2489           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2490         da->checkAllocated();
2491         DataArrayInt *ret=self->keepCellIdsByType(type,da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2492         ret->setName(da->getName().c_str());
2493         return ret;
2494       }
2495
2496       static PyObject *Intersect2DMeshes(const MEDCouplingUMesh *m1, const MEDCouplingUMesh *m2, double eps) throw(INTERP_KERNEL::Exception)
2497       {
2498         DataArrayInt *cellNb1=0,*cellNb2=0;
2499         MEDCouplingUMesh *mret=MEDCouplingUMesh::Intersect2DMeshes(m1,m2,eps,cellNb1,cellNb2);
2500         PyObject *ret=PyTuple_New(3);
2501         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(mret),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2502         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellNb1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2503         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(cellNb2),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2504         return ret;
2505       }
2506
2507       PyObject *buildSlice3D(PyObject *origin, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
2508       {
2509         int spaceDim=self->getSpaceDimension();
2510         if(spaceDim!=3)
2511           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingUMesh::buildSlice3D : works only for spaceDim 3 !");
2512         double val,val2;
2513         DataArrayDouble *a,*a2;
2514         DataArrayDoubleTuple *aa,*aa2;
2515         std::vector<double> bb,bb2;
2516         int sw;
2517         const char msg[]="Python wrap of MEDCouplingUMesh::buildSlice3D : 1st paramater for origin.";
2518         const char msg2[]="Python wrap of MEDCouplingUMesh::buildSlice3D : 2nd paramater for vector.";
2519         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
2520         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
2521         //
2522         DataArrayInt *cellIds=0;
2523         MEDCouplingUMesh *ret0=self->buildSlice3D(orig,vect,eps,cellIds);
2524         PyObject *ret=PyTuple_New(2);
2525         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2526         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellIds),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2527         return ret;
2528       }
2529
2530       PyObject *buildSlice3DSurf(PyObject *origin, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
2531       {
2532         int spaceDim=self->getSpaceDimension();
2533         if(spaceDim!=3)
2534           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingUMesh::buildSlice3DSurf : works only for spaceDim 3 !");
2535         double val,val2;
2536         DataArrayDouble *a,*a2;
2537         DataArrayDoubleTuple *aa,*aa2;
2538         std::vector<double> bb,bb2;
2539         int sw;
2540         const char msg[]="Python wrap of MEDCouplingUMesh::buildSlice3DSurf : 1st paramater for origin.";
2541         const char msg2[]="Python wrap of MEDCouplingUMesh::buildSlice3DSurf : 2nd paramater for vector.";
2542         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
2543         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
2544         //
2545         DataArrayInt *cellIds=0;
2546         MEDCouplingUMesh *ret0=self->buildSlice3DSurf(orig,vect,eps,cellIds);
2547         PyObject *ret=PyTuple_New(2);
2548         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2549         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellIds),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2550         return ret;
2551       }
2552
2553       DataArrayInt *getCellIdsCrossingPlane(PyObject *origin, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
2554       {
2555         int spaceDim=self->getSpaceDimension();
2556         if(spaceDim!=3)
2557           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingUMesh::getCellIdsCrossingPlane : works only for spaceDim 3 !");
2558         double val,val2;
2559         DataArrayDouble *a,*a2;
2560         DataArrayDoubleTuple *aa,*aa2;
2561         std::vector<double> bb,bb2;
2562         int sw;
2563         const char msg[]="Python wrap of MEDCouplingUMesh::getCellIdsCrossingPlane : 1st paramater for origin.";
2564         const char msg2[]="Python wrap of MEDCouplingUMesh::getCellIdsCrossingPlane : 2nd paramater for vector.";
2565         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
2566         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
2567         return self->getCellIdsCrossingPlane(orig,vect,eps);
2568       }
2569
2570       void convertToPolyTypes(PyObject *li) throw(INTERP_KERNEL::Exception)
2571       {
2572         int sw;
2573         int pos1;
2574         std::vector<int> pos2;
2575         DataArrayInt *pos3=0;
2576         DataArrayIntTuple *pos4=0;
2577         convertObjToPossibleCpp1(li,sw,pos1,pos2,pos3,pos4);
2578         switch(sw)
2579           {
2580           case 1:
2581             {
2582               self->convertToPolyTypes(&pos1,&pos1+1);
2583               return;
2584             }
2585           case 2:
2586             {
2587               if(pos2.empty())
2588                 return;
2589               self->convertToPolyTypes(&pos2[0],&pos2[0]+pos2.size());
2590               return ;
2591             }
2592           case 3:
2593             {
2594               self->convertToPolyTypes(pos3->begin(),pos3->end());
2595               return ;
2596             }
2597           default:
2598             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::convertToPolyTypes : unexpected input array type recognized !");
2599           }
2600       }
2601     }
2602     void convertAllToPoly();
2603     void convertExtrudedPolyhedra() throw(INTERP_KERNEL::Exception);
2604     bool unPolyze() throw(INTERP_KERNEL::Exception);
2605     void simplifyPolyhedra(double eps) throw(INTERP_KERNEL::Exception);
2606     MEDCouplingUMesh *buildSpreadZonesWithPoly() const throw(INTERP_KERNEL::Exception);
2607     MEDCouplingUMesh *buildExtrudedMesh(const MEDCouplingUMesh *mesh1D, int policy) throw(INTERP_KERNEL::Exception);
2608   };
2609
2610   //== MEDCouplingUMesh End
2611
2612   //== MEDCouplingExtrudedMesh
2613
2614   class MEDCouplingExtrudedMesh : public ParaMEDMEM::MEDCouplingMesh
2615   {
2616   public:
2617     static MEDCouplingExtrudedMesh *New(const MEDCouplingUMesh *mesh3D, const MEDCouplingUMesh *mesh2D, int cell2DId) throw(INTERP_KERNEL::Exception);
2618     MEDCouplingUMesh *build3DUnstructuredMesh() const throw(INTERP_KERNEL::Exception);
2619     %extend {
2620       MEDCouplingExtrudedMesh(const MEDCouplingUMesh *mesh3D, const MEDCouplingUMesh *mesh2D, int cell2DId) throw(INTERP_KERNEL::Exception)
2621       {
2622         return MEDCouplingExtrudedMesh::New(mesh3D,mesh2D,cell2DId);
2623       }
2624       
2625       std::string __str__() const throw(INTERP_KERNEL::Exception)
2626       {
2627         return self->simpleRepr();
2628       }
2629
2630       std::string __repr__() const throw(INTERP_KERNEL::Exception)
2631       {
2632         std::ostringstream oss;
2633         self->reprQuickOverview(oss);
2634         return oss.str();
2635       }
2636       
2637       PyObject *getMesh2D() const throw(INTERP_KERNEL::Exception)
2638       {
2639         MEDCouplingUMesh *ret=self->getMesh2D();
2640         if(ret)
2641           ret->incrRef();
2642         return convertMesh(ret, SWIG_POINTER_OWN | 0 );
2643       }
2644       PyObject *getMesh1D() const throw(INTERP_KERNEL::Exception)
2645       {
2646         MEDCouplingUMesh *ret=self->getMesh1D();
2647         if(ret)
2648           ret->incrRef();
2649         return convertMesh(ret, SWIG_POINTER_OWN | 0 );
2650       }
2651       PyObject *getMesh3DIds() const throw(INTERP_KERNEL::Exception)
2652       {
2653         DataArrayInt *ret=self->getMesh3DIds();
2654         if(ret)
2655           ret->incrRef();
2656         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
2657       } 
2658     }
2659   };
2660
2661   //== MEDCouplingExtrudedMesh End
2662
2663   class MEDCoupling1GTUMesh : public ParaMEDMEM::MEDCouplingPointSet
2664   {
2665   public:
2666     static MEDCoupling1GTUMesh *New(const std::string& name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
2667     static MEDCoupling1GTUMesh *New(const MEDCouplingUMesh *m) throw(INTERP_KERNEL::Exception);
2668     INTERP_KERNEL::NormalizedCellType getCellModelEnum() const throw(INTERP_KERNEL::Exception);
2669     int getNodalConnectivityLength() const throw(INTERP_KERNEL::Exception);
2670     virtual void allocateCells(int nbOfCells=0) throw(INTERP_KERNEL::Exception);
2671     virtual void checkCoherencyOfConnectivity() const throw(INTERP_KERNEL::Exception);
2672     %extend
2673     {
2674       virtual void insertNextCell(PyObject *li) throw(INTERP_KERNEL::Exception)
2675       {
2676         int szArr,sw,iTypppArr;
2677         std::vector<int> stdvecTyyppArr;
2678         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
2679         self->insertNextCell(tmp,tmp+szArr);
2680       }
2681
2682       virtual DataArrayInt *getNodalConnectivity() const throw(INTERP_KERNEL::Exception)
2683       {
2684         DataArrayInt *ret=self->getNodalConnectivity();
2685         if(ret) ret->incrRef();
2686         return ret;
2687       }
2688       
2689       static MEDCouplingUMesh *AggregateOnSameCoordsToUMesh(PyObject *li) throw(INTERP_KERNEL::Exception)
2690       {
2691         std::vector< const MEDCoupling1GTUMesh *> parts;
2692         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCoupling1GTUMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCoupling1GTUMesh,"MEDCoupling1GTUMesh",parts);
2693         return MEDCoupling1GTUMesh::AggregateOnSameCoordsToUMesh(parts);
2694       }
2695     }
2696   };
2697
2698   //== MEDCoupling1SGTUMesh
2699
2700   class MEDCoupling1SGTUMesh : public ParaMEDMEM::MEDCoupling1GTUMesh
2701   {
2702   public:
2703     static MEDCoupling1SGTUMesh *New(const std::string& name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
2704     static MEDCoupling1SGTUMesh *New(const MEDCouplingUMesh *m) throw(INTERP_KERNEL::Exception);
2705     void setNodalConnectivity(DataArrayInt *nodalConn) throw(INTERP_KERNEL::Exception);
2706     int getNumberOfNodesPerCell() const throw(INTERP_KERNEL::Exception);
2707     static MEDCoupling1SGTUMesh *Merge1SGTUMeshes(const MEDCoupling1SGTUMesh *mesh1, const MEDCoupling1SGTUMesh *mesh2) throw(INTERP_KERNEL::Exception);
2708     MEDCoupling1SGTUMesh *buildSetInstanceFromThis(int spaceDim) const throw(INTERP_KERNEL::Exception);
2709     MEDCoupling1GTUMesh *computeDualMesh() const throw(INTERP_KERNEL::Exception);
2710     MEDCoupling1SGTUMesh *explodeEachHexa8To6Quad4() const throw(INTERP_KERNEL::Exception);
2711     DataArrayInt *sortHexa8EachOther() throw(INTERP_KERNEL::Exception);
2712     %extend
2713     {
2714       MEDCoupling1SGTUMesh(const std::string& name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception)
2715       {
2716         return MEDCoupling1SGTUMesh::New(name,type);
2717       }
2718
2719       MEDCoupling1SGTUMesh(const MEDCouplingUMesh *m) throw(INTERP_KERNEL::Exception)
2720       {
2721         return MEDCoupling1SGTUMesh::New(m);
2722       }
2723
2724       std::string __str__() const throw(INTERP_KERNEL::Exception)
2725       {
2726         return self->simpleRepr();
2727       }
2728       
2729       std::string __repr__() const throw(INTERP_KERNEL::Exception)
2730       {
2731         std::ostringstream oss;
2732         self->reprQuickOverview(oss);
2733         return oss.str();
2734       }
2735
2736       PyObject *structurizeMe(double eps=1e-12) const throw(INTERP_KERNEL::Exception)
2737       {
2738         DataArrayInt *cellPerm(0),*nodePerm(0);
2739         MEDCouplingCMesh *retCpp(self->structurizeMe(cellPerm,nodePerm,eps));
2740         PyObject *ret(PyTuple_New(3));
2741         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(retCpp),SWIGTYPE_p_ParaMEDMEM__MEDCouplingCMesh, SWIG_POINTER_OWN | 0 ));
2742         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellPerm),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2743         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(nodePerm),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2744         return ret;
2745       }
2746
2747       static MEDCoupling1SGTUMesh *Merge1SGTUMeshes(PyObject *li) throw(INTERP_KERNEL::Exception)
2748       {
2749         std::vector<const ParaMEDMEM::MEDCoupling1SGTUMesh *> tmp;
2750         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCoupling1SGTUMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCoupling1SGTUMesh,"MEDCoupling1SGTUMesh",tmp);
2751         return MEDCoupling1SGTUMesh::Merge1SGTUMeshes(tmp);
2752       }
2753       
2754       static MEDCoupling1SGTUMesh *Merge1SGTUMeshesOnSameCoords(PyObject *li) throw(INTERP_KERNEL::Exception)
2755       {
2756         std::vector<const ParaMEDMEM::MEDCoupling1SGTUMesh *> tmp;
2757         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCoupling1SGTUMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCoupling1SGTUMesh,"MEDCoupling1SGTUMesh",tmp);
2758         return MEDCoupling1SGTUMesh::Merge1SGTUMeshesOnSameCoords(tmp);
2759       }
2760     }
2761   };
2762   
2763   //== MEDCoupling1SGTUMesh End
2764
2765   //== MEDCoupling1DGTUMesh
2766
2767   class MEDCoupling1DGTUMesh : public ParaMEDMEM::MEDCoupling1GTUMesh
2768   {
2769   public:
2770     static MEDCoupling1DGTUMesh *New(const std::string& name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
2771     static MEDCoupling1DGTUMesh *New(const MEDCouplingUMesh *m) throw(INTERP_KERNEL::Exception);
2772     void setNodalConnectivity(DataArrayInt *nodalConn, DataArrayInt *nodalConnIndex) throw(INTERP_KERNEL::Exception);
2773     MEDCoupling1DGTUMesh *buildSetInstanceFromThis(int spaceDim) const throw(INTERP_KERNEL::Exception);
2774     bool isPacked() const throw(INTERP_KERNEL::Exception);
2775     %extend
2776     {
2777       MEDCoupling1DGTUMesh(const std::string& name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception)
2778       {
2779         return MEDCoupling1DGTUMesh::New(name,type);
2780       }
2781
2782       MEDCoupling1DGTUMesh(const MEDCouplingUMesh *m) throw(INTERP_KERNEL::Exception)
2783       {
2784         return MEDCoupling1DGTUMesh::New(m);
2785       }
2786
2787       std::string __str__() const throw(INTERP_KERNEL::Exception)
2788       {
2789         return self->simpleRepr();
2790       }
2791       
2792       std::string __repr__() const throw(INTERP_KERNEL::Exception)
2793       {
2794         std::ostringstream oss;
2795         self->reprQuickOverview(oss);
2796         return oss.str();
2797       }
2798
2799       DataArrayInt *getNodalConnectivityIndex() const throw(INTERP_KERNEL::Exception)
2800       {
2801         DataArrayInt *ret=self->getNodalConnectivityIndex();
2802         if(ret) ret->incrRef();
2803         return ret;
2804       }
2805
2806       PyObject *retrievePackedNodalConnectivity() const throw(INTERP_KERNEL::Exception)
2807       {
2808         DataArrayInt *ret1=0,*ret2=0;
2809         bool ret0=self->retrievePackedNodalConnectivity(ret1,ret2);
2810         PyObject *ret0Py=ret0?Py_True:Py_False;
2811         Py_XINCREF(ret0Py);
2812         PyObject *ret=PyTuple_New(3);
2813         PyTuple_SetItem(ret,0,ret0Py);
2814         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2815         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(ret2),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2816         return ret;
2817       }
2818       
2819       PyObject *copyWithNodalConnectivityPacked() const throw(INTERP_KERNEL::Exception)
2820       {
2821         bool ret1;
2822         MEDCoupling1DGTUMesh *ret0=self->copyWithNodalConnectivityPacked(ret1);
2823         PyObject *ret=PyTuple_New(2);
2824         PyObject *ret1Py=ret1?Py_True:Py_False; Py_XINCREF(ret1Py);
2825         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__MEDCoupling1DGTUMesh, SWIG_POINTER_OWN | 0 ));
2826         PyTuple_SetItem(ret,1,ret1Py);
2827         return ret;
2828       }
2829
2830       static MEDCoupling1DGTUMesh *Merge1DGTUMeshes(PyObject *li) throw(INTERP_KERNEL::Exception)
2831       {
2832         std::vector<const ParaMEDMEM::MEDCoupling1DGTUMesh *> tmp;
2833         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCoupling1DGTUMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCoupling1DGTUMesh,"MEDCoupling1DGTUMesh",tmp);
2834         return MEDCoupling1DGTUMesh::Merge1DGTUMeshes(tmp);
2835       }
2836       
2837       static MEDCoupling1DGTUMesh *Merge1DGTUMeshesOnSameCoords(PyObject *li) throw(INTERP_KERNEL::Exception)
2838       {
2839         std::vector<const ParaMEDMEM::MEDCoupling1DGTUMesh *> tmp;
2840         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCoupling1DGTUMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCoupling1DGTUMesh,"MEDCoupling1DGTUMesh",tmp);
2841         return MEDCoupling1DGTUMesh::Merge1DGTUMeshesOnSameCoords(tmp);
2842       }
2843       
2844       static DataArrayInt *AggregateNodalConnAndShiftNodeIds(PyObject *li, const std::vector<int>& offsetInNodeIdsPerElt) throw(INTERP_KERNEL::Exception)
2845       {
2846         std::vector<const ParaMEDMEM::DataArrayInt *> tmp;
2847         convertFromPyObjVectorOfObj<const ParaMEDMEM::DataArrayInt *>(li,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,"DataArrayInt",tmp);
2848         return MEDCoupling1DGTUMesh::AggregateNodalConnAndShiftNodeIds(tmp,offsetInNodeIdsPerElt);
2849       }
2850     }
2851   };
2852
2853   //== MEDCoupling1DGTUMeshEnd
2854
2855   class MEDCouplingStructuredMesh : public ParaMEDMEM::MEDCouplingMesh
2856   {
2857   public:
2858     int getCellIdFromPos(int i, int j, int k) const throw(INTERP_KERNEL::Exception);
2859     int getNodeIdFromPos(int i, int j, int k) const throw(INTERP_KERNEL::Exception);
2860     int getNumberOfCellsOfSubLevelMesh() const throw(INTERP_KERNEL::Exception);
2861     int getSpaceDimensionOnNodeStruct() const throw(INTERP_KERNEL::Exception);
2862     virtual std::vector<int> getNodeGridStructure() const throw(INTERP_KERNEL::Exception);
2863     std::vector<int> getCellGridStructure() const throw(INTERP_KERNEL::Exception);
2864     MEDCoupling1SGTUMesh *build1SGTUnstructured() const throw(INTERP_KERNEL::Exception);
2865     static INTERP_KERNEL::NormalizedCellType GetGeoTypeGivenMeshDimension(int meshDim) throw(INTERP_KERNEL::Exception);
2866     MEDCoupling1SGTUMesh *build1SGTSubLevelMesh() const throw(INTERP_KERNEL::Exception);
2867     static int DeduceNumberOfGivenStructure(const std::vector<int>& st) throw(INTERP_KERNEL::Exception);
2868     static std::vector<int> GetSplitVectFromStruct(const std::vector<int>& strct) throw(INTERP_KERNEL::Exception);
2869     %extend
2870     {
2871       virtual MEDCouplingStructuredMesh *buildStructuredSubPart(PyObject *cellPart) const throw(INTERP_KERNEL::Exception)
2872       {
2873         int tmpp1=-1,tmpp2=-1;
2874         std::vector<int> tmp=fillArrayWithPyListInt2(cellPart,tmpp1,tmpp2);
2875         std::vector< std::pair<int,int> > inp;
2876         if(tmpp2==2)
2877           {
2878             inp.resize(tmpp1);
2879             for(int i=0;i<tmpp1;i++)
2880               { inp[i].first=tmp[2*i]; inp[i].second=tmp[2*i+1]; }
2881           }
2882         else if(tmpp2==1)
2883           {
2884             if(tmpp1%2!=0)
2885               throw INTERP_KERNEL::Exception("Wrap of MEDCouplingStructuredMesh.buildStructuredSubPart : invalid input size ! Must be even size !");
2886             inp.resize(tmpp1/2);
2887             for(int i=0;i<tmpp1/2;i++)
2888               { inp[i].first=tmp[2*i]; inp[i].second=tmp[2*i+1]; }
2889           }
2890         else
2891           throw INTERP_KERNEL::Exception("Wrap of MEDCouplingStructuredMesh.buildStructuredSubPart : invalid input size !");
2892         return self->buildStructuredSubPart(inp);
2893       }
2894
2895       static DataArrayInt *BuildExplicitIdsFrom(PyObject *st, PyObject *part) throw(INTERP_KERNEL::Exception)
2896       {
2897         std::vector< std::pair<int,int> > inp;
2898         convertPyToVectorPairInt(part,inp);
2899         //
2900         int szArr,sw,iTypppArr;
2901         std::vector<int> stdvecTyyppArr;
2902         const int *tmp4=convertObjToPossibleCpp1_Safe(st,sw,szArr,iTypppArr,stdvecTyyppArr);
2903         std::vector<int> tmp5(tmp4,tmp4+szArr);
2904         //
2905         return MEDCouplingStructuredMesh::BuildExplicitIdsFrom(tmp5,inp);
2906       }
2907
2908       static DataArrayDouble *ExtractFieldOfDoubleFrom(const std::vector<int>& st, const DataArrayDouble *fieldOfDbl, PyObject *partCompactFormat) throw(INTERP_KERNEL::Exception)
2909       {
2910         std::vector< std::pair<int,int> > inp;
2911         convertPyToVectorPairInt(partCompactFormat,inp);
2912         return MEDCouplingStructuredMesh::ExtractFieldOfDoubleFrom(st,fieldOfDbl,inp);
2913       }
2914
2915       static int DeduceNumberOfGivenRangeInCompactFrmt(PyObject *part) throw(INTERP_KERNEL::Exception)
2916       {
2917         std::vector< std::pair<int,int> > inp;
2918         convertPyToVectorPairInt(part,inp);
2919         return MEDCouplingStructuredMesh::DeduceNumberOfGivenRangeInCompactFrmt(inp);
2920       }
2921
2922       static DataArrayInt *Build1GTNodalConnectivity(PyObject *li) throw(INTERP_KERNEL::Exception)
2923       {
2924         int szArr,sw,iTypppArr;
2925         std::vector<int> stdvecTyyppArr;
2926         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
2927         return MEDCouplingStructuredMesh::Build1GTNodalConnectivity(tmp,tmp+szArr);
2928       }
2929
2930       static DataArrayInt *Build1GTNodalConnectivityOfSubLevelMesh(PyObject *li) throw(INTERP_KERNEL::Exception)
2931       {
2932         int szArr,sw,iTypppArr;
2933         std::vector<int> stdvecTyyppArr;
2934         const int *tmp(convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr));
2935         return MEDCouplingStructuredMesh::Build1GTNodalConnectivityOfSubLevelMesh(tmp,tmp+szArr);
2936       }
2937
2938       static std::vector<int> GetDimensionsFromCompactFrmt(PyObject *partCompactFormat) throw(INTERP_KERNEL::Exception)
2939       {
2940         std::vector< std::pair<int,int> > inp;
2941         convertPyToVectorPairInt(partCompactFormat,inp);
2942         return MEDCouplingStructuredMesh::GetDimensionsFromCompactFrmt(inp);
2943       }
2944
2945       static PyObject *GetCompactFrmtFromDimensions(const std::vector<int>& dims) throw(INTERP_KERNEL::Exception)
2946       {
2947         std::vector< std::pair<int,int> > ret(MEDCouplingStructuredMesh::GetCompactFrmtFromDimensions(dims));
2948         PyObject *retPy=PyList_New(ret.size());
2949         for(std::size_t i=0;i<ret.size();i++)
2950           {
2951             PyObject *tmp=PyTuple_New(2);
2952             PyTuple_SetItem(tmp,0,PyInt_FromLong(ret[i].first));
2953             PyTuple_SetItem(tmp,1,PyInt_FromLong(ret[i].second));
2954             PyList_SetItem(retPy,i,tmp);
2955           }
2956         return retPy;
2957       }
2958
2959       static PyObject *IntersectRanges(PyObject *r1, PyObject *r2) throw(INTERP_KERNEL::Exception)
2960       {
2961         std::vector< std::pair<int,int> > r1Cpp,r2Cpp;
2962         convertPyToVectorPairInt(r1,r1Cpp);
2963         convertPyToVectorPairInt(r2,r2Cpp);
2964         std::vector< std::pair<int,int> > ret(MEDCouplingStructuredMesh::IntersectRanges(r1Cpp,r2Cpp));
2965         PyObject *retPy=PyList_New(ret.size());
2966         for(std::size_t i=0;i<ret.size();i++)
2967           {
2968             PyObject *tmp=PyTuple_New(2);
2969             PyTuple_SetItem(tmp,0,PyInt_FromLong(ret[i].first));
2970             PyTuple_SetItem(tmp,1,PyInt_FromLong(ret[i].second));
2971             PyList_SetItem(retPy,i,tmp);
2972           }
2973         return retPy;
2974       }
2975
2976       static PyObject *IsPartStructured(PyObject *li, PyObject *st) throw(INTERP_KERNEL::Exception)
2977       {
2978         int szArr,sw,iTypppArr;
2979         std::vector<int> stdvecTyyppArr;
2980         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
2981         int szArr2,sw2,iTypppArr2;
2982         std::vector<int> stdvecTyyppArr2;
2983         const int *tmp2=convertObjToPossibleCpp1_Safe(st,sw2,szArr2,iTypppArr2,stdvecTyyppArr2);
2984         std::vector<int> tmp3(tmp2,tmp2+szArr2);
2985         std::vector< std::pair<int,int> > partCompactFormat;
2986         bool ret0=MEDCouplingStructuredMesh::IsPartStructured(tmp,tmp+szArr,tmp3,partCompactFormat);
2987         PyObject *ret=PyTuple_New(2);
2988         PyObject *ret0Py=ret0?Py_True:Py_False; Py_XINCREF(ret0Py);
2989         PyTuple_SetItem(ret,0,ret0Py);
2990         PyObject *ret1Py=PyList_New(partCompactFormat.size());
2991         for(std::size_t i=0;i<partCompactFormat.size();i++)
2992           {
2993             PyObject *tmp4=PyTuple_New(2);
2994             PyTuple_SetItem(tmp4,0,PyInt_FromLong(partCompactFormat[i].first));
2995             PyTuple_SetItem(tmp4,1,PyInt_FromLong(partCompactFormat[i].second));
2996             PyList_SetItem(ret1Py,i,tmp4);
2997           }
2998         PyTuple_SetItem(ret,1,ret1Py);
2999         return ret;
3000       }
3001
3002       static PyObject *ChangeReferenceFromGlobalOfCompactFrmt(PyObject *bigInAbs, PyObject *partOfBigInAbs, bool check=true) throw(INTERP_KERNEL::Exception)
3003       {
3004         std::vector< std::pair<int,int> > param0,param1,ret;
3005         convertPyToVectorPairInt(bigInAbs,param0);
3006         convertPyToVectorPairInt(partOfBigInAbs,param1);
3007         MEDCouplingStructuredMesh::ChangeReferenceFromGlobalOfCompactFrmt(param0,param1,ret,check);
3008         PyObject *retPy(PyList_New(ret.size()));
3009         for(std::size_t i=0;i<ret.size();i++)
3010           {
3011             PyObject *tmp(PyTuple_New(2));
3012             PyTuple_SetItem(tmp,0,PyInt_FromLong(ret[i].first));
3013             PyTuple_SetItem(tmp,1,PyInt_FromLong(ret[i].second));
3014             PyList_SetItem(retPy,i,tmp);
3015           }
3016         return retPy;
3017       }
3018
3019       static PyObject *TranslateCompactFrmt(PyObject *part, const std::vector<int>& translation) throw(INTERP_KERNEL::Exception)
3020       {
3021         std::vector< std::pair<int,int> > param0;
3022         convertPyToVectorPairInt(part,param0);
3023         std::vector< std::pair<int,int> > ret(MEDCouplingStructuredMesh::TranslateCompactFrmt(param0,translation));
3024         PyObject *retPy(PyList_New(ret.size()));
3025         for(std::size_t i=0;i<ret.size();i++)
3026           {
3027             PyObject *tmp(PyTuple_New(2));
3028             PyTuple_SetItem(tmp,0,PyInt_FromLong(ret[i].first));
3029             PyTuple_SetItem(tmp,1,PyInt_FromLong(ret[i].second));
3030             PyList_SetItem(retPy,i,tmp);
3031           }
3032         return retPy;
3033       }
3034
3035       static PyObject *ChangeReferenceToGlobalOfCompactFrmt(PyObject *bigInAbs, PyObject *partOfBigRelativeToBig, bool check=true) throw(INTERP_KERNEL::Exception)
3036       {
3037         std::vector< std::pair<int,int> > param0,param1,ret;
3038         convertPyToVectorPairInt(bigInAbs,param0);
3039         convertPyToVectorPairInt(partOfBigRelativeToBig,param1);
3040         MEDCouplingStructuredMesh::ChangeReferenceToGlobalOfCompactFrmt(param0,param1,ret,check);
3041         PyObject *retPy(PyList_New(ret.size()));
3042         for(std::size_t i=0;i<ret.size();i++)
3043           {
3044             PyObject *tmp(PyTuple_New(2));
3045             PyTuple_SetItem(tmp,0,PyInt_FromLong(ret[i].first));
3046             PyTuple_SetItem(tmp,1,PyInt_FromLong(ret[i].second));
3047             PyList_SetItem(retPy,i,tmp);
3048           }
3049         return retPy;
3050       }
3051     }
3052   };
3053
3054   //== MEDCouplingCMesh
3055   
3056   class MEDCouplingCMesh : public ParaMEDMEM::MEDCouplingStructuredMesh
3057   {
3058   public:
3059     static MEDCouplingCMesh *New() throw(INTERP_KERNEL::Exception);
3060     static MEDCouplingCMesh *New(const std::string& meshName) throw(INTERP_KERNEL::Exception);
3061     MEDCouplingCMesh *clone(bool recDeepCpy) const;
3062     void setCoords(const DataArrayDouble *coordsX,
3063                    const DataArrayDouble *coordsY=0,
3064                    const DataArrayDouble *coordsZ=0) throw(INTERP_KERNEL::Exception);
3065     void setCoordsAt(int i, const DataArrayDouble *arr) throw(INTERP_KERNEL::Exception);
3066     %extend {
3067       MEDCouplingCMesh() throw(INTERP_KERNEL::Exception)
3068       {
3069         return MEDCouplingCMesh::New();
3070       }
3071       MEDCouplingCMesh(const std::string& meshName) throw(INTERP_KERNEL::Exception)
3072       {
3073         return MEDCouplingCMesh::New(meshName);
3074       }
3075       std::string __str__() const throw(INTERP_KERNEL::Exception)
3076       {
3077         return self->simpleRepr();
3078       }
3079       std::string __repr__() const throw(INTERP_KERNEL::Exception)
3080       {
3081         std::ostringstream oss;
3082         self->reprQuickOverview(oss);
3083         return oss.str();
3084       }
3085       DataArrayDouble *getCoordsAt(int i) throw(INTERP_KERNEL::Exception)
3086       {
3087         DataArrayDouble *ret=self->getCoordsAt(i);
3088         if(ret)
3089           ret->incrRef();
3090         return ret;
3091       }
3092     }
3093   };
3094
3095   //== MEDCouplingCMesh End
3096
3097   //== MEDCouplingCurveLinearMesh
3098
3099   class MEDCouplingCurveLinearMesh : public ParaMEDMEM::MEDCouplingStructuredMesh
3100   {
3101   public:
3102     static MEDCouplingCurveLinearMesh *New() throw(INTERP_KERNEL::Exception);
3103     static MEDCouplingCurveLinearMesh *New(const std::string& meshName) throw(INTERP_KERNEL::Exception);
3104     MEDCouplingCurveLinearMesh *clone(bool recDeepCpy) const;
3105     void setCoords(const DataArrayDouble *coords) throw(INTERP_KERNEL::Exception);
3106     %extend {
3107       MEDCouplingCurveLinearMesh() throw(INTERP_KERNEL::Exception)
3108       {
3109         return MEDCouplingCurveLinearMesh::New();
3110       }
3111       MEDCouplingCurveLinearMesh(const std::string& meshName) throw(INTERP_KERNEL::Exception)
3112       {
3113         return MEDCouplingCurveLinearMesh::New(meshName);
3114       }
3115       std::string __str__() const throw(INTERP_KERNEL::Exception) 
3116       {
3117         return self->simpleRepr();
3118       }
3119       std::string __repr__() const throw(INTERP_KERNEL::Exception)
3120       {
3121         std::ostringstream oss;
3122         self->reprQuickOverview(oss);
3123         return oss.str();
3124       }
3125       DataArrayDouble *getCoords() throw(INTERP_KERNEL::Exception)
3126       {
3127         DataArrayDouble *ret=self->getCoords();
3128         if(ret)
3129           ret->incrRef();
3130         return ret;
3131       }
3132       void setNodeGridStructure(PyObject *gridStruct) throw(INTERP_KERNEL::Exception)
3133       {
3134         int szArr,sw,iTypppArr;
3135         std::vector<int> stdvecTyyppArr;
3136         const int *tmp=convertObjToPossibleCpp1_Safe(gridStruct,sw,szArr,iTypppArr,stdvecTyyppArr);
3137         self->setNodeGridStructure(tmp,tmp+szArr);
3138       }
3139     }
3140   };
3141
3142   //== MEDCouplingCurveLinearMesh End
3143
3144   //== MEDCouplingIMesh
3145
3146   class MEDCouplingIMesh : public ParaMEDMEM::MEDCouplingStructuredMesh
3147   {
3148   public:
3149     static MEDCouplingIMesh *New() throw(INTERP_KERNEL::Exception);
3150     //
3151     void setSpaceDimension(int spaceDim) throw(INTERP_KERNEL::Exception);
3152     std::vector<int> getNodeStruct() const throw(INTERP_KERNEL::Exception);
3153     std::vector<double> getOrigin() const throw(INTERP_KERNEL::Exception);
3154     std::vector<double> getDXYZ() const throw(INTERP_KERNEL::Exception);
3155     void setAxisUnit(const std::string& unitName) throw(INTERP_KERNEL::Exception);
3156     std::string getAxisUnit() const throw(INTERP_KERNEL::Exception);
3157     double getMeasureOfAnyCell() const throw(INTERP_KERNEL::Exception);
3158     MEDCouplingCMesh *convertToCartesian() const throw(INTERP_KERNEL::Exception);
3159     void refineWithFactor(const std::vector<int>& factors) throw(INTERP_KERNEL::Exception);
3160     MEDCouplingIMesh *asSingleCell() const throw(INTERP_KERNEL::Exception);
3161     MEDCouplingIMesh *buildWithGhost(int ghostLev) const throw(INTERP_KERNEL::Exception);
3162     %extend
3163     {
3164       MEDCouplingIMesh()
3165       {
3166         return MEDCouplingIMesh::New();
3167       }
3168       static MEDCouplingIMesh *New(const std::string& meshName, int spaceDim, PyObject *nodeStrct, PyObject *origin, PyObject *dxyz) throw(INTERP_KERNEL::Exception)
3169       {
3170         static const char msg0[]="MEDCouplingIMesh::New : error on 'origin' parameter !";
3171         static const char msg1[]="MEDCouplingIMesh::New : error on 'dxyz' parameter !";
3172         const int *nodeStrctPtr(0);
3173         const double *originPtr(0),*dxyzPtr(0);
3174         int sw,sz,val0;
3175         std::vector<int> bb0;
3176         nodeStrctPtr=convertObjToPossibleCpp1_Safe(nodeStrct,sw,sz,val0,bb0);
3177         //
3178         double val,val2;
3179         std::vector<double> bb,bb2;
3180         int sz1,sz2;
3181         originPtr=convertObjToPossibleCpp5_SingleCompo(origin,sw,val,bb,msg0,false,sz1);
3182         dxyzPtr=convertObjToPossibleCpp5_SingleCompo(dxyz,sw,val2,bb2,msg1,false,sz2);
3183         //
3184         return MEDCouplingIMesh::New(meshName,spaceDim,nodeStrctPtr,nodeStrctPtr+sz,originPtr,originPtr+sz1,dxyzPtr,dxyzPtr+sz2);
3185       }
3186
3187       MEDCouplingIMesh(const std::string& meshName, int spaceDim, PyObject *nodeStrct, PyObject *origin, PyObject *dxyz) throw(INTERP_KERNEL::Exception)
3188       {
3189         return ParaMEDMEM_MEDCouplingIMesh_New__SWIG_1(meshName,spaceDim,nodeStrct,origin,dxyz);
3190       }
3191
3192       void setNodeStruct(PyObject *nodeStrct) throw(INTERP_KERNEL::Exception)
3193       {
3194         int sw,sz,val0;
3195         std::vector<int> bb0;
3196         const int *nodeStrctPtr(convertObjToPossibleCpp1_Safe(nodeStrct,sw,sz,val0,bb0));
3197         self->setNodeStruct(nodeStrctPtr,nodeStrctPtr+sz);
3198       }
3199
3200       void setOrigin(PyObject *origin) throw(INTERP_KERNEL::Exception)
3201       {
3202         static const char msg[]="MEDCouplingIMesh::setOrigin : invalid input 'origin' parameter ! integer, float, list/tuple of float, DataArrayDouble or DataArrayDoubleTuple supported !";
3203         double val;
3204         DataArrayDouble *a;
3205         DataArrayDoubleTuple *aa;
3206         std::vector<double> bb;
3207         int sw,nbTuples;
3208         const double *originPtr(convertObjToPossibleCpp5_SingleCompo(origin,sw,val,bb,msg,false,nbTuples));
3209         self->setOrigin(originPtr,originPtr+nbTuples);
3210       }
3211       
3212       void setDXYZ(PyObject *dxyz) throw(INTERP_KERNEL::Exception)
3213       {
3214         static const char msg[]="MEDCouplingIMesh::setDXYZ : invalid input 'dxyz' parameter ! integer, float, list/tuple of float, DataArrayDouble or DataArrayDoubleTuple supported !";
3215         double val;
3216         DataArrayDouble *a;
3217         DataArrayDoubleTuple *aa;
3218         std::vector<double> bb;
3219         int sw,nbTuples;
3220         const double *originPtr(convertObjToPossibleCpp5_SingleCompo(dxyz,sw,val,bb,msg,false,nbTuples));
3221         self->setDXYZ(originPtr,originPtr+nbTuples);
3222       }
3223
3224       static void CondenseFineToCoarse(const std::vector<int>& coarseSt, const DataArrayDouble *fineDA, PyObject *fineLocInCoarse, const std::vector<int>& facts, DataArrayDouble *coarseDA) throw(INTERP_KERNEL::Exception)
3225       {
3226         std::vector< std::pair<int,int> > inp;
3227         convertPyToVectorPairInt(fineLocInCoarse,inp);
3228         MEDCouplingIMesh::CondenseFineToCoarse(coarseSt,fineDA,inp,facts,coarseDA);
3229       }
3230
3231       static void CondenseFineToCoarseGhost(const std::vector<int>& coarseSt, const DataArrayDouble *fineDA, PyObject *fineLocInCoarse, const std::vector<int>& facts, DataArrayDouble *coarseDA, int ghostSize) throw(INTERP_KERNEL::Exception)
3232       {
3233         std::vector< std::pair<int,int> > inp;
3234         convertPyToVectorPairInt(fineLocInCoarse,inp);
3235         MEDCouplingIMesh::CondenseFineToCoarseGhost(coarseSt,fineDA,inp,facts,coarseDA,ghostSize);
3236       }
3237
3238       static void SpreadCoarseToFine(const DataArrayDouble *coarseDA, const std::vector<int>& coarseSt, DataArrayDouble *fineDA, PyObject *fineLocInCoarse, const std::vector<int>& facts) throw(INTERP_KERNEL::Exception)
3239       {
3240         std::vector< std::pair<int,int> > inp;
3241         convertPyToVectorPairInt(fineLocInCoarse,inp);
3242         MEDCouplingIMesh::SpreadCoarseToFine(coarseDA,coarseSt,fineDA,inp,facts);
3243       }
3244
3245       static void SpreadCoarseToFineGhost(const DataArrayDouble *coarseDA, const std::vector<int>& coarseSt, DataArrayDouble *fineDA, PyObject *fineLocInCoarse, const std::vector<int>& facts, int ghostSize) throw(INTERP_KERNEL::Exception)
3246       {
3247         std::vector< std::pair<int,int> > inp;
3248         convertPyToVectorPairInt(fineLocInCoarse,inp);
3249         MEDCouplingIMesh::SpreadCoarseToFineGhost(coarseDA,coarseSt,fineDA,inp,facts,ghostSize);
3250       }
3251
3252       static void SpreadCoarseToFineGhostZone(const DataArrayDouble *coarseDA, const std::vector<int>& coarseSt, DataArrayDouble *fineDA, PyObject *fineLocInCoarse, const std::vector<int>& facts, int ghostSize) throw(INTERP_KERNEL::Exception)
3253       {
3254         std::vector< std::pair<int,int> > inp;
3255         convertPyToVectorPairInt(fineLocInCoarse,inp);
3256         MEDCouplingIMesh::SpreadCoarseToFineGhostZone(coarseDA,coarseSt,fineDA,inp,facts,ghostSize);
3257       }
3258
3259       std::string __str__() const throw(INTERP_KERNEL::Exception)
3260       {
3261         return self->simpleRepr();
3262       }
3263       std::string __repr__() const throw(INTERP_KERNEL::Exception)
3264       {
3265         std::ostringstream oss;
3266         self->reprQuickOverview(oss);
3267         return oss.str();
3268       }
3269     }
3270   };
3271
3272   //== MEDCouplingIMesh End
3273
3274 }
3275
3276 namespace ParaMEDMEM
3277 {
3278   class MEDCouplingField : public ParaMEDMEM::RefCountObject, public ParaMEDMEM::TimeLabel
3279   {
3280   public:
3281     virtual void checkCoherency() const throw(INTERP_KERNEL::Exception);
3282     virtual bool areCompatibleForMerge(const MEDCouplingField *other) const throw(INTERP_KERNEL::Exception);
3283     virtual bool isEqual(const MEDCouplingField *other, double meshPrec, double valsPrec) const throw(INTERP_KERNEL::Exception);
3284     virtual bool isEqualWithoutConsideringStr(const MEDCouplingField *other, double meshPrec, double valsPrec) const throw(INTERP_KERNEL::Exception);
3285     virtual void copyTinyStringsFrom(const MEDCouplingField *other) throw(INTERP_KERNEL::Exception);
3286     void setMesh(const ParaMEDMEM::MEDCouplingMesh *mesh) throw(INTERP_KERNEL::Exception);
3287     void setName(const char *name) throw(INTERP_KERNEL::Exception);
3288     std::string getDescription() const throw(INTERP_KERNEL::Exception);
3289     void setDescription(const char *desc) throw(INTERP_KERNEL::Exception);
3290     std::string getName() const throw(INTERP_KERNEL::Exception);
3291     TypeOfField getTypeOfField() const throw(INTERP_KERNEL::Exception);
3292     NatureOfField getNature() const throw(INTERP_KERNEL::Exception);
3293     virtual void setNature(NatureOfField nat) throw(INTERP_KERNEL::Exception);
3294     DataArrayDouble *getLocalizationOfDiscr() const throw(INTERP_KERNEL::Exception);
3295     MEDCouplingFieldDouble *buildMeasureField(bool isAbs) const throw(INTERP_KERNEL::Exception);
3296     int getNumberOfTuplesExpected() const throw(INTERP_KERNEL::Exception);
3297     int getNumberOfMeshPlacesExpected() const throw(INTERP_KERNEL::Exception);
3298     void setGaussLocalizationOnType(INTERP_KERNEL::NormalizedCellType type, const std::vector<double>& refCoo,
3299                                     const std::vector<double>& gsCoo, const std::vector<double>& wg) throw(INTERP_KERNEL::Exception);
3300     void clearGaussLocalizations() throw(INTERP_KERNEL::Exception);
3301     MEDCouplingGaussLocalization& getGaussLocalization(int locId) throw(INTERP_KERNEL::Exception);
3302     int getNbOfGaussLocalization() const throw(INTERP_KERNEL::Exception);
3303     int getGaussLocalizationIdOfOneCell(int cellId) const throw(INTERP_KERNEL::Exception);
3304     const MEDCouplingGaussLocalization& getGaussLocalization(int locId) const throw(INTERP_KERNEL::Exception);
3305     int getGaussLocalizationIdOfOneType(INTERP_KERNEL::NormalizedCellType type) const throw(INTERP_KERNEL::Exception);
3306     void setDiscretization(MEDCouplingFieldDiscretization *newDisc);
3307     %extend {
3308       PyObject *getMesh() const throw(INTERP_KERNEL::Exception)
3309       {
3310         MEDCouplingMesh *ret1=const_cast<MEDCouplingMesh *>(self->getMesh());
3311         if(ret1)
3312           ret1->incrRef();
3313         return convertMesh(ret1,SWIG_POINTER_OWN | 0 );
3314       }
3315
3316       PyObject *getDiscretization() throw(INTERP_KERNEL::Exception)
3317       {
3318         MEDCouplingFieldDiscretization *ret=self->getDiscretization();
3319         if(ret)
3320           ret->incrRef();
3321         return convertFieldDiscretization(ret,SWIG_POINTER_OWN | 0 );
3322       }
3323
3324       PyObject *getGaussLocalizationIdsOfOneType(INTERP_KERNEL::NormalizedCellType type) const throw(INTERP_KERNEL::Exception)
3325       {
3326         std::set<int> ret=self->getGaussLocalizationIdsOfOneType(type);
3327         return convertIntArrToPyList3(ret);
3328       }
3329
3330       PyObject *isEqualIfNotWhy(const MEDCouplingField *other, double meshPrec, double valsPrec) const throw(INTERP_KERNEL::Exception)
3331       {
3332         std::string ret1;
3333         bool ret0=self->isEqualIfNotWhy(other,meshPrec,valsPrec,ret1);
3334         PyObject *ret=PyTuple_New(2);
3335         PyObject *ret0Py=ret0?Py_True:Py_False;
3336         Py_XINCREF(ret0Py);
3337         PyTuple_SetItem(ret,0,ret0Py);
3338         PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
3339         return ret;
3340       }
3341
3342       PyObject *buildSubMeshData(PyObject *li) const throw(INTERP_KERNEL::Exception)
3343       {
3344         DataArrayInt *ret1=0;
3345         MEDCouplingMesh *ret0=0;
3346         void *da=0;
3347         int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayInt, 0 |  0 );
3348         if (!SWIG_IsOK(res1))
3349           {
3350             int size;
3351             INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
3352             ret0=self->buildSubMeshData(tmp,tmp+size,ret1);
3353           }
3354         else
3355           {
3356             DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
3357             if(!da2)
3358               throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
3359             da2->checkAllocated();
3360             ret0=self->buildSubMeshData(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems(),ret1);
3361           }
3362         PyObject *res = PyList_New(2);
3363         PyList_SetItem(res,0,convertMesh(ret0, SWIG_POINTER_OWN | 0 ));
3364         PyList_SetItem(res,1,SWIG_NewPointerObj((void*)ret1,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,SWIG_POINTER_OWN | 0));
3365         return res;
3366       }
3367
3368       PyObject *buildSubMeshDataRange(int begin, int end, int step) const throw(INTERP_KERNEL::Exception)
3369       {
3370         DataArrayInt *ret1=0;
3371         int bb,ee,ss;
3372         MEDCouplingMesh *ret0=self->buildSubMeshDataRange(begin,end,step,bb,ee,ss,ret1);
3373         PyObject *res=PyTuple_New(2);
3374         PyTuple_SetItem(res,0,convertMesh(ret0, SWIG_POINTER_OWN | 0 ));
3375         if(ret1)
3376           PyTuple_SetItem(res,1,SWIG_NewPointerObj((void*)ret1,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,SWIG_POINTER_OWN | 0));
3377         else
3378           {
3379             PyObject *res1=PySlice_New(PyInt_FromLong(bb),PyInt_FromLong(ee),PyInt_FromLong(ss));
3380             PyTuple_SetItem(res,1,res1);
3381           }
3382         return res;
3383       }
3384
3385       DataArrayInt *computeTupleIdsToSelectFromCellIds(PyObject *cellIds) const
3386       {
3387         int sw,sz(-1);
3388         int v0; std::vector<int> v1;
3389         const int *cellIdsBg(convertObjToPossibleCpp1_Safe(cellIds,sw,sz,v0,v1));
3390         return self->computeTupleIdsToSelectFromCellIds(cellIdsBg,cellIdsBg+sz);
3391       }
3392
3393       void setGaussLocalizationOnCells(PyObject *li, const std::vector<double>& refCoo,
3394                                        const std::vector<double>& gsCoo, const std::vector<double>& wg) throw(INTERP_KERNEL::Exception)
3395       {
3396         void *da=0;
3397         int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayInt, 0 |  0 );
3398         if (!SWIG_IsOK(res1))
3399           {
3400             int size;
3401             INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
3402             self->setGaussLocalizationOnCells(tmp,((int *)tmp)+size,refCoo,gsCoo,wg);
3403           }
3404         else
3405           {
3406             DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
3407             if(!da2)
3408               throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
3409             da2->checkAllocated();
3410             self->setGaussLocalizationOnCells(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems(),refCoo,gsCoo,wg);
3411           }
3412       }
3413
3414       PyObject *getCellIdsHavingGaussLocalization(int locId) const throw(INTERP_KERNEL::Exception)
3415       {
3416         std::vector<int> tmp;
3417         self->getCellIdsHavingGaussLocalization(locId,tmp);
3418         DataArrayInt *ret=DataArrayInt::New();
3419         ret->alloc((int)tmp.size(),1);
3420         std::copy(tmp.begin(),tmp.end(),ret->getPointer());
3421         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
3422       }
3423       
3424       int getNumberOfTuplesExpectedRegardingCode(PyObject *code, PyObject *idsPerType) const throw(INTERP_KERNEL::Exception)
3425       {
3426         std::vector<int> inp0;
3427         convertPyToNewIntArr4(code,1,3,inp0);
3428         std::vector<const DataArrayInt *> inp1;
3429         convertFromPyObjVectorOfObj<const ParaMEDMEM::DataArrayInt *>(idsPerType,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,"DataArrayInt",inp1);
3430         return self->getNumberOfTuplesExpectedRegardingCode(inp0,inp1);
3431       }
3432     }
3433   };
3434   
3435   class MEDCouplingFieldTemplate : public ParaMEDMEM::MEDCouplingField
3436   {
3437   public:
3438     static MEDCouplingFieldTemplate *New(const MEDCouplingFieldDouble& f) throw(INTERP_KERNEL::Exception);
3439     static MEDCouplingFieldTemplate *New(TypeOfField type);
3440     std::string simpleRepr() const throw(INTERP_KERNEL::Exception);
3441     std::string advancedRepr() const throw(INTERP_KERNEL::Exception);
3442     %extend
3443        {
3444          MEDCouplingFieldTemplate(const MEDCouplingFieldDouble& f) throw(INTERP_KERNEL::Exception)
3445          {
3446            return MEDCouplingFieldTemplate::New(f);
3447          }
3448          
3449          MEDCouplingFieldTemplate(TypeOfField type) throw(INTERP_KERNEL::Exception)
3450          {
3451            return MEDCouplingFieldTemplate::New(type);
3452          }
3453          
3454          std::string __str__() const throw(INTERP_KERNEL::Exception)
3455          {
3456            return self->simpleRepr();
3457          }
3458          
3459          std::string __repr__() const throw(INTERP_KERNEL::Exception)
3460          {
3461            std::ostringstream oss;
3462            self->reprQuickOverview(oss);
3463            return oss.str();
3464          }
3465        }
3466   };
3467   
3468   class MEDCouplingFieldDouble : public ParaMEDMEM::MEDCouplingField
3469   {
3470   public:
3471     static MEDCouplingFieldDouble *New(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME);
3472     static MEDCouplingFieldDouble *New(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME);
3473     void setTimeUnit(const std::string& unit);
3474     std::string getTimeUnit() const;
3475     void synchronizeTimeWithSupport() throw(INTERP_KERNEL::Exception);
3476     void copyTinyAttrFrom(const MEDCouplingFieldDouble *other) throw(INTERP_KERNEL::Exception);
3477     void copyAllTinyAttrFrom(const MEDCouplingFieldDouble *other) throw(INTERP_KERNEL::Exception);
3478     std::string simpleRepr() const throw(INTERP_KERNEL::Exception);
3479     std::string advancedRepr() const throw(INTERP_KERNEL::Exception);
3480     void writeVTK(const std::string& fileName, bool isBinary=true) const throw(INTERP_KERNEL::Exception);
3481     MEDCouplingFieldDouble *clone(bool recDeepCpy) const;
3482     MEDCouplingFieldDouble *cloneWithMesh(bool recDeepCpy) const;
3483     MEDCouplingFieldDouble *deepCpy() const;
3484     MEDCouplingFieldDouble *buildNewTimeReprFromThis(TypeOfTimeDiscretization td, bool deepCpy) const throw(INTERP_KERNEL::Exception);
3485     MEDCouplingFieldDouble *nodeToCellDiscretization() const throw(INTERP_KERNEL::Exception);
3486     MEDCouplingFieldDouble *cellToNodeDiscretization() const throw(INTERP_KERNEL::Exception);
3487     TypeOfTimeDiscretization getTimeDiscretization() const throw(INTERP_KERNEL::Exception);
3488     double getIJ(int tupleId, int compoId) const throw(INTERP_KERNEL::Exception);
3489     double getIJK(int cellId, int nodeIdInCell, int compoId) const throw(INTERP_KERNEL::Exception);
3490     void synchronizeTimeWithMesh() throw(INTERP_KERNEL::Exception);
3491     void setArray(DataArrayDouble *array) throw(INTERP_KERNEL::Exception);
3492     void setEndArray(DataArrayDouble *array) throw(INTERP_KERNEL::Exception);
3493     void setTime(double val, int iteration, int order) throw(INTERP_KERNEL::Exception);
3494     void setStartTime(double val, int iteration, int order) throw(INTERP_KERNEL::Exception);
3495     void setEndTime(double val, int iteration, int order) throw(INTERP_KERNEL::Exception);
3496     void applyLin(double a, double b, int compoId) throw(INTERP_KERNEL::Exception);
3497     void applyLin(double a, double b) throw(INTERP_KERNEL::Exception);
3498     int getNumberOfComponents() const throw(INTERP_KERNEL::Exception);
3499     int getNumberOfTuples() const throw(INTERP_KERNEL::Exception);
3500     int getNumberOfValues() const throw(INTERP_KERNEL::Exception);
3501     void setTimeTolerance(double val) throw(INTERP_KERNEL::Exception);
3502     double getTimeTolerance() const throw(INTERP_KERNEL::Exception);
3503     void setIteration(int it) throw(INTERP_KERNEL::Exception);
3504     void setEndIteration(int it) throw(INTERP_KERNEL::Exception);
3505     void setOrder(int order) throw(INTERP_KERNEL::Exception);
3506     void setEndOrder(int order) throw(INTERP_KERNEL::Exception);
3507     void setTimeValue(double val) throw(INTERP_KERNEL::Exception);
3508     void setEndTimeValue(double val) throw(INTERP_KERNEL::Exception);
3509     void changeUnderlyingMesh(const MEDCouplingMesh *other, int levOfCheck, double precOnMesh, double eps=1e-15) throw(INTERP_KERNEL::Exception);
3510     void substractInPlaceDM(const MEDCouplingFieldDouble *f, int levOfCheck, double precOnMesh, double eps=1e-15) throw(INTERP_KERNEL::Exception);
3511     bool mergeNodes(double eps, double epsOnVals=1e-15) throw(INTERP_KERNEL::Exception);
3512     bool mergeNodes2(double eps, double epsOnVals=1e-15) throw(INTERP_KERNEL::Exception);
3513     bool zipCoords(double epsOnVals=1e-15) throw(INTERP_KERNEL::Exception);
3514     bool zipConnectivity(int compType,double epsOnVals=1e-15) throw(INTERP_KERNEL::Exception);
3515     bool simplexize(int policy) throw(INTERP_KERNEL::Exception);
3516     MEDCouplingFieldDouble *doublyContractedProduct() const throw(INTERP_KERNEL::Exception);
3517     MEDCouplingFieldDouble *determinant() const throw(INTERP_KERNEL::Exception);
3518     MEDCouplingFieldDouble *eigenValues() const throw(INTERP_KERNEL::Exception);
3519     MEDCouplingFieldDouble *eigenVectors() const throw(INTERP_KERNEL::Exception);
3520     MEDCouplingFieldDouble *inverse() const throw(INTERP_KERNEL::Exception);
3521     MEDCouplingFieldDouble *trace() const throw(INTERP_KERNEL::Exception);
3522     MEDCouplingFieldDouble *deviator() const throw(INTERP_KERNEL::Exception);
3523     MEDCouplingFieldDouble *magnitude() const throw(INTERP_KERNEL::Exception);
3524     MEDCouplingFieldDouble *maxPerTuple() const throw(INTERP_KERNEL::Exception);
3525     void changeNbOfComponents(int newNbOfComp, double dftValue=0.) throw(INTERP_KERNEL::Exception);
3526     void sortPerTuple(bool asc) throw(INTERP_KERNEL::Exception);
3527     MEDCouplingFieldDouble &operator=(double value) throw(INTERP_KERNEL::Exception);
3528     void fillFromAnalytic(int nbOfComp, const std::string& func) throw(INTERP_KERNEL::Exception);
3529     void fillFromAnalytic2(int nbOfComp, const std::string& func) throw(INTERP_KERNEL::Exception);
3530     void fillFromAnalytic3(int nbOfComp, const std::vector<std::string>& varsOrder, const std::string& func) throw(INTERP_KERNEL::Exception);
3531     void applyFunc(int nbOfComp, const std::string& func) throw(INTERP_KERNEL::Exception);
3532     void applyFunc2(int nbOfComp, const std::string& func) throw(INTERP_KERNEL::Exception);
3533     void applyFunc3(int nbOfComp, const std::vector<std::string>& varsOrder, const std::string& func) throw(INTERP_KERNEL::Exception);
3534     void applyFunc(int nbOfComp, double val) throw(INTERP_KERNEL::Exception);
3535     void applyFunc(const std::string& func) throw(INTERP_KERNEL::Exception);
3536     void applyFuncFast32(const std::string& func) throw(INTERP_KERNEL::Exception);
3537     void applyFuncFast64(const std::string& func) throw(INTERP_KERNEL::Exception);
3538     double accumulate(int compId) const throw(INTERP_KERNEL::Exception);
3539     double getMaxValue() const throw(INTERP_KERNEL::Exception);
3540     double getMinValue() const throw(INTERP_KERNEL::Exception);
3541     double getAverageValue() const throw(INTERP_KERNEL::Exception);
3542     double norm2() const throw(INTERP_KERNEL::Exception);
3543     double normMax() const throw(INTERP_KERNEL::Exception);
3544     //do not put a default value to isWAbs because confusion in python with overloaded getWeightedAverageValue method
3545     double getWeightedAverageValue(int compId, bool isWAbs) const throw(INTERP_KERNEL::Exception);
3546     double integral(int compId, bool isWAbs) const throw(INTERP_KERNEL::Exception);
3547     double normL1(int compId) const throw(INTERP_KERNEL::Exception);
3548     double normL2(int compId) const throw(INTERP_KERNEL::Exception);
3549     DataArrayInt *getIdsInRange(double vmin, double vmax) const throw(INTERP_KERNEL::Exception);
3550     MEDCouplingFieldDouble *buildSubPartRange(int begin, int end, int step) const throw(INTERP_KERNEL::Exception);
3551     static MEDCouplingFieldDouble *MergeFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3552     static MEDCouplingFieldDouble *MeldFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3553     static MEDCouplingFieldDouble *DotFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3554     MEDCouplingFieldDouble *dot(const MEDCouplingFieldDouble& other) const throw(INTERP_KERNEL::Exception);
3555     static MEDCouplingFieldDouble *CrossProductFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3556     MEDCouplingFieldDouble *crossProduct(const MEDCouplingFieldDouble& other) const throw(INTERP_KERNEL::Exception);
3557     static MEDCouplingFieldDouble *MaxFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3558     MEDCouplingFieldDouble *max(const MEDCouplingFieldDouble& other) const throw(INTERP_KERNEL::Exception);
3559     static MEDCouplingFieldDouble *MinFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3560     static MEDCouplingFieldDouble *AddFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3561     static MEDCouplingFieldDouble *SubstractFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3562     static MEDCouplingFieldDouble *MultiplyFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3563     static MEDCouplingFieldDouble *DivideFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3564     MEDCouplingFieldDouble *min(const MEDCouplingFieldDouble& other) const throw(INTERP_KERNEL::Exception);
3565     MEDCouplingFieldDouble *negate() const throw(INTERP_KERNEL::Exception);
3566     %extend {
3567       MEDCouplingFieldDouble(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME)
3568       {
3569         return MEDCouplingFieldDouble::New(type,td);
3570       }
3571
3572       MEDCouplingFieldDouble(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME)
3573       {
3574         return MEDCouplingFieldDouble::New(ft,td);
3575       }
3576
3577       std::string __str__() const throw(INTERP_KERNEL::Exception)
3578       {
3579         return self->simpleRepr();
3580       }
3581
3582       std::string __repr__() const throw(INTERP_KERNEL::Exception)
3583       {
3584         std::ostringstream oss;
3585         self->reprQuickOverview(oss);
3586         return oss.str();
3587       }
3588
3589       DataArrayDouble *getArray() throw(INTERP_KERNEL::Exception)
3590       {
3591         DataArrayDouble *ret=self->getArray();
3592         if(ret)
3593           ret->incrRef();
3594         return ret;
3595       }
3596
3597       PyObject *getArrays() const throw(INTERP_KERNEL::Exception)
3598       {
3599         std::vector<DataArrayDouble *> arrs=self->getArrays();
3600         for(std::vector<DataArrayDouble *>::iterator it=arrs.begin();it!=arrs.end();it++)
3601           if(*it)
3602             (*it)->incrRef();
3603         int sz=arrs.size();
3604         PyObject *ret=PyTuple_New(sz);
3605         for(int i=0;i<sz;i++)
3606           {
3607             if(arrs[i])
3608               PyTuple_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(arrs[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
3609             else
3610               PyTuple_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, 0 | 0 ));
3611           }
3612         return ret;
3613       }
3614
3615       void setArrays(PyObject *ls) throw(INTERP_KERNEL::Exception)
3616       {
3617         std::vector<const DataArrayDouble *> tmp;
3618         convertFromPyObjVectorOfObj<const DataArrayDouble *>(ls,SWIGTYPE_p_ParaMEDMEM__DataArrayDouble,"DataArrayDouble",tmp);
3619         int sz=tmp.size();
3620         std::vector<DataArrayDouble *> arrs(sz);
3621         for(int i=0;i<sz;i++)
3622           arrs[i]=const_cast<DataArrayDouble *>(tmp[i]);
3623         self->setArrays(arrs);
3624       }
3625
3626       DataArrayDouble *getEndArray() throw(INTERP_KERNEL::Exception)
3627       {
3628         DataArrayDouble *ret=self->getEndArray();
3629         if(ret)
3630           ret->incrRef();
3631         return ret;
3632       }
3633
3634       PyObject *getValueOn(PyObject *sl) const throw(INTERP_KERNEL::Exception)
3635       {
3636         double val;
3637         DataArrayDouble *a;
3638         DataArrayDoubleTuple *aa;
3639         std::vector<double> bb;
3640         int sw;
3641         const MEDCouplingMesh *mesh=self->getMesh();
3642         if(!mesh)
3643           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingFieldDouble::getValueOn : no underlying mesh !");
3644         int spaceDim=mesh->getSpaceDimension();
3645         const char msg[]="Python wrap of MEDCouplingFieldDouble::getValueOn : ";
3646         const double *spaceLoc=convertObjToPossibleCpp5_Safe(sl,sw,val,a,aa,bb,msg,1,spaceDim,true);
3647         //
3648         int sz=self->getNumberOfComponents();
3649         INTERP_KERNEL::AutoPtr<double> res=new double[sz];
3650         self->getValueOn(spaceLoc,res);
3651         return convertDblArrToPyList(res,sz);
3652       }
3653
3654        PyObject *getValueOnPos(int i, int j, int k) const throw(INTERP_KERNEL::Exception)
3655        {
3656          int sz=self->getNumberOfComponents();
3657          INTERP_KERNEL::AutoPtr<double> res=new double[sz];
3658          self->getValueOnPos(i,j,k,res);
3659          return convertDblArrToPyList(res,sz);
3660        }
3661
3662       DataArrayDouble *getValueOnMulti(PyObject *locs) const throw(INTERP_KERNEL::Exception)
3663       {
3664         const MEDCouplingMesh *mesh(self->getMesh());
3665         if(!mesh)
3666           throw INTERP_KERNEL::Exception("Python wrap MEDCouplingFieldDouble::getValueOnMulti : lying on a null mesh !");
3667         //
3668         int sw,nbPts;
3669         double v0; ParaMEDMEM::DataArrayDouble *v1(0); ParaMEDMEM::DataArrayDoubleTuple *v2(0); std::vector<double> v3;
3670         const double *inp=convertObjToPossibleCpp5_Safe2(locs,sw,v0,v1,v2,v3,"wrap of MEDCouplingFieldDouble::getValueOnMulti",
3671                                                          mesh->getSpaceDimension(),true,nbPts);
3672         return self->getValueOnMulti(inp,nbPts);
3673       }
3674
3675       PyObject *getValueOn(PyObject *sl, double time) const throw(INTERP_KERNEL::Exception)
3676       {
3677         double val;
3678         DataArrayDouble *a;
3679         DataArrayDoubleTuple *aa;
3680         std::vector<double> bb;
3681         int sw;
3682         const MEDCouplingMesh *mesh=self->getMesh();
3683         if(!mesh)
3684           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingFieldDouble::getValueOn : no underlying mesh !");
3685         int spaceDim=mesh->getSpaceDimension();
3686         const char msg[]="Python wrap of MEDCouplingFieldDouble::getValueOn : ";
3687         const double *spaceLoc=convertObjToPossibleCpp5_Safe(sl,sw,val,a,aa,bb,msg,1,spaceDim,true);
3688         //
3689         //
3690         int sz=self->getNumberOfComponents();
3691         INTERP_KERNEL::AutoPtr<double> res=new double[sz];
3692         self->getValueOn(spaceLoc,time,res);
3693         return convertDblArrToPyList(res,sz);
3694       }
3695
3696       void setValues(PyObject *li, PyObject *nbOfTuples=0, PyObject *nbOfComp=0) throw(INTERP_KERNEL::Exception)
3697       {
3698         if(self->getArray()!=0)
3699           ParaMEDMEM_DataArrayDouble_setValues__SWIG_0(self->getArray(),li,nbOfTuples,nbOfComp);
3700         else
3701           {
3702             MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> arr=DataArrayDouble::New();
3703             ParaMEDMEM_DataArrayDouble_setValues__SWIG_0(arr,li,nbOfTuples,nbOfComp);
3704             self->setArray(arr);
3705           }
3706       }
3707       
3708       PyObject *getTime() throw(INTERP_KERNEL::Exception)
3709       {
3710         int tmp1,tmp2;
3711         double tmp0=self->getTime(tmp1,tmp2);
3712         PyObject *res = PyList_New(3);
3713         PyList_SetItem(res,0,SWIG_From_double(tmp0));
3714         PyList_SetItem(res,1,SWIG_From_int(tmp1));
3715         PyList_SetItem(res,2,SWIG_From_int(tmp2));
3716         return res;
3717       }
3718
3719       PyObject *getStartTime() throw(INTERP_KERNEL::Exception)
3720       {
3721         int tmp1,tmp2;
3722         double tmp0=self->getStartTime(tmp1,tmp2);
3723         PyObject *res = PyList_New(3);
3724         PyList_SetItem(res,0,SWIG_From_double(tmp0));
3725         PyList_SetItem(res,1,SWIG_From_int(tmp1));
3726         PyList_SetItem(res,2,SWIG_From_int(tmp2));
3727         return res;
3728       }
3729
3730       PyObject *getEndTime() throw(INTERP_KERNEL::Exception)
3731       {
3732         int tmp1,tmp2;
3733         double tmp0=self->getEndTime(tmp1,tmp2);
3734         PyObject *res = PyList_New(3);
3735         PyList_SetItem(res,0,SWIG_From_double(tmp0));
3736         PyList_SetItem(res,1,SWIG_From_int(tmp1));
3737         PyList_SetItem(res,2,SWIG_From_int(tmp2));
3738         return res;
3739       }
3740       PyObject *accumulate() const throw(INTERP_KERNEL::Exception)
3741       {
3742         int sz=self->getNumberOfComponents();
3743         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
3744         self->accumulate(tmp);
3745         return convertDblArrToPyList(tmp,sz);
3746       }
3747       PyObject *integral(bool isWAbs) const throw(INTERP_KERNEL::Exception)
3748       {
3749         int sz=self->getNumberOfComponents();
3750         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
3751         self->integral(isWAbs,tmp);
3752         return convertDblArrToPyList(tmp,sz);
3753       }
3754       PyObject *getWeightedAverageValue(bool isWAbs=true) const throw(INTERP_KERNEL::Exception)
3755       {
3756         int sz=self->getNumberOfComponents();
3757         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
3758         self->getWeightedAverageValue(tmp,isWAbs);
3759         return convertDblArrToPyList(tmp,sz);
3760       }
3761       PyObject *normL1() const throw(INTERP_KERNEL::Exception)
3762       {
3763         int sz=self->getNumberOfComponents();
3764         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
3765         self->normL1(tmp);
3766         return convertDblArrToPyList(tmp,sz);
3767       }
3768       PyObject *normL2() const throw(INTERP_KERNEL::Exception)
3769       {
3770         int sz=self->getNumberOfComponents();
3771         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
3772         self->normL2(tmp);
3773         return convertDblArrToPyList(tmp,sz);
3774       }
3775       void renumberCells(PyObject *li, bool check=true) throw(INTERP_KERNEL::Exception)
3776       {
3777         int szArr,sw,iTypppArr;
3778         std::vector<int> stdvecTyyppArr;
3779         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3780         self->renumberCells(tmp,check);
3781       }
3782       
3783       void renumberCellsWithoutMesh(PyObject *li, bool check=true) throw(INTERP_KERNEL::Exception)
3784       {
3785         int szArr,sw,iTypppArr;
3786         std::vector<int> stdvecTyyppArr;
3787         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3788         self->renumberCellsWithoutMesh(tmp,check);
3789       }
3790       
3791       void renumberNodes(PyObject *li, double eps=1e-15) throw(INTERP_KERNEL::Exception)
3792       {
3793         int szArr,sw,iTypppArr;
3794         std::vector<int> stdvecTyyppArr;
3795         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3796         self->renumberNodes(tmp,eps);
3797       }
3798
3799       void renumberNodesWithoutMesh(PyObject *li, int newNbOfNodes, double eps=1e-15) throw(INTERP_KERNEL::Exception)
3800       {
3801         int szArr,sw,iTypppArr;
3802         std::vector<int> stdvecTyyppArr;
3803         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3804         self->renumberNodesWithoutMesh(tmp,newNbOfNodes,eps);
3805       }
3806
3807       MEDCouplingFieldDouble *buildSubPart(PyObject *li) const throw(INTERP_KERNEL::Exception)
3808       {
3809         int sw;
3810         int singleVal;
3811         std::vector<int> multiVal;
3812         std::pair<int, std::pair<int,int> > slic;
3813         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
3814         const MEDCouplingMesh *mesh=self->getMesh();
3815         if(!mesh)
3816           throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::buildSubPart : field lies on a null mesh !");
3817         int nbc=mesh->getNumberOfCells();
3818         convertObjToPossibleCpp2(li,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
3819         switch(sw)
3820           {
3821           case 1:
3822             {
3823               if(singleVal>=nbc)
3824                 {
3825                   std::ostringstream oss;
3826                   oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
3827                   throw INTERP_KERNEL::Exception(oss.str().c_str());
3828                 }
3829               if(singleVal>=0)
3830                 return self->buildSubPart(&singleVal,&singleVal+1);
3831               else
3832                 {
3833                   if(nbc+singleVal>0)
3834                     {
3835                       int tmp=nbc+singleVal;
3836                       return self->buildSubPart(&tmp,&tmp+1);
3837                     }
3838                   else
3839                     {
3840                       std::ostringstream oss;
3841                       oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
3842                       throw INTERP_KERNEL::Exception(oss.str().c_str());
3843                     }
3844                 }
3845             }
3846           case 2:
3847             {
3848               return self->buildSubPart(&multiVal[0],&multiVal[0]+multiVal.size());
3849             }
3850           case 3:
3851             {
3852               return self->buildSubPartRange(slic.first,slic.second.first,slic.second.second);
3853             }
3854           case 4:
3855             {
3856               if(!daIntTyypp)
3857                 throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::buildSubPart : null instance has been given in input !");
3858               daIntTyypp->checkAllocated();
3859               return self->buildSubPart(daIntTyypp->begin(),daIntTyypp->end());
3860             }
3861           default:
3862             throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::buildSubPart : unrecognized type in input ! Possibilities are : int, list or tuple of int DataArrayInt instance !");
3863           }
3864       }
3865
3866       MEDCouplingFieldDouble *__getitem__(PyObject *li) const throw(INTERP_KERNEL::Exception)
3867       {
3868         const char msg[]="MEDCouplingFieldDouble::__getitem__ : invalid call  Available API are : \n-myField[dataArrayInt]\n-myField[slice]\n-myField[pythonListOfCellIds]\n-myField[integer]\n-myField[dataArrayInt,1]\n-myField[slice,1]\n-myField[pythonListOfCellIds,1]\n-myField[integer,1]\n";
3869         if(PyTuple_Check(li))
3870           {
3871             Py_ssize_t sz=PyTuple_Size(li);
3872             if(sz!=2)
3873               throw INTERP_KERNEL::Exception(msg);
3874             PyObject *elt0=PyTuple_GetItem(li,0),*elt1=PyTuple_GetItem(li,1);
3875             int sw;
3876             int singleVal;
3877             std::vector<int> multiVal;
3878             std::pair<int, std::pair<int,int> > slic;
3879             ParaMEDMEM::DataArrayInt *daIntTyypp=0;
3880             if(!self->getArray())
3881               throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::__getitem__ : no array set on field to deduce number of components !");
3882             try
3883               { convertObjToPossibleCpp2(elt1,self->getArray()->getNumberOfComponents(),sw,singleVal,multiVal,slic,daIntTyypp); }
3884             catch(INTERP_KERNEL::Exception& e)
3885               { std::ostringstream oss; oss << "MEDCouplingFieldDouble::__getitem__ : invalid type in 2nd parameter (compo) !" << e.what(); throw INTERP_KERNEL::Exception(oss.str().c_str()); }
3886             MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret0=ParaMEDMEM_MEDCouplingFieldDouble_buildSubPart(self,elt0);
3887             DataArrayDouble *ret0Arr=ret0->getArray();
3888             if(!ret0Arr)
3889               throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::__getitem__ : no array exists to apply restriction on component on it !");
3890             switch(sw)
3891               {
3892               case 1:
3893                 {
3894                   std::vector<int> v2(1,singleVal);
3895                   MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aarr=static_cast<DataArrayDouble *>(ret0Arr->keepSelectedComponents(v2));
3896                   ret0->setArray(aarr);
3897                   return ret0.retn();
3898                 }
3899               case 2:
3900                 {
3901                   MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aarr=static_cast<DataArrayDouble *>(ret0Arr->keepSelectedComponents(multiVal));
3902                   ret0->setArray(aarr);
3903                   return ret0.retn();
3904                 }
3905               case 3:
3906                 {
3907                   int nbOfComp=DataArray::GetNumberOfItemGivenBESRelative(slic.first,slic.second.first,slic.second.second,"MEDCouplingFieldDouble::__getitem__ : invalid range in 2nd parameter (components) !");
3908                   std::vector<int> v2(nbOfComp);
3909                   for(int i=0;i<nbOfComp;i++)
3910                     v2[i]=slic.first+i*slic.second.second;
3911                   MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aarr=static_cast<DataArrayDouble *>(ret0Arr->keepSelectedComponents(v2));
3912                   ret0->setArray(aarr);
3913                   return ret0.retn();
3914                 }
3915               default:
3916                 throw INTERP_KERNEL::Exception(msg);
3917               }
3918             
3919           }
3920         else
3921           return ParaMEDMEM_MEDCouplingFieldDouble_buildSubPart(self,li);
3922       }
3923
3924       PyObject *getMaxValue2() const throw(INTERP_KERNEL::Exception)
3925       {
3926         DataArrayInt *tmp;
3927         double r1=self->getMaxValue2(tmp);
3928         PyObject *ret=PyTuple_New(2);
3929         PyTuple_SetItem(ret,0,PyFloat_FromDouble(r1));
3930         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
3931         return ret;
3932       }
3933       
3934       PyObject *getMinValue2() const throw(INTERP_KERNEL::Exception)
3935       {
3936         DataArrayInt *tmp;
3937         double r1=self->getMinValue2(tmp);
3938         PyObject *ret=PyTuple_New(2);
3939         PyTuple_SetItem(ret,0,PyFloat_FromDouble(r1));
3940         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
3941         return ret;
3942       }
3943       
3944       MEDCouplingFieldDouble *keepSelectedComponents(PyObject *li) const throw(INTERP_KERNEL::Exception)
3945       {
3946         std::vector<int> tmp;
3947         convertPyToNewIntArr3(li,tmp);
3948         return self->keepSelectedComponents(tmp);
3949       }
3950
3951       void setSelectedComponents(const MEDCouplingFieldDouble *f, PyObject *li) throw(INTERP_KERNEL::Exception)
3952       {
3953         std::vector<int> tmp;
3954         convertPyToNewIntArr3(li,tmp);
3955         self->setSelectedComponents(f,tmp);
3956       }
3957
3958       MEDCouplingFieldDouble *extractSlice3D(PyObject *origin, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
3959       {
3960         double val,val2;
3961         DataArrayDouble *a,*a2;
3962         DataArrayDoubleTuple *aa,*aa2;
3963         std::vector<double> bb,bb2;
3964         int sw;
3965         int spaceDim=3;
3966         const char msg[]="Python wrap of MEDCouplingFieldDouble::extractSlice3D : 1st paramater for origin.";
3967         const char msg2[]="Python wrap of MEDCouplingFieldDouble::extractSlice3D : 2nd paramater for vector.";
3968         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
3969         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
3970         //
3971         return self->extractSlice3D(orig,vect,eps);
3972       }
3973
3974       MEDCouplingFieldDouble *__add__(PyObject *obj) throw(INTERP_KERNEL::Exception)
3975       {
3976         return ParaMEDMEM_MEDCouplingFieldDouble___add__Impl(self,obj);
3977       }
3978
3979       MEDCouplingFieldDouble *__radd__(PyObject *obj) throw(INTERP_KERNEL::Exception)
3980       {
3981         return ParaMEDMEM_MEDCouplingFieldDouble___radd__Impl(self,obj);
3982       }
3983
3984       MEDCouplingFieldDouble *__sub__(PyObject *obj) throw(INTERP_KERNEL::Exception)
3985       {
3986         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__sub__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
3987         const char msg2[]="in MEDCouplingFieldDouble.__sub__ : self field has no Array of values set !";
3988         void *argp;
3989         //
3990         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
3991           {
3992             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
3993             if(other)
3994               return (*self)-(*other);
3995             else
3996               throw INTERP_KERNEL::Exception(msg);
3997           }
3998         //
3999         double val;
4000         DataArrayDouble *a;
4001         DataArrayDoubleTuple *aa;
4002         std::vector<double> bb;
4003         int sw;
4004         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
4005         switch(sw)
4006           {
4007           case 1:
4008             {
4009               if(!self->getArray())
4010                 throw INTERP_KERNEL::Exception(msg2);
4011               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=self->getArray()->deepCpy();
4012               ret->applyLin(1.,-val);
4013               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4014               ret2->setArray(ret);
4015               return ret2.retn();
4016             }
4017           case 2:
4018             {
4019               if(!self->getArray())
4020                 throw INTERP_KERNEL::Exception(msg2);
4021               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Substract(self->getArray(),a);
4022               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4023               ret2->setArray(ret);
4024               return ret2.retn();
4025             }
4026           case 3:
4027             {
4028               if(!self->getArray())
4029                 throw INTERP_KERNEL::Exception(msg2);
4030               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4031               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Substract(self->getArray(),aaa);
4032               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4033               ret2->setArray(ret);
4034               return ret2.retn();
4035             }
4036           case 4:
4037             {
4038               if(!self->getArray())
4039                 throw INTERP_KERNEL::Exception(msg2);
4040               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4041               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Substract(self->getArray(),aaa);
4042               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4043               ret2->setArray(ret);
4044               return ret2.retn();
4045             }
4046           default:
4047             { throw INTERP_KERNEL::Exception(msg); }
4048           }
4049       }
4050
4051       MEDCouplingFieldDouble *__rsub__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4052       {
4053         return ParaMEDMEM_MEDCouplingFieldDouble___rsub__Impl(self,obj);
4054       }
4055
4056       MEDCouplingFieldDouble *__mul__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4057       {
4058         return ParaMEDMEM_MEDCouplingFieldDouble___mul__Impl(self,obj);
4059       }
4060
4061       MEDCouplingFieldDouble *__rmul__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4062       {
4063         return ParaMEDMEM_MEDCouplingFieldDouble___rmul__Impl(self,obj);
4064       }
4065
4066       MEDCouplingFieldDouble *__div__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4067       {
4068         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__div__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4069         const char msg2[]="in MEDCouplingFieldDouble.__div__ : self field has no Array of values set !";
4070         void *argp;
4071         //
4072         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
4073           {
4074             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
4075             if(other)
4076               return (*self)/(*other);
4077             else
4078               throw INTERP_KERNEL::Exception(msg);
4079           }
4080         //
4081         double val;
4082         DataArrayDouble *a;
4083         DataArrayDoubleTuple *aa;
4084         std::vector<double> bb;
4085         int sw;
4086         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
4087         switch(sw)
4088           {
4089           case 1:
4090             {
4091               if(val==0.)
4092                 throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble.__div__ : trying to divide by zero !");
4093               if(!self->getArray())
4094                 throw INTERP_KERNEL::Exception(msg2);
4095               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=self->getArray()->deepCpy();
4096               ret->applyLin(1./val,0);
4097               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4098               ret2->setArray(ret);
4099               return ret2.retn();
4100             }
4101           case 2:
4102             {
4103               if(!self->getArray())
4104                 throw INTERP_KERNEL::Exception(msg2);
4105               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Divide(self->getArray(),a);
4106               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4107               ret2->setArray(ret);
4108               return ret2.retn();
4109             }
4110           case 3:
4111             {
4112               if(!self->getArray())
4113                 throw INTERP_KERNEL::Exception(msg2);
4114               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4115               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Divide(self->getArray(),aaa);
4116               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4117               ret2->setArray(ret);
4118               return ret2.retn();
4119             }
4120           case 4:
4121             {
4122               if(!self->getArray())
4123                 throw INTERP_KERNEL::Exception(msg2);
4124               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4125               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Divide(self->getArray(),aaa);
4126               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4127               ret2->setArray(ret);
4128               return ret2.retn();
4129             }
4130           default:
4131             { throw INTERP_KERNEL::Exception(msg); }
4132           }
4133       }
4134
4135       MEDCouplingFieldDouble *__rdiv__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4136       {
4137         return ParaMEDMEM_MEDCouplingFieldDouble___rdiv__Impl(self,obj);
4138       }
4139
4140       MEDCouplingFieldDouble *__pow__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4141       {
4142         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__pow__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4143         const char msg2[]="in MEDCouplingFieldDouble.__pow__ : self field has no Array of values set !";
4144         void *argp;
4145         //
4146         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
4147           {
4148             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
4149             if(other)
4150               return (*self)^(*other);
4151             else
4152               throw INTERP_KERNEL::Exception(msg);
4153           }
4154         //
4155         double val;
4156         DataArrayDouble *a;
4157         DataArrayDoubleTuple *aa;
4158         std::vector<double> bb;
4159         int sw;
4160         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
4161         switch(sw)
4162           {
4163           case 1:
4164             {
4165               if(!self->getArray())
4166                 throw INTERP_KERNEL::Exception(msg2);
4167               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=self->getArray()->deepCpy();
4168               ret->applyPow(val);
4169               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4170               ret2->setArray(ret);
4171               return ret2.retn();
4172             }
4173           case 2:
4174             {
4175               if(!self->getArray())
4176                 throw INTERP_KERNEL::Exception(msg2);
4177               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Pow(self->getArray(),a);
4178               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4179               ret2->setArray(ret);
4180               return ret2.retn();
4181             }
4182           case 3:
4183             {
4184               if(!self->getArray())
4185                 throw INTERP_KERNEL::Exception(msg2);
4186               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4187               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Pow(self->getArray(),aaa);
4188               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4189               ret2->setArray(ret);
4190               return ret2.retn();
4191             }
4192           case 4:
4193             {
4194               if(!self->getArray())
4195                 throw INTERP_KERNEL::Exception(msg2);
4196               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4197               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Pow(self->getArray(),aaa);
4198               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4199               ret2->setArray(ret);
4200               return ret2.retn();
4201             }
4202           default:
4203             { throw INTERP_KERNEL::Exception(msg); }
4204           }
4205       }
4206
4207       MEDCouplingFieldDouble *__neg__() const throw(INTERP_KERNEL::Exception)
4208       {
4209         return self->negate();
4210       }
4211
4212       PyObject *___iadd___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
4213       {
4214         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__iadd__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4215         const char msg2[]="in MEDCouplingFieldDouble.__iadd__ : self field has no Array of values set !";
4216         void *argp;
4217         //
4218         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
4219           {
4220             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
4221             if(other)
4222               {
4223                 *self+=*other;
4224                 Py_XINCREF(trueSelf);
4225                 return trueSelf;
4226               }
4227             else
4228               throw INTERP_KERNEL::Exception(msg);
4229           }
4230         //
4231         double val;
4232         DataArrayDouble *a;
4233         DataArrayDoubleTuple *aa;
4234         std::vector<double> bb;
4235         int sw;
4236         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
4237         switch(sw)
4238           {
4239           case 1:
4240             {
4241               if(!self->getArray())
4242                 throw INTERP_KERNEL::Exception(msg2);
4243               self->getArray()->applyLin(1.,val);
4244               Py_XINCREF(trueSelf);
4245               return trueSelf;
4246             }
4247           case 2:
4248             {
4249               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4250               ret2->setArray(a);
4251               *self+=*ret2;
4252               Py_XINCREF(trueSelf);
4253               return trueSelf;
4254             }
4255           case 3:
4256             {
4257               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4258               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4259               ret2->setArray(aaa);
4260               *self+=*ret2;
4261               Py_XINCREF(trueSelf);
4262               return trueSelf;
4263             }
4264           case 4:
4265             {
4266               if(!self->getArray())
4267                 throw INTERP_KERNEL::Exception(msg2);
4268               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4269               self->getArray()->addEqual(aaa);
4270               Py_XINCREF(trueSelf);
4271               return trueSelf;
4272             }
4273           default:
4274             { throw INTERP_KERNEL::Exception(msg); }
4275           }
4276       }
4277
4278       PyObject *___isub___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
4279       {
4280         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__isub__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4281         const char msg2[]="in MEDCouplingFieldDouble.__isub__ : self field has no Array of values set !";
4282         void *argp;
4283         //
4284         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
4285           {
4286             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
4287             if(other)
4288               {
4289                 *self-=*other;
4290                 Py_XINCREF(trueSelf);
4291                 return trueSelf;
4292               }
4293             else
4294               throw INTERP_KERNEL::Exception(msg);
4295           }
4296         //
4297         double val;
4298         DataArrayDouble *a;
4299         DataArrayDoubleTuple *aa;
4300         std::vector<double> bb;
4301         int sw;
4302         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
4303         switch(sw)
4304           {
4305           case 1:
4306             {
4307               if(!self->getArray())
4308                 throw INTERP_KERNEL::Exception(msg2);
4309               self->getArray()->applyLin(1.,-val);
4310               Py_XINCREF(trueSelf);
4311               return trueSelf;
4312             }
4313           case 2:
4314             {
4315               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4316               ret2->setArray(a);
4317               *self-=*ret2;
4318               Py_XINCREF(trueSelf);
4319               return trueSelf;
4320             }
4321           case 3:
4322             {
4323               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4324               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4325               ret2->setArray(aaa);
4326               *self-=*ret2;
4327               Py_XINCREF(trueSelf);
4328               return trueSelf;
4329             }
4330           case 4:
4331             {
4332               if(!self->getArray())
4333                 throw INTERP_KERNEL::Exception(msg2);
4334               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4335               self->getArray()->substractEqual(aaa);
4336               Py_XINCREF(trueSelf);
4337               return trueSelf;
4338             }
4339           default:
4340             { throw INTERP_KERNEL::Exception(msg); }
4341           }
4342       }
4343
4344       PyObject *___imul___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
4345       {
4346         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__imul__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4347         const char msg2[]="in MEDCouplingFieldDouble.__imul__ : self field has no Array of values set !";
4348         void *argp;
4349         //
4350         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
4351           {
4352             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
4353             if(other)
4354               {
4355                 *self*=*other;
4356                 Py_XINCREF(trueSelf);
4357                 return trueSelf;
4358               }
4359             else
4360               throw INTERP_KERNEL::Exception(msg);
4361           }
4362         //
4363         double val;
4364         DataArrayDouble *a;
4365         DataArrayDoubleTuple *aa;
4366         std::vector<double> bb;
4367         int sw;
4368         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
4369         switch(sw)
4370           {
4371           case 1:
4372             {
4373               if(!self->getArray())
4374                 throw INTERP_KERNEL::Exception(msg2);
4375               self->getArray()->applyLin(val,0);
4376               Py_XINCREF(trueSelf);
4377               return trueSelf;
4378             }
4379           case 2:
4380             {
4381               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4382               ret2->setArray(a);
4383               *self*=*ret2;
4384               Py_XINCREF(trueSelf);
4385               return trueSelf;
4386             }
4387           case 3:
4388             {
4389               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4390               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4391               ret2->setArray(aaa);
4392               *self*=*ret2;
4393               Py_XINCREF(trueSelf);
4394               return trueSelf;
4395             }
4396           case 4:
4397             {
4398               if(!self->getArray())
4399                 throw INTERP_KERNEL::Exception(msg2);
4400               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4401               self->getArray()->multiplyEqual(aaa);
4402               Py_XINCREF(trueSelf);
4403               return trueSelf;
4404             }
4405           default:
4406             { throw INTERP_KERNEL::Exception(msg); }
4407           }
4408       }
4409
4410       PyObject *___idiv___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
4411       {
4412         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__idiv__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4413         const char msg2[]="in MEDCouplingFieldDouble.__idiv__ : self field has no Array of values set !";
4414         void *argp;
4415         //
4416         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
4417           {
4418             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
4419             if(other)
4420               {
4421                 *self/=*other;
4422                 Py_XINCREF(trueSelf);
4423                 return trueSelf;
4424               }
4425             else
4426               throw INTERP_KERNEL::Exception(msg);
4427           }
4428         //
4429         double val;
4430         DataArrayDouble *a;
4431         DataArrayDoubleTuple *aa;
4432         std::vector<double> bb;
4433         int sw;
4434         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
4435         switch(sw)
4436           {
4437           case 1:
4438             {
4439               if(val==0.)
4440                 throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble.__idiv__ : trying to divide by zero !");
4441               if(!self->getArray())
4442                 throw INTERP_KERNEL::Exception(msg2);
4443               self->getArray()->applyLin(1./val,0);
4444               Py_XINCREF(trueSelf);
4445               return trueSelf;
4446             }
4447           case 2:
4448             {
4449               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4450               ret2->setArray(a);
4451               *self/=*ret2;
4452               Py_XINCREF(trueSelf);
4453               return trueSelf;
4454             }
4455           case 3:
4456             {
4457               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4458               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4459               ret2->setArray(aaa);
4460               *self/=*ret2;
4461               Py_XINCREF(trueSelf);
4462               return trueSelf;
4463             }
4464           case 4:
4465             {
4466               if(!self->getArray())
4467                 throw INTERP_KERNEL::Exception(msg2);
4468               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4469               self->getArray()->divideEqual(aaa);
4470               Py_XINCREF(trueSelf);
4471               return trueSelf;
4472             }
4473           default:
4474             { throw INTERP_KERNEL::Exception(msg); }
4475           }
4476       }
4477
4478       PyObject *___ipow___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
4479       {
4480         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__ipow__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4481         const char msg2[]="in MEDCouplingFieldDouble.__ipow__ : self field has no Array of values set !";
4482         void *argp;
4483         //
4484         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
4485           {
4486             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
4487             if(other)
4488               {
4489                 *self^=*other;
4490                 Py_XINCREF(trueSelf);
4491                 return trueSelf;
4492               }
4493             else
4494               throw INTERP_KERNEL::Exception(msg);
4495           }
4496         //
4497         double val;
4498         DataArrayDouble *a;
4499         DataArrayDoubleTuple *aa;
4500         std::vector<double> bb;
4501         int sw;
4502         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
4503         switch(sw)
4504           {
4505           case 1:
4506             {
4507               if(!self->getArray())
4508                 throw INTERP_KERNEL::Exception(msg2);
4509               self->getArray()->applyPow(val);
4510               Py_XINCREF(trueSelf);
4511               return trueSelf;
4512             }
4513           case 2:
4514             {
4515               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4516               ret2->setArray(a);
4517               *self^=*ret2;
4518               Py_XINCREF(trueSelf);
4519               return trueSelf;
4520             }
4521           case 3:
4522             {
4523               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4524               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4525               ret2->setArray(aaa);
4526               *self^=*ret2;
4527               Py_XINCREF(trueSelf);
4528               return trueSelf;
4529             }
4530           case 4:
4531             {
4532               if(!self->getArray())
4533                 throw INTERP_KERNEL::Exception(msg2);
4534               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4535               self->getArray()->powEqual(aaa);
4536               Py_XINCREF(trueSelf);
4537               return trueSelf;
4538             }
4539           default:
4540             { throw INTERP_KERNEL::Exception(msg); }
4541           }
4542       }
4543
4544       static MEDCouplingFieldDouble *MergeFields(PyObject *li) throw(INTERP_KERNEL::Exception)
4545       {
4546         std::vector<const MEDCouplingFieldDouble *> tmp;
4547         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4548         return MEDCouplingFieldDouble::MergeFields(tmp);
4549       }
4550
4551       static void WriteVTK(const char *fileName, PyObject *li, bool isBinary=true) throw(INTERP_KERNEL::Exception)
4552       {
4553         std::vector<const MEDCouplingFieldDouble *> tmp;
4554         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4555         MEDCouplingFieldDouble::WriteVTK(fileName,tmp,isBinary);
4556       }
4557     }
4558   };
4559
4560   class MEDCouplingMultiFields : public RefCountObject, public TimeLabel
4561   {
4562   public:
4563     int getNumberOfFields() const;
4564     MEDCouplingMultiFields *deepCpy() const;
4565     virtual std::string simpleRepr() const throw(INTERP_KERNEL::Exception);
4566     virtual std::string advancedRepr() const throw(INTERP_KERNEL::Exception);
4567     virtual bool isEqual(const MEDCouplingMultiFields *other, double meshPrec, double valsPrec) const;
4568     virtual bool isEqualWithoutConsideringStr(const MEDCouplingMultiFields *other, double meshPrec, double valsPrec) const;
4569     virtual void checkCoherency() const throw(INTERP_KERNEL::Exception);
4570     %extend
4571        {
4572          std::string __str__() const throw(INTERP_KERNEL::Exception)
4573          {
4574            return self->simpleRepr();
4575          }
4576          static MEDCouplingMultiFields *New(PyObject *li) throw(INTERP_KERNEL::Exception)
4577          {
4578            std::vector<const ParaMEDMEM::MEDCouplingFieldDouble *> tmp;
4579            convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4580            int sz=tmp.size();
4581            std::vector<MEDCouplingFieldDouble *> fs(sz);
4582            for(int i=0;i<sz;i++)
4583              fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
4584            return MEDCouplingMultiFields::New(fs);
4585          }
4586          MEDCouplingMultiFields(PyObject *li) throw(INTERP_KERNEL::Exception)
4587          {
4588            std::vector<const ParaMEDMEM::MEDCouplingFieldDouble *> tmp;
4589            convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4590            int sz=tmp.size();
4591            std::vector<MEDCouplingFieldDouble *> fs(sz);
4592            for(int i=0;i<sz;i++)
4593              fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
4594            return MEDCouplingMultiFields::New(fs);
4595          }
4596          PyObject *getFields() const
4597          {
4598            std::vector<const MEDCouplingFieldDouble *> fields=self->getFields();
4599            int sz=fields.size();
4600            PyObject *res = PyList_New(sz);
4601            for(int i=0;i<sz;i++)
4602              {
4603                if(fields[i])
4604                  {
4605                    fields[i]->incrRef();
4606                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(fields[i]),SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble, SWIG_POINTER_OWN | 0 ));
4607                  }
4608                else
4609                  {
4610                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble, 0 ));
4611                  }
4612              }
4613            return res;
4614          }
4615          PyObject *getFieldAtPos(int id) const throw(INTERP_KERNEL::Exception)
4616          {
4617            const MEDCouplingFieldDouble *ret=self->getFieldAtPos(id);
4618            if(ret)
4619              {
4620                ret->incrRef();
4621                return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble, SWIG_POINTER_OWN | 0 );
4622              }
4623            else
4624              return SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble, 0 );
4625          }
4626          PyObject *getMeshes() const throw(INTERP_KERNEL::Exception)
4627          {
4628            std::vector<MEDCouplingMesh *> ms=self->getMeshes();
4629            int sz=ms.size();
4630            PyObject *res = PyList_New(sz);
4631            for(int i=0;i<sz;i++)
4632              {
4633                if(ms[i])
4634                  {
4635                    ms[i]->incrRef();
4636                    PyList_SetItem(res,i,convertMesh(ms[i], SWIG_POINTER_OWN | 0 ));
4637                  }
4638                else
4639                  {
4640                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, 0 ));
4641                  }
4642              }
4643            return res;
4644          }
4645          PyObject *getDifferentMeshes() const throw(INTERP_KERNEL::Exception)
4646          {
4647            std::vector<int> refs;
4648            std::vector<MEDCouplingMesh *> ms=self->getDifferentMeshes(refs);
4649            int sz=ms.size();
4650            PyObject *res = PyList_New(sz);
4651            for(int i=0;i<sz;i++)
4652              {
4653                if(ms[i])
4654                  {
4655                    ms[i]->incrRef();
4656                    PyList_SetItem(res,i,convertMesh(ms[i], SWIG_POINTER_OWN | 0 ));
4657                  }
4658                else
4659                  {
4660                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, 0 ));
4661                  }
4662              }
4663            //
4664            PyObject *ret=PyTuple_New(2);
4665            PyTuple_SetItem(ret,0,res);
4666            PyTuple_SetItem(ret,1,convertIntArrToPyList2(refs));
4667            return ret;
4668          }
4669          PyObject *getArrays() const throw(INTERP_KERNEL::Exception)
4670          {
4671            std::vector<DataArrayDouble *> ms=self->getArrays();
4672            int sz=ms.size();
4673            PyObject *res = PyList_New(sz);
4674            for(int i=0;i<sz;i++)
4675              {
4676                if(ms[i])
4677                  {
4678                    ms[i]->incrRef();
4679                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(ms[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
4680                  }
4681                else
4682                  {
4683                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, 0 ));
4684                  }
4685              }
4686            return res;
4687          }
4688          PyObject *getDifferentArrays() const throw(INTERP_KERNEL::Exception)
4689          {
4690            std::vector< std::vector<int> > refs;
4691            std::vector<DataArrayDouble *> ms=self->getDifferentArrays(refs);
4692            int sz=ms.size();
4693            PyObject *res = PyList_New(sz);
4694            PyObject *res2 = PyList_New(sz);
4695            for(int i=0;i<sz;i++)
4696              {
4697                if(ms[i])
4698                  {
4699                    ms[i]->incrRef();
4700                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(ms[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
4701                  }
4702                else
4703                  {
4704                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, 0 ));
4705                  }
4706                PyList_SetItem(res2,i,convertIntArrToPyList2(refs[i]));
4707              }
4708            //
4709            PyObject *ret=PyTuple_New(2);
4710            PyTuple_SetItem(ret,0,res);
4711            PyTuple_SetItem(ret,1,res2);
4712            return ret;
4713          }
4714        }
4715   };
4716   
4717   class MEDCouplingDefinitionTime
4718   {
4719   public:
4720     MEDCouplingDefinitionTime();
4721     void assign(const MEDCouplingDefinitionTime& other);
4722     bool isEqual(const MEDCouplingDefinitionTime& other) const;
4723     double getTimeResolution() const;
4724     std::vector<double> getHotSpotsTime() const;
4725     %extend
4726       {
4727         std::string __str__() const throw(INTERP_KERNEL::Exception)
4728           {
4729             std::ostringstream oss;
4730             self->appendRepr(oss);
4731             return oss.str();
4732           }
4733
4734         PyObject *getIdsOnTimeRight(double tm) const throw(INTERP_KERNEL::Exception)
4735         {
4736           int meshId,arrId,arrIdInField,fieldId;
4737           self->getIdsOnTimeRight(tm,meshId,arrId,arrIdInField,fieldId);
4738           PyObject *res=PyList_New(4);
4739           PyList_SetItem(res,0,PyInt_FromLong(meshId));
4740           PyList_SetItem(res,1,PyInt_FromLong(arrId));
4741           PyList_SetItem(res,2,PyInt_FromLong(arrIdInField));
4742           PyList_SetItem(res,3,PyInt_FromLong(fieldId));
4743           return res;
4744         }
4745
4746         PyObject *getIdsOnTimeLeft(double tm) const throw(INTERP_KERNEL::Exception)
4747         {
4748           int meshId,arrId,arrIdInField,fieldId;
4749           self->getIdsOnTimeLeft(tm,meshId,arrId,arrIdInField,fieldId);
4750           PyObject *res=PyList_New(4);
4751           PyList_SetItem(res,0,PyInt_FromLong(meshId));
4752           PyList_SetItem(res,1,PyInt_FromLong(arrId));
4753           PyList_SetItem(res,2,PyInt_FromLong(arrIdInField));
4754           PyList_SetItem(res,3,PyInt_FromLong(fieldId));
4755           return res;
4756         }
4757       }
4758   };
4759
4760   class MEDCouplingFieldOverTime : public MEDCouplingMultiFields
4761   {
4762   public:
4763     double getTimeTolerance() const throw(INTERP_KERNEL::Exception);
4764     MEDCouplingDefinitionTime getDefinitionTimeZone() const;
4765     
4766     %extend
4767       {
4768         MEDCouplingFieldOverTime(PyObject *li) throw(INTERP_KERNEL::Exception)
4769           {
4770             std::vector<const ParaMEDMEM::MEDCouplingFieldDouble *> tmp;
4771             convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4772             int sz=tmp.size();
4773             std::vector<MEDCouplingFieldDouble *> fs(sz);
4774             for(int i=0;i<sz;i++)
4775               fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
4776             return MEDCouplingFieldOverTime::New(fs);
4777           }
4778         std::string __str__() const throw(INTERP_KERNEL::Exception)
4779           {
4780             return self->simpleRepr();
4781           }
4782         static MEDCouplingFieldOverTime *New(PyObject *li) throw(INTERP_KERNEL::Exception)
4783         {
4784           std::vector<const ParaMEDMEM::MEDCouplingFieldDouble *> tmp;
4785           convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4786            int sz=tmp.size();
4787            std::vector<MEDCouplingFieldDouble *> fs(sz);
4788            for(int i=0;i<sz;i++)
4789              fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
4790            return MEDCouplingFieldOverTime::New(fs);
4791          }
4792       }
4793   };
4794
4795   class MEDCouplingCartesianAMRMesh;
4796   
4797   class MEDCouplingCartesianAMRPatchGen : public RefCountObject
4798   {
4799   public:
4800     int getNumberOfCellsRecursiveWithOverlap() const throw(INTERP_KERNEL::Exception);
4801     int getNumberOfCellsRecursiveWithoutOverlap() const throw(INTERP_KERNEL::Exception);
4802     int getMaxNumberOfLevelsRelativeToThis() const throw(INTERP_KERNEL::Exception);
4803     %extend
4804     {
4805       MEDCouplingCartesianAMRMeshGen *getMesh() const throw(INTERP_KERNEL::Exception)
4806       {
4807         MEDCouplingCartesianAMRMeshGen *ret(const_cast<MEDCouplingCartesianAMRMeshGen *>(self->getMesh()));
4808         if(ret)
4809           ret->incrRef();
4810         return ret;
4811       }
4812     }
4813   };
4814
4815   class MEDCouplingCartesianAMRPatch : public MEDCouplingCartesianAMRPatchGen
4816   {
4817   public:
4818     int getNumberOfOverlapedCellsForFather() const throw(INTERP_KERNEL::Exception);
4819     bool isInMyNeighborhood(const MEDCouplingCartesianAMRPatch *other, int ghostLev) const throw(INTERP_KERNEL::Exception);
4820     %extend
4821     {
4822       PyObject *getBLTRRange() const throw(INTERP_KERNEL::Exception)
4823       {
4824         const std::vector< std::pair<int,int> >& ret(self->getBLTRRange());
4825         return convertFromVectorPairInt(ret);
4826       }
4827
4828       void addPatch(PyObject *bottomLeftTopRight, const std::vector<int>& factors) throw(INTERP_KERNEL::Exception)
4829       {
4830         std::vector< std::pair<int,int> > inp;
4831         convertPyToVectorPairInt(bottomLeftTopRight,inp);
4832         self->addPatch(inp,factors);
4833       }
4834
4835       MEDCouplingCartesianAMRPatch *__getitem__(int patchId) const throw(INTERP_KERNEL::Exception)
4836       {
4837         const MEDCouplingCartesianAMRMeshGen *mesh(self->getMesh());
4838         if(!mesh)
4839           throw INTERP_KERNEL::Exception("wrap MEDCouplingCartesianAMRPatchGen.__getitem__ : no underlying mesh !");
4840         if(patchId==mesh->getNumberOfPatches())
4841           {
4842             std::ostringstream oss;
4843             oss << "Requesting for patchId " << patchId << " having only " << mesh->getNumberOfPatches() << " patches !";
4844             PyErr_SetString(PyExc_StopIteration,oss.str().c_str());
4845             return 0;
4846           }
4847         MEDCouplingCartesianAMRPatch *ret(const_cast<MEDCouplingCartesianAMRPatch *>(mesh->getPatch(patchId)));
4848         if(ret)
4849           ret->incrRef();
4850         return ret;
4851       }
4852
4853       void __delitem__(int patchId) throw(INTERP_KERNEL::Exception)
4854       {
4855         MEDCouplingCartesianAMRMeshGen *mesh(const_cast<MEDCouplingCartesianAMRMeshGen *>(self->getMesh()));
4856         if(!mesh)
4857           throw INTERP_KERNEL::Exception("wrap MEDCouplingCartesianAMRPatch.__delitem__ : no underlying mesh !");
4858         mesh->removePatch(patchId);
4859       }
4860
4861       int __len__() const throw(INTERP_KERNEL::Exception)
4862       {
4863         const MEDCouplingCartesianAMRMeshGen *mesh(self->getMesh());
4864         if(!mesh)
4865           throw INTERP_KERNEL::Exception("wrap MEDCouplingCartesianAMRPatch.__len__ : no underlying mesh !");
4866         return mesh->getNumberOfPatches();
4867       }
4868     }
4869   };
4870
4871   class MEDCouplingCartesianAMRPatchGF : public MEDCouplingCartesianAMRPatchGen
4872   {
4873   };
4874
4875   class MEDCouplingDataForGodFather : public RefCountObject
4876   {
4877   public:
4878     virtual void synchronizeFineToCoarse() throw(INTERP_KERNEL::Exception);
4879     virtual void synchronizeCoarseToFine() throw(INTERP_KERNEL::Exception);
4880     virtual void synchronizeCoarseToFineOnlyInGhostZone() throw(INTERP_KERNEL::Exception);
4881     virtual void synchronizeFineEachOtherInGhostZone() throw(INTERP_KERNEL::Exception);
4882     virtual void alloc() throw(INTERP_KERNEL::Exception);
4883     virtual void dealloc() throw(INTERP_KERNEL::Exception);
4884   };
4885   
4886   class MEDCouplingCartesianAMRMeshGen : public RefCountObject, public TimeLabel
4887   {
4888   public:
4889     int getAbsoluteLevel() const throw(INTERP_KERNEL::Exception);
4890     int getSpaceDimension() const throw(INTERP_KERNEL::Exception);
4891     const std::vector<int>& getFactors() const throw(INTERP_KERNEL::Exception);
4892     void setFactors(const std::vector<int>& newFactors) throw(INTERP_KERNEL::Exception);
4893     int getMaxNumberOfLevelsRelativeToThis() const throw(INTERP_KERNEL::Exception);
4894     int getNumberOfCellsAtCurrentLevel() const throw(INTERP_KERNEL::Exception);
4895     int getNumberOfCellsAtCurrentLevelGhost(int ghostLev) const throw(INTERP_KERNEL::Exception);
4896     int getNumberOfCellsRecursiveWithOverlap() const throw(INTERP_KERNEL::Exception);
4897     int getNumberOfCellsRecursiveWithoutOverlap() const throw(INTERP_KERNEL::Exception);
4898     bool isPatchInNeighborhoodOf(int patchId1, int patchId2, int ghostLev) const throw(INTERP_KERNEL::Exception);
4899     //
4900     int getNumberOfPatches() const throw(INTERP_KERNEL::Exception);
4901     int getPatchIdFromChildMesh(const MEDCouplingCartesianAMRMeshGen *mesh) const throw(INTERP_KERNEL::Exception);
4902     MEDCouplingUMesh *buildUnstructured() const throw(INTERP_KERNEL::Exception);
4903     DataArrayDouble *extractGhostFrom(int ghostSz, const DataArrayDouble *arr) const throw(INTERP_KERNEL::Exception);
4904     std::vector<int> getPatchIdsInTheNeighborhoodOf(int patchId, int ghostLev) const throw(INTERP_KERNEL::Exception);
4905     MEDCoupling1SGTUMesh *buildMeshFromPatchEnvelop() const throw(INTERP_KERNEL::Exception);
4906     MEDCoupling1SGTUMesh *buildMeshOfDirectChildrenOnly() const throw(INTERP_KERNEL::Exception);
4907     void removeAllPatches() throw(INTERP_KERNEL::Exception);
4908     void removePatch(int patchId) throw(INTERP_KERNEL::Exception);
4909     void detachFromFather() throw(INTERP_KERNEL::Exception);
4910     void createPatchesFromCriterion(const INTERP_KERNEL::BoxSplittingOptions& bso, const DataArrayByte *criterion, const std::vector<int>& factors) throw(INTERP_KERNEL::Exception);
4911     DataArrayDouble *createCellFieldOnPatch(int patchId, const DataArrayDouble *cellFieldOnThis) const throw(INTERP_KERNEL::Exception);
4912     void fillCellFieldOnPatch(int patchId, const DataArrayDouble *cellFieldOnThis, DataArrayDouble *cellFieldOnPatch) const throw(INTERP_KERNEL::Exception);
4913     void fillCellFieldOnPatchGhost(int patchId, const DataArrayDouble *cellFieldOnThis, DataArrayDouble *cellFieldOnPatch, int ghostLev) const throw(INTERP_KERNEL::Exception);
4914     void fillCellFieldOnPatchOnlyOnGhostZone(int patchId, const DataArrayDouble *cellFieldOnThis, DataArrayDouble *cellFieldOnPatch, int ghostLev) const throw(INTERP_KERNEL::Exception);
4915     void fillCellFieldOnPatchOnlyOnGhostZoneWith(int ghostLev, const MEDCouplingCartesianAMRPatch *patchToBeModified, const MEDCouplingCartesianAMRPatch *neighborPatch, DataArrayDouble *cellFieldOnPatch, const DataArrayDouble *cellFieldNeighbor) const;
4916     void fillCellFieldComingFromPatch(int patchId, const DataArrayDouble *cellFieldOnPatch, DataArrayDouble *cellFieldOnThis) const throw(INTERP_KERNEL::Exception);
4917     void fillCellFieldComingFromPatchGhost(int patchId, const DataArrayDouble *cellFieldOnPatch, DataArrayDouble *cellFieldOnThis, int ghostLev) const throw(INTERP_KERNEL::Exception);
4918     DataArrayInt *findPatchesInTheNeighborhoodOf(int patchId, int ghostLev) const throw(INTERP_KERNEL::Exception);
4919     %extend
4920     {
4921       void addPatch(PyObject *bottomLeftTopRight, const std::vector<int>& factors) throw(INTERP_KERNEL::Exception)
4922       {
4923         std::vector< std::pair<int,int> > inp;
4924         convertPyToVectorPairInt(bottomLeftTopRight,inp);
4925         self->addPatch(inp,factors);
4926       }
4927
4928       PyObject *getPatches() const throw(INTERP_KERNEL::Exception)
4929       {
4930         std::vector< const MEDCouplingCartesianAMRPatch *> ps(self->getPatches());
4931         int sz(ps.size());
4932         PyObject *ret = PyList_New(sz);
4933         for(int i=0;i<sz;i++)
4934           {
4935             MEDCouplingCartesianAMRPatch *elt(const_cast<MEDCouplingCartesianAMRPatch *>(ps[i]));
4936             if(elt)
4937               elt->incrRef();
4938             PyList_SetItem(ret,i,convertCartesianAMRPatch(elt, SWIG_POINTER_OWN | 0 ));
4939           }
4940         return ret;
4941       }
4942
4943       PyObject *retrieveGridsAt(int absoluteLev) const throw(INTERP_KERNEL::Exception)
4944       {
4945         std::vector<MEDCouplingCartesianAMRPatchGen *> ps(self->retrieveGridsAt(absoluteLev));
4946         int sz(ps.size());
4947         PyObject *ret = PyList_New(sz);
4948         for(int i=0;i<sz;i++)
4949           PyList_SetItem(ret,i,convertCartesianAMRPatch(ps[i], SWIG_POINTER_OWN | 0 ));
4950         return ret;
4951       }
4952
4953       MEDCouplingFieldDouble *buildCellFieldOnRecurseWithoutOverlapWithoutGhost(int ghostSz, PyObject *recurseArrs) const
4954       {
4955         std::vector<const DataArrayDouble *> inp;
4956         convertFromPyObjVectorOfObj<const ParaMEDMEM::DataArrayDouble *>(recurseArrs,SWIGTYPE_p_ParaMEDMEM__DataArrayDouble,"DataArrayDouble",inp);
4957         return self->buildCellFieldOnRecurseWithoutOverlapWithoutGhost(ghostSz,inp);
4958       }
4959
4960       MEDCouplingCartesianAMRMeshGen *getFather() const throw(INTERP_KERNEL::Exception)
4961       {
4962         MEDCouplingCartesianAMRMeshGen *ret(const_cast<MEDCouplingCartesianAMRMeshGen *>(self->getFather()));
4963         if(ret)
4964           ret->incrRef();
4965         return ret;
4966       }
4967       
4968       MEDCouplingCartesianAMRMeshGen *getGodFather() const throw(INTERP_KERNEL::Exception)
4969       {
4970         MEDCouplingCartesianAMRMeshGen *ret(const_cast<MEDCouplingCartesianAMRMeshGen *>(self->getGodFather()));
4971         if(ret)
4972           ret->incrRef();
4973         return ret;
4974       }
4975
4976       MEDCouplingCartesianAMRPatch *getPatch(int patchId) const throw(INTERP_KERNEL::Exception)
4977       {
4978         MEDCouplingCartesianAMRPatch *ret(const_cast<MEDCouplingCartesianAMRPatch *>(self->getPatch(patchId)));
4979         if(ret)
4980           ret->incrRef();
4981         return ret;
4982       }
4983
4984       MEDCouplingIMesh *getImageMesh() const throw(INTERP_KERNEL::Exception)
4985       {
4986         const MEDCouplingIMesh *ret(self->getImageMesh());
4987         if(ret)
4988           ret->incrRef();
4989         return const_cast<MEDCouplingIMesh *>(ret);
4990       }
4991
4992       MEDCouplingCartesianAMRPatch *__getitem__(int patchId) const throw(INTERP_KERNEL::Exception)
4993       {
4994         if(patchId==self->getNumberOfPatches())
4995           {
4996             std::ostringstream oss;
4997             oss << "Requesting for patchId " << patchId << " having only " << self->getNumberOfPatches() << " patches !";
4998             PyErr_SetString(PyExc_StopIteration,oss.str().c_str());
4999             return 0;
5000           }
5001         MEDCouplingCartesianAMRPatch *ret(const_cast<MEDCouplingCartesianAMRPatch *>(self->getPatch(patchId)));
5002         if(ret)
5003           ret->incrRef();
5004         return ret;
5005       }
5006
5007       void fillCellFieldOnPatchGhostAdv(int patchId, const DataArrayDouble *cellFieldOnThis, int ghostLev, PyObject *arrsOnPatches) const throw(INTERP_KERNEL::Exception)
5008       {
5009         std::vector<const ParaMEDMEM::DataArrayDouble *> arrsOnPatches2;
5010         convertFromPyObjVectorOfObj<const ParaMEDMEM::DataArrayDouble *>(arrsOnPatches,SWIGTYPE_p_ParaMEDMEM__DataArrayDouble,"DataArrayDouble",arrsOnPatches2);
5011         self->fillCellFieldOnPatchGhostAdv(patchId,cellFieldOnThis,ghostLev,arrsOnPatches2);
5012       }
5013
5014       void fillCellFieldOnPatchOnlyGhostAdv(int patchId, int ghostLev, PyObject *arrsOnPatches) const
5015       {
5016         std::vector<const ParaMEDMEM::DataArrayDouble *> arrsOnPatches2;
5017         convertFromPyObjVectorOfObj<const ParaMEDMEM::DataArrayDouble *>(arrsOnPatches,SWIGTYPE_p_ParaMEDMEM__DataArrayDouble,"DataArrayDouble",arrsOnPatches2);
5018         self->fillCellFieldOnPatchOnlyGhostAdv(patchId,ghostLev,arrsOnPatches2);
5019       }
5020
5021       void __delitem__(int patchId) throw(INTERP_KERNEL::Exception)
5022       {
5023         self->removePatch(patchId);
5024       }
5025
5026       int __len__() const throw(INTERP_KERNEL::Exception)
5027       {
5028         return self->getNumberOfPatches();
5029       }
5030     }
5031   };
5032
5033   class MEDCouplingCartesianAMRMeshSub : public MEDCouplingCartesianAMRMeshGen
5034   {
5035   };
5036
5037   class MEDCouplingCartesianAMRMesh : public MEDCouplingCartesianAMRMeshGen
5038   {
5039   public:
5040     void setData(MEDCouplingDataForGodFather *data) throw(INTERP_KERNEL::Exception);
5041     void allocData() const throw(INTERP_KERNEL::Exception);
5042     void deallocData() const throw(INTERP_KERNEL::Exception);
5043     %extend
5044     {
5045       static MEDCouplingCartesianAMRMesh *New(const std::string& meshName, int spaceDim, PyObject *nodeStrct, PyObject *origin, PyObject *dxyz) throw(INTERP_KERNEL::Exception)
5046       {
5047         static const char msg0[]="MEDCouplingCartesianAMRMesh::New : error on 'origin' parameter !";
5048         static const char msg1[]="MEDCouplingCartesianAMRMesh::New : error on 'dxyz' parameter !";
5049         const int *nodeStrctPtr(0);
5050         const double *originPtr(0),*dxyzPtr(0);
5051         int sw,sz,val0;
5052         std::vector<int> bb0;
5053         nodeStrctPtr=convertObjToPossibleCpp1_Safe(nodeStrct,sw,sz,val0,bb0);
5054         //
5055         double val,val2;
5056         std::vector<double> bb,bb2;
5057         int sz1,sz2;
5058         originPtr=convertObjToPossibleCpp5_SingleCompo(origin,sw,val,bb,msg0,false,sz1);
5059         dxyzPtr=convertObjToPossibleCpp5_SingleCompo(dxyz,sw,val2,bb2,msg1,false,sz2);
5060         //
5061         return MEDCouplingCartesianAMRMesh::New(meshName,spaceDim,nodeStrctPtr,nodeStrctPtr+sz,originPtr,originPtr+sz1,dxyzPtr,dxyzPtr+sz2);
5062       }
5063
5064       MEDCouplingCartesianAMRMesh(const std::string& meshName, int spaceDim, PyObject *nodeStrct, PyObject *origin, PyObject *dxyz) throw(INTERP_KERNEL::Exception)
5065       {
5066         return ParaMEDMEM_MEDCouplingCartesianAMRMesh_New(meshName,spaceDim,nodeStrct,origin,dxyz);
5067       }
5068
5069       MEDCouplingDataForGodFather *getDataConst() const throw(INTERP_KERNEL::Exception)
5070       {
5071         const MEDCouplingDataForGodFather *ret(self->getDataConst());
5072         if(ret)
5073           ret->incrRef();
5074         return const_cast<MEDCouplingDataForGodFather *>(ret);
5075       }
5076
5077       MEDCouplingDataForGodFather *getData() throw(INTERP_KERNEL::Exception)
5078       {
5079         MEDCouplingDataForGodFather *ret(self->getData());
5080         if(ret)
5081           ret->incrRef();
5082         return ret;
5083       }
5084     }
5085   };
5086   
5087   class MEDCouplingAMRAttribute : public MEDCouplingDataForGodFather, public TimeLabel
5088   {
5089   public:
5090     MEDCouplingFieldDouble *buildCellFieldOnRecurseWithoutOverlapWithoutGhost(MEDCouplingCartesianAMRMeshGen *mesh, const std::string& fieldName) const throw(INTERP_KERNEL::Exception);
5091     MEDCouplingFieldDouble *buildCellFieldOnWithGhost(MEDCouplingCartesianAMRMeshGen *mesh, const std::string& fieldName) const throw(INTERP_KERNEL::Exception);
5092     bool changeGodFather(MEDCouplingCartesianAMRMesh *gf) throw(INTERP_KERNEL::Exception);
5093     %extend
5094     {
5095       static MEDCouplingAMRAttribute *New(MEDCouplingCartesianAMRMesh *gf, PyObject *fieldNames, int ghostLev) throw(INTERP_KERNEL::Exception)
5096       {
5097         std::vector< std::pair<std::string,int> > fieldNamesCpp0;
5098         std::vector< std::pair<std::string, std::vector<std::string> > > fieldNamesCpp1;
5099         MEDCouplingAMRAttribute *ret(0);
5100         try
5101           {
5102             convertPyToVectorPairStringInt(fieldNames,fieldNamesCpp0);
5103             ret=MEDCouplingAMRAttribute::New(gf,fieldNamesCpp0,ghostLev);
5104           }
5105         catch(INTERP_KERNEL::Exception&)
5106           {
5107             convertPyToVectorPairStringVecString(fieldNames,fieldNamesCpp1);
5108             ret=MEDCouplingAMRAttribute::New(gf,fieldNamesCpp1,ghostLev);
5109           }
5110         return ret;
5111       }
5112
5113       MEDCouplingAMRAttribute(MEDCouplingCartesianAMRMesh *gf, PyObject *fieldNames, int ghostLev) throw(INTERP_KERNEL::Exception)
5114       {
5115         return ParaMEDMEM_MEDCouplingAMRAttribute_New(gf,fieldNames,ghostLev);
5116       }
5117       
5118       DataArrayDouble *getFieldOn(MEDCouplingCartesianAMRMeshGen *mesh, const std::string& fieldName) const throw(INTERP_KERNEL::Exception)
5119       {
5120         const DataArrayDouble *ret(self->getFieldOn(mesh,fieldName));
5121         DataArrayDouble *ret2(const_cast<DataArrayDouble *>(ret));
5122         if(ret2)
5123           ret2->incrRef();
5124         return ret2;
5125       }
5126
5127       void spillInfoOnComponents(PyObject *compNames) throw(INTERP_KERNEL::Exception)
5128       {
5129         std::vector< std::vector<std::string> > compNamesCpp;
5130         convertPyToVectorOfVectorOfString(compNames,compNamesCpp);
5131         self->spillInfoOnComponents(compNamesCpp);
5132       }
5133       
5134       PyObject *retrieveFieldsOn(MEDCouplingCartesianAMRMeshGen *mesh) const throw(INTERP_KERNEL::Exception)
5135       {
5136         std::vector<DataArrayDouble *> ret(self->retrieveFieldsOn(mesh));
5137         int sz((int)ret.size());
5138         PyObject *retPy(PyList_New(sz));
5139         for(int i=0;i<sz;i++)
5140           PyList_SetItem(retPy,i,SWIG_NewPointerObj(SWIG_as_voidptr(ret[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
5141         return retPy;
5142       }
5143     }
5144   };
5145
5146   class DenseMatrix : public RefCountObject, public TimeLabel
5147   {
5148   public:
5149     static DenseMatrix *New(int nbRows, int nbCols) throw(INTERP_KERNEL::Exception);
5150     static DenseMatrix *New(DataArrayDouble *array, int nbRows, int nbCols) throw(INTERP_KERNEL::Exception);
5151     DenseMatrix *deepCpy() const throw(INTERP_KERNEL::Exception);
5152     DenseMatrix *shallowCpy() const throw(INTERP_KERNEL::Exception);
5153     //
5154     int getNumberOfRows() const throw(INTERP_KERNEL::Exception);
5155     int getNumberOfCols() const throw(INTERP_KERNEL::Exception);
5156     int getNbOfElems() const throw(INTERP_KERNEL::Exception);
5157     void reBuild(DataArrayDouble *array, int nbRows=-1, int nbCols=-1) throw(INTERP_KERNEL::Exception);
5158     void reShape(int nbRows, int nbCols) throw(INTERP_KERNEL::Exception);
5159     void transpose() throw(INTERP_KERNEL::Exception);
5160     //
5161     bool isEqual(const DenseMatrix& other, double eps) const throw(INTERP_KERNEL::Exception);
5162     DataArrayDouble *matVecMult(const DataArrayDouble *vec) const throw(INTERP_KERNEL::Exception);
5163     static DataArrayDouble *MatVecMult(const DenseMatrix *mat, const DataArrayDouble *vec) throw(INTERP_KERNEL::Exception);
5164     %extend
5165     {
5166       DenseMatrix(int nbRows, int nbCols) throw(INTERP_KERNEL::Exception)
5167       {
5168         return DenseMatrix::New(nbRows,nbCols);
5169       }
5170
5171       DenseMatrix(DataArrayDouble *array, int nbRows, int nbCols) throw(INTERP_KERNEL::Exception)
5172       {
5173         return DenseMatrix::New(array,nbRows,nbCols);
5174       }
5175
5176       PyObject *isEqualIfNotWhy(const DenseMatrix& other, double eps) const throw(INTERP_KERNEL::Exception)
5177       {
5178         std::string ret1;
5179         bool ret0=self->isEqualIfNotWhy(other,eps,ret1);
5180         PyObject *ret=PyTuple_New(2);
5181         PyObject *ret0Py=ret0?Py_True:Py_False;
5182         Py_XINCREF(ret0Py);
5183         PyTuple_SetItem(ret,0,ret0Py);
5184         PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
5185         return ret;
5186       }
5187
5188       DataArrayDouble *getData() throw(INTERP_KERNEL::Exception)
5189       {
5190         DataArrayDouble *ret(self->getData());
5191         if(ret)
5192           ret->incrRef();
5193         return ret;
5194       }
5195
5196       DenseMatrix *__add__(const DenseMatrix *other) throw(INTERP_KERNEL::Exception)
5197       {
5198         return ParaMEDMEM::DenseMatrix::Add(self,other);
5199       }
5200
5201       DenseMatrix *__sub__(const DenseMatrix *other) throw(INTERP_KERNEL::Exception)
5202       {
5203         return ParaMEDMEM::DenseMatrix::Substract(self,other);
5204       }
5205
5206       DenseMatrix *__mul__(const DenseMatrix *other) throw(INTERP_KERNEL::Exception)
5207       {
5208         return ParaMEDMEM::DenseMatrix::Multiply(self,other);
5209       }
5210
5211       DenseMatrix *__mul__(const DataArrayDouble *other) throw(INTERP_KERNEL::Exception)
5212       {
5213         return ParaMEDMEM::DenseMatrix::Multiply(self,other);
5214       }
5215
5216       PyObject *___iadd___(PyObject *trueSelf, const DenseMatrix *other) throw(INTERP_KERNEL::Exception)
5217       {
5218         self->addEqual(other);
5219         Py_XINCREF(trueSelf);
5220         return trueSelf;
5221       }
5222
5223       PyObject *___isub___(PyObject *trueSelf, const DenseMatrix *other) throw(INTERP_KERNEL::Exception)
5224       {
5225         self->substractEqual(other);
5226         Py_XINCREF(trueSelf);
5227         return trueSelf;
5228       }
5229 #ifdef WITH_NUMPY
5230       PyObject *toNumPyMatrix() throw(INTERP_KERNEL::Exception) // not const. It is not a bug !
5231       {
5232         PyObject *obj(ToNumPyArrayUnderground<DataArrayDouble,double>(self->getData(),NPY_DOUBLE,"DataArrayDouble",self->getNumberOfRows(),self->getNumberOfCols()));
5233         return obj;
5234       }
5235 #endif
5236     }
5237   };
5238 }
5239
5240 %pythoncode %{
5241 import os
5242 __filename=os.environ.get('PYTHONSTARTUP')
5243 if __filename and os.path.isfile(__filename):
5244   execfile(__filename)
5245   pass
5246 %}