Salome HOME
cc38bf8fdc63ffdc21464779abe9be476e85899d
[tools/medcoupling.git] / src / MEDCoupling_Swig / MEDCouplingCommon.i
1 // Copyright (C) 2007-2015  CEA/DEN, EDF R&D
2 //
3 // This library is free software; you can redistribute it and/or
4 // modify it under the terms of the GNU Lesser General Public
5 // License as published by the Free Software Foundation; either
6 // version 2.1 of the License, or (at your option) any later version.
7 //
8 // This library is distributed in the hope that it will be useful,
9 // but WITHOUT ANY WARRANTY; without even the implied warranty of
10 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11 // Lesser General Public License for more details.
12 //
13 // You should have received a copy of the GNU Lesser General Public
14 // License along with this library; if not, write to the Free Software
15 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
16 //
17 // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
18 //
19 // Author : Anthony Geay (CEA/DEN)
20
21 %module MEDCoupling
22
23 %include std_vector.i
24 %include std_string.i
25
26 %{
27 #include "MEDCouplingMemArray.hxx"
28 #include "MEDCouplingUMesh.hxx"
29 #include "MEDCouplingExtrudedMesh.hxx"
30 #include "MEDCouplingCMesh.hxx"
31 #include "MEDCouplingIMesh.hxx"
32 #include "MEDCouplingCurveLinearMesh.hxx"
33 #include "MEDCoupling1GTUMesh.hxx"
34 #include "MEDCouplingField.hxx"
35 #include "MEDCouplingFieldDouble.hxx"
36 #include "MEDCouplingFieldTemplate.hxx"
37 #include "MEDCouplingGaussLocalization.hxx"
38 #include "MEDCouplingAutoRefCountObjectPtr.hxx"
39 #include "MEDCouplingMultiFields.hxx"
40 #include "MEDCouplingFieldOverTime.hxx"
41 #include "MEDCouplingDefinitionTime.hxx"
42 #include "MEDCouplingFieldDiscretization.hxx"
43 #include "MEDCouplingCartesianAMRMesh.hxx"
44 #include "MEDCouplingAMRAttribute.hxx"
45 #include "MEDCouplingMatrix.hxx"
46 #include "MEDCouplingPartDefinition.hxx"
47 #include "MEDCouplingTypemaps.i"
48
49 #include "InterpKernelAutoPtr.hxx"
50 #include "BoxSplittingOptions.hxx"
51
52 using namespace ParaMEDMEM;
53 using namespace INTERP_KERNEL;
54
55 %}
56
57 %template(ivec) std::vector<int>;
58 %template(dvec) std::vector<double>;
59 %template(svec) std::vector<std::string>;
60
61 ////////////////////
62 %typemap(out) ParaMEDMEM::MEDCouplingMesh*
63 {
64   $result=convertMesh($1,$owner);
65 }
66
67 %typemap(out) MEDCouplingMesh*
68 {
69   $result=convertMesh($1,$owner);
70 }
71 //$$$$$$$$$$$$$$$$$$
72
73 ////////////////////
74 %typemap(out) ParaMEDMEM::MEDCouplingPointSet*
75 {
76   $result=convertMesh($1,$owner);
77 }
78
79 %typemap(out) MEDCouplingPointSet*
80 {
81   $result=convertMesh($1,$owner);
82 }
83 //$$$$$$$$$$$$$$$$$$
84
85 ////////////////////
86 %typemap(out) MEDCouplingCartesianAMRPatchGen*
87 {
88   $result=convertCartesianAMRPatch($1,$owner);
89 }
90 //$$$$$$$$$$$$$$$$$$
91
92 ////////////////////
93 %typemap(out) MEDCouplingCartesianAMRMeshGen*
94 {
95   $result=convertCartesianAMRMesh($1,$owner);
96 }
97 //$$$$$$$$$$$$$$$$$$
98
99 ////////////////////
100 %typemap(out) MEDCouplingDataForGodFather*
101 {
102   $result=convertDataForGodFather($1,$owner);
103 }
104 //$$$$$$$$$$$$$$$$$$
105
106 ////////////////////
107 %typemap(out) ParaMEDMEM::MEDCoupling1GTUMesh*
108 {
109   $result=convertMesh($1,$owner);
110 }
111
112 %typemap(out) MEDCoupling1GTUMesh*
113 {
114   $result=convertMesh($1,$owner);
115 }
116 //$$$$$$$$$$$$$$$$$$
117
118 ////////////////////
119 %typemap(out) ParaMEDMEM::MEDCouplingStructuredMesh*
120 {
121   $result=convertMesh($1,$owner);
122 }
123
124 %typemap(out) MEDCouplingStructuredMesh*
125 {
126   $result=convertMesh($1,$owner);
127 }
128 //$$$$$$$$$$$$$$$$$$
129
130 ////////////////////
131 %typemap(out) ParaMEDMEM::MEDCouplingFieldDiscretization*
132 {
133   $result=convertFieldDiscretization($1,$owner);
134 }
135
136 %typemap(out) MEDCouplingFieldDiscretization*
137 {
138   $result=convertFieldDiscretization($1,$owner);
139 }
140 //$$$$$$$$$$$$$$$$$$
141
142 ////////////////////
143 %typemap(out) ParaMEDMEM::MEDCouplingMultiFields*
144 {
145   $result=convertMultiFields($1,$owner);
146 }
147
148 %typemap(out) MEDCouplingMultiFields*
149 {
150   $result=convertMultiFields($1,$owner);
151 }
152 //$$$$$$$$$$$$$$$$$$
153
154 ////////////////////
155 %typemap(out) ParaMEDMEM::PartDefinition*
156 {
157   $result=convertPartDefinition($1,$owner);
158 }
159
160 %typemap(out) PartDefinition*
161 {
162   $result=convertPartDefinition($1,$owner);
163 }
164 //$$$$$$$$$$$$$$$$$$
165
166 #ifdef WITH_NUMPY
167 %init %{ import_array(); %}
168 #endif
169
170 %feature("autodoc", "1");
171 %feature("docstring");
172
173 %newobject ParaMEDMEM::MEDCouplingField::buildMeasureField;
174 %newobject ParaMEDMEM::MEDCouplingField::getLocalizationOfDiscr;
175 %newobject ParaMEDMEM::MEDCouplingField::computeTupleIdsToSelectFromCellIds;
176 %newobject ParaMEDMEM::MEDCouplingFieldDouble::New;
177 %newobject ParaMEDMEM::MEDCouplingFieldDouble::getArray;
178 %newobject ParaMEDMEM::MEDCouplingFieldDouble::getEndArray;
179 %newobject ParaMEDMEM::MEDCouplingFieldDouble::MergeFields;
180 %newobject ParaMEDMEM::MEDCouplingFieldDouble::MeldFields;
181 %newobject ParaMEDMEM::MEDCouplingFieldDouble::doublyContractedProduct;
182 %newobject ParaMEDMEM::MEDCouplingFieldDouble::determinant;
183 %newobject ParaMEDMEM::MEDCouplingFieldDouble::eigenValues;
184 %newobject ParaMEDMEM::MEDCouplingFieldDouble::eigenVectors;
185 %newobject ParaMEDMEM::MEDCouplingFieldDouble::inverse;
186 %newobject ParaMEDMEM::MEDCouplingFieldDouble::trace;
187 %newobject ParaMEDMEM::MEDCouplingFieldDouble::deviator;
188 %newobject ParaMEDMEM::MEDCouplingFieldDouble::magnitude;
189 %newobject ParaMEDMEM::MEDCouplingFieldDouble::maxPerTuple;
190 %newobject ParaMEDMEM::MEDCouplingFieldDouble::keepSelectedComponents;
191 %newobject ParaMEDMEM::MEDCouplingFieldDouble::extractSlice3D;
192 %newobject ParaMEDMEM::MEDCouplingFieldDouble::DotFields;
193 %newobject ParaMEDMEM::MEDCouplingFieldDouble::dot;
194 %newobject ParaMEDMEM::MEDCouplingFieldDouble::CrossProductFields;
195 %newobject ParaMEDMEM::MEDCouplingFieldDouble::crossProduct;
196 %newobject ParaMEDMEM::MEDCouplingFieldDouble::MaxFields;
197 %newobject ParaMEDMEM::MEDCouplingFieldDouble::max;
198 %newobject ParaMEDMEM::MEDCouplingFieldDouble::MinFields;
199 %newobject ParaMEDMEM::MEDCouplingFieldDouble::AddFields;
200 %newobject ParaMEDMEM::MEDCouplingFieldDouble::SubstractFields;
201 %newobject ParaMEDMEM::MEDCouplingFieldDouble::MultiplyFields;
202 %newobject ParaMEDMEM::MEDCouplingFieldDouble::DivideFields;
203 %newobject ParaMEDMEM::MEDCouplingFieldDouble::min;
204 %newobject ParaMEDMEM::MEDCouplingFieldDouble::negate;
205 %newobject ParaMEDMEM::MEDCouplingFieldDouble::getIdsInRange;
206 %newobject ParaMEDMEM::MEDCouplingFieldDouble::buildSubPart;
207 %newobject ParaMEDMEM::MEDCouplingFieldDouble::buildSubPartRange;
208 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__getitem__;
209 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__neg__;
210 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__add__;
211 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__sub__;
212 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__mul__;
213 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__div__;
214 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__pow__;
215 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__radd__;
216 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__rsub__;
217 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__rmul__;
218 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__rdiv__;
219 %newobject ParaMEDMEM::MEDCouplingFieldDouble::clone;
220 %newobject ParaMEDMEM::MEDCouplingFieldDouble::cloneWithMesh;
221 %newobject ParaMEDMEM::MEDCouplingFieldDouble::deepCpy;
222 %newobject ParaMEDMEM::MEDCouplingFieldDouble::buildNewTimeReprFromThis;
223 %newobject ParaMEDMEM::MEDCouplingFieldDouble::nodeToCellDiscretization;
224 %newobject ParaMEDMEM::MEDCouplingFieldDouble::cellToNodeDiscretization;
225 %newobject ParaMEDMEM::MEDCouplingFieldDouble::getValueOnMulti;
226 %newobject ParaMEDMEM::MEDCouplingFieldTemplate::New;
227 %newobject ParaMEDMEM::MEDCouplingMesh::deepCpy;
228 %newobject ParaMEDMEM::MEDCouplingMesh::checkDeepEquivalOnSameNodesWith;
229 %newobject ParaMEDMEM::MEDCouplingMesh::checkTypeConsistencyAndContig;
230 %newobject ParaMEDMEM::MEDCouplingMesh::computeNbOfNodesPerCell;
231 %newobject ParaMEDMEM::MEDCouplingMesh::computeNbOfFacesPerCell;
232 %newobject ParaMEDMEM::MEDCouplingMesh::computeEffectiveNbOfNodesPerCell;
233 %newobject ParaMEDMEM::MEDCouplingMesh::buildPartRange;
234 %newobject ParaMEDMEM::MEDCouplingMesh::giveCellsWithType;
235 %newobject ParaMEDMEM::MEDCouplingMesh::getCoordinatesAndOwner;
236 %newobject ParaMEDMEM::MEDCouplingMesh::getBarycenterAndOwner;
237 %newobject ParaMEDMEM::MEDCouplingMesh::computeIsoBarycenterOfNodesPerCell;
238 %newobject ParaMEDMEM::MEDCouplingMesh::buildOrthogonalField;
239 %newobject ParaMEDMEM::MEDCouplingMesh::getCellIdsFullyIncludedInNodeIds;
240 %newobject ParaMEDMEM::MEDCouplingMesh::mergeMyselfWith;
241 %newobject ParaMEDMEM::MEDCouplingMesh::fillFromAnalytic;
242 %newobject ParaMEDMEM::MEDCouplingMesh::fillFromAnalytic2;
243 %newobject ParaMEDMEM::MEDCouplingMesh::fillFromAnalytic3;
244 %newobject ParaMEDMEM::MEDCouplingMesh::getMeasureField;
245 %newobject ParaMEDMEM::MEDCouplingMesh::simplexize;
246 %newobject ParaMEDMEM::MEDCouplingMesh::buildUnstructured;
247 %newobject ParaMEDMEM::MEDCouplingMesh::MergeMeshes;
248 %newobject ParaMEDMEM::MEDCouplingPointSet::zipCoordsTraducer;
249 %newobject ParaMEDMEM::MEDCouplingPointSet::getCellsInBoundingBox;
250 %newobject ParaMEDMEM::MEDCouplingPointSet::findBoundaryNodes;
251 %newobject ParaMEDMEM::MEDCouplingPointSet::buildBoundaryMesh;
252 %newobject ParaMEDMEM::MEDCouplingPointSet::MergeNodesArray;
253 %newobject ParaMEDMEM::MEDCouplingPointSet::buildPartOfMySelf2;
254 %newobject ParaMEDMEM::MEDCouplingPointSet::BuildInstanceFromMeshType;
255 %newobject ParaMEDMEM::MEDCouplingPointSet::zipConnectivityTraducer;
256 %newobject ParaMEDMEM::MEDCouplingPointSet::mergeMyselfWithOnSameCoords;
257 %newobject ParaMEDMEM::MEDCouplingPointSet::fillCellIdsToKeepFromNodeIds;
258 %newobject ParaMEDMEM::MEDCouplingPointSet::getCellIdsLyingOnNodes;
259 %newobject ParaMEDMEM::MEDCouplingPointSet::deepCpyConnectivityOnly;
260 %newobject ParaMEDMEM::MEDCouplingPointSet::getBoundingBoxForBBTree;
261 %newobject ParaMEDMEM::MEDCouplingPointSet::computeFetchedNodeIds;
262 %newobject ParaMEDMEM::MEDCouplingPointSet::ComputeNbOfInteractionsWithSrcCells;
263 %newobject ParaMEDMEM::MEDCouplingPointSet::__getitem__;
264 %newobject ParaMEDMEM::MEDCouplingUMesh::New;
265 %newobject ParaMEDMEM::MEDCouplingUMesh::getNodalConnectivity;
266 %newobject ParaMEDMEM::MEDCouplingUMesh::getNodalConnectivityIndex;
267 %newobject ParaMEDMEM::MEDCouplingUMesh::clone;
268 %newobject ParaMEDMEM::MEDCouplingUMesh::__iter__;
269 %newobject ParaMEDMEM::MEDCouplingUMesh::cellsByType;
270 %newobject ParaMEDMEM::MEDCouplingUMesh::buildDescendingConnectivity;
271 %newobject ParaMEDMEM::MEDCouplingUMesh::buildDescendingConnectivity2;
272 %newobject ParaMEDMEM::MEDCouplingUMesh::explode3DMeshTo1D;
273 %newobject ParaMEDMEM::MEDCouplingUMesh::buildExtrudedMesh;
274 %newobject ParaMEDMEM::MEDCouplingUMesh::buildSpreadZonesWithPoly;
275 %newobject ParaMEDMEM::MEDCouplingUMesh::MergeUMeshes;
276 %newobject ParaMEDMEM::MEDCouplingUMesh::MergeUMeshesOnSameCoords;
277 %newobject ParaMEDMEM::MEDCouplingUMesh::ComputeSpreadZoneGradually;
278 %newobject ParaMEDMEM::MEDCouplingUMesh::ComputeSpreadZoneGraduallyFromSeed;
279 %newobject ParaMEDMEM::MEDCouplingUMesh::buildNewNumberingFromCommNodesFrmt;
280 %newobject ParaMEDMEM::MEDCouplingUMesh::conformize2D;
281 %newobject ParaMEDMEM::MEDCouplingUMesh::colinearize2D;
282 %newobject ParaMEDMEM::MEDCouplingUMesh::rearrange2ConsecutiveCellTypes;
283 %newobject ParaMEDMEM::MEDCouplingUMesh::sortCellsInMEDFileFrmt;
284 %newobject ParaMEDMEM::MEDCouplingUMesh::getRenumArrForMEDFileFrmt;
285 %newobject ParaMEDMEM::MEDCouplingUMesh::convertCellArrayPerGeoType;
286 %newobject ParaMEDMEM::MEDCouplingUMesh::getRenumArrForConsecutiveCellTypesSpec;
287 %newobject ParaMEDMEM::MEDCouplingUMesh::buildDirectionVectorField;
288 %newobject ParaMEDMEM::MEDCouplingUMesh::convertLinearCellsToQuadratic;
289 %newobject ParaMEDMEM::MEDCouplingUMesh::getEdgeRatioField;
290 %newobject ParaMEDMEM::MEDCouplingUMesh::getAspectRatioField;
291 %newobject ParaMEDMEM::MEDCouplingUMesh::getWarpField;
292 %newobject ParaMEDMEM::MEDCouplingUMesh::getSkewField;
293 %newobject ParaMEDMEM::MEDCouplingUMesh::getPartBarycenterAndOwner;
294 %newobject ParaMEDMEM::MEDCouplingUMesh::computePlaneEquationOf3DFaces;
295 %newobject ParaMEDMEM::MEDCouplingUMesh::getPartMeasureField;
296 %newobject ParaMEDMEM::MEDCouplingUMesh::buildPartOrthogonalField;
297 %newobject ParaMEDMEM::MEDCouplingUMesh::keepCellIdsByType;
298 %newobject ParaMEDMEM::MEDCouplingUMesh::Build0DMeshFromCoords;
299 %newobject ParaMEDMEM::MEDCouplingUMesh::findAndCorrectBadOriented3DExtrudedCells;
300 %newobject ParaMEDMEM::MEDCouplingUMesh::findAndCorrectBadOriented3DCells;
301 %newobject ParaMEDMEM::MEDCouplingUMesh::convertIntoSingleGeoTypeMesh;
302 %newobject ParaMEDMEM::MEDCouplingUMesh::convertNodalConnectivityToStaticGeoTypeMesh;
303 %newobject ParaMEDMEM::MEDCouplingUMesh::findCellIdsOnBoundary;
304 %newobject ParaMEDMEM::MEDCouplingUMesh::computeSkin;
305 %newobject ParaMEDMEM::MEDCouplingUMesh::buildSetInstanceFromThis;
306 %newobject ParaMEDMEM::MEDCouplingUMesh::getCellIdsCrossingPlane;
307 %newobject ParaMEDMEM::MEDCouplingUMesh::convexEnvelop2D;
308 %newobject ParaMEDMEM::MEDCouplingUMesh::ComputeRangesFromTypeDistribution;
309 %newobject ParaMEDMEM::MEDCouplingUMesh::buildUnionOf2DMesh;
310 %newobject ParaMEDMEM::MEDCouplingUMesh::buildUnionOf3DMesh;
311 %newobject ParaMEDMEM::MEDCouplingUMesh::orderConsecutiveCells1D;
312 %newobject ParaMEDMEM::MEDCouplingUMesh::getBoundingBoxForBBTreeFast;
313 %newobject ParaMEDMEM::MEDCouplingUMesh::getBoundingBoxForBBTree2DQuadratic;
314 %newobject ParaMEDMEM::MEDCouplingUMesh::getBoundingBoxForBBTree1DQuadratic;
315 %newobject ParaMEDMEM::MEDCouplingUMeshCellByTypeEntry::__iter__;
316 %newobject ParaMEDMEM::MEDCouplingUMeshCellEntry::__iter__;
317 %newobject ParaMEDMEM::MEDCoupling1GTUMesh::New;
318 %newobject ParaMEDMEM::MEDCoupling1GTUMesh::getNodalConnectivity;
319 %newobject ParaMEDMEM::MEDCoupling1GTUMesh::AggregateOnSameCoordsToUMesh;
320 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::New;
321 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::buildSetInstanceFromThis;
322 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::computeDualMesh;
323 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::explodeEachHexa8To6Quad4;
324 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::sortHexa8EachOther;
325 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::Merge1SGTUMeshes;
326 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::Merge1SGTUMeshesOnSameCoords;
327 %newobject ParaMEDMEM::MEDCoupling1DGTUMesh::New;
328 %newobject ParaMEDMEM::MEDCoupling1DGTUMesh::getNodalConnectivityIndex;
329 %newobject ParaMEDMEM::MEDCoupling1DGTUMesh::buildSetInstanceFromThis;
330 %newobject ParaMEDMEM::MEDCoupling1DGTUMesh::Merge1DGTUMeshes;
331 %newobject ParaMEDMEM::MEDCoupling1DGTUMesh::Merge1DGTUMeshesOnSameCoords;
332 %newobject ParaMEDMEM::MEDCouplingExtrudedMesh::New;
333 %newobject ParaMEDMEM::MEDCouplingExtrudedMesh::build3DUnstructuredMesh;
334 %newobject ParaMEDMEM::MEDCouplingStructuredMesh::buildStructuredSubPart;
335 %newobject ParaMEDMEM::MEDCouplingStructuredMesh::build1SGTUnstructured;
336 %newobject ParaMEDMEM::MEDCouplingStructuredMesh::build1SGTSubLevelMesh;
337 %newobject ParaMEDMEM::MEDCouplingStructuredMesh::BuildExplicitIdsFrom;
338 %newobject ParaMEDMEM::MEDCouplingStructuredMesh::ExtractFieldOfDoubleFrom;
339 %newobject ParaMEDMEM::MEDCouplingStructuredMesh::Build1GTNodalConnectivity;
340 %newobject ParaMEDMEM::MEDCouplingStructuredMesh::Build1GTNodalConnectivityOfSubLevelMesh;
341 %newobject ParaMEDMEM::MEDCouplingStructuredMesh::ComputeCornersGhost;
342 %newobject ParaMEDMEM::MEDCouplingCMesh::New;
343 %newobject ParaMEDMEM::MEDCouplingCMesh::clone;
344 %newobject ParaMEDMEM::MEDCouplingCMesh::getCoordsAt;
345 %newobject ParaMEDMEM::MEDCouplingIMesh::New;
346 %newobject ParaMEDMEM::MEDCouplingIMesh::asSingleCell;
347 %newobject ParaMEDMEM::MEDCouplingIMesh::buildWithGhost;
348 %newobject ParaMEDMEM::MEDCouplingIMesh::convertToCartesian;
349 %newobject ParaMEDMEM::MEDCouplingCurveLinearMesh::New;
350 %newobject ParaMEDMEM::MEDCouplingCurveLinearMesh::clone;
351 %newobject ParaMEDMEM::MEDCouplingCurveLinearMesh::getCoords;
352 %newobject ParaMEDMEM::MEDCouplingMultiFields::New;
353 %newobject ParaMEDMEM::MEDCouplingMultiFields::deepCpy;
354 %newobject ParaMEDMEM::MEDCouplingFieldOverTime::New;
355 %newobject ParaMEDMEM::MEDCouplingCartesianAMRPatchGen::getMesh;
356 %newobject ParaMEDMEM::MEDCouplingCartesianAMRPatchGen::__getitem__;
357 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::deepCpy;
358 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::buildUnstructured;
359 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::extractGhostFrom;
360 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::buildMeshFromPatchEnvelop;
361 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::buildMeshOfDirectChildrenOnly;
362 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::getImageMesh;
363 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::getGodFather;
364 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::getFather;
365 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::getPatch;
366 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::createCellFieldOnPatch;
367 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::findPatchesInTheNeighborhoodOf;
368 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::getPatchAtPosition;
369 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::getMeshAtPosition;
370 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::__getitem__;
371 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMesh::New;
372 %newobject ParaMEDMEM::MEDCouplingDataForGodFather::getMyGodFather;
373 %newobject ParaMEDMEM::MEDCouplingAMRAttribute::New;
374 %newobject ParaMEDMEM::MEDCouplingAMRAttribute::deepCpy;
375 %newobject ParaMEDMEM::MEDCouplingAMRAttribute::deepCpyWithoutGodFather;
376 %newobject ParaMEDMEM::MEDCouplingAMRAttribute::getFieldOn;
377 %newobject ParaMEDMEM::MEDCouplingAMRAttribute::projectTo;
378 %newobject ParaMEDMEM::MEDCouplingAMRAttribute::buildCellFieldOnRecurseWithoutOverlapWithoutGhost;
379 %newobject ParaMEDMEM::MEDCouplingAMRAttribute::buildCellFieldOnWithGhost;
380 %newobject ParaMEDMEM::MEDCouplingAMRAttribute::buildCellFieldOnWithoutGhost;
381 %newobject ParaMEDMEM::DenseMatrix::New;
382 %newobject ParaMEDMEM::DenseMatrix::deepCpy;
383 %newobject ParaMEDMEM::DenseMatrix::shallowCpy;
384 %newobject ParaMEDMEM::DenseMatrix::getData;
385 %newobject ParaMEDMEM::DenseMatrix::matVecMult;
386 %newobject ParaMEDMEM::DenseMatrix::MatVecMult;
387 %newobject ParaMEDMEM::DenseMatrix::__add__;
388 %newobject ParaMEDMEM::DenseMatrix::__sub__;
389 %newobject ParaMEDMEM::DenseMatrix::__mul__;
390 %newobject ParaMEDMEM::PartDefinition::New;
391 %newobject ParaMEDMEM::PartDefinition::toDAI;
392 %newobject ParaMEDMEM::PartDefinition::__add__;
393 %newobject ParaMEDMEM::PartDefinition::composeWith;
394 %newobject ParaMEDMEM::PartDefinition::tryToSimplify;
395 %newobject ParaMEDMEM::DataArrayPartDefinition::New;
396 %newobject ParaMEDMEM::SlicePartDefinition::New;
397
398 %feature("unref") MEDCouplingPointSet "$this->decrRef();"
399 %feature("unref") MEDCouplingMesh "$this->decrRef();"
400 %feature("unref") MEDCouplingUMesh "$this->decrRef();"
401 %feature("unref") MEDCoupling1GTUMesh "$this->decrRef();"
402 %feature("unref") MEDCoupling1SGTUMesh "$this->decrRef();"
403 %feature("unref") MEDCoupling1DGTUMesh "$this->decrRef();"
404 %feature("unref") MEDCouplingExtrudedMesh "$this->decrRef();"
405 %feature("unref") MEDCouplingCMesh "$this->decrRef();"
406 %feature("unref") MEDCouplingIMesh "$this->decrRef();"
407 %feature("unref") MEDCouplingCurveLinearMesh "$this->decrRef();"
408 %feature("unref") MEDCouplingField "$this->decrRef();"
409 %feature("unref") MEDCouplingFieldDiscretizationP0 "$this->decrRef();"
410 %feature("unref") MEDCouplingFieldDiscretizationP1 "$this->decrRef();"
411 %feature("unref") MEDCouplingFieldDiscretizationGauss "$this->decrRef();"
412 %feature("unref") MEDCouplingFieldDiscretizationGaussNE "$this->decrRef();"
413 %feature("unref") MEDCouplingFieldDiscretizationKriging "$this->decrRef();"
414 %feature("unref") MEDCouplingFieldDouble "$this->decrRef();"
415 %feature("unref") MEDCouplingMultiFields "$this->decrRef();"
416 %feature("unref") MEDCouplingFieldTemplate "$this->decrRef();"
417 %feature("unref") MEDCouplingMultiFields "$this->decrRef();"
418 %feature("unref") MEDCouplingCartesianAMRMeshGen "$this->decrRef();"
419 %feature("unref") MEDCouplingCartesianAMRMesh "$this->decrRef();"
420 %feature("unref") MEDCouplingCartesianAMRMeshSub "$this->decrRef();"
421 %feature("unref") MEDCouplingCartesianAMRPatchGen "$this->decrRef();"
422 %feature("unref") MEDCouplingCartesianAMRPatchGF "$this->decrRef();"
423 %feature("unref") MEDCouplingCartesianAMRPatch "$this->decrRef();"
424 %feature("unref") MEDCouplingDataForGodFather "$this->decrRef();"
425 %feature("unref") MEDCouplingAMRAttribute "$this->decrRef();"
426 %feature("unref") DenseMatrix "$this->decrRef();"
427 %feature("unref") PartDefinition "$this->decrRef();"
428 %feature("unref") DataArrayPartDefinition "$this->decrRef();"
429 %feature("unref") SlicePartDefinition "$this->decrRef();"
430
431 %rename(assign) *::operator=;
432 %ignore ParaMEDMEM::MEDCouplingGaussLocalization::pushTinySerializationIntInfo;
433 %ignore ParaMEDMEM::MEDCouplingGaussLocalization::pushTinySerializationDblInfo;
434 %ignore ParaMEDMEM::MEDCouplingGaussLocalization::fillWithValues;
435 %ignore ParaMEDMEM::MEDCouplingGaussLocalization::buildNewInstanceFromTinyInfo;
436
437 %nodefaultctor;
438
439 %rename (InterpKernelException) INTERP_KERNEL::Exception;
440
441 %include "MEDCouplingRefCountObject.i"
442 %include "MEDCouplingMemArray.i"
443
444 namespace INTERP_KERNEL
445
446   /*!
447    * \class BoxSplittingOptions
448    * Class defining the options for box splitting used for AMR algorithm like creation of patches following a criterion.
449    */
450   class BoxSplittingOptions
451   {
452   public:
453     BoxSplittingOptions();
454     void init() throw(INTERP_KERNEL::Exception);
455     double getEfficiencyGoal() const throw(INTERP_KERNEL::Exception);
456     void setEfficiencyGoal(double efficiency) throw(INTERP_KERNEL::Exception);
457     double getEfficiencyThreshold() const throw(INTERP_KERNEL::Exception);
458     void setEfficiencyThreshold(double efficiencyThreshold) throw(INTERP_KERNEL::Exception);
459     int getMinimumPatchLength() const throw(INTERP_KERNEL::Exception);
460     void setMinimumPatchLength(int minPatchLength) throw(INTERP_KERNEL::Exception);
461     int getMaximumPatchLength() const throw(INTERP_KERNEL::Exception);
462     void setMaximumPatchLength(int maxPatchLength) throw(INTERP_KERNEL::Exception);
463     int getMaximumNbOfCellsInPatch() const throw(INTERP_KERNEL::Exception);
464     void setMaximumNbOfCellsInPatch(int maxNbCellsInPatch) throw(INTERP_KERNEL::Exception);
465     void copyOptions(const BoxSplittingOptions & other) throw(INTERP_KERNEL::Exception);
466     std::string printOptions() const throw(INTERP_KERNEL::Exception);
467     %extend
468     {
469       std::string __str__() const throw(INTERP_KERNEL::Exception)
470       {
471         return self->printOptions();
472       }
473     }
474   };
475 }
476
477 namespace ParaMEDMEM
478 {
479   typedef enum
480     {
481       ON_CELLS = 0,
482       ON_NODES = 1,
483       ON_GAUSS_PT = 2,
484       ON_GAUSS_NE = 3,
485       ON_NODES_KR = 4
486     } TypeOfField;
487
488   typedef enum
489     {
490       NO_TIME = 4,
491       ONE_TIME = 5,
492       LINEAR_TIME = 6,
493       CONST_ON_TIME_INTERVAL = 7
494     } TypeOfTimeDiscretization;
495
496   typedef enum
497     {
498       UNSTRUCTURED = 5,
499       CARTESIAN = 7,
500       EXTRUDED = 8,
501       CURVE_LINEAR = 9,
502       SINGLE_STATIC_GEO_TYPE_UNSTRUCTURED = 10,
503       SINGLE_DYNAMIC_GEO_TYPE_UNSTRUCTURED = 11,
504       IMAGE_GRID = 12
505     } MEDCouplingMeshType;
506
507   class DataArrayInt;
508   class DataArrayDouble;
509   class MEDCouplingUMesh;
510   class MEDCouplingFieldDouble;
511
512   %extend RefCountObject
513   {
514     std::string getHiddenCppPointer() const
515     {
516       std::ostringstream oss; oss << "C++ Pointer address is : " << self;
517       return oss.str();
518     }
519   }
520
521   %extend MEDCouplingGaussLocalization
522   {
523     std::string __str__() const throw(INTERP_KERNEL::Exception)
524     {
525       return self->getStringRepr();
526     }
527
528     std::string __repr__() const throw(INTERP_KERNEL::Exception)
529     {
530       std::ostringstream oss; oss << "MEDCouplingGaussLocalization C++ instance at " << self << "." << std::endl;
531       oss << self->getStringRepr();
532       return oss.str();
533     }
534   }
535
536   //== MEDCouplingMesh
537   
538   class MEDCouplingMesh : public RefCountObject, public TimeLabel
539   {
540   public:
541     void setName(const std::string& name);
542     std::string getName() const;
543     void setDescription(const std::string& descr);
544     std::string getDescription() const;
545     void setTime(double val, int iteration, int order);
546     void setTimeUnit(const std::string& unit);
547     std::string getTimeUnit() const;
548     virtual MEDCouplingMeshType getType() const throw(INTERP_KERNEL::Exception);
549     bool isStructured() const throw(INTERP_KERNEL::Exception);
550     virtual MEDCouplingMesh *deepCpy() const;
551     virtual bool isEqual(const MEDCouplingMesh *other, double prec) const throw(INTERP_KERNEL::Exception);
552     virtual bool isEqualWithoutConsideringStr(const MEDCouplingMesh *other, double prec) const throw(INTERP_KERNEL::Exception);
553     virtual void checkFastEquivalWith(const MEDCouplingMesh *other, double prec) const throw(INTERP_KERNEL::Exception);
554     virtual void copyTinyStringsFrom(const MEDCouplingMesh *other) throw(INTERP_KERNEL::Exception);
555     virtual void copyTinyInfoFrom(const MEDCouplingMesh *other) throw(INTERP_KERNEL::Exception);
556     virtual void checkCoherency() const throw(INTERP_KERNEL::Exception);
557     virtual void checkCoherency1(double eps=1e-12) const throw(INTERP_KERNEL::Exception);
558     virtual void checkCoherency2(double eps=1e-12) const throw(INTERP_KERNEL::Exception);
559     virtual int getNumberOfCells() const throw(INTERP_KERNEL::Exception);
560     virtual int getNumberOfNodes() const throw(INTERP_KERNEL::Exception);
561     virtual int getSpaceDimension() const throw(INTERP_KERNEL::Exception);
562     virtual int getMeshDimension() const throw(INTERP_KERNEL::Exception);
563     virtual DataArrayDouble *getCoordinatesAndOwner() const throw(INTERP_KERNEL::Exception);
564     virtual DataArrayDouble *getBarycenterAndOwner() const throw(INTERP_KERNEL::Exception);
565     virtual DataArrayDouble *computeIsoBarycenterOfNodesPerCell() const throw(INTERP_KERNEL::Exception);
566     virtual DataArrayInt *giveCellsWithType(INTERP_KERNEL::NormalizedCellType type) const throw(INTERP_KERNEL::Exception);
567     virtual DataArrayInt *computeNbOfNodesPerCell() const throw(INTERP_KERNEL::Exception);
568     virtual DataArrayInt *computeNbOfFacesPerCell() const throw(INTERP_KERNEL::Exception);
569     virtual DataArrayInt *computeEffectiveNbOfNodesPerCell() const throw(INTERP_KERNEL::Exception);
570     virtual MEDCouplingMesh *buildPartRange(int beginCellIds, int endCellIds, int stepCellIds) const throw(INTERP_KERNEL::Exception);
571     virtual int getNumberOfCellsWithType(INTERP_KERNEL::NormalizedCellType type) const throw(INTERP_KERNEL::Exception);
572     virtual INTERP_KERNEL::NormalizedCellType getTypeOfCell(int cellId) const throw(INTERP_KERNEL::Exception);
573     virtual std::string simpleRepr() const throw(INTERP_KERNEL::Exception);
574     virtual std::string advancedRepr() const throw(INTERP_KERNEL::Exception);
575     std::string writeVTK(const std::string& fileName, bool isBinary=true) const throw(INTERP_KERNEL::Exception);
576     virtual std::string getVTKFileExtension() const;
577     std::string getVTKFileNameOf(const std::string& fileName) const;
578     // tools
579     virtual MEDCouplingFieldDouble *getMeasureField(bool isAbs) const throw(INTERP_KERNEL::Exception);
580     virtual MEDCouplingFieldDouble *getMeasureFieldOnNode(bool isAbs) const throw(INTERP_KERNEL::Exception);
581     virtual MEDCouplingFieldDouble *fillFromAnalytic(TypeOfField t, int nbOfComp, const std::string& func) const throw(INTERP_KERNEL::Exception);
582     virtual MEDCouplingFieldDouble *fillFromAnalytic2(TypeOfField t, int nbOfComp, const std::string& func) const throw(INTERP_KERNEL::Exception);
583     virtual MEDCouplingFieldDouble *fillFromAnalytic3(TypeOfField t, int nbOfComp, const std::vector<std::string>& varsOrder, const std::string& func) const throw(INTERP_KERNEL::Exception);
584     virtual MEDCouplingFieldDouble *buildOrthogonalField() const throw(INTERP_KERNEL::Exception);
585     virtual MEDCouplingUMesh *buildUnstructured() const throw(INTERP_KERNEL::Exception);
586     virtual MEDCouplingMesh *mergeMyselfWith(const MEDCouplingMesh *other) const throw(INTERP_KERNEL::Exception);
587     virtual bool areCompatibleForMerge(const MEDCouplingMesh *other) const throw(INTERP_KERNEL::Exception);
588     virtual DataArrayInt *simplexize(int policy) throw(INTERP_KERNEL::Exception);
589     static MEDCouplingMesh *MergeMeshes(const MEDCouplingMesh *mesh1, const MEDCouplingMesh *mesh2) throw(INTERP_KERNEL::Exception);
590     static bool IsStaticGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
591     static bool IsLinearGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
592     static INTERP_KERNEL::NormalizedCellType GetCorrespondingPolyType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
593     static int GetNumberOfNodesOfGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
594     static int GetDimensionOfGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
595     static const char *GetReprOfGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
596     %extend
597        {
598          std::string __str__() const throw(INTERP_KERNEL::Exception)
599          {
600            return self->simpleRepr();
601          }
602
603          PyObject *getTime() throw(INTERP_KERNEL::Exception)
604          {
605            int tmp1,tmp2;
606            double tmp0=self->getTime(tmp1,tmp2);
607            PyObject *res = PyList_New(3);
608            PyList_SetItem(res,0,SWIG_From_double(tmp0));
609            PyList_SetItem(res,1,SWIG_From_int(tmp1));
610            PyList_SetItem(res,2,SWIG_From_int(tmp2));
611            return res;
612          }
613
614          int getCellContainingPoint(PyObject *p, double eps) const throw(INTERP_KERNEL::Exception)
615          {
616            double val;
617            DataArrayDouble *a;
618            DataArrayDoubleTuple *aa;
619            std::vector<double> bb;
620            int sw;
621            int spaceDim=self->getSpaceDimension();
622            const char msg[]="Python wrap of MEDCouplingMesh::getCellContainingPoint : ";
623            const double *pos=convertObjToPossibleCpp5_Safe(p,sw,val,a,aa,bb,msg,1,spaceDim,true);
624            return self->getCellContainingPoint(pos,eps);
625          }
626
627          PyObject *getCellsContainingPoints(PyObject *p, int nbOfPoints, double eps) const throw(INTERP_KERNEL::Exception)
628          {
629            double val;
630            DataArrayDouble *a;
631            DataArrayDoubleTuple *aa;
632            std::vector<double> bb;
633            int sw;
634            int spaceDim=self->getSpaceDimension();
635            const char msg[]="Python wrap of MEDCouplingMesh::getCellsContainingPoint : ";
636            const double *pos=convertObjToPossibleCpp5_Safe(p,sw,val,a,aa,bb,msg,nbOfPoints,spaceDim,true);
637            MEDCouplingAutoRefCountObjectPtr<DataArrayInt> elts,eltsIndex;
638            self->getCellsContainingPoints(pos,nbOfPoints,eps,elts,eltsIndex);
639            PyObject *ret=PyTuple_New(2);
640            PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(elts.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
641            PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(eltsIndex.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
642            return ret;
643          }
644
645          PyObject *getCellsContainingPoints(PyObject *p, double eps) const throw(INTERP_KERNEL::Exception)
646          {
647            MEDCouplingAutoRefCountObjectPtr<DataArrayInt> elts,eltsIndex;
648            int spaceDim=self->getSpaceDimension();
649            void *da=0;
650            int res1=SWIG_ConvertPtr(p,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, 0 |  0 );
651            if (!SWIG_IsOK(res1))
652              {
653                int size;
654                INTERP_KERNEL::AutoCPtr<double> tmp=convertPyToNewDblArr2(p,&size);
655                int nbOfPoints=size/spaceDim;
656                if(size%spaceDim!=0)
657                  {
658                    throw INTERP_KERNEL::Exception("MEDCouplingMesh::getCellsContainingPoints : Invalid list length ! Must be a multiple of self.getSpaceDimension() !");
659                  }
660                self->getCellsContainingPoints(tmp,nbOfPoints,eps,elts,eltsIndex);
661              }
662            else
663              {
664                DataArrayDouble *da2=reinterpret_cast< DataArrayDouble * >(da);
665                if(!da2)
666                  throw INTERP_KERNEL::Exception("MEDCouplingMesh::getCellsContainingPoints : Not null DataArrayDouble instance expected !");
667                da2->checkAllocated();
668                int size=da2->getNumberOfTuples();
669                int nbOfCompo=da2->getNumberOfComponents();
670                if(nbOfCompo!=spaceDim)
671                  {
672                    throw INTERP_KERNEL::Exception("MEDCouplingMesh::getCellsContainingPoints : Invalid DataArrayDouble nb of components ! Expected same as self.getSpaceDimension() !");
673                  }
674                self->getCellsContainingPoints(da2->getConstPointer(),size,eps,elts,eltsIndex);
675              }
676            PyObject *ret=PyTuple_New(2);
677            PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(elts.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
678            PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(eltsIndex.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
679            return ret;
680          }
681
682          PyObject *getCellsContainingPoint(PyObject *p, double eps) const throw(INTERP_KERNEL::Exception)
683          {
684            double val;
685            DataArrayDouble *a;
686            DataArrayDoubleTuple *aa;
687            std::vector<double> bb;
688            int sw;
689            int spaceDim=self->getSpaceDimension();
690            const char msg[]="Python wrap of MEDCouplingUMesh::getCellsContainingPoint : ";
691            const double *pos=convertObjToPossibleCpp5_Safe(p,sw,val,a,aa,bb,msg,1,spaceDim,true);
692            std::vector<int> elts;
693            self->getCellsContainingPoint(pos,eps,elts);
694            DataArrayInt *ret=DataArrayInt::New();
695            ret->alloc((int)elts.size(),1);
696            std::copy(elts.begin(),elts.end(),ret->getPointer());
697            return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
698          }
699          
700          virtual PyObject *getReverseNodalConnectivity() const throw(INTERP_KERNEL::Exception)
701          {
702            MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d0=DataArrayInt::New();
703            MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d1=DataArrayInt::New();
704            self->getReverseNodalConnectivity(d0,d1);
705            PyObject *ret=PyTuple_New(2);
706            PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
707            PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
708            return ret;
709          }
710          
711          void renumberCells(PyObject *li, bool check=true) throw(INTERP_KERNEL::Exception)
712          {
713            int sw,sz(-1);
714            int v0; std::vector<int> v1;
715            const int *ids(convertObjToPossibleCpp1_Safe(li,sw,sz,v0,v1));
716            self->renumberCells(ids,check);
717          }
718
719          PyObject *checkGeoEquivalWith(const MEDCouplingMesh *other, int levOfCheck, double prec) const throw(INTERP_KERNEL::Exception)
720          {
721            DataArrayInt *cellCor, *nodeCor;
722            self->checkGeoEquivalWith(other,levOfCheck,prec,cellCor,nodeCor);
723            PyObject *res = PyList_New(2);
724            PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(cellCor),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, cellCor?SWIG_POINTER_OWN | 0:0 ));
725            PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(nodeCor),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, nodeCor?SWIG_POINTER_OWN | 0:0 ));
726            return res;
727          }
728
729          PyObject *checkDeepEquivalWith(const MEDCouplingMesh *other, int cellCompPol, double prec) const throw(INTERP_KERNEL::Exception)
730          {
731            DataArrayInt *cellCor=0,*nodeCor=0;
732            self->checkDeepEquivalWith(other,cellCompPol,prec,cellCor,nodeCor);
733            PyObject *res = PyList_New(2);
734            PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(cellCor),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, cellCor?SWIG_POINTER_OWN | 0:0 ));
735            PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(nodeCor),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, nodeCor?SWIG_POINTER_OWN | 0:0 ));
736            return res;
737          }
738          
739          DataArrayInt *checkDeepEquivalOnSameNodesWith(const MEDCouplingMesh *other, int cellCompPol, double prec) const throw(INTERP_KERNEL::Exception)
740          {
741            DataArrayInt *cellCor=0;
742            self->checkDeepEquivalOnSameNodesWith(other,cellCompPol,prec,cellCor);
743            return cellCor;
744          }
745
746          DataArrayInt *getCellIdsFullyIncludedInNodeIds(PyObject *li) const throw(INTERP_KERNEL::Exception)
747          {
748            void *da=0;
749            int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayInt, 0 |  0 );
750            if (!SWIG_IsOK(res1))
751              {
752                int size;
753                INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
754                return self->getCellIdsFullyIncludedInNodeIds(tmp,((const int *)tmp)+size);
755              }
756            else
757              {
758                DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
759                if(!da2)
760                  throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
761                da2->checkAllocated();
762                return self->getCellIdsFullyIncludedInNodeIds(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems());
763              }
764          }
765          PyObject *getNodeIdsOfCell(int cellId) const throw(INTERP_KERNEL::Exception)
766          {
767            std::vector<int> conn;
768            self->getNodeIdsOfCell(cellId,conn);
769            return convertIntArrToPyList2(conn);
770          }
771
772          PyObject *getCoordinatesOfNode(int nodeId) const throw(INTERP_KERNEL::Exception)
773          {
774            std::vector<double> coo;
775            self->getCoordinatesOfNode(nodeId,coo);
776            return convertDblArrToPyList2(coo);
777          }
778
779          void scale(PyObject *point, double factor) throw(INTERP_KERNEL::Exception)
780          {
781            double val;
782            DataArrayDouble *a;
783            DataArrayDoubleTuple *aa;
784            std::vector<double> bb;
785            int sw;
786            int spaceDim=self->getSpaceDimension();
787            const char msg[]="Python wrap of MEDCouplingPointSet::scale : ";
788            const double *pointPtr=convertObjToPossibleCpp5_Safe(point,sw,val,a,aa,bb,msg,1,spaceDim,true);
789            self->scale(pointPtr,factor);
790          }
791
792          PyObject *getBoundingBox() const throw(INTERP_KERNEL::Exception)
793          {
794            int spaceDim=self->getSpaceDimension();
795            INTERP_KERNEL::AutoPtr<double> tmp=new double[2*spaceDim];
796            self->getBoundingBox(tmp);
797            PyObject *ret=convertDblArrToPyListOfTuple(tmp,2,spaceDim);
798            return ret;
799          }
800
801          PyObject *isEqualIfNotWhy(const MEDCouplingMesh *other, double prec) const throw(INTERP_KERNEL::Exception)
802          {
803            std::string ret1;
804            bool ret0=self->isEqualIfNotWhy(other,prec,ret1);
805            PyObject *ret=PyTuple_New(2);
806            PyObject *ret0Py=ret0?Py_True:Py_False;
807            Py_XINCREF(ret0Py);
808            PyTuple_SetItem(ret,0,ret0Py);
809            PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
810            return ret;
811          }
812
813          PyObject *buildPart(PyObject *li) const throw(INTERP_KERNEL::Exception)
814          {
815            int szArr,sw,iTypppArr;
816            std::vector<int> stdvecTyyppArr;
817            const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
818            MEDCouplingMesh *ret=self->buildPart(tmp,tmp+szArr);
819            if(sw==3)//DataArrayInt
820              { 
821                void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
822                DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
823                std::string name=argpt->getName();
824                if(!name.empty())
825                  ret->setName(name.c_str());
826              }
827            return convertMesh(ret, SWIG_POINTER_OWN | 0 );
828          }
829         
830          PyObject *buildPartAndReduceNodes(PyObject *li) const throw(INTERP_KERNEL::Exception)
831          {
832            int szArr,sw,iTypppArr;
833            std::vector<int> stdvecTyyppArr;
834            DataArrayInt *arr=0;
835            const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
836            MEDCouplingMesh *ret=self->buildPartAndReduceNodes(tmp,tmp+szArr,arr);
837            if(sw==3)//DataArrayInt
838              { 
839                void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
840                DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
841                std::string name=argpt->getName();
842                if(!name.empty())
843                  ret->setName(name.c_str());
844              }
845            //
846            PyObject *res = PyList_New(2);
847            PyObject *obj0=convertMesh(ret, SWIG_POINTER_OWN | 0 );
848            PyObject *obj1=SWIG_NewPointerObj(SWIG_as_voidptr(arr),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
849            PyList_SetItem(res,0,obj0);
850            PyList_SetItem(res,1,obj1);
851            return res;
852          }
853
854          PyObject *buildPartRangeAndReduceNodes(int beginCellIds, int endCellIds, int stepCellIds) const throw(INTERP_KERNEL::Exception)
855          {
856            int a,b,c;
857            DataArrayInt *arr=0;
858            MEDCouplingMesh *ret=self->buildPartRangeAndReduceNodes(beginCellIds,endCellIds,stepCellIds,a,b,c,arr);
859            PyObject *res = PyTuple_New(2);
860            PyObject *obj0=convertMesh(ret, SWIG_POINTER_OWN | 0 );
861            PyObject *obj1=0;
862            if(arr)
863              obj1=SWIG_NewPointerObj(SWIG_as_voidptr(arr),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
864            else
865              obj1=PySlice_New(PyInt_FromLong(a),PyInt_FromLong(b),PyInt_FromLong(b));
866            PyTuple_SetItem(res,0,obj0);
867            PyTuple_SetItem(res,1,obj1);
868            return res;
869          }
870
871         PyObject *getDistributionOfTypes() const throw(INTERP_KERNEL::Exception)
872         {
873           std::vector<int> vals=self->getDistributionOfTypes();
874           if(vals.size()%3!=0)
875             throw INTERP_KERNEL::Exception("Internal Error detected in wrap python ! code returned by MEDCouplingMesh::getDistributionOfTypes is not so that %3==0 !");
876           PyObject *ret=PyList_New((int)vals.size()/3);
877           for(int j=0;j<(int)vals.size()/3;j++)
878              {
879                PyObject *ret1=PyList_New(3);
880                PyList_SetItem(ret1,0,SWIG_From_int(vals[3*j]));
881                PyList_SetItem(ret1,1,SWIG_From_int(vals[3*j+1]));
882                PyList_SetItem(ret1,2,SWIG_From_int(vals[3*j+2]));
883                PyList_SetItem(ret,j,ret1);
884              }
885           return ret;
886         }
887
888         DataArrayInt *checkTypeConsistencyAndContig(PyObject *li, PyObject *li2) const throw(INTERP_KERNEL::Exception)
889         {
890           std::vector<int> code;
891           std::vector<const DataArrayInt *> idsPerType;
892           convertFromPyObjVectorOfObj<const ParaMEDMEM::DataArrayInt *>(li2,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,"DataArrayInt",idsPerType);
893           convertPyToNewIntArr4(li,1,3,code);
894           return self->checkTypeConsistencyAndContig(code,idsPerType);
895         }
896
897         PyObject *splitProfilePerType(const DataArrayInt *profile) const throw(INTERP_KERNEL::Exception)
898         {
899           std::vector<int> code;
900           std::vector<DataArrayInt *> idsInPflPerType;
901           std::vector<DataArrayInt *> idsPerType;
902           self->splitProfilePerType(profile,code,idsInPflPerType,idsPerType);
903           PyObject *ret=PyTuple_New(3);
904           //
905           if(code.size()%3!=0)
906             throw INTERP_KERNEL::Exception("Internal Error detected in wrap python ! code returned by MEDCouplingMesh::splitProfilePerType is not so that %3==0 !");
907           PyObject *ret0=PyList_New((int)code.size()/3);
908           for(int j=0;j<(int)code.size()/3;j++)
909              {
910                PyObject *ret00=PyList_New(3);
911                PyList_SetItem(ret00,0,SWIG_From_int(code[3*j]));
912                PyList_SetItem(ret00,1,SWIG_From_int(code[3*j+1]));
913                PyList_SetItem(ret00,2,SWIG_From_int(code[3*j+2]));
914                PyList_SetItem(ret0,j,ret00);
915              }
916           PyTuple_SetItem(ret,0,ret0);
917           //
918           PyObject *ret1=PyList_New(idsInPflPerType.size());
919           for(std::size_t j=0;j<idsInPflPerType.size();j++)
920             PyList_SetItem(ret1,j,SWIG_NewPointerObj(SWIG_as_voidptr(idsInPflPerType[j]),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
921           PyTuple_SetItem(ret,1,ret1);
922           int n=idsPerType.size();
923           PyObject *ret2=PyList_New(n);
924           for(int i=0;i<n;i++)
925             PyList_SetItem(ret2,i,SWIG_NewPointerObj(SWIG_as_voidptr(idsPerType[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
926           PyTuple_SetItem(ret,2,ret2);
927           return ret;
928         }
929
930         void translate(PyObject *vector) throw(INTERP_KERNEL::Exception)
931         {
932           double val;
933           DataArrayDouble *a;
934           DataArrayDoubleTuple *aa;
935           std::vector<double> bb;
936           int sw;
937           int spaceDim=self->getSpaceDimension();
938           const char msg[]="Python wrap of MEDCouplingPointSet::translate : ";
939           const double *vectorPtr=convertObjToPossibleCpp5_Safe(vector,sw,val,a,aa,bb,msg,1,spaceDim,true);
940           self->translate(vectorPtr);
941         }
942
943          void rotate(PyObject *center, double alpha) throw(INTERP_KERNEL::Exception)
944          {
945            const char msg[]="Python wrap of MEDCouplingPointSet::rotate : ";
946            double val;
947            DataArrayDouble *a;
948            DataArrayDoubleTuple *aa;
949            std::vector<double> bb;
950            int sw;
951            int spaceDim=self->getSpaceDimension();
952            const double *centerPtr=convertObjToPossibleCpp5_Safe(center,sw,val,a,aa,bb,msg,1,spaceDim,true);
953            self->rotate(centerPtr,0,alpha);
954          }
955
956          void rotate(PyObject *center, PyObject *vector, double alpha) throw(INTERP_KERNEL::Exception)
957          {
958            const char msg[]="Python wrap of MEDCouplingPointSet::rotate : ";
959            double val,val2;
960            DataArrayDouble *a,*a2;
961            DataArrayDoubleTuple *aa,*aa2;
962            std::vector<double> bb,bb2;
963            int sw;
964            int spaceDim=self->getSpaceDimension();
965            const double *centerPtr=convertObjToPossibleCpp5_Safe(center,sw,val,a,aa,bb,msg,1,spaceDim,true);
966            const double *vectorPtr=convertObjToPossibleCpp5_Safe(vector,sw,val2,a2,aa2,bb2,msg,1,spaceDim,false);//vectorPtr can be null in case of space dim 2
967            self->rotate(centerPtr,vectorPtr,alpha);
968          }
969
970          PyObject *getAllGeoTypes() const throw(INTERP_KERNEL::Exception)
971          {
972            std::set<INTERP_KERNEL::NormalizedCellType> result=self->getAllGeoTypes();
973            std::set<INTERP_KERNEL::NormalizedCellType>::const_iterator iL=result.begin();
974            PyObject *res=PyList_New(result.size());
975            for(int i=0;iL!=result.end(); i++, iL++)
976              PyList_SetItem(res,i,PyInt_FromLong(*iL));
977            return res;
978          }
979          
980          static MEDCouplingMesh *MergeMeshes(PyObject *li) throw(INTERP_KERNEL::Exception)
981          {
982             std::vector<const ParaMEDMEM::MEDCouplingMesh *> tmp;
983             convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingMesh,"MEDCouplingMesh",tmp);
984             return MEDCouplingMesh::MergeMeshes(tmp);
985          }
986        }
987   };
988 }
989
990 //== MEDCouplingMesh End
991
992 %include "NormalizedGeometricTypes"
993 %include "MEDCouplingNatureOfFieldEnum"
994 //
995 namespace ParaMEDMEM
996 {
997   class MEDCouplingNatureOfField
998   {
999   public:
1000     static const char *GetRepr(NatureOfField nat) throw(INTERP_KERNEL::Exception);
1001     static std::string GetReprNoThrow(NatureOfField nat);
1002     static std::string GetAllPossibilitiesStr();
1003   };
1004 }
1005
1006 // the MEDCouplingTimeDiscretization classes are not swigged : in case the file can help
1007 // include "MEDCouplingTimeDiscretization.i"
1008
1009 namespace ParaMEDMEM
1010 {
1011   class MEDCouplingGaussLocalization
1012   {
1013   public:
1014     MEDCouplingGaussLocalization(INTERP_KERNEL::NormalizedCellType type, const std::vector<double>& refCoo,
1015                                  const std::vector<double>& gsCoo, const std::vector<double>& w) throw(INTERP_KERNEL::Exception);
1016     MEDCouplingGaussLocalization(INTERP_KERNEL::NormalizedCellType typ) throw(INTERP_KERNEL::Exception);
1017     INTERP_KERNEL::NormalizedCellType getType() const throw(INTERP_KERNEL::Exception);
1018     void setType(INTERP_KERNEL::NormalizedCellType typ) throw(INTERP_KERNEL::Exception);
1019     int getNumberOfGaussPt() const throw(INTERP_KERNEL::Exception);
1020     int getDimension() const throw(INTERP_KERNEL::Exception);
1021     int getNumberOfPtsInRefCell() const throw(INTERP_KERNEL::Exception);
1022     std::string getStringRepr() const throw(INTERP_KERNEL::Exception);
1023     void checkCoherency() const throw(INTERP_KERNEL::Exception);
1024     bool isEqual(const MEDCouplingGaussLocalization& other, double eps) const throw(INTERP_KERNEL::Exception);
1025     //
1026     const std::vector<double>& getRefCoords() const throw(INTERP_KERNEL::Exception);
1027     double getRefCoord(int ptIdInCell, int comp) const throw(INTERP_KERNEL::Exception);
1028     const std::vector<double>& getGaussCoords() const throw(INTERP_KERNEL::Exception);
1029     double getGaussCoord(int gaussPtIdInCell, int comp) const throw(INTERP_KERNEL::Exception);
1030     const std::vector<double>& getWeights() const throw(INTERP_KERNEL::Exception);
1031     double getWeight(int gaussPtIdInCell, double newVal) const throw(INTERP_KERNEL::Exception);
1032     void setRefCoord(int ptIdInCell, int comp, double newVal) throw(INTERP_KERNEL::Exception);
1033     void setGaussCoord(int gaussPtIdInCell, int comp, double newVal) throw(INTERP_KERNEL::Exception);
1034     void setWeight(int gaussPtIdInCell, double newVal) throw(INTERP_KERNEL::Exception);
1035     void setRefCoords(const std::vector<double>& refCoo) throw(INTERP_KERNEL::Exception);
1036     void setGaussCoords(const std::vector<double>& gsCoo) throw(INTERP_KERNEL::Exception);
1037     void setWeights(const std::vector<double>& w) throw(INTERP_KERNEL::Exception);
1038     //
1039     static bool AreAlmostEqual(const std::vector<double>& v1, const std::vector<double>& v2, double eps);
1040   };
1041 }
1042
1043 %include "MEDCouplingFieldDiscretization.i"
1044
1045 //== MEDCouplingPointSet
1046
1047 namespace ParaMEDMEM
1048 {
1049   class MEDCouplingPointSet : public ParaMEDMEM::MEDCouplingMesh
1050     {
1051     public:
1052       void setCoords(const DataArrayDouble *coords) throw(INTERP_KERNEL::Exception);
1053       DataArrayDouble *getCoordinatesAndOwner() const throw(INTERP_KERNEL::Exception);
1054       bool areCoordsEqual(const MEDCouplingPointSet& other, double prec) const throw(INTERP_KERNEL::Exception);
1055       void zipCoords() throw(INTERP_KERNEL::Exception);
1056       double getCaracteristicDimension() const throw(INTERP_KERNEL::Exception);
1057       void recenterForMaxPrecision(double eps) throw(INTERP_KERNEL::Exception);
1058       void changeSpaceDimension(int newSpaceDim, double dftVal=0.) throw(INTERP_KERNEL::Exception);
1059       void tryToShareSameCoords(const MEDCouplingPointSet& other, double epsilon) throw(INTERP_KERNEL::Exception);
1060       virtual void shallowCopyConnectivityFrom(const MEDCouplingPointSet *other) throw(INTERP_KERNEL::Exception);
1061       virtual MEDCouplingPointSet *buildPartOfMySelf2(int start, int end, int step) const throw(INTERP_KERNEL::Exception);
1062       virtual void tryToShareSameCoordsPermute(const MEDCouplingPointSet& other, double epsilon) throw(INTERP_KERNEL::Exception);
1063       static DataArrayDouble *MergeNodesArray(const MEDCouplingPointSet *m1, const MEDCouplingPointSet *m2) throw(INTERP_KERNEL::Exception);
1064       static MEDCouplingPointSet *BuildInstanceFromMeshType(MEDCouplingMeshType type) throw(INTERP_KERNEL::Exception);
1065       static DataArrayInt *ComputeNbOfInteractionsWithSrcCells(const MEDCouplingPointSet *srcMesh, const MEDCouplingPointSet *trgMesh, double eps) throw(INTERP_KERNEL::Exception);
1066       virtual DataArrayInt *computeFetchedNodeIds() const throw(INTERP_KERNEL::Exception);
1067       virtual int getNumberOfNodesInCell(int cellId) const throw(INTERP_KERNEL::Exception);
1068       virtual MEDCouplingPointSet *buildBoundaryMesh(bool keepCoords) const throw(INTERP_KERNEL::Exception);
1069       virtual DataArrayInt *getCellsInBoundingBox(const INTERP_KERNEL::DirectedBoundingBox& bbox, double eps) throw(INTERP_KERNEL::Exception);
1070       virtual DataArrayInt *zipCoordsTraducer() throw(INTERP_KERNEL::Exception);
1071       virtual DataArrayInt *findBoundaryNodes() const;
1072       virtual DataArrayInt *zipConnectivityTraducer(int compType, int startCellId=0) throw(INTERP_KERNEL::Exception);
1073       virtual MEDCouplingPointSet *mergeMyselfWithOnSameCoords(const MEDCouplingPointSet *other) const throw(INTERP_KERNEL::Exception);
1074       virtual void checkFullyDefined() const throw(INTERP_KERNEL::Exception);
1075       virtual bool isEmptyMesh(const std::vector<int>& tinyInfo) const throw(INTERP_KERNEL::Exception);
1076       virtual MEDCouplingPointSet *deepCpyConnectivityOnly() const throw(INTERP_KERNEL::Exception);
1077       virtual DataArrayDouble *getBoundingBoxForBBTree(double arcDetEps=1e-12) const throw(INTERP_KERNEL::Exception);
1078       virtual void renumberNodesWithOffsetInConn(int offset) throw(INTERP_KERNEL::Exception);
1079       %extend 
1080          {
1081            std::string __str__() const throw(INTERP_KERNEL::Exception)
1082            {
1083              return self->simpleRepr();
1084            }
1085            
1086            PyObject *buildNewNumberingFromCommonNodesFormat(const DataArrayInt *comm, const DataArrayInt *commIndex) const throw(INTERP_KERNEL::Exception)
1087            {
1088              int newNbOfNodes;
1089              DataArrayInt *ret0=self->buildNewNumberingFromCommonNodesFormat(comm,commIndex,newNbOfNodes);
1090              PyObject *res = PyList_New(2);
1091              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1092              PyList_SetItem(res,1,SWIG_From_int(newNbOfNodes));
1093              return res;
1094            }
1095            
1096            PyObject *findCommonNodes(double prec, int limitTupleId=-1) const throw(INTERP_KERNEL::Exception)
1097            {
1098              DataArrayInt *comm, *commIndex;
1099              self->findCommonNodes(prec,limitTupleId,comm,commIndex);
1100              PyObject *res = PyList_New(2);
1101              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(comm),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1102              PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(commIndex),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1103              return res;
1104            }
1105            
1106            PyObject *getCoords() throw(INTERP_KERNEL::Exception)
1107            {
1108              DataArrayDouble *ret1=self->getCoords();
1109              if (ret1)
1110                 ret1->incrRef();
1111              return SWIG_NewPointerObj((void*)ret1,SWIGTYPE_p_ParaMEDMEM__DataArrayDouble,SWIG_POINTER_OWN | 0);
1112            }
1113            
1114            PyObject *buildPartOfMySelf(PyObject *li, bool keepCoords=true) const throw(INTERP_KERNEL::Exception)
1115            {
1116              int szArr,sw,iTypppArr;
1117              std::vector<int> stdvecTyyppArr;
1118              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1119              MEDCouplingPointSet *ret=self->buildPartOfMySelf(tmp,tmp+szArr,keepCoords);
1120              if(sw==3)//DataArrayInt
1121                { 
1122                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
1123                  DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
1124                  std::string name=argpt->getName();
1125                  if(!name.empty())
1126                    ret->setName(name.c_str());
1127                }
1128              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1129            }
1130            
1131            PyObject *buildPartOfMySelfNode(PyObject *li, bool fullyIn) const throw(INTERP_KERNEL::Exception)
1132            {
1133              int szArr,sw,iTypppArr;
1134              std::vector<int> stdvecTyyppArr;
1135              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1136              MEDCouplingPointSet *ret=self->buildPartOfMySelfNode(tmp,tmp+szArr,fullyIn);
1137              if(sw==3)//DataArrayInt
1138                { 
1139                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
1140                  DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
1141                  std::string name=argpt->getName();
1142                  if(!name.empty())
1143                    ret->setName(name.c_str());
1144                }
1145              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1146            }
1147
1148            virtual PyObject *buildPartOfMySelfKeepCoords(PyObject *li) const throw(INTERP_KERNEL::Exception)
1149            {
1150              int szArr,sw,iTypppArr;
1151              std::vector<int> stdvecTyyppArr;
1152              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1153              MEDCouplingPointSet *ret=self->buildPartOfMySelfKeepCoords(tmp,tmp+szArr);
1154              if(sw==3)//DataArrayInt
1155                { 
1156                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
1157                  DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
1158                  std::string name=argpt->getName();
1159                  if(!name.empty())
1160                    ret->setName(name.c_str());
1161                }
1162              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1163            }
1164
1165            virtual PyObject *buildPartOfMySelfKeepCoords2(int start, int end, int step) const throw(INTERP_KERNEL::Exception)
1166            {
1167              MEDCouplingPointSet *ret=self->buildPartOfMySelfKeepCoords2(start,end,step);
1168              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1169            }
1170
1171            PyObject *buildFacePartOfMySelfNode(PyObject *li, bool fullyIn) const throw(INTERP_KERNEL::Exception)
1172            {
1173              int szArr,sw,iTypppArr;
1174              std::vector<int> stdvecTyyppArr;
1175              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1176              MEDCouplingPointSet *ret=self->buildFacePartOfMySelfNode(tmp,tmp+szArr,fullyIn);
1177              if(sw==3)//DataArrayInt
1178                { 
1179                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
1180                  DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
1181                  std::string name=argpt->getName();
1182                  if(!name.empty())
1183                    ret->setName(name.c_str());
1184                }
1185              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1186            }
1187
1188            void renumberNodes(PyObject *li, int newNbOfNodes) throw(INTERP_KERNEL::Exception)
1189            {
1190              int szArr,sw,iTypppArr;
1191              std::vector<int> stdvecTyyppArr;
1192              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1193              self->renumberNodes(tmp,newNbOfNodes);
1194            }
1195
1196            void renumberNodes2(PyObject *li, int newNbOfNodes) throw(INTERP_KERNEL::Exception)
1197            {
1198              int szArr,sw,iTypppArr;
1199              std::vector<int> stdvecTyyppArr;
1200              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1201              self->renumberNodes2(tmp,newNbOfNodes);
1202            }
1203
1204            PyObject *findNodesOnLine(PyObject *pt, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
1205              {
1206                int spaceDim=self->getSpaceDimension();
1207                double val,val2;
1208                DataArrayDouble *a,*a2;
1209                DataArrayDoubleTuple *aa,*aa2;
1210                std::vector<double> bb,bb2;
1211                int sw;
1212                const char msg[]="Python wrap of MEDCouplingPointSet::findNodesOnLine : 1st paramater for point.";
1213                const char msg2[]="Python wrap of MEDCouplingPointSet::findNodesOnLine : 2nd paramater for vector.";
1214                const double *p=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,1,spaceDim,true);
1215                const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
1216                std::vector<int> nodes;
1217                self->findNodesOnLine(p,v,eps,nodes);
1218                DataArrayInt *ret=DataArrayInt::New();
1219                ret->alloc((int)nodes.size(),1);
1220                std::copy(nodes.begin(),nodes.end(),ret->getPointer());
1221                return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
1222              }
1223            PyObject *findNodesOnPlane(PyObject *pt, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
1224              {
1225                int spaceDim=self->getSpaceDimension();
1226                double val,val2;
1227                DataArrayDouble *a,*a2;
1228                DataArrayDoubleTuple *aa,*aa2;
1229                std::vector<double> bb,bb2;
1230                int sw;
1231                const char msg[]="Python wrap of MEDCouplingPointSet::findNodesOnPlane : 1st paramater for point.";
1232                const char msg2[]="Python wrap of MEDCouplingPointSet::findNodesOnPlane : 2nd paramater for vector.";
1233                const double *p=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,1,spaceDim,true);
1234                const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
1235                std::vector<int> nodes;
1236                self->findNodesOnPlane(p,v,eps,nodes);
1237                DataArrayInt *ret=DataArrayInt::New();
1238                ret->alloc((int)nodes.size(),1);
1239                std::copy(nodes.begin(),nodes.end(),ret->getPointer());
1240                return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
1241              }
1242            
1243            PyObject *getNodeIdsNearPoint(PyObject *pt, double eps) const throw(INTERP_KERNEL::Exception)
1244            {
1245              double val;
1246              DataArrayDouble *a;
1247              DataArrayDoubleTuple *aa;
1248              std::vector<double> bb;
1249              int sw;
1250              int spaceDim=self->getSpaceDimension();
1251              const char msg[]="Python wrap of MEDCouplingPointSet::getNodeIdsNearPoint : ";
1252              const double *pos=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,1,spaceDim,true);
1253              DataArrayInt *ret=self->getNodeIdsNearPoint(pos,eps);
1254              return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
1255            }
1256
1257            PyObject *getNodeIdsNearPoints(PyObject *pt, int nbOfPoints, double eps) const throw(INTERP_KERNEL::Exception)
1258            {
1259              DataArrayInt *c=0,*cI=0;
1260              //
1261              double val;
1262              DataArrayDouble *a;
1263              DataArrayDoubleTuple *aa;
1264              std::vector<double> bb;
1265              int sw;
1266              int spaceDim=self->getSpaceDimension();
1267              const char msg[]="Python wrap of MEDCouplingPointSet::getNodeIdsNearPoints : ";
1268              const double *pos=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,nbOfPoints,spaceDim,true);
1269              self->getNodeIdsNearPoints(pos,nbOfPoints,eps,c,cI);
1270              PyObject *ret=PyTuple_New(2);
1271              PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(c),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1272              PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cI),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1273              return ret;
1274            }
1275
1276            PyObject *getNodeIdsNearPoints(PyObject *pt, double eps) const throw(INTERP_KERNEL::Exception)
1277            {
1278              DataArrayInt *c=0,*cI=0;
1279              int spaceDim=self->getSpaceDimension();
1280              double val;
1281              DataArrayDouble *a;
1282              DataArrayDoubleTuple *aa;
1283              std::vector<double> bb;
1284              int sw;
1285              int nbOfTuples=-1;
1286              const double *ptPtr=convertObjToPossibleCpp5_Safe2(pt,sw,val,a,aa,bb,"Python wrap of MEDCouplingUMesh::getNodeIdsNearPoints",spaceDim,true,nbOfTuples);
1287              self->getNodeIdsNearPoints(ptPtr,nbOfTuples,eps,c,cI);
1288              //
1289              PyObject *ret=PyTuple_New(2);
1290              PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(c),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1291              PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cI),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1292              return ret;
1293            }
1294
1295            PyObject *getCellsInBoundingBox(PyObject *bbox, double eps) const throw(INTERP_KERNEL::Exception)
1296            {
1297              double val;
1298              DataArrayDouble *a;
1299              DataArrayDoubleTuple *aa;
1300              std::vector<double> bb;
1301              int sw;
1302              int spaceDim=self->getSpaceDimension();
1303              const char msg[]="Python wrap of MEDCouplingPointSet::getCellsInBoundingBox : ";
1304              const double *tmp=convertObjToPossibleCpp5_Safe(bbox,sw,val,a,aa,bb,msg,spaceDim,2,true);
1305              //
1306              DataArrayInt *elems=self->getCellsInBoundingBox(tmp,eps);
1307              return SWIG_NewPointerObj(SWIG_as_voidptr(elems),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
1308            }
1309
1310            void duplicateNodesInCoords(PyObject *li) throw(INTERP_KERNEL::Exception)
1311            {
1312              int sw;
1313              int singleVal;
1314              std::vector<int> multiVal;
1315              std::pair<int, std::pair<int,int> > slic;
1316              ParaMEDMEM::DataArrayInt *daIntTyypp=0;
1317              convertObjToPossibleCpp2(li,self->getNumberOfNodes(),sw,singleVal,multiVal,slic,daIntTyypp);
1318              switch(sw)
1319                {
1320                case 1:
1321                  return self->duplicateNodesInCoords(&singleVal,&singleVal+1);
1322                case 2:
1323                  return self->duplicateNodesInCoords(&multiVal[0],&multiVal[0]+multiVal.size());
1324                case 4:
1325                  return self->duplicateNodesInCoords(daIntTyypp->begin(),daIntTyypp->end());
1326                default:
1327                  throw INTERP_KERNEL::Exception("MEDCouplingPointSet::duplicateNodesInCoords : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
1328                }
1329            }
1330
1331            virtual PyObject *findCommonCells(int compType, int startCellId=0) const throw(INTERP_KERNEL::Exception)
1332            {
1333              DataArrayInt *v0=0,*v1=0;
1334              self->findCommonCells(compType,startCellId,v0,v1);
1335              PyObject *res = PyList_New(2);
1336              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(v0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1337              PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(v1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1338              return res;
1339            }
1340
1341       
1342            virtual void renumberNodesInConn(PyObject *li) throw(INTERP_KERNEL::Exception)
1343            {
1344              void *da=0;
1345              int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayInt, 0 | 0 );
1346              if (!SWIG_IsOK(res1))
1347                {
1348                  int size;
1349                  INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
1350                  self->renumberNodesInConn(tmp);
1351                }
1352              else
1353                {
1354                  DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
1355                  if(!da2)
1356                    throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
1357                  da2->checkAllocated();
1358                  self->renumberNodesInConn(da2->getConstPointer());
1359                }
1360            }
1361
1362            virtual PyObject *getNodeIdsInUse() const throw(INTERP_KERNEL::Exception)
1363            {
1364              int ret1=-1;
1365              DataArrayInt *ret0=self->getNodeIdsInUse(ret1);
1366              PyObject *ret=PyTuple_New(2);
1367              PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1368              PyTuple_SetItem(ret,1,PyInt_FromLong(ret1));
1369              return ret;
1370            }
1371
1372            virtual DataArrayInt *fillCellIdsToKeepFromNodeIds(PyObject *li, bool fullyIn) const
1373            {
1374              DataArrayInt *ret=0;
1375              //
1376              int szArr,sw,iTypppArr;
1377              std::vector<int> stdvecTyyppArr;
1378              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1379              self->fillCellIdsToKeepFromNodeIds(tmp,tmp+szArr,fullyIn,ret);
1380              return ret;
1381            }
1382
1383            virtual PyObject *mergeNodes(double precision) throw(INTERP_KERNEL::Exception)
1384            {
1385              bool ret1;
1386              int ret2;
1387              DataArrayInt *ret0=self->mergeNodes(precision,ret1,ret2);
1388              PyObject *res = PyList_New(3);
1389              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1390              PyList_SetItem(res,1,SWIG_From_bool(ret1));
1391              PyList_SetItem(res,2,SWIG_From_int(ret2));
1392              return res;
1393            }
1394            
1395            virtual PyObject *mergeNodes2(double precision) throw(INTERP_KERNEL::Exception)
1396            {
1397              bool ret1;
1398              int ret2;
1399              DataArrayInt *ret0=self->mergeNodes2(precision,ret1,ret2);
1400              PyObject *res = PyList_New(3);
1401              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1402              PyList_SetItem(res,1,SWIG_From_bool(ret1));
1403              PyList_SetItem(res,2,SWIG_From_int(ret2));
1404              return res;
1405            }
1406            
1407            DataArrayInt *getCellIdsLyingOnNodes(PyObject *li, bool fullyIn) const throw(INTERP_KERNEL::Exception)
1408            {
1409              void *da=0;
1410              int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayInt, 0 |  0 );
1411              if (!SWIG_IsOK(res1))
1412                {
1413                  int size;
1414                  INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
1415                  return self->getCellIdsLyingOnNodes(tmp,((const int *)tmp)+size,fullyIn);
1416                }
1417              else
1418                {
1419                  DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
1420                  if(!da2)
1421                    throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
1422                  da2->checkAllocated();
1423                  return self->getCellIdsLyingOnNodes(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems(),fullyIn);
1424                }
1425            }
1426
1427            MEDCouplingPointSet *__getitem__(PyObject *listOrDataArrI) throw(INTERP_KERNEL::Exception)
1428            {
1429              int sw;
1430              int singleVal;
1431              std::vector<int> multiVal;
1432              std::pair<int, std::pair<int,int> > slic;
1433              ParaMEDMEM::DataArrayInt *daIntTyypp=0;
1434              int nbc=self->getNumberOfCells();
1435              convertObjToPossibleCpp2(listOrDataArrI,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
1436              switch(sw)
1437                {
1438                case 1:
1439                  {
1440                    if(singleVal>=nbc)
1441                      {
1442                        std::ostringstream oss;
1443                        oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1444                        throw INTERP_KERNEL::Exception(oss.str().c_str());
1445                      }
1446                    if(singleVal>=0)
1447                      return self->buildPartOfMySelf(&singleVal,&singleVal+1,true);
1448                    else
1449                      {
1450                        if(nbc+singleVal>0)
1451                          {
1452                            int tmp=nbc+singleVal;
1453                            return self->buildPartOfMySelf(&tmp,&tmp+1,true);
1454                          }
1455                        else
1456                          {
1457                            std::ostringstream oss;
1458                            oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1459                            throw INTERP_KERNEL::Exception(oss.str().c_str());
1460                          }
1461                      }
1462                  }
1463                case 2:
1464                  {
1465                    return static_cast<MEDCouplingPointSet *>(self->buildPartOfMySelf(&multiVal[0],&multiVal[0]+multiVal.size(),true));
1466                  }
1467                case 3:
1468                  {
1469                    return self->buildPartOfMySelf2(slic.first,slic.second.first,slic.second.second,true);
1470                  }
1471                case 4:
1472                  {
1473                    if(!daIntTyypp)
1474                      throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__getitem__ : null instance has been given in input !");
1475                    daIntTyypp->checkAllocated();
1476                    return self->buildPartOfMySelf(daIntTyypp->begin(),daIntTyypp->end(),true);
1477                  }
1478                default:
1479                  throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__getitem__ : unrecognized type in input ! Possibilities are : int, list or tuple of int DataArrayInt instance !");
1480                }
1481            }
1482            
1483            static void Rotate2DAlg(PyObject *center, double angle, int nbNodes, PyObject *coords) throw(INTERP_KERNEL::Exception)
1484            {
1485              int sz;
1486              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1487              INTERP_KERNEL::AutoCPtr<double> coo=convertPyToNewDblArr2(coords,&sz);
1488              ParaMEDMEM::MEDCouplingPointSet::Rotate2DAlg(c,angle,nbNodes,coo);
1489              for(int i=0;i<sz;i++)
1490                PyList_SetItem(coords,i,PyFloat_FromDouble(coo[i]));
1491            }
1492            
1493            static void Rotate2DAlg(PyObject *center, double angle, PyObject *coords) throw(INTERP_KERNEL::Exception)
1494            {
1495              int sz;
1496              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1497              int sw,nbNodes=0;
1498              double val0;  ParaMEDMEM::DataArrayDouble *val1=0; ParaMEDMEM::DataArrayDoubleTuple *val2=0;
1499              std::vector<double> val3;
1500              const double *coo=convertObjToPossibleCpp5_Safe2(coords,sw,val0,val1,val2,val3,
1501                                                             "Rotate2DAlg",2,true,nbNodes);
1502              if(sw!=2 && sw!=3)
1503                throw INTERP_KERNEL::Exception("Invalid call to MEDCouplingPointSet::Rotate2DAlg : try another overload method !");
1504              ParaMEDMEM::MEDCouplingPointSet::Rotate2DAlg(c,angle,nbNodes,const_cast<double *>(coo));
1505            }
1506            
1507            static void Rotate3DAlg(PyObject *center, PyObject *vect, double angle, int nbNodes, PyObject *coords) throw(INTERP_KERNEL::Exception)
1508            {
1509              int sz,sz2;
1510              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1511              INTERP_KERNEL::AutoCPtr<double> coo=convertPyToNewDblArr2(coords,&sz);
1512              INTERP_KERNEL::AutoCPtr<double> v=convertPyToNewDblArr2(vect,&sz2);
1513              ParaMEDMEM::MEDCouplingPointSet::Rotate3DAlg(c,v,angle,nbNodes,coo);
1514              for(int i=0;i<sz;i++)
1515                PyList_SetItem(coords,i,PyFloat_FromDouble(coo[i]));
1516            }
1517            
1518            static void Rotate3DAlg(PyObject *center, PyObject *vect, double angle, PyObject *coords) throw(INTERP_KERNEL::Exception)
1519            {
1520              int sz,sz2;
1521              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1522              int sw,nbNodes=0;
1523              double val0;  ParaMEDMEM::DataArrayDouble *val1=0; ParaMEDMEM::DataArrayDoubleTuple *val2=0;
1524              std::vector<double> val3;
1525              const double *coo=convertObjToPossibleCpp5_Safe2(coords,sw,val0,val1,val2,val3,
1526                                                             "Rotate3DAlg",3,true,nbNodes);
1527              if(sw!=2 && sw!=3)
1528                throw INTERP_KERNEL::Exception("Invalid call to MEDCouplingPointSet::Rotate3DAlg : try another overload method !");
1529              INTERP_KERNEL::AutoCPtr<double> v=convertPyToNewDblArr2(vect,&sz2);
1530              ParaMEDMEM::MEDCouplingPointSet::Rotate3DAlg(c,v,angle,nbNodes,const_cast<double *>(coo));
1531            }
1532          }
1533     };
1534
1535   //== MEDCouplingPointSet End
1536
1537   class MEDCouplingUMeshCell
1538   {
1539   public:
1540     INTERP_KERNEL::NormalizedCellType getType() const;
1541     %extend
1542       {
1543         std::string __str__() const throw(INTERP_KERNEL::Exception)
1544         {
1545           return self->repr();
1546         }
1547
1548         PyObject *getAllConn() const throw(INTERP_KERNEL::Exception)
1549         {
1550           int ret2;
1551           const int *r=self->getAllConn(ret2);
1552           PyObject *ret=PyTuple_New(ret2);
1553           for(int i=0;i<ret2;i++)
1554             PyTuple_SetItem(ret,i,PyInt_FromLong(r[i]));
1555           return ret;
1556         }
1557       }
1558   };
1559
1560   class MEDCouplingUMeshCellIterator
1561   {
1562   public:
1563     %extend
1564       {
1565         PyObject *next()
1566         {
1567           MEDCouplingUMeshCell *ret=self->nextt();
1568           if(ret)
1569             return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMeshCell,0|0);
1570           else
1571             {
1572               PyErr_SetString(PyExc_StopIteration,"No more data.");
1573               return 0;
1574             }
1575         }
1576       }
1577   };
1578
1579   class MEDCouplingUMeshCellByTypeIterator
1580   {
1581   public:
1582     ~MEDCouplingUMeshCellByTypeIterator();
1583     %extend
1584       {
1585         PyObject *next()
1586         {
1587           MEDCouplingUMeshCellEntry *ret=self->nextt();
1588           if(ret)
1589             return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMeshCellEntry,SWIG_POINTER_OWN | 0);
1590           else
1591             {
1592               PyErr_SetString(PyExc_StopIteration,"No more data.");
1593               return 0;
1594             }
1595         }
1596       }
1597   };
1598
1599   class MEDCouplingUMeshCellByTypeEntry
1600   {
1601   public:
1602     ~MEDCouplingUMeshCellByTypeEntry();
1603     %extend
1604       {
1605         MEDCouplingUMeshCellByTypeIterator *__iter__()
1606         {
1607           return self->iterator();
1608         }
1609       }
1610   };
1611
1612   class MEDCouplingUMeshCellEntry
1613   {
1614   public:
1615     INTERP_KERNEL::NormalizedCellType getType() const;
1616     int getNumberOfElems() const;
1617     %extend
1618       {
1619         MEDCouplingUMeshCellIterator *__iter__()
1620         {
1621           return self->iterator();
1622         }
1623       }
1624   };
1625   
1626   //== MEDCouplingUMesh
1627
1628   class MEDCouplingUMesh : public ParaMEDMEM::MEDCouplingPointSet
1629   {
1630   public:
1631     static MEDCouplingUMesh *New() throw(INTERP_KERNEL::Exception);
1632     static MEDCouplingUMesh *New(const char *meshName, int meshDim) throw(INTERP_KERNEL::Exception);
1633     MEDCouplingUMesh *clone(bool recDeepCpy) const;
1634     void checkCoherency() const throw(INTERP_KERNEL::Exception);
1635     void setMeshDimension(int meshDim) throw(INTERP_KERNEL::Exception);
1636     void allocateCells(int nbOfCells=0) throw(INTERP_KERNEL::Exception);
1637     void finishInsertingCells() throw(INTERP_KERNEL::Exception);
1638     MEDCouplingUMeshCellByTypeEntry *cellsByType() throw(INTERP_KERNEL::Exception);
1639     void setConnectivity(DataArrayInt *conn, DataArrayInt *connIndex, bool isComputingTypes=true) throw(INTERP_KERNEL::Exception);
1640     INTERP_KERNEL::NormalizedCellType getTypeOfCell(int cellId) const throw(INTERP_KERNEL::Exception);
1641     void setPartOfMySelf2(int start, int end, int step, const MEDCouplingUMesh& otherOnSameCoordsThanThis) throw(INTERP_KERNEL::Exception);
1642     int getMeshLength() const throw(INTERP_KERNEL::Exception);
1643     void computeTypes() throw(INTERP_KERNEL::Exception);
1644     std::string reprConnectivityOfThis() const throw(INTERP_KERNEL::Exception);
1645     MEDCouplingUMesh *buildSetInstanceFromThis(int spaceDim) const throw(INTERP_KERNEL::Exception);
1646     //tools
1647     DataArrayInt *conformize2D(double eps) throw(INTERP_KERNEL::Exception);
1648     DataArrayInt *colinearize2D(double eps) throw(INTERP_KERNEL::Exception);
1649     void shiftNodeNumbersInConn(int delta) throw(INTERP_KERNEL::Exception);
1650     std::vector<bool> getQuadraticStatus() const throw(INTERP_KERNEL::Exception);
1651     DataArrayInt *findCellIdsOnBoundary() const throw(INTERP_KERNEL::Exception);
1652     MEDCouplingUMesh *computeSkin() const throw(INTERP_KERNEL::Exception);
1653     bool checkConsecutiveCellTypes() const throw(INTERP_KERNEL::Exception);
1654     bool checkConsecutiveCellTypesForMEDFileFrmt() const throw(INTERP_KERNEL::Exception);
1655     DataArrayInt *rearrange2ConsecutiveCellTypes() throw(INTERP_KERNEL::Exception);
1656     DataArrayInt *sortCellsInMEDFileFrmt() throw(INTERP_KERNEL::Exception);
1657     DataArrayInt *getRenumArrForMEDFileFrmt() const throw(INTERP_KERNEL::Exception);
1658     DataArrayInt *convertCellArrayPerGeoType(const DataArrayInt *da) const throw(INTERP_KERNEL::Exception);
1659     MEDCouplingUMesh *buildDescendingConnectivity(DataArrayInt *desc, DataArrayInt *descIndx, DataArrayInt *revDesc, DataArrayInt *revDescIndx) const throw(INTERP_KERNEL::Exception);
1660     MEDCouplingUMesh *buildDescendingConnectivity2(DataArrayInt *desc, DataArrayInt *descIndx, DataArrayInt *revDesc, DataArrayInt *revDescIndx) const throw(INTERP_KERNEL::Exception);
1661     MEDCouplingUMesh *explode3DMeshTo1D(DataArrayInt *desc, DataArrayInt *descIndx, DataArrayInt *revDesc, DataArrayInt *revDescIndx) const throw(INTERP_KERNEL::Exception);
1662     void orientCorrectlyPolyhedrons() throw(INTERP_KERNEL::Exception);
1663     bool isPresenceOfQuadratic() const throw(INTERP_KERNEL::Exception);
1664     bool isFullyQuadratic() const throw(INTERP_KERNEL::Exception);
1665     MEDCouplingFieldDouble *buildDirectionVectorField() const throw(INTERP_KERNEL::Exception);
1666     bool isContiguous1D() const throw(INTERP_KERNEL::Exception);
1667     void tessellate2D(double eps) throw(INTERP_KERNEL::Exception);
1668     void tessellate2DCurve(double eps) throw(INTERP_KERNEL::Exception);
1669     void convertQuadraticCellsToLinear() throw(INTERP_KERNEL::Exception);
1670     DataArrayInt *convertLinearCellsToQuadratic(int conversionType=0) throw(INTERP_KERNEL::Exception);
1671     void convertDegeneratedCells() throw(INTERP_KERNEL::Exception);
1672     bool areOnlySimplexCells() const throw(INTERP_KERNEL::Exception);
1673     MEDCouplingFieldDouble *getEdgeRatioField() const throw(INTERP_KERNEL::Exception);
1674     MEDCouplingFieldDouble *getAspectRatioField() const throw(INTERP_KERNEL::Exception);
1675     MEDCouplingFieldDouble *getWarpField() const throw(INTERP_KERNEL::Exception);
1676     MEDCouplingFieldDouble *getSkewField() const throw(INTERP_KERNEL::Exception);
1677     DataArrayDouble *computePlaneEquationOf3DFaces() const throw(INTERP_KERNEL::Exception);
1678     DataArrayInt *convexEnvelop2D() throw(INTERP_KERNEL::Exception);
1679     std::string cppRepr() const throw(INTERP_KERNEL::Exception);
1680     DataArrayInt *findAndCorrectBadOriented3DExtrudedCells() throw(INTERP_KERNEL::Exception);
1681     DataArrayInt *findAndCorrectBadOriented3DCells() throw(INTERP_KERNEL::Exception);
1682     ParaMEDMEM::MEDCoupling1GTUMesh *convertIntoSingleGeoTypeMesh() const throw(INTERP_KERNEL::Exception);
1683     DataArrayInt *convertNodalConnectivityToStaticGeoTypeMesh() const throw(INTERP_KERNEL::Exception);
1684     DataArrayInt *buildUnionOf2DMesh() const throw(INTERP_KERNEL::Exception);
1685     DataArrayInt *buildUnionOf3DMesh() const throw(INTERP_KERNEL::Exception);
1686     DataArrayInt *orderConsecutiveCells1D() const throw(INTERP_KERNEL::Exception);
1687     DataArrayDouble *getBoundingBoxForBBTreeFast() const throw(INTERP_KERNEL::Exception);
1688     DataArrayDouble *getBoundingBoxForBBTree2DQuadratic(double arcDetEps=1e-12) const throw(INTERP_KERNEL::Exception);
1689     DataArrayDouble *getBoundingBoxForBBTree1DQuadratic(double arcDetEps=1e-12) const throw(INTERP_KERNEL::Exception);
1690     void changeOrientationOfCells() throw(INTERP_KERNEL::Exception);
1691     int split2DCells(const DataArrayInt *desc, const DataArrayInt *descI, const DataArrayInt *subNodesInSeg, const DataArrayInt *subNodesInSegI, const DataArrayInt *midOpt=0, const DataArrayInt *midOptI=0) throw(INTERP_KERNEL::Exception);
1692     static MEDCouplingUMesh *Build0DMeshFromCoords(DataArrayDouble *da) throw(INTERP_KERNEL::Exception);
1693     static MEDCouplingUMesh *MergeUMeshes(const MEDCouplingUMesh *mesh1, const MEDCouplingUMesh *mesh2) throw(INTERP_KERNEL::Exception);
1694     static MEDCouplingUMesh *MergeUMeshesOnSameCoords(const MEDCouplingUMesh *mesh1, const MEDCouplingUMesh *mesh2) throw(INTERP_KERNEL::Exception);
1695     static DataArrayInt *ComputeSpreadZoneGradually(const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn) throw(INTERP_KERNEL::Exception);
1696     static DataArrayInt *ComputeRangesFromTypeDistribution(const std::vector<int>& code) throw(INTERP_KERNEL::Exception);
1697     %extend {
1698       MEDCouplingUMesh() throw(INTERP_KERNEL::Exception)
1699       {
1700         return MEDCouplingUMesh::New();
1701       }
1702       
1703       MEDCouplingUMesh(const char *meshName, int meshDim) throw(INTERP_KERNEL::Exception)
1704       {
1705         return MEDCouplingUMesh::New(meshName,meshDim);
1706       }
1707       
1708       std::string __str__() const throw(INTERP_KERNEL::Exception)
1709       {
1710         return self->simpleRepr();
1711       }
1712       
1713       std::string __repr__() const throw(INTERP_KERNEL::Exception)
1714       {
1715         std::ostringstream oss;
1716         self->reprQuickOverview(oss);
1717         return oss.str();
1718       }
1719       
1720       MEDCouplingUMeshCellIterator *__iter__() throw(INTERP_KERNEL::Exception)
1721       {
1722         return self->cellIterator();
1723       }
1724
1725       PyObject *getAllGeoTypesSorted() const throw(INTERP_KERNEL::Exception)
1726       {
1727         std::vector<INTERP_KERNEL::NormalizedCellType> result=self->getAllGeoTypesSorted();
1728         std::vector<INTERP_KERNEL::NormalizedCellType>::const_iterator iL=result.begin();
1729         PyObject *res=PyList_New(result.size());
1730         for(int i=0;iL!=result.end(); i++, iL++)
1731           PyList_SetItem(res,i,PyInt_FromLong(*iL));
1732         return res;
1733       }
1734       
1735       void setPartOfMySelf(PyObject *li, const MEDCouplingUMesh& otherOnSameCoordsThanThis) throw(INTERP_KERNEL::Exception)
1736       {
1737         int sw;
1738         int singleVal;
1739         std::vector<int> multiVal;
1740         std::pair<int, std::pair<int,int> > slic;
1741         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
1742         int nbc=self->getNumberOfCells();
1743         convertObjToPossibleCpp2(li,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
1744         switch(sw)
1745           {
1746           case 1:
1747             {
1748               if(singleVal>=nbc)
1749                 {
1750                   std::ostringstream oss;
1751                   oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1752                   throw INTERP_KERNEL::Exception(oss.str().c_str());
1753                 }
1754               if(singleVal>=0)
1755                 {
1756                   self->setPartOfMySelf(&singleVal,&singleVal+1,otherOnSameCoordsThanThis);
1757                   break;
1758                 }
1759               else
1760                 {
1761                   if(nbc+singleVal>0)
1762                     {
1763                       int tmp=nbc+singleVal;
1764                       self->setPartOfMySelf(&tmp,&tmp+1,otherOnSameCoordsThanThis);
1765                       break;
1766                     }
1767                   else
1768                     {
1769                       std::ostringstream oss;
1770                       oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1771                       throw INTERP_KERNEL::Exception(oss.str().c_str());
1772                     }
1773                 }
1774             }
1775           case 2:
1776             {
1777               self->setPartOfMySelf(&multiVal[0],&multiVal[0]+multiVal.size(),otherOnSameCoordsThanThis);
1778               break;
1779             }
1780           case 4:
1781             {
1782               if(!daIntTyypp)
1783                 throw INTERP_KERNEL::Exception("MEDCouplingUMesh::setPartOfMySelf : null instance has been given in input !");
1784               daIntTyypp->checkAllocated();
1785               self->setPartOfMySelf(daIntTyypp->begin(),daIntTyypp->end(),otherOnSameCoordsThanThis);
1786               break;
1787             }
1788           default:
1789             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::setPartOfMySelf : unrecognized type in input ! Possibilities are : int, list or tuple of int DataArrayInt instance !");
1790           }
1791       }
1792
1793       void __setitem__(PyObject *li, const MEDCouplingUMesh& otherOnSameCoordsThanThis) throw(INTERP_KERNEL::Exception)
1794       {
1795         int sw;
1796         int singleVal;
1797         std::vector<int> multiVal;
1798         std::pair<int, std::pair<int,int> > slic;
1799         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
1800         int nbc=self->getNumberOfCells();
1801         convertObjToPossibleCpp2(li,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
1802         switch(sw)
1803           {
1804           case 1:
1805             {
1806               if(singleVal>=nbc)
1807                 {
1808                   std::ostringstream oss;
1809                   oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1810                   throw INTERP_KERNEL::Exception(oss.str().c_str());
1811                 }
1812               if(singleVal>=0)
1813                 {
1814                   self->setPartOfMySelf(&singleVal,&singleVal+1,otherOnSameCoordsThanThis);
1815                   break;
1816                 }
1817               else
1818                 {
1819                   if(nbc+singleVal>0)
1820                     {
1821                       int tmp=nbc+singleVal;
1822                       self->setPartOfMySelf(&tmp,&tmp+1,otherOnSameCoordsThanThis);
1823                       break;
1824                     }
1825                   else
1826                     {
1827                       std::ostringstream oss;
1828                       oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1829                       throw INTERP_KERNEL::Exception(oss.str().c_str());
1830                     }
1831                 }
1832             }
1833           case 2:
1834             {
1835               self->setPartOfMySelf(&multiVal[0],&multiVal[0]+multiVal.size(),otherOnSameCoordsThanThis);
1836               break;
1837             }
1838           case 3:
1839             {
1840               self->setPartOfMySelf2(slic.first,slic.second.first,slic.second.second,otherOnSameCoordsThanThis);
1841               break;
1842             }
1843           case 4:
1844             {
1845               if(!daIntTyypp)
1846                 throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__setitem__ : null instance has been given in input !");
1847               daIntTyypp->checkAllocated();
1848               self->setPartOfMySelf(daIntTyypp->begin(),daIntTyypp->end(),otherOnSameCoordsThanThis);
1849               break;
1850             }
1851           default:
1852             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__setitem__ : unrecognized type in input ! Possibilities are : int, list or tuple of int, slice, DataArrayInt instance !");
1853           }
1854       }
1855
1856       void insertNextCell(INTERP_KERNEL::NormalizedCellType type, int size, PyObject *li) throw(INTERP_KERNEL::Exception)
1857       {
1858         int szArr,sw,iTypppArr;
1859         std::vector<int> stdvecTyyppArr;
1860         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1861         if(size>szArr)
1862           {
1863             std::ostringstream oss; oss << "Wrap of MEDCouplingUMesh::insertNextCell : request of connectivity with length " << size << " whereas the length of input is " << szArr << " !";
1864             throw INTERP_KERNEL::Exception(oss.str().c_str());
1865           }
1866         self->insertNextCell(type,size,tmp);
1867       }
1868
1869       void insertNextCell(INTERP_KERNEL::NormalizedCellType type, PyObject *li) throw(INTERP_KERNEL::Exception)
1870       {
1871         int szArr,sw,iTypppArr;
1872         std::vector<int> stdvecTyyppArr;
1873         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1874         self->insertNextCell(type,szArr,tmp);
1875       }
1876       
1877       DataArrayInt *getNodalConnectivity() throw(INTERP_KERNEL::Exception)
1878       {
1879         DataArrayInt *ret=self->getNodalConnectivity();
1880         if(ret)
1881           ret->incrRef();
1882         return ret;
1883       }
1884       DataArrayInt *getNodalConnectivityIndex() throw(INTERP_KERNEL::Exception)
1885       {
1886         DataArrayInt *ret=self->getNodalConnectivityIndex();
1887         if(ret)
1888           ret->incrRef();
1889         return ret;
1890       }
1891       
1892       static PyObject *ComputeSpreadZoneGraduallyFromSeed(PyObject *seed, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn, int nbOfDepthPeeling=-1) throw(INTERP_KERNEL::Exception)
1893       {
1894         int szArr,sw,iTypppArr;
1895         std::vector<int> stdvecTyyppArr;
1896         const int *seedPtr=convertObjToPossibleCpp1_Safe(seed,sw,szArr,iTypppArr,stdvecTyyppArr);
1897         int nbOfDepthPeelingPerformed=0;
1898         DataArrayInt *ret0=MEDCouplingUMesh::ComputeSpreadZoneGraduallyFromSeed(seedPtr,seedPtr+szArr,arrIn,arrIndxIn,nbOfDepthPeeling,nbOfDepthPeelingPerformed);
1899         PyObject *res=PyTuple_New(2);
1900         PyTuple_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1901         PyTuple_SetItem(res,1,PyInt_FromLong(nbOfDepthPeelingPerformed));
1902         return res;
1903       }
1904
1905       static PyObject *FindCommonCellsAlg(int compType, int startCellId, const DataArrayInt *nodal, const DataArrayInt *nodalI, const DataArrayInt *revNodal, const DataArrayInt *revNodalI) throw(INTERP_KERNEL::Exception)
1906       {
1907         DataArrayInt *v0=0,*v1=0;
1908         MEDCouplingUMesh::FindCommonCellsAlg(compType,startCellId,nodal,nodalI,revNodal,revNodalI,v0,v1);
1909         PyObject *res = PyList_New(2);
1910         PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(v0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1911         PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(v1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1912         return res;
1913       }
1914       
1915       PyObject *distanceToPoint(PyObject *point) const throw(INTERP_KERNEL::Exception)
1916       {
1917         double val;
1918         DataArrayDouble *a;
1919         DataArrayDoubleTuple *aa;
1920         std::vector<double> bb;
1921         int sw;
1922         int nbOfCompo=self->getSpaceDimension();
1923         const double *pt=convertObjToPossibleCpp5_Safe(point,sw,val,a,aa,bb,"Python wrap of MEDCouplingUMesh::distanceToPoint",1,nbOfCompo,true);
1924         //
1925         int cellId=-1;
1926         double ret0=self->distanceToPoint(pt,pt+nbOfCompo,cellId);
1927         PyObject *ret=PyTuple_New(2);
1928         PyTuple_SetItem(ret,0,PyFloat_FromDouble(ret0));
1929         PyTuple_SetItem(ret,1,PyInt_FromLong(cellId));
1930         return ret;
1931       }
1932
1933       PyObject *distanceToPoints(const DataArrayDouble *pts) const throw(INTERP_KERNEL::Exception)
1934       {
1935         DataArrayInt *ret1=0;
1936         DataArrayDouble *ret0=self->distanceToPoints(pts,ret1);
1937         PyObject *ret=PyTuple_New(2);
1938         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
1939         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1940         return ret;
1941       }
1942
1943       PyObject *tetrahedrize(int policy) throw(INTERP_KERNEL::Exception)
1944       {
1945         int ret2(-1);
1946         DataArrayInt *ret1(0);
1947         MEDCoupling1SGTUMesh *ret0(self->tetrahedrize(policy,ret1,ret2));
1948         PyObject *ret=PyTuple_New(3);
1949         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__MEDCoupling1SGTUMesh, SWIG_POINTER_OWN | 0 ));
1950         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1951         PyTuple_SetItem(ret,2,PyInt_FromLong(ret2));
1952         return ret;
1953       }
1954       
1955       PyObject *checkButterflyCells(double eps=1e-12) throw(INTERP_KERNEL::Exception)
1956       {
1957         std::vector<int> cells;
1958         self->checkButterflyCells(cells,eps);
1959         DataArrayInt *ret=DataArrayInt::New();
1960         ret->alloc((int)cells.size(),1);
1961         std::copy(cells.begin(),cells.end(),ret->getPointer());
1962         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
1963       }
1964
1965       PyObject *splitByType() const throw(INTERP_KERNEL::Exception)
1966       {
1967         std::vector<MEDCouplingUMesh *> ms=self->splitByType();
1968         int sz=ms.size();
1969         PyObject *ret = PyList_New(sz);
1970         for(int i=0;i<sz;i++)
1971           PyList_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(ms[i]),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
1972         return ret;
1973       }
1974
1975       PyObject *partitionBySpreadZone() const throw(INTERP_KERNEL::Exception)
1976       {
1977         std::vector<DataArrayInt *> retCpp=self->partitionBySpreadZone();
1978         int sz=retCpp.size();
1979         PyObject *ret=PyList_New(sz);
1980         for(int i=0;i<sz;i++)
1981           PyList_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(retCpp[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1982         return ret;
1983       }
1984
1985       PyObject *keepSpecifiedCells(INTERP_KERNEL::NormalizedCellType type, PyObject *ids) const throw(INTERP_KERNEL::Exception)
1986       {
1987         int size;
1988         INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(ids,&size);
1989         MEDCouplingUMesh *ret=self->keepSpecifiedCells(type,tmp,tmp+size);
1990         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 );
1991       }
1992
1993       bool checkConsecutiveCellTypesAndOrder(PyObject *li) const throw(INTERP_KERNEL::Exception)
1994       {
1995         int sz;
1996         INTERP_KERNEL::AutoPtr<INTERP_KERNEL::NormalizedCellType> order=(INTERP_KERNEL::NormalizedCellType *)convertPyToNewIntArr2(li,&sz);
1997         bool ret=self->checkConsecutiveCellTypesAndOrder(order,order+sz);
1998         return ret;
1999       }
2000
2001       DataArrayInt *getRenumArrForConsecutiveCellTypesSpec(PyObject *li) const throw(INTERP_KERNEL::Exception)
2002       {
2003         int sz;
2004         INTERP_KERNEL::AutoPtr<INTERP_KERNEL::NormalizedCellType> order=(INTERP_KERNEL::NormalizedCellType *)convertPyToNewIntArr2(li,&sz);
2005         DataArrayInt *ret=self->getRenumArrForConsecutiveCellTypesSpec(order,(INTERP_KERNEL::NormalizedCellType *)order+sz);
2006         return ret;
2007       }
2008
2009       PyObject *findNodesToDuplicate(const MEDCouplingUMesh& otherDimM1OnSameCoords) const throw(INTERP_KERNEL::Exception)
2010       {
2011         DataArrayInt *tmp0=0,*tmp1=0,*tmp2=0;
2012         self->findNodesToDuplicate(otherDimM1OnSameCoords,tmp0,tmp1,tmp2);
2013         PyObject *ret=PyTuple_New(3);
2014         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(tmp0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2015         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2016         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(tmp2),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2017         return ret;
2018       }
2019
2020       PyObject *findCellIdsLyingOn(const MEDCouplingUMesh& otherDimM1OnSameCoords) const throw(INTERP_KERNEL::Exception)
2021       {
2022         DataArrayInt *tmp0=0,*tmp1=0;
2023         self->findCellIdsLyingOn(otherDimM1OnSameCoords,tmp0,tmp1);
2024         PyObject *ret=PyTuple_New(2);
2025         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(tmp0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2026         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2027         return ret;
2028       }
2029
2030       void duplicateNodes(PyObject *li) throw(INTERP_KERNEL::Exception)
2031       {
2032         int sw;
2033         int singleVal;
2034         std::vector<int> multiVal;
2035         std::pair<int, std::pair<int,int> > slic;
2036         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
2037         convertObjToPossibleCpp2(li,self->getNumberOfNodes(),sw,singleVal,multiVal,slic,daIntTyypp);
2038         switch(sw)
2039           {
2040           case 1:
2041             return self->duplicateNodes(&singleVal,&singleVal+1);
2042           case 2:
2043             return self->duplicateNodes(&multiVal[0],&multiVal[0]+multiVal.size());
2044           case 4:
2045             return self->duplicateNodes(daIntTyypp->begin(),daIntTyypp->end());
2046           default:
2047             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::duplicateNodes : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2048           }
2049       }
2050
2051       void duplicateNodesInConn(PyObject *li, int offset) throw(INTERP_KERNEL::Exception)
2052       {
2053         int sw;
2054         int singleVal;
2055         std::vector<int> multiVal;
2056         std::pair<int, std::pair<int,int> > slic;
2057         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
2058         convertObjToPossibleCpp2(li,self->getNumberOfNodes(),sw,singleVal,multiVal,slic,daIntTyypp);
2059         switch(sw)
2060           {
2061           case 1:
2062             return self->duplicateNodesInConn(&singleVal,&singleVal+1,offset);
2063           case 2:
2064             return self->duplicateNodesInConn(&multiVal[0],&multiVal[0]+multiVal.size(),offset);
2065           case 4:
2066             return self->duplicateNodesInConn(daIntTyypp->begin(),daIntTyypp->end(),offset);
2067           default:
2068             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::duplicateNodesInConn : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2069           }
2070       }
2071
2072       PyObject *getLevArrPerCellTypes(PyObject *li) const throw(INTERP_KERNEL::Exception)
2073       {
2074         int sz;
2075         INTERP_KERNEL::AutoPtr<INTERP_KERNEL::NormalizedCellType> order=(INTERP_KERNEL::NormalizedCellType *)convertPyToNewIntArr2(li,&sz);
2076         DataArrayInt *tmp0,*tmp1=0;
2077         tmp0=self->getLevArrPerCellTypes(order,(INTERP_KERNEL::NormalizedCellType *)order+sz,tmp1);
2078         PyObject *ret=PyTuple_New(2);
2079         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(tmp0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2080         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2081         return ret;
2082       }
2083
2084       PyObject *convertNodalConnectivityToDynamicGeoTypeMesh() const throw(INTERP_KERNEL::Exception)
2085       {
2086         DataArrayInt *ret0=0,*ret1=0;
2087         self->convertNodalConnectivityToDynamicGeoTypeMesh(ret0,ret1);
2088         PyObject *ret=PyTuple_New(2);
2089         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2090         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2091         return ret;
2092       }
2093
2094       static PyObject *AggregateSortedByTypeMeshesOnSameCoords(PyObject *ms) throw(INTERP_KERNEL::Exception)
2095       {
2096         std::vector<const ParaMEDMEM::MEDCouplingUMesh *> meshes;
2097         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingUMesh *>(ms,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2098         DataArrayInt *ret1=0,*ret2=0;
2099         MEDCouplingUMesh *ret0=MEDCouplingUMesh::AggregateSortedByTypeMeshesOnSameCoords(meshes,ret1,ret2);
2100         PyObject *ret=PyTuple_New(3);
2101         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2102         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2103         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(ret2),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2104         return ret;
2105       }
2106
2107       static PyObject *MergeUMeshesOnSameCoords(PyObject *ms) throw(INTERP_KERNEL::Exception)
2108       {
2109         std::vector<const ParaMEDMEM::MEDCouplingUMesh *> meshes;
2110         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingUMesh *>(ms,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2111         MEDCouplingUMesh *ret=MEDCouplingUMesh::MergeUMeshesOnSameCoords(meshes);
2112         return convertMesh(ret, SWIG_POINTER_OWN | 0 );
2113       }
2114
2115       static PyObject *FuseUMeshesOnSameCoords(PyObject *ms, int compType) throw(INTERP_KERNEL::Exception)
2116       {
2117         int sz;
2118         std::vector<const MEDCouplingUMesh *> meshes;
2119         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingUMesh *>(ms,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2120         std::vector<DataArrayInt *> corr;
2121         MEDCouplingUMesh *um=MEDCouplingUMesh::FuseUMeshesOnSameCoords(meshes,compType,corr);
2122         sz=corr.size();
2123         PyObject *ret1=PyList_New(sz);
2124         for(int i=0;i<sz;i++)
2125           PyList_SetItem(ret1,i,SWIG_NewPointerObj(SWIG_as_voidptr(corr[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2126         PyObject *ret=PyList_New(2);
2127         PyList_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(um),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2128         PyList_SetItem(ret,1,ret1);
2129         return ret;
2130       }
2131
2132       static void PutUMeshesOnSameAggregatedCoords(PyObject *ms) throw(INTERP_KERNEL::Exception)
2133       {
2134         std::vector<MEDCouplingUMesh *> meshes;
2135         convertFromPyObjVectorOfObj<ParaMEDMEM::MEDCouplingUMesh *>(ms,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2136         MEDCouplingUMesh::PutUMeshesOnSameAggregatedCoords(meshes);
2137       }
2138
2139       static void MergeNodesOnUMeshesSharingSameCoords(PyObject *ms, double eps) throw(INTERP_KERNEL::Exception)
2140       {
2141         std::vector<MEDCouplingUMesh *> meshes;
2142         convertFromPyObjVectorOfObj<ParaMEDMEM::MEDCouplingUMesh *>(ms,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2143         MEDCouplingUMesh::MergeNodesOnUMeshesSharingSameCoords(meshes,eps);
2144       }
2145
2146       static bool RemoveIdsFromIndexedArrays(PyObject *li, DataArrayInt *arr, DataArrayInt *arrIndx, int offsetForRemoval=0) throw(INTERP_KERNEL::Exception)
2147       {
2148         int sw;
2149         int singleVal;
2150         std::vector<int> multiVal;
2151         std::pair<int, std::pair<int,int> > slic;
2152         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
2153         if(!arrIndx)
2154           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::RemoveIdsFromIndexedArrays : null pointer as arrIndex !");
2155         convertObjToPossibleCpp2(li,arrIndx->getNumberOfTuples()-1,sw,singleVal,multiVal,slic,daIntTyypp);
2156         switch(sw)
2157           {
2158           case 1:
2159             return MEDCouplingUMesh::RemoveIdsFromIndexedArrays(&singleVal,&singleVal+1,arr,arrIndx,offsetForRemoval);
2160           case 2:
2161             return MEDCouplingUMesh::RemoveIdsFromIndexedArrays(&multiVal[0],&multiVal[0]+multiVal.size(),arr,arrIndx,offsetForRemoval);
2162           case 4:
2163             return MEDCouplingUMesh::RemoveIdsFromIndexedArrays(daIntTyypp->begin(),daIntTyypp->end(),arr,arrIndx,offsetForRemoval);
2164           default:
2165             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::RemoveIdsFromIndexedArrays : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2166           }
2167       }
2168       
2169       static PyObject *ExtractFromIndexedArrays(PyObject *li, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn) throw(INTERP_KERNEL::Exception)
2170       {
2171         DataArrayInt *arrOut=0,*arrIndexOut=0;
2172         int sw;
2173         int singleVal;
2174         std::vector<int> multiVal;
2175         std::pair<int, std::pair<int,int> > slic;
2176         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
2177         if(!arrIndxIn)
2178           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::ExtractFromIndexedArrays : null pointer as arrIndxIn !");
2179         convertObjToPossibleCpp2(li,arrIndxIn->getNumberOfTuples()-1,sw,singleVal,multiVal,slic,daIntTyypp);
2180         switch(sw)
2181           {
2182           case 1:
2183             {
2184               MEDCouplingUMesh::ExtractFromIndexedArrays(&singleVal,&singleVal+1,arrIn,arrIndxIn,arrOut,arrIndexOut);
2185               break;
2186             }
2187           case 2:
2188             {
2189               MEDCouplingUMesh::ExtractFromIndexedArrays(&multiVal[0],&multiVal[0]+multiVal.size(),arrIn,arrIndxIn,arrOut,arrIndexOut);
2190               break;
2191             }
2192           case 4:
2193             {
2194               MEDCouplingUMesh::ExtractFromIndexedArrays(daIntTyypp->begin(),daIntTyypp->end(),arrIn,arrIndxIn,arrOut,arrIndexOut);
2195               break;
2196             }
2197           default:
2198             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::ExtractFromIndexedArrays : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2199           }
2200         PyObject *ret=PyTuple_New(2);
2201         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(arrOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2202         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(arrIndexOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2203         return ret;
2204       }
2205
2206       static PyObject *ExtractFromIndexedArrays2(int strt, int stp, int step, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn) throw(INTERP_KERNEL::Exception)
2207       {
2208         DataArrayInt *arrOut=0,*arrIndexOut=0;
2209         MEDCouplingUMesh::ExtractFromIndexedArrays2(strt,stp,step,arrIn,arrIndxIn,arrOut,arrIndexOut);
2210         PyObject *ret=PyTuple_New(2);
2211         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(arrOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2212         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(arrIndexOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2213         return ret;
2214       }
2215
2216       static PyObject *ExtractFromIndexedArrays2(PyObject *slic, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn) throw(INTERP_KERNEL::Exception)
2217       {
2218         if(!PySlice_Check(slic))
2219           throw INTERP_KERNEL::Exception("ExtractFromIndexedArrays2 (wrap) : the first param is not a pyslice !");
2220         Py_ssize_t strt=2,stp=2,step=2;
2221         PySliceObject *sliC=reinterpret_cast<PySliceObject *>(slic);
2222         if(!arrIndxIn)
2223           throw INTERP_KERNEL::Exception("ExtractFromIndexedArrays2 (wrap) : last array is null !");
2224         arrIndxIn->checkAllocated();
2225         if(arrIndxIn->getNumberOfComponents()!=1)
2226           throw INTERP_KERNEL::Exception("ExtractFromIndexedArrays2 (wrap) : number of components of last argument must be equal to one !");
2227         GetIndicesOfSlice(sliC,arrIndxIn->getNumberOfTuples(),&strt,&stp,&step,"ExtractFromIndexedArrays2 (wrap) : Invalid slice regarding nb of elements !");
2228         DataArrayInt *arrOut=0,*arrIndexOut=0;
2229         MEDCouplingUMesh::ExtractFromIndexedArrays2(strt,stp,step,arrIn,arrIndxIn,arrOut,arrIndexOut);
2230         PyObject *ret=PyTuple_New(2);
2231         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(arrOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2232         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(arrIndexOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2233         return ret;
2234       }
2235
2236       static PyObject *SetPartOfIndexedArrays(PyObject *li,
2237                                               const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn,
2238                                               const DataArrayInt *srcArr, const DataArrayInt *srcArrIndex) throw(INTERP_KERNEL::Exception)
2239       {
2240         DataArrayInt *arrOut=0,*arrIndexOut=0;
2241         int sw;
2242         int singleVal;
2243         std::vector<int> multiVal;
2244         std::pair<int, std::pair<int,int> > slic;
2245         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
2246         if(!arrIndxIn)
2247           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArrays : null pointer as arrIndex !");
2248         convertObjToPossibleCpp2(li,arrIndxIn->getNumberOfTuples()-1,sw,singleVal,multiVal,slic,daIntTyypp);
2249         switch(sw)
2250           {
2251           case 1:
2252             {
2253               MEDCouplingUMesh::SetPartOfIndexedArrays(&singleVal,&singleVal+1,arrIn,arrIndxIn,srcArr,srcArrIndex,arrOut,arrIndexOut);
2254               break;
2255             }
2256           case 2:
2257             {
2258               MEDCouplingUMesh::SetPartOfIndexedArrays(&multiVal[0],&multiVal[0]+multiVal.size(),arrIn,arrIndxIn,srcArr,srcArrIndex,arrOut,arrIndexOut);
2259               break;
2260             }
2261           case 4:
2262             {
2263               MEDCouplingUMesh::SetPartOfIndexedArrays(daIntTyypp->begin(),daIntTyypp->end(),arrIn,arrIndxIn,srcArr,srcArrIndex,arrOut,arrIndexOut);
2264               break;
2265             }
2266           default:
2267             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArrays : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2268           }
2269         PyObject *ret=PyTuple_New(2);
2270         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(arrOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2271         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(arrIndexOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2272         return ret;
2273       }
2274
2275       static void SetPartOfIndexedArraysSameIdx(PyObject *li, DataArrayInt *arrIn, const DataArrayInt *arrIndxIn,
2276                                                 const DataArrayInt *srcArr, const DataArrayInt *srcArrIndex) throw(INTERP_KERNEL::Exception)
2277       {
2278         int sw;
2279         int singleVal;
2280         std::vector<int> multiVal;
2281         std::pair<int, std::pair<int,int> > slic;
2282         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
2283         if(!arrIndxIn)
2284           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx : null pointer as arrIndex !");
2285         convertObjToPossibleCpp2(li,arrIndxIn->getNumberOfTuples()-1,sw,singleVal,multiVal,slic,daIntTyypp);
2286         switch(sw)
2287           {
2288           case 1:
2289             {
2290               MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx(&singleVal,&singleVal+1,arrIn,arrIndxIn,srcArr,srcArrIndex);
2291               break;
2292             }
2293           case 2:
2294             {
2295               MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx(&multiVal[0],&multiVal[0]+multiVal.size(),arrIn,arrIndxIn,srcArr,srcArrIndex);
2296               break;
2297             }
2298           case 4:
2299             {
2300               MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx(daIntTyypp->begin(),daIntTyypp->end(),arrIn,arrIndxIn,srcArr,srcArrIndex);
2301               break;
2302             }
2303           default:
2304             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2305           }
2306       }
2307
2308       PyObject *are2DCellsNotCorrectlyOriented(PyObject *vec, bool polyOnly) const throw(INTERP_KERNEL::Exception)
2309       {
2310         double val;
2311         DataArrayDouble *a;
2312         DataArrayDoubleTuple *aa;
2313         std::vector<double> bb;
2314         int sw;
2315         int spaceDim=self->getSpaceDimension();
2316         const char msg[]="Python wrap of MEDCouplingUMesh::are2DCellsNotCorrectlyOriented : ";
2317         const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val,a,aa,bb,msg,1,spaceDim,true);
2318         //
2319         std::vector<int> cells;
2320         self->are2DCellsNotCorrectlyOriented(v,polyOnly,cells);
2321         DataArrayInt *ret=DataArrayInt::New();
2322         ret->alloc((int)cells.size(),1);
2323         std::copy(cells.begin(),cells.end(),ret->getPointer());
2324         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
2325       }
2326
2327       void orientCorrectly2DCells(PyObject *vec, bool polyOnly) throw(INTERP_KERNEL::Exception)
2328       {
2329         double val;
2330         DataArrayDouble *a;
2331         DataArrayDoubleTuple *aa;
2332         std::vector<double> bb;
2333         int sw;
2334         int spaceDim=self->getSpaceDimension();
2335         const char msg[]="Python wrap of MEDCouplingUMesh::orientCorrectly2DCells : ";
2336         const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val,a,aa,bb,msg,1,spaceDim,true);
2337         self->orientCorrectly2DCells(v,polyOnly);
2338       }
2339       
2340       PyObject *arePolyhedronsNotCorrectlyOriented() const throw(INTERP_KERNEL::Exception)
2341       {
2342         std::vector<int> cells;
2343         self->arePolyhedronsNotCorrectlyOriented(cells);
2344         DataArrayInt *ret=DataArrayInt::New();
2345         ret->alloc((int)cells.size(),1);
2346         std::copy(cells.begin(),cells.end(),ret->getPointer());
2347         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
2348       }
2349
2350       PyObject *getFastAveragePlaneOfThis() const throw(INTERP_KERNEL::Exception)
2351       {
2352         double vec[3];
2353         double pos[3];
2354         self->getFastAveragePlaneOfThis(vec,pos);
2355         double vals[6];
2356         std::copy(vec,vec+3,vals);
2357         std::copy(pos,pos+3,vals+3);
2358         return convertDblArrToPyListOfTuple(vals,3,2);
2359       }
2360       
2361       static MEDCouplingUMesh *MergeUMeshes(PyObject *li) throw(INTERP_KERNEL::Exception)
2362       {
2363         std::vector<const ParaMEDMEM::MEDCouplingUMesh *> tmp;
2364         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingUMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",tmp);
2365         return MEDCouplingUMesh::MergeUMeshes(tmp);
2366       }
2367
2368       PyObject *areCellsIncludedIn(const MEDCouplingUMesh *other, int compType) const throw(INTERP_KERNEL::Exception)
2369       {
2370         DataArrayInt *ret1;
2371         bool ret0=self->areCellsIncludedIn(other,compType,ret1);
2372         PyObject *ret=PyTuple_New(2);
2373         PyObject *ret0Py=ret0?Py_True:Py_False;
2374         Py_XINCREF(ret0Py);
2375         PyTuple_SetItem(ret,0,ret0Py);
2376         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2377         return ret;
2378       }
2379
2380       PyObject *areCellsIncludedIn2(const MEDCouplingUMesh *other) const throw(INTERP_KERNEL::Exception)
2381       {
2382         DataArrayInt *ret1;
2383         bool ret0=self->areCellsIncludedIn2(other,ret1);
2384         PyObject *ret=PyTuple_New(2);
2385         PyObject *ret0Py=ret0?Py_True:Py_False;
2386         Py_XINCREF(ret0Py);
2387         PyTuple_SetItem(ret,0,ret0Py);
2388         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2389         return ret;
2390       }
2391
2392       PyObject *explode3DMeshTo1D() const throw(INTERP_KERNEL::Exception)
2393       {
2394         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d0=DataArrayInt::New();
2395         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d1=DataArrayInt::New();
2396         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d2=DataArrayInt::New();
2397         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d3=DataArrayInt::New();
2398         MEDCouplingUMesh *m=self->explode3DMeshTo1D(d0,d1,d2,d3);
2399         PyObject *ret=PyTuple_New(5);
2400         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2401         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2402         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2403         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2404         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2405         return ret;
2406       }
2407
2408       PyObject *buildDescendingConnectivity() const throw(INTERP_KERNEL::Exception)
2409       {
2410         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d0=DataArrayInt::New();
2411         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d1=DataArrayInt::New();
2412         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d2=DataArrayInt::New();
2413         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d3=DataArrayInt::New();
2414         MEDCouplingUMesh *m=self->buildDescendingConnectivity(d0,d1,d2,d3);
2415         PyObject *ret=PyTuple_New(5);
2416         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2417         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2418         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2419         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2420         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2421         return ret;
2422       }
2423
2424       PyObject *buildDescendingConnectivity2() const throw(INTERP_KERNEL::Exception)
2425       {
2426         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d0=DataArrayInt::New();
2427         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d1=DataArrayInt::New();
2428         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d2=DataArrayInt::New();
2429         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d3=DataArrayInt::New();
2430         MEDCouplingUMesh *m=self->buildDescendingConnectivity2(d0,d1,d2,d3);
2431         PyObject *ret=PyTuple_New(5);
2432         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2433         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2434         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2435         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2436         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2437         return ret;
2438       }
2439       
2440       PyObject *computeNeighborsOfCells() const throw(INTERP_KERNEL::Exception)
2441       {
2442         DataArrayInt *neighbors=0,*neighborsIdx=0;
2443         self->computeNeighborsOfCells(neighbors,neighborsIdx);
2444         PyObject *ret=PyTuple_New(2);
2445         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(neighbors),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2446         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(neighborsIdx),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2447         return ret;
2448       }
2449
2450       PyObject *computeNeighborsOfNodes() const throw(INTERP_KERNEL::Exception)
2451       {
2452         DataArrayInt *neighbors=0,*neighborsIdx=0;
2453         self->computeNeighborsOfNodes(neighbors,neighborsIdx);
2454         PyObject *ret=PyTuple_New(2);
2455         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(neighbors),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2456         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(neighborsIdx),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2457         return ret;
2458       }
2459
2460       static PyObject *ComputeNeighborsOfCellsAdv(const DataArrayInt *desc, const DataArrayInt *descI, const DataArrayInt *revDesc, const DataArrayInt *revDescI) throw(INTERP_KERNEL::Exception)
2461       {
2462         DataArrayInt *neighbors=0,*neighborsIdx=0;
2463         MEDCouplingUMesh::ComputeNeighborsOfCellsAdv(desc,descI,revDesc,revDescI,neighbors,neighborsIdx);
2464         PyObject *ret=PyTuple_New(2);
2465         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(neighbors),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2466         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(neighborsIdx),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2467         return ret;
2468       }
2469
2470       PyObject *emulateMEDMEMBDC(const MEDCouplingUMesh *nM1LevMesh)
2471       {
2472         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d0=DataArrayInt::New();
2473         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d1=DataArrayInt::New();
2474         DataArrayInt *d2,*d3,*d4,*dd5;
2475         MEDCouplingUMesh *mOut=self->emulateMEDMEMBDC(nM1LevMesh,d0,d1,d2,d3,d4,dd5);
2476         PyObject *ret=PyTuple_New(7);
2477         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(mOut),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2478         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2479         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2480         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2481         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2482         PyTuple_SetItem(ret,5,SWIG_NewPointerObj(SWIG_as_voidptr(d4),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2483         PyTuple_SetItem(ret,6,SWIG_NewPointerObj(SWIG_as_voidptr(dd5),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2484         return ret;
2485       }
2486
2487       DataArrayDouble *getPartBarycenterAndOwner(DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2488       {
2489         if(!da)
2490           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2491         da->checkAllocated();
2492         return self->getPartBarycenterAndOwner(da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2493       }
2494
2495       DataArrayDouble *getPartMeasureField(bool isAbs, DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2496       {
2497         if(!da)
2498           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2499         da->checkAllocated();
2500         return self->getPartMeasureField(isAbs,da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2501       }
2502
2503       MEDCouplingFieldDouble *buildPartOrthogonalField(DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2504       {
2505         if(!da)
2506           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2507         da->checkAllocated();
2508         return self->buildPartOrthogonalField(da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2509       }
2510
2511       PyObject *getTypesOfPart(DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2512       {
2513         if(!da)
2514           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2515         da->checkAllocated();
2516         std::set<INTERP_KERNEL::NormalizedCellType> result=self->getTypesOfPart(da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2517         std::set<INTERP_KERNEL::NormalizedCellType>::const_iterator iL=result.begin();
2518         PyObject *res = PyList_New(result.size());
2519         for (int i=0;iL!=result.end(); i++, iL++)
2520           PyList_SetItem(res,i,PyInt_FromLong(*iL));
2521         return res;
2522       }
2523
2524       DataArrayInt *keepCellIdsByType(INTERP_KERNEL::NormalizedCellType type, DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2525       {
2526         if(!da)
2527           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2528         da->checkAllocated();
2529         DataArrayInt *ret=self->keepCellIdsByType(type,da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2530         ret->setName(da->getName().c_str());
2531         return ret;
2532       }
2533
2534       static PyObject *Intersect2DMeshes(const MEDCouplingUMesh *m1, const MEDCouplingUMesh *m2, double eps) throw(INTERP_KERNEL::Exception)
2535       {
2536         DataArrayInt *cellNb1=0,*cellNb2=0;
2537         MEDCouplingUMesh *mret=MEDCouplingUMesh::Intersect2DMeshes(m1,m2,eps,cellNb1,cellNb2);
2538         PyObject *ret=PyTuple_New(3);
2539         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(mret),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2540         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellNb1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2541         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(cellNb2),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2542         return ret;
2543       }
2544
2545       static PyObject *Intersect2DMeshWith1DLine(const MEDCouplingUMesh *mesh2D, const MEDCouplingUMesh *mesh1D, double eps) throw(INTERP_KERNEL::Exception)
2546       {
2547         MEDCouplingUMesh *splitMesh2D(0),*splitMesh1D(0);
2548         DataArrayInt *cellIdInMesh2D(0),*cellIdInMesh1D(0);
2549         MEDCouplingUMesh::Intersect2DMeshWith1DLine(mesh2D,mesh1D,eps,splitMesh2D,splitMesh1D,cellIdInMesh2D,cellIdInMesh1D);
2550         PyObject *ret(PyTuple_New(4));
2551         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(splitMesh2D),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2552         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(splitMesh1D),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2553         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(cellIdInMesh2D),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2554         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(cellIdInMesh1D),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2555         return ret;
2556       }
2557
2558       PyObject *buildSlice3D(PyObject *origin, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
2559       {
2560         int spaceDim=self->getSpaceDimension();
2561         if(spaceDim!=3)
2562           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingUMesh::buildSlice3D : works only for spaceDim 3 !");
2563         double val,val2;
2564         DataArrayDouble *a,*a2;
2565         DataArrayDoubleTuple *aa,*aa2;
2566         std::vector<double> bb,bb2;
2567         int sw;
2568         const char msg[]="Python wrap of MEDCouplingUMesh::buildSlice3D : 1st paramater for origin.";
2569         const char msg2[]="Python wrap of MEDCouplingUMesh::buildSlice3D : 2nd paramater for vector.";
2570         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
2571         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
2572         //
2573         DataArrayInt *cellIds=0;
2574         MEDCouplingUMesh *ret0=self->buildSlice3D(orig,vect,eps,cellIds);
2575         PyObject *ret=PyTuple_New(2);
2576         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2577         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellIds),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2578         return ret;
2579       }
2580
2581       PyObject *buildSlice3DSurf(PyObject *origin, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
2582       {
2583         int spaceDim=self->getSpaceDimension();
2584         if(spaceDim!=3)
2585           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingUMesh::buildSlice3DSurf : works only for spaceDim 3 !");
2586         double val,val2;
2587         DataArrayDouble *a,*a2;
2588         DataArrayDoubleTuple *aa,*aa2;
2589         std::vector<double> bb,bb2;
2590         int sw;
2591         const char msg[]="Python wrap of MEDCouplingUMesh::buildSlice3DSurf : 1st paramater for origin.";
2592         const char msg2[]="Python wrap of MEDCouplingUMesh::buildSlice3DSurf : 2nd paramater for vector.";
2593         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
2594         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
2595         //
2596         DataArrayInt *cellIds=0;
2597         MEDCouplingUMesh *ret0=self->buildSlice3DSurf(orig,vect,eps,cellIds);
2598         PyObject *ret=PyTuple_New(2);
2599         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2600         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellIds),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2601         return ret;
2602       }
2603
2604       DataArrayInt *getCellIdsCrossingPlane(PyObject *origin, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
2605       {
2606         int spaceDim=self->getSpaceDimension();
2607         if(spaceDim!=3)
2608           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingUMesh::getCellIdsCrossingPlane : works only for spaceDim 3 !");
2609         double val,val2;
2610         DataArrayDouble *a,*a2;
2611         DataArrayDoubleTuple *aa,*aa2;
2612         std::vector<double> bb,bb2;
2613         int sw;
2614         const char msg[]="Python wrap of MEDCouplingUMesh::getCellIdsCrossingPlane : 1st paramater for origin.";
2615         const char msg2[]="Python wrap of MEDCouplingUMesh::getCellIdsCrossingPlane : 2nd paramater for vector.";
2616         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
2617         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
2618         return self->getCellIdsCrossingPlane(orig,vect,eps);
2619       }
2620
2621       void convertToPolyTypes(PyObject *li) throw(INTERP_KERNEL::Exception)
2622       {
2623         int sw;
2624         int pos1;
2625         std::vector<int> pos2;
2626         DataArrayInt *pos3=0;
2627         DataArrayIntTuple *pos4=0;
2628         convertObjToPossibleCpp1(li,sw,pos1,pos2,pos3,pos4);
2629         switch(sw)
2630           {
2631           case 1:
2632             {
2633               self->convertToPolyTypes(&pos1,&pos1+1);
2634               return;
2635             }
2636           case 2:
2637             {
2638               if(pos2.empty())
2639                 return;
2640               self->convertToPolyTypes(&pos2[0],&pos2[0]+pos2.size());
2641               return ;
2642             }
2643           case 3:
2644             {
2645               self->convertToPolyTypes(pos3->begin(),pos3->end());
2646               return ;
2647             }
2648           default:
2649             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::convertToPolyTypes : unexpected input array type recognized !");
2650           }
2651       }
2652     }
2653     void convertAllToPoly();
2654     void convertExtrudedPolyhedra() throw(INTERP_KERNEL::Exception);
2655     bool unPolyze() throw(INTERP_KERNEL::Exception);
2656     void simplifyPolyhedra(double eps) throw(INTERP_KERNEL::Exception);
2657     MEDCouplingUMesh *buildSpreadZonesWithPoly() const throw(INTERP_KERNEL::Exception);
2658     MEDCouplingUMesh *buildExtrudedMesh(const MEDCouplingUMesh *mesh1D, int policy) throw(INTERP_KERNEL::Exception);
2659   };
2660
2661   //== MEDCouplingUMesh End
2662
2663   //== MEDCouplingExtrudedMesh
2664
2665   class MEDCouplingExtrudedMesh : public ParaMEDMEM::MEDCouplingMesh
2666   {
2667   public:
2668     static MEDCouplingExtrudedMesh *New(const MEDCouplingUMesh *mesh3D, const MEDCouplingUMesh *mesh2D, int cell2DId) throw(INTERP_KERNEL::Exception);
2669     MEDCouplingUMesh *build3DUnstructuredMesh() const throw(INTERP_KERNEL::Exception);
2670     %extend {
2671       MEDCouplingExtrudedMesh(const MEDCouplingUMesh *mesh3D, const MEDCouplingUMesh *mesh2D, int cell2DId) throw(INTERP_KERNEL::Exception)
2672       {
2673         return MEDCouplingExtrudedMesh::New(mesh3D,mesh2D,cell2DId);
2674       }
2675       
2676       std::string __str__() const throw(INTERP_KERNEL::Exception)
2677       {
2678         return self->simpleRepr();
2679       }
2680
2681       std::string __repr__() const throw(INTERP_KERNEL::Exception)
2682       {
2683         std::ostringstream oss;
2684         self->reprQuickOverview(oss);
2685         return oss.str();
2686       }
2687       
2688       PyObject *getMesh2D() const throw(INTERP_KERNEL::Exception)
2689       {
2690         MEDCouplingUMesh *ret=self->getMesh2D();
2691         if(ret)
2692           ret->incrRef();
2693         return convertMesh(ret, SWIG_POINTER_OWN | 0 );
2694       }
2695       PyObject *getMesh1D() const throw(INTERP_KERNEL::Exception)
2696       {
2697         MEDCouplingUMesh *ret=self->getMesh1D();
2698         if(ret)
2699           ret->incrRef();
2700         return convertMesh(ret, SWIG_POINTER_OWN | 0 );
2701       }
2702       PyObject *getMesh3DIds() const throw(INTERP_KERNEL::Exception)
2703       {
2704         DataArrayInt *ret=self->getMesh3DIds();
2705         if(ret)
2706           ret->incrRef();
2707         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
2708       } 
2709     }
2710   };
2711
2712   //== MEDCouplingExtrudedMesh End
2713
2714   class MEDCoupling1GTUMesh : public ParaMEDMEM::MEDCouplingPointSet
2715   {
2716   public:
2717     static MEDCoupling1GTUMesh *New(const std::string& name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
2718     static MEDCoupling1GTUMesh *New(const MEDCouplingUMesh *m) throw(INTERP_KERNEL::Exception);
2719     INTERP_KERNEL::NormalizedCellType getCellModelEnum() const throw(INTERP_KERNEL::Exception);
2720     int getNodalConnectivityLength() const throw(INTERP_KERNEL::Exception);
2721     virtual void allocateCells(int nbOfCells=0) throw(INTERP_KERNEL::Exception);
2722     virtual void checkCoherencyOfConnectivity() const throw(INTERP_KERNEL::Exception);
2723     %extend
2724     {
2725       virtual void insertNextCell(PyObject *li) throw(INTERP_KERNEL::Exception)
2726       {
2727         int szArr,sw,iTypppArr;
2728         std::vector<int> stdvecTyyppArr;
2729         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
2730         self->insertNextCell(tmp,tmp+szArr);
2731       }
2732
2733       virtual DataArrayInt *getNodalConnectivity() const throw(INTERP_KERNEL::Exception)
2734       {
2735         DataArrayInt *ret=self->getNodalConnectivity();
2736         if(ret) ret->incrRef();
2737         return ret;
2738       }
2739       
2740       static MEDCouplingUMesh *AggregateOnSameCoordsToUMesh(PyObject *li) throw(INTERP_KERNEL::Exception)
2741       {
2742         std::vector< const MEDCoupling1GTUMesh *> parts;
2743         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCoupling1GTUMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCoupling1GTUMesh,"MEDCoupling1GTUMesh",parts);
2744         return MEDCoupling1GTUMesh::AggregateOnSameCoordsToUMesh(parts);
2745       }
2746     }
2747   };
2748
2749   //== MEDCoupling1SGTUMesh
2750
2751   class MEDCoupling1SGTUMesh : public ParaMEDMEM::MEDCoupling1GTUMesh
2752   {
2753   public:
2754     static MEDCoupling1SGTUMesh *New(const std::string& name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
2755     static MEDCoupling1SGTUMesh *New(const MEDCouplingUMesh *m) throw(INTERP_KERNEL::Exception);
2756     void setNodalConnectivity(DataArrayInt *nodalConn) throw(INTERP_KERNEL::Exception);
2757     int getNumberOfNodesPerCell() const throw(INTERP_KERNEL::Exception);
2758     static MEDCoupling1SGTUMesh *Merge1SGTUMeshes(const MEDCoupling1SGTUMesh *mesh1, const MEDCoupling1SGTUMesh *mesh2) throw(INTERP_KERNEL::Exception);
2759     MEDCoupling1SGTUMesh *buildSetInstanceFromThis(int spaceDim) const throw(INTERP_KERNEL::Exception);
2760     MEDCoupling1GTUMesh *computeDualMesh() const throw(INTERP_KERNEL::Exception);
2761     MEDCoupling1SGTUMesh *explodeEachHexa8To6Quad4() const throw(INTERP_KERNEL::Exception);
2762     DataArrayInt *sortHexa8EachOther() throw(INTERP_KERNEL::Exception);
2763     %extend
2764     {
2765       MEDCoupling1SGTUMesh(const std::string& name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception)
2766       {
2767         return MEDCoupling1SGTUMesh::New(name,type);
2768       }
2769
2770       MEDCoupling1SGTUMesh(const MEDCouplingUMesh *m) throw(INTERP_KERNEL::Exception)
2771       {
2772         return MEDCoupling1SGTUMesh::New(m);
2773       }
2774
2775       std::string __str__() const throw(INTERP_KERNEL::Exception)
2776       {
2777         return self->simpleRepr();
2778       }
2779       
2780       std::string __repr__() const throw(INTERP_KERNEL::Exception)
2781       {
2782         std::ostringstream oss;
2783         self->reprQuickOverview(oss);
2784         return oss.str();
2785       }
2786
2787       PyObject *structurizeMe(double eps=1e-12) const throw(INTERP_KERNEL::Exception)
2788       {
2789         DataArrayInt *cellPerm(0),*nodePerm(0);
2790         MEDCouplingCMesh *retCpp(self->structurizeMe(cellPerm,nodePerm,eps));
2791         PyObject *ret(PyTuple_New(3));
2792         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(retCpp),SWIGTYPE_p_ParaMEDMEM__MEDCouplingCMesh, SWIG_POINTER_OWN | 0 ));
2793         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellPerm),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2794         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(nodePerm),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2795         return ret;
2796       }
2797
2798       static MEDCoupling1SGTUMesh *Merge1SGTUMeshes(PyObject *li) throw(INTERP_KERNEL::Exception)
2799       {
2800         std::vector<const ParaMEDMEM::MEDCoupling1SGTUMesh *> tmp;
2801         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCoupling1SGTUMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCoupling1SGTUMesh,"MEDCoupling1SGTUMesh",tmp);
2802         return MEDCoupling1SGTUMesh::Merge1SGTUMeshes(tmp);
2803       }
2804       
2805       static MEDCoupling1SGTUMesh *Merge1SGTUMeshesOnSameCoords(PyObject *li) throw(INTERP_KERNEL::Exception)
2806       {
2807         std::vector<const ParaMEDMEM::MEDCoupling1SGTUMesh *> tmp;
2808         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCoupling1SGTUMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCoupling1SGTUMesh,"MEDCoupling1SGTUMesh",tmp);
2809         return MEDCoupling1SGTUMesh::Merge1SGTUMeshesOnSameCoords(tmp);
2810       }
2811     }
2812   };
2813   
2814   //== MEDCoupling1SGTUMesh End
2815
2816   //== MEDCoupling1DGTUMesh
2817
2818   class MEDCoupling1DGTUMesh : public ParaMEDMEM::MEDCoupling1GTUMesh
2819   {
2820   public:
2821     static MEDCoupling1DGTUMesh *New(const std::string& name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
2822     static MEDCoupling1DGTUMesh *New(const MEDCouplingUMesh *m) throw(INTERP_KERNEL::Exception);
2823     void setNodalConnectivity(DataArrayInt *nodalConn, DataArrayInt *nodalConnIndex) throw(INTERP_KERNEL::Exception);
2824     MEDCoupling1DGTUMesh *buildSetInstanceFromThis(int spaceDim) const throw(INTERP_KERNEL::Exception);
2825     bool isPacked() const throw(INTERP_KERNEL::Exception);
2826     %extend
2827     {
2828       MEDCoupling1DGTUMesh(const std::string& name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception)
2829       {
2830         return MEDCoupling1DGTUMesh::New(name,type);
2831       }
2832
2833       MEDCoupling1DGTUMesh(const MEDCouplingUMesh *m) throw(INTERP_KERNEL::Exception)
2834       {
2835         return MEDCoupling1DGTUMesh::New(m);
2836       }
2837
2838       std::string __str__() const throw(INTERP_KERNEL::Exception)
2839       {
2840         return self->simpleRepr();
2841       }
2842       
2843       std::string __repr__() const throw(INTERP_KERNEL::Exception)
2844       {
2845         std::ostringstream oss;
2846         self->reprQuickOverview(oss);
2847         return oss.str();
2848       }
2849
2850       DataArrayInt *getNodalConnectivityIndex() const throw(INTERP_KERNEL::Exception)
2851       {
2852         DataArrayInt *ret=self->getNodalConnectivityIndex();
2853         if(ret) ret->incrRef();
2854         return ret;
2855       }
2856
2857       PyObject *retrievePackedNodalConnectivity() const throw(INTERP_KERNEL::Exception)
2858       {
2859         DataArrayInt *ret1=0,*ret2=0;
2860         bool ret0=self->retrievePackedNodalConnectivity(ret1,ret2);
2861         PyObject *ret0Py=ret0?Py_True:Py_False;
2862         Py_XINCREF(ret0Py);
2863         PyObject *ret=PyTuple_New(3);
2864         PyTuple_SetItem(ret,0,ret0Py);
2865         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2866         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(ret2),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2867         return ret;
2868       }
2869       
2870       PyObject *copyWithNodalConnectivityPacked() const throw(INTERP_KERNEL::Exception)
2871       {
2872         bool ret1;
2873         MEDCoupling1DGTUMesh *ret0=self->copyWithNodalConnectivityPacked(ret1);
2874         PyObject *ret=PyTuple_New(2);
2875         PyObject *ret1Py=ret1?Py_True:Py_False; Py_XINCREF(ret1Py);
2876         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__MEDCoupling1DGTUMesh, SWIG_POINTER_OWN | 0 ));
2877         PyTuple_SetItem(ret,1,ret1Py);
2878         return ret;
2879       }
2880
2881       static MEDCoupling1DGTUMesh *Merge1DGTUMeshes(PyObject *li) throw(INTERP_KERNEL::Exception)
2882       {
2883         std::vector<const ParaMEDMEM::MEDCoupling1DGTUMesh *> tmp;
2884         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCoupling1DGTUMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCoupling1DGTUMesh,"MEDCoupling1DGTUMesh",tmp);
2885         return MEDCoupling1DGTUMesh::Merge1DGTUMeshes(tmp);
2886       }
2887       
2888       static MEDCoupling1DGTUMesh *Merge1DGTUMeshesOnSameCoords(PyObject *li) throw(INTERP_KERNEL::Exception)
2889       {
2890         std::vector<const ParaMEDMEM::MEDCoupling1DGTUMesh *> tmp;
2891         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCoupling1DGTUMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCoupling1DGTUMesh,"MEDCoupling1DGTUMesh",tmp);
2892         return MEDCoupling1DGTUMesh::Merge1DGTUMeshesOnSameCoords(tmp);
2893       }
2894       
2895       static DataArrayInt *AggregateNodalConnAndShiftNodeIds(PyObject *li, const std::vector<int>& offsetInNodeIdsPerElt) throw(INTERP_KERNEL::Exception)
2896       {
2897         std::vector<const ParaMEDMEM::DataArrayInt *> tmp;
2898         convertFromPyObjVectorOfObj<const ParaMEDMEM::DataArrayInt *>(li,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,"DataArrayInt",tmp);
2899         return MEDCoupling1DGTUMesh::AggregateNodalConnAndShiftNodeIds(tmp,offsetInNodeIdsPerElt);
2900       }
2901     }
2902   };
2903
2904   //== MEDCoupling1DGTUMeshEnd
2905
2906   class MEDCouplingStructuredMesh : public ParaMEDMEM::MEDCouplingMesh
2907   {
2908   public:
2909     int getCellIdFromPos(int i, int j, int k) const throw(INTERP_KERNEL::Exception);
2910     int getNodeIdFromPos(int i, int j, int k) const throw(INTERP_KERNEL::Exception);
2911     int getNumberOfCellsOfSubLevelMesh() const throw(INTERP_KERNEL::Exception);
2912     int getSpaceDimensionOnNodeStruct() const throw(INTERP_KERNEL::Exception);
2913     double computeSquareness() const throw(INTERP_KERNEL::Exception);
2914     virtual std::vector<int> getNodeGridStructure() const throw(INTERP_KERNEL::Exception);
2915     std::vector<int> getCellGridStructure() const throw(INTERP_KERNEL::Exception);
2916     MEDCoupling1SGTUMesh *build1SGTUnstructured() const throw(INTERP_KERNEL::Exception);
2917     static INTERP_KERNEL::NormalizedCellType GetGeoTypeGivenMeshDimension(int meshDim) throw(INTERP_KERNEL::Exception);
2918     MEDCoupling1SGTUMesh *build1SGTSubLevelMesh() const throw(INTERP_KERNEL::Exception);
2919     static int DeduceNumberOfGivenStructure(const std::vector<int>& st) throw(INTERP_KERNEL::Exception);
2920     static DataArrayInt *ComputeCornersGhost(const std::vector<int>& st, int ghostLev) throw(INTERP_KERNEL::Exception);
2921     static std::vector<int> GetSplitVectFromStruct(const std::vector<int>& strct) throw(INTERP_KERNEL::Exception);
2922     %extend
2923     {
2924       virtual MEDCouplingStructuredMesh *buildStructuredSubPart(PyObject *cellPart) const throw(INTERP_KERNEL::Exception)
2925       {
2926         int tmpp1=-1,tmpp2=-1;
2927         std::vector<int> tmp=fillArrayWithPyListInt2(cellPart,tmpp1,tmpp2);
2928         std::vector< std::pair<int,int> > inp;
2929         if(tmpp2==2)
2930           {
2931             inp.resize(tmpp1);
2932             for(int i=0;i<tmpp1;i++)
2933               { inp[i].first=tmp[2*i]; inp[i].second=tmp[2*i+1]; }
2934           }
2935         else if(tmpp2==1)
2936           {
2937             if(tmpp1%2!=0)
2938               throw INTERP_KERNEL::Exception("Wrap of MEDCouplingStructuredMesh.buildStructuredSubPart : invalid input size ! Must be even size !");
2939             inp.resize(tmpp1/2);
2940             for(int i=0;i<tmpp1/2;i++)
2941               { inp[i].first=tmp[2*i]; inp[i].second=tmp[2*i+1]; }
2942           }
2943         else
2944           throw INTERP_KERNEL::Exception("Wrap of MEDCouplingStructuredMesh.buildStructuredSubPart : invalid input size !");
2945         return self->buildStructuredSubPart(inp);
2946       }
2947
2948       static DataArrayInt *BuildExplicitIdsFrom(PyObject *st, PyObject *part) throw(INTERP_KERNEL::Exception)
2949       {
2950         std::vector< std::pair<int,int> > inp;
2951         convertPyToVectorPairInt(part,inp);
2952         //
2953         int szArr,sw,iTypppArr;
2954         std::vector<int> stdvecTyyppArr;
2955         const int *tmp4=convertObjToPossibleCpp1_Safe(st,sw,szArr,iTypppArr,stdvecTyyppArr);
2956         std::vector<int> tmp5(tmp4,tmp4+szArr);
2957         //
2958         return MEDCouplingStructuredMesh::BuildExplicitIdsFrom(tmp5,inp);
2959       }
2960
2961       static void MultiplyPartOf(const std::vector<int>& st, PyObject *part, double factor, DataArrayDouble *da) throw(INTERP_KERNEL::Exception)
2962       {
2963         std::vector< std::pair<int,int> > inp;
2964         convertPyToVectorPairInt(part,inp);
2965         MEDCouplingStructuredMesh::MultiplyPartOf(st,inp,factor,da);
2966       }
2967
2968       static void MultiplyPartOfByGhost(const std::vector<int>& st, PyObject *part, int ghostSize, double factor, DataArrayDouble *da) throw(INTERP_KERNEL::Exception)
2969       {
2970         std::vector< std::pair<int,int> > inp;
2971         convertPyToVectorPairInt(part,inp);
2972         MEDCouplingStructuredMesh::MultiplyPartOfByGhost(st,inp,ghostSize,factor,da);
2973       }
2974
2975       static PyObject *PutInGhostFormat(int ghostSize, const std::vector<int>& st, PyObject *part) throw(INTERP_KERNEL::Exception)
2976       {
2977         std::vector< std::pair<int,int> > inp;
2978         convertPyToVectorPairInt(part,inp);
2979         std::vector<int> stWithGhost;
2980         std::vector< std::pair<int,int> > partWithGhost;
2981         MEDCouplingStructuredMesh::PutInGhostFormat(ghostSize,st,inp,stWithGhost,partWithGhost);
2982         PyObject *ret(PyTuple_New(2));
2983         PyTuple_SetItem(ret,0,convertIntArrToPyList2(stWithGhost));
2984         PyTuple_SetItem(ret,1,convertFromVectorPairInt(partWithGhost));
2985         return ret;
2986       }
2987
2988       static DataArrayDouble *ExtractFieldOfDoubleFrom(const std::vector<int>& st, const DataArrayDouble *fieldOfDbl, PyObject *partCompactFormat) throw(INTERP_KERNEL::Exception)
2989       {
2990         std::vector< std::pair<int,int> > inp;
2991         convertPyToVectorPairInt(partCompactFormat,inp);
2992         return MEDCouplingStructuredMesh::ExtractFieldOfDoubleFrom(st,fieldOfDbl,inp);
2993       }
2994
2995       static void AssignPartOfFieldOfDoubleUsing(const std::vector<int>& st, DataArrayDouble *fieldOfDbl, PyObject *partCompactFormat, const DataArrayDouble *other) throw(INTERP_KERNEL::Exception)
2996       {
2997         std::vector< std::pair<int,int> > inp;
2998         convertPyToVectorPairInt(partCompactFormat,inp);
2999         MEDCouplingStructuredMesh::AssignPartOfFieldOfDoubleUsing(st,fieldOfDbl,inp,other);
3000       }
3001
3002       static int DeduceNumberOfGivenRangeInCompactFrmt(PyObject *part) throw(INTERP_KERNEL::Exception)
3003       {
3004         std::vector< std::pair<int,int> > inp;
3005         convertPyToVectorPairInt(part,inp);
3006         return MEDCouplingStructuredMesh::DeduceNumberOfGivenRangeInCompactFrmt(inp);
3007       }
3008
3009       static DataArrayInt *Build1GTNodalConnectivity(PyObject *li) throw(INTERP_KERNEL::Exception)
3010       {
3011         int szArr,sw,iTypppArr;
3012         std::vector<int> stdvecTyyppArr;
3013         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3014         return MEDCouplingStructuredMesh::Build1GTNodalConnectivity(tmp,tmp+szArr);
3015       }
3016
3017       static DataArrayInt *Build1GTNodalConnectivityOfSubLevelMesh(PyObject *li) throw(INTERP_KERNEL::Exception)
3018       {
3019         int szArr,sw,iTypppArr;
3020         std::vector<int> stdvecTyyppArr;
3021         const int *tmp(convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr));
3022         return MEDCouplingStructuredMesh::Build1GTNodalConnectivityOfSubLevelMesh(tmp,tmp+szArr);
3023       }
3024
3025       static std::vector<int> GetDimensionsFromCompactFrmt(PyObject *partCompactFormat) throw(INTERP_KERNEL::Exception)
3026       {
3027         std::vector< std::pair<int,int> > inp;
3028         convertPyToVectorPairInt(partCompactFormat,inp);
3029         return MEDCouplingStructuredMesh::GetDimensionsFromCompactFrmt(inp);
3030       }
3031
3032       static PyObject *GetCompactFrmtFromDimensions(const std::vector<int>& dims) throw(INTERP_KERNEL::Exception)
3033       {
3034         std::vector< std::pair<int,int> > ret(MEDCouplingStructuredMesh::GetCompactFrmtFromDimensions(dims));
3035         PyObject *retPy=PyList_New(ret.size());
3036         for(std::size_t i=0;i<ret.size();i++)
3037           {
3038             PyObject *tmp=PyTuple_New(2);
3039             PyTuple_SetItem(tmp,0,PyInt_FromLong(ret[i].first));
3040             PyTuple_SetItem(tmp,1,PyInt_FromLong(ret[i].second));
3041             PyList_SetItem(retPy,i,tmp);
3042           }
3043         return retPy;
3044       }
3045
3046       static PyObject *IntersectRanges(PyObject *r1, PyObject *r2) throw(INTERP_KERNEL::Exception)
3047       {
3048         std::vector< std::pair<int,int> > r1Cpp,r2Cpp;
3049         convertPyToVectorPairInt(r1,r1Cpp);
3050         convertPyToVectorPairInt(r2,r2Cpp);
3051         std::vector< std::pair<int,int> > ret(MEDCouplingStructuredMesh::IntersectRanges(r1Cpp,r2Cpp));
3052         PyObject *retPy=PyList_New(ret.size());
3053         for(std::size_t i=0;i<ret.size();i++)
3054           {
3055             PyObject *tmp=PyTuple_New(2);
3056             PyTuple_SetItem(tmp,0,PyInt_FromLong(ret[i].first));
3057             PyTuple_SetItem(tmp,1,PyInt_FromLong(ret[i].second));
3058             PyList_SetItem(retPy,i,tmp);
3059           }
3060         return retPy;
3061       }
3062
3063       static bool AreRangesIntersect(PyObject *r1, PyObject *r2)
3064       {
3065         std::vector< std::pair<int,int> > r1Cpp,r2Cpp;
3066         convertPyToVectorPairInt(r1,r1Cpp);
3067         convertPyToVectorPairInt(r2,r2Cpp);
3068         return MEDCouplingStructuredMesh::AreRangesIntersect(r1Cpp,r2Cpp);
3069       }
3070
3071       static PyObject *IsPartStructured(PyObject *li, PyObject *st) throw(INTERP_KERNEL::Exception)
3072       {
3073         int szArr,sw,iTypppArr;
3074         std::vector<int> stdvecTyyppArr;
3075         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3076         int szArr2,sw2,iTypppArr2;
3077         std::vector<int> stdvecTyyppArr2;
3078         const int *tmp2=convertObjToPossibleCpp1_Safe(st,sw2,szArr2,iTypppArr2,stdvecTyyppArr2);
3079         std::vector<int> tmp3(tmp2,tmp2+szArr2);
3080         std::vector< std::pair<int,int> > partCompactFormat;
3081         bool ret0=MEDCouplingStructuredMesh::IsPartStructured(tmp,tmp+szArr,tmp3,partCompactFormat);
3082         PyObject *ret=PyTuple_New(2);
3083         PyObject *ret0Py=ret0?Py_True:Py_False; Py_XINCREF(ret0Py);
3084         PyTuple_SetItem(ret,0,ret0Py);
3085         PyObject *ret1Py=PyList_New(partCompactFormat.size());
3086         for(std::size_t i=0;i<partCompactFormat.size();i++)
3087           {
3088             PyObject *tmp4=PyTuple_New(2);
3089             PyTuple_SetItem(tmp4,0,PyInt_FromLong(partCompactFormat[i].first));
3090             PyTuple_SetItem(tmp4,1,PyInt_FromLong(partCompactFormat[i].second));
3091             PyList_SetItem(ret1Py,i,tmp4);
3092           }
3093         PyTuple_SetItem(ret,1,ret1Py);
3094         return ret;
3095       }
3096
3097       static PyObject *ChangeReferenceFromGlobalOfCompactFrmt(PyObject *bigInAbs, PyObject *partOfBigInAbs, bool check=true) throw(INTERP_KERNEL::Exception)
3098       {
3099         std::vector< std::pair<int,int> > param0,param1,ret;
3100         convertPyToVectorPairInt(bigInAbs,param0);
3101         convertPyToVectorPairInt(partOfBigInAbs,param1);
3102         MEDCouplingStructuredMesh::ChangeReferenceFromGlobalOfCompactFrmt(param0,param1,ret,check);
3103         PyObject *retPy(PyList_New(ret.size()));
3104         for(std::size_t i=0;i<ret.size();i++)
3105           {
3106             PyObject *tmp(PyTuple_New(2));
3107             PyTuple_SetItem(tmp,0,PyInt_FromLong(ret[i].first));
3108             PyTuple_SetItem(tmp,1,PyInt_FromLong(ret[i].second));
3109             PyList_SetItem(retPy,i,tmp);
3110           }
3111         return retPy;
3112       }
3113
3114       static PyObject *TranslateCompactFrmt(PyObject *part, const std::vector<int>& translation) throw(INTERP_KERNEL::Exception)
3115       {
3116         std::vector< std::pair<int,int> > param0;
3117         convertPyToVectorPairInt(part,param0);
3118         std::vector< std::pair<int,int> > ret(MEDCouplingStructuredMesh::TranslateCompactFrmt(param0,translation));
3119         PyObject *retPy(PyList_New(ret.size()));
3120         for(std::size_t i=0;i<ret.size();i++)
3121           {
3122             PyObject *tmp(PyTuple_New(2));
3123             PyTuple_SetItem(tmp,0,PyInt_FromLong(ret[i].first));
3124             PyTuple_SetItem(tmp,1,PyInt_FromLong(ret[i].second));
3125             PyList_SetItem(retPy,i,tmp);
3126           }
3127         return retPy;
3128       }
3129
3130       static std::vector<int> FindTranslationFrom(PyObject *startingFrom, PyObject *goingTo) throw(INTERP_KERNEL::Exception)
3131       {
3132         std::vector< std::pair<int,int> > param0,param1;
3133         convertPyToVectorPairInt(startingFrom,param0);
3134         convertPyToVectorPairInt(goingTo,param1);
3135         return  MEDCouplingStructuredMesh::FindTranslationFrom(param0,param1);
3136       }
3137
3138       static PyObject *ChangeReferenceToGlobalOfCompactFrmt(PyObject *bigInAbs, PyObject *partOfBigRelativeToBig, bool check=true) throw(INTERP_KERNEL::Exception)
3139       {
3140         std::vector< std::pair<int,int> > param0,param1,ret;
3141         convertPyToVectorPairInt(bigInAbs,param0);
3142         convertPyToVectorPairInt(partOfBigRelativeToBig,param1);
3143         MEDCouplingStructuredMesh::ChangeReferenceToGlobalOfCompactFrmt(param0,param1,ret,check);
3144         PyObject *retPy(PyList_New(ret.size()));
3145         for(std::size_t i=0;i<ret.size();i++)
3146           {
3147             PyObject *tmp(PyTuple_New(2));
3148             PyTuple_SetItem(tmp,0,PyInt_FromLong(ret[i].first));
3149             PyTuple_SetItem(tmp,1,PyInt_FromLong(ret[i].second));
3150             PyList_SetItem(retPy,i,tmp);
3151           }
3152         return retPy;
3153       }
3154     }
3155   };
3156
3157   //== MEDCouplingCMesh
3158   
3159   class MEDCouplingCMesh : public ParaMEDMEM::MEDCouplingStructuredMesh
3160   {
3161   public:
3162     static MEDCouplingCMesh *New() throw(INTERP_KERNEL::Exception);
3163     static MEDCouplingCMesh *New(const std::string& meshName) throw(INTERP_KERNEL::Exception);
3164     MEDCouplingCMesh *clone(bool recDeepCpy) const;
3165     void setCoords(const DataArrayDouble *coordsX,
3166                    const DataArrayDouble *coordsY=0,
3167                    const DataArrayDouble *coordsZ=0) throw(INTERP_KERNEL::Exception);
3168     void setCoordsAt(int i, const DataArrayDouble *arr) throw(INTERP_KERNEL::Exception);
3169     %extend {
3170       MEDCouplingCMesh() throw(INTERP_KERNEL::Exception)
3171       {
3172         return MEDCouplingCMesh::New();
3173       }
3174       MEDCouplingCMesh(const std::string& meshName) throw(INTERP_KERNEL::Exception)
3175       {
3176         return MEDCouplingCMesh::New(meshName);
3177       }
3178       std::string __str__() const throw(INTERP_KERNEL::Exception)
3179       {
3180         return self->simpleRepr();
3181       }
3182       std::string __repr__() const throw(INTERP_KERNEL::Exception)
3183       {
3184         std::ostringstream oss;
3185         self->reprQuickOverview(oss);
3186         return oss.str();
3187       }
3188       DataArrayDouble *getCoordsAt(int i) throw(INTERP_KERNEL::Exception)
3189       {
3190         DataArrayDouble *ret=self->getCoordsAt(i);
3191         if(ret)
3192           ret->incrRef();
3193         return ret;
3194       }
3195     }
3196   };
3197
3198   //== MEDCouplingCMesh End
3199
3200   //== MEDCouplingCurveLinearMesh
3201
3202   class MEDCouplingCurveLinearMesh : public ParaMEDMEM::MEDCouplingStructuredMesh
3203   {
3204   public:
3205     static MEDCouplingCurveLinearMesh *New() throw(INTERP_KERNEL::Exception);
3206     static MEDCouplingCurveLinearMesh *New(const std::string& meshName) throw(INTERP_KERNEL::Exception);
3207     MEDCouplingCurveLinearMesh *clone(bool recDeepCpy) const;
3208     void setCoords(const DataArrayDouble *coords) throw(INTERP_KERNEL::Exception);
3209     %extend {
3210       MEDCouplingCurveLinearMesh() throw(INTERP_KERNEL::Exception)
3211       {
3212         return MEDCouplingCurveLinearMesh::New();
3213       }
3214       MEDCouplingCurveLinearMesh(const std::string& meshName) throw(INTERP_KERNEL::Exception)
3215       {
3216         return MEDCouplingCurveLinearMesh::New(meshName);
3217       }
3218       std::string __str__() const throw(INTERP_KERNEL::Exception) 
3219       {
3220         return self->simpleRepr();
3221       }
3222       std::string __repr__() const throw(INTERP_KERNEL::Exception)
3223       {
3224         std::ostringstream oss;
3225         self->reprQuickOverview(oss);
3226         return oss.str();
3227       }
3228       DataArrayDouble *getCoords() throw(INTERP_KERNEL::Exception)
3229       {
3230         DataArrayDouble *ret=self->getCoords();
3231         if(ret)
3232           ret->incrRef();
3233         return ret;
3234       }
3235       void setNodeGridStructure(PyObject *gridStruct) throw(INTERP_KERNEL::Exception)
3236       {
3237         int szArr,sw,iTypppArr;
3238         std::vector<int> stdvecTyyppArr;
3239         const int *tmp=convertObjToPossibleCpp1_Safe(gridStruct,sw,szArr,iTypppArr,stdvecTyyppArr);
3240         self->setNodeGridStructure(tmp,tmp+szArr);
3241       }
3242     }
3243   };
3244
3245   //== MEDCouplingCurveLinearMesh End
3246
3247   //== MEDCouplingIMesh
3248
3249   class MEDCouplingIMesh : public ParaMEDMEM::MEDCouplingStructuredMesh
3250   {
3251   public:
3252     static MEDCouplingIMesh *New() throw(INTERP_KERNEL::Exception);
3253     //
3254     void setSpaceDimension(int spaceDim) throw(INTERP_KERNEL::Exception);
3255     std::vector<int> getNodeStruct() const throw(INTERP_KERNEL::Exception);
3256     std::vector<double> getOrigin() const throw(INTERP_KERNEL::Exception);
3257     std::vector<double> getDXYZ() const throw(INTERP_KERNEL::Exception);
3258     void setAxisUnit(const std::string& unitName) throw(INTERP_KERNEL::Exception);
3259     std::string getAxisUnit() const throw(INTERP_KERNEL::Exception);
3260     double getMeasureOfAnyCell() const throw(INTERP_KERNEL::Exception);
3261     MEDCouplingCMesh *convertToCartesian() const throw(INTERP_KERNEL::Exception);
3262     void refineWithFactor(const std::vector<int>& factors) throw(INTERP_KERNEL::Exception);
3263     MEDCouplingIMesh *asSingleCell() const throw(INTERP_KERNEL::Exception);
3264     MEDCouplingIMesh *buildWithGhost(int ghostLev) const throw(INTERP_KERNEL::Exception);
3265     %extend
3266     {
3267       MEDCouplingIMesh()
3268       {
3269         return MEDCouplingIMesh::New();
3270       }
3271       static MEDCouplingIMesh *New(const std::string& meshName, int spaceDim, PyObject *nodeStrct, PyObject *origin, PyObject *dxyz) throw(INTERP_KERNEL::Exception)
3272       {
3273         static const char msg0[]="MEDCouplingIMesh::New : error on 'origin' parameter !";
3274         static const char msg1[]="MEDCouplingIMesh::New : error on 'dxyz' parameter !";
3275         const int *nodeStrctPtr(0);
3276         const double *originPtr(0),*dxyzPtr(0);
3277         int sw,sz,val0;
3278         std::vector<int> bb0;
3279         nodeStrctPtr=convertObjToPossibleCpp1_Safe(nodeStrct,sw,sz,val0,bb0);
3280         //
3281         double val,val2;
3282         std::vector<double> bb,bb2;
3283         int sz1,sz2;
3284         originPtr=convertObjToPossibleCpp5_SingleCompo(origin,sw,val,bb,msg0,false,sz1);
3285         dxyzPtr=convertObjToPossibleCpp5_SingleCompo(dxyz,sw,val2,bb2,msg1,false,sz2);
3286         //
3287         return MEDCouplingIMesh::New(meshName,spaceDim,nodeStrctPtr,nodeStrctPtr+sz,originPtr,originPtr+sz1,dxyzPtr,dxyzPtr+sz2);
3288       }
3289
3290       MEDCouplingIMesh(const std::string& meshName, int spaceDim, PyObject *nodeStrct, PyObject *origin, PyObject *dxyz) throw(INTERP_KERNEL::Exception)
3291       {
3292         return ParaMEDMEM_MEDCouplingIMesh_New__SWIG_1(meshName,spaceDim,nodeStrct,origin,dxyz);
3293       }
3294
3295       void setNodeStruct(PyObject *nodeStrct) throw(INTERP_KERNEL::Exception)
3296       {
3297         int sw,sz,val0;
3298         std::vector<int> bb0;
3299         const int *nodeStrctPtr(convertObjToPossibleCpp1_Safe(nodeStrct,sw,sz,val0,bb0));
3300         self->setNodeStruct(nodeStrctPtr,nodeStrctPtr+sz);
3301       }
3302
3303       void setOrigin(PyObject *origin) throw(INTERP_KERNEL::Exception)
3304       {
3305         static const char msg[]="MEDCouplingIMesh::setOrigin : invalid input 'origin' parameter ! integer, float, list/tuple of float, DataArrayDouble or DataArrayDoubleTuple supported !";
3306         double val;
3307         DataArrayDouble *a;
3308         DataArrayDoubleTuple *aa;
3309         std::vector<double> bb;
3310         int sw,nbTuples;
3311         const double *originPtr(convertObjToPossibleCpp5_SingleCompo(origin,sw,val,bb,msg,false,nbTuples));
3312         self->setOrigin(originPtr,originPtr+nbTuples);
3313       }
3314       
3315       void setDXYZ(PyObject *dxyz) throw(INTERP_KERNEL::Exception)
3316       {
3317         static const char msg[]="MEDCouplingIMesh::setDXYZ : invalid input 'dxyz' parameter ! integer, float, list/tuple of float, DataArrayDouble or DataArrayDoubleTuple supported !";
3318         double val;
3319         DataArrayDouble *a;
3320         DataArrayDoubleTuple *aa;
3321         std::vector<double> bb;
3322         int sw,nbTuples;
3323         const double *originPtr(convertObjToPossibleCpp5_SingleCompo(dxyz,sw,val,bb,msg,false,nbTuples));
3324         self->setDXYZ(originPtr,originPtr+nbTuples);
3325       }
3326
3327       static void CondenseFineToCoarse(const std::vector<int>& coarseSt, const DataArrayDouble *fineDA, PyObject *fineLocInCoarse, const std::vector<int>& facts, DataArrayDouble *coarseDA) throw(INTERP_KERNEL::Exception)
3328       {
3329         std::vector< std::pair<int,int> > inp;
3330         convertPyToVectorPairInt(fineLocInCoarse,inp);
3331         MEDCouplingIMesh::CondenseFineToCoarse(coarseSt,fineDA,inp,facts,coarseDA);
3332       }
3333
3334       static void CondenseFineToCoarseGhost(const std::vector<int>& coarseSt, const DataArrayDouble *fineDA, PyObject *fineLocInCoarse, const std::vector<int>& facts, DataArrayDouble *coarseDA, int ghostSize) throw(INTERP_KERNEL::Exception)
3335       {
3336         std::vector< std::pair<int,int> > inp;
3337         convertPyToVectorPairInt(fineLocInCoarse,inp);
3338         MEDCouplingIMesh::CondenseFineToCoarseGhost(coarseSt,fineDA,inp,facts,coarseDA,ghostSize);
3339       }
3340
3341       static void SpreadCoarseToFine(const DataArrayDouble *coarseDA, const std::vector<int>& coarseSt, DataArrayDouble *fineDA, PyObject *fineLocInCoarse, const std::vector<int>& facts) throw(INTERP_KERNEL::Exception)
3342       {
3343         std::vector< std::pair<int,int> > inp;
3344         convertPyToVectorPairInt(fineLocInCoarse,inp);
3345         MEDCouplingIMesh::SpreadCoarseToFine(coarseDA,coarseSt,fineDA,inp,facts);
3346       }
3347
3348       static void SpreadCoarseToFineGhost(const DataArrayDouble *coarseDA, const std::vector<int>& coarseSt, DataArrayDouble *fineDA, PyObject *fineLocInCoarse, const std::vector<int>& facts, int ghostSize) throw(INTERP_KERNEL::Exception)
3349       {
3350         std::vector< std::pair<int,int> > inp;
3351         convertPyToVectorPairInt(fineLocInCoarse,inp);
3352         MEDCouplingIMesh::SpreadCoarseToFineGhost(coarseDA,coarseSt,fineDA,inp,facts,ghostSize);
3353       }
3354
3355       static void SpreadCoarseToFineGhostZone(const DataArrayDouble *coarseDA, const std::vector<int>& coarseSt, DataArrayDouble *fineDA, PyObject *fineLocInCoarse, const std::vector<int>& facts, int ghostSize) throw(INTERP_KERNEL::Exception)
3356       {
3357         std::vector< std::pair<int,int> > inp;
3358         convertPyToVectorPairInt(fineLocInCoarse,inp);
3359         MEDCouplingIMesh::SpreadCoarseToFineGhostZone(coarseDA,coarseSt,fineDA,inp,facts,ghostSize);
3360       }
3361
3362       std::string __str__() const throw(INTERP_KERNEL::Exception)
3363       {
3364         return self->simpleRepr();
3365       }
3366       std::string __repr__() const throw(INTERP_KERNEL::Exception)
3367       {
3368         std::ostringstream oss;
3369         self->reprQuickOverview(oss);
3370         return oss.str();
3371       }
3372     }
3373   };
3374
3375   //== MEDCouplingIMesh End
3376
3377 }
3378
3379 namespace ParaMEDMEM
3380 {
3381   class MEDCouplingField : public ParaMEDMEM::RefCountObject, public ParaMEDMEM::TimeLabel
3382   {
3383   public:
3384     virtual void checkCoherency() const throw(INTERP_KERNEL::Exception);
3385     virtual bool areCompatibleForMerge(const MEDCouplingField *other) const throw(INTERP_KERNEL::Exception);
3386     virtual bool isEqual(const MEDCouplingField *other, double meshPrec, double valsPrec) const throw(INTERP_KERNEL::Exception);
3387     virtual bool isEqualWithoutConsideringStr(const MEDCouplingField *other, double meshPrec, double valsPrec) const throw(INTERP_KERNEL::Exception);
3388     virtual void copyTinyStringsFrom(const MEDCouplingField *other) throw(INTERP_KERNEL::Exception);
3389     void setMesh(const ParaMEDMEM::MEDCouplingMesh *mesh) throw(INTERP_KERNEL::Exception);
3390     void setName(const char *name) throw(INTERP_KERNEL::Exception);
3391     std::string getDescription() const throw(INTERP_KERNEL::Exception);
3392     void setDescription(const char *desc) throw(INTERP_KERNEL::Exception);
3393     std::string getName() const throw(INTERP_KERNEL::Exception);
3394     TypeOfField getTypeOfField() const throw(INTERP_KERNEL::Exception);
3395     NatureOfField getNature() const throw(INTERP_KERNEL::Exception);
3396     virtual void setNature(NatureOfField nat) throw(INTERP_KERNEL::Exception);
3397     DataArrayDouble *getLocalizationOfDiscr() const throw(INTERP_KERNEL::Exception);
3398     MEDCouplingFieldDouble *buildMeasureField(bool isAbs) const throw(INTERP_KERNEL::Exception);
3399     int getNumberOfTuplesExpected() const throw(INTERP_KERNEL::Exception);
3400     int getNumberOfMeshPlacesExpected() const throw(INTERP_KERNEL::Exception);
3401     void setGaussLocalizationOnType(INTERP_KERNEL::NormalizedCellType type, const std::vector<double>& refCoo,
3402                                     const std::vector<double>& gsCoo, const std::vector<double>& wg) throw(INTERP_KERNEL::Exception);
3403     void clearGaussLocalizations() throw(INTERP_KERNEL::Exception);
3404     MEDCouplingGaussLocalization& getGaussLocalization(int locId) throw(INTERP_KERNEL::Exception);
3405     int getNbOfGaussLocalization() const throw(INTERP_KERNEL::Exception);
3406     int getGaussLocalizationIdOfOneCell(int cellId) const throw(INTERP_KERNEL::Exception);
3407     const MEDCouplingGaussLocalization& getGaussLocalization(int locId) const throw(INTERP_KERNEL::Exception);
3408     int getGaussLocalizationIdOfOneType(INTERP_KERNEL::NormalizedCellType type) const throw(INTERP_KERNEL::Exception);
3409     void setDiscretization(MEDCouplingFieldDiscretization *newDisc);
3410     %extend {
3411       PyObject *getMesh() const throw(INTERP_KERNEL::Exception)
3412       {
3413         MEDCouplingMesh *ret1=const_cast<MEDCouplingMesh *>(self->getMesh());
3414         if(ret1)
3415           ret1->incrRef();
3416         return convertMesh(ret1,SWIG_POINTER_OWN | 0 );
3417       }
3418
3419       PyObject *getDiscretization() throw(INTERP_KERNEL::Exception)
3420       {
3421         MEDCouplingFieldDiscretization *ret=self->getDiscretization();
3422         if(ret)
3423           ret->incrRef();
3424         return convertFieldDiscretization(ret,SWIG_POINTER_OWN | 0 );
3425       }
3426
3427       PyObject *getGaussLocalizationIdsOfOneType(INTERP_KERNEL::NormalizedCellType type) const throw(INTERP_KERNEL::Exception)
3428       {
3429         std::set<int> ret=self->getGaussLocalizationIdsOfOneType(type);
3430         return convertIntArrToPyList3(ret);
3431       }
3432
3433       PyObject *isEqualIfNotWhy(const MEDCouplingField *other, double meshPrec, double valsPrec) const throw(INTERP_KERNEL::Exception)
3434       {
3435         std::string ret1;
3436         bool ret0=self->isEqualIfNotWhy(other,meshPrec,valsPrec,ret1);
3437         PyObject *ret=PyTuple_New(2);
3438         PyObject *ret0Py=ret0?Py_True:Py_False;
3439         Py_XINCREF(ret0Py);
3440         PyTuple_SetItem(ret,0,ret0Py);
3441         PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
3442         return ret;
3443       }
3444
3445       PyObject *buildSubMeshData(PyObject *li) const throw(INTERP_KERNEL::Exception)
3446       {
3447         DataArrayInt *ret1=0;
3448         MEDCouplingMesh *ret0=0;
3449         void *da=0;
3450         int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayInt, 0 |  0 );
3451         if (!SWIG_IsOK(res1))
3452           {
3453             int size;
3454             INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
3455             ret0=self->buildSubMeshData(tmp,tmp+size,ret1);
3456           }
3457         else
3458           {
3459             DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
3460             if(!da2)
3461               throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
3462             da2->checkAllocated();
3463             ret0=self->buildSubMeshData(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems(),ret1);
3464           }
3465         PyObject *res = PyList_New(2);
3466         PyList_SetItem(res,0,convertMesh(ret0, SWIG_POINTER_OWN | 0 ));
3467         PyList_SetItem(res,1,SWIG_NewPointerObj((void*)ret1,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,SWIG_POINTER_OWN | 0));
3468         return res;
3469       }
3470
3471       PyObject *buildSubMeshDataRange(int begin, int end, int step) const throw(INTERP_KERNEL::Exception)
3472       {
3473         DataArrayInt *ret1=0;
3474         int bb,ee,ss;
3475         MEDCouplingMesh *ret0=self->buildSubMeshDataRange(begin,end,step,bb,ee,ss,ret1);
3476         PyObject *res=PyTuple_New(2);
3477         PyTuple_SetItem(res,0,convertMesh(ret0, SWIG_POINTER_OWN | 0 ));
3478         if(ret1)
3479           PyTuple_SetItem(res,1,SWIG_NewPointerObj((void*)ret1,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,SWIG_POINTER_OWN | 0));
3480         else
3481           {
3482             PyObject *res1=PySlice_New(PyInt_FromLong(bb),PyInt_FromLong(ee),PyInt_FromLong(ss));
3483             PyTuple_SetItem(res,1,res1);
3484           }
3485         return res;
3486       }
3487
3488       DataArrayInt *computeTupleIdsToSelectFromCellIds(PyObject *cellIds) const
3489       {
3490         int sw,sz(-1);
3491         int v0; std::vector<int> v1;
3492         const int *cellIdsBg(convertObjToPossibleCpp1_Safe(cellIds,sw,sz,v0,v1));
3493         return self->computeTupleIdsToSelectFromCellIds(cellIdsBg,cellIdsBg+sz);
3494       }
3495
3496       void setGaussLocalizationOnCells(PyObject *li, const std::vector<double>& refCoo,
3497                                        const std::vector<double>& gsCoo, const std::vector<double>& wg) throw(INTERP_KERNEL::Exception)
3498       {
3499         void *da=0;
3500         int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayInt, 0 |  0 );
3501         if (!SWIG_IsOK(res1))
3502           {
3503             int size;
3504             INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
3505             self->setGaussLocalizationOnCells(tmp,((int *)tmp)+size,refCoo,gsCoo,wg);
3506           }
3507         else
3508           {
3509             DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
3510             if(!da2)
3511               throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
3512             da2->checkAllocated();
3513             self->setGaussLocalizationOnCells(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems(),refCoo,gsCoo,wg);
3514           }
3515       }
3516
3517       PyObject *getCellIdsHavingGaussLocalization(int locId) const throw(INTERP_KERNEL::Exception)
3518       {
3519         std::vector<int> tmp;
3520         self->getCellIdsHavingGaussLocalization(locId,tmp);
3521         DataArrayInt *ret=DataArrayInt::New();
3522         ret->alloc((int)tmp.size(),1);
3523         std::copy(tmp.begin(),tmp.end(),ret->getPointer());
3524         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
3525       }
3526       
3527       int getNumberOfTuplesExpectedRegardingCode(PyObject *code, PyObject *idsPerType) const throw(INTERP_KERNEL::Exception)
3528       {
3529         std::vector<int> inp0;
3530         convertPyToNewIntArr4(code,1,3,inp0);
3531         std::vector<const DataArrayInt *> inp1;
3532         convertFromPyObjVectorOfObj<const ParaMEDMEM::DataArrayInt *>(idsPerType,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,"DataArrayInt",inp1);
3533         return self->getNumberOfTuplesExpectedRegardingCode(inp0,inp1);
3534       }
3535     }
3536   };
3537   
3538   class MEDCouplingFieldTemplate : public ParaMEDMEM::MEDCouplingField
3539   {
3540   public:
3541     static MEDCouplingFieldTemplate *New(const MEDCouplingFieldDouble& f) throw(INTERP_KERNEL::Exception);
3542     static MEDCouplingFieldTemplate *New(TypeOfField type);
3543     std::string simpleRepr() const throw(INTERP_KERNEL::Exception);
3544     std::string advancedRepr() const throw(INTERP_KERNEL::Exception);
3545     %extend
3546        {
3547          MEDCouplingFieldTemplate(const MEDCouplingFieldDouble& f) throw(INTERP_KERNEL::Exception)
3548          {
3549            return MEDCouplingFieldTemplate::New(f);
3550          }
3551          
3552          MEDCouplingFieldTemplate(TypeOfField type) throw(INTERP_KERNEL::Exception)
3553          {
3554            return MEDCouplingFieldTemplate::New(type);
3555          }
3556          
3557          std::string __str__() const throw(INTERP_KERNEL::Exception)
3558          {
3559            return self->simpleRepr();
3560          }
3561          
3562          std::string __repr__() const throw(INTERP_KERNEL::Exception)
3563          {
3564            std::ostringstream oss;
3565            self->reprQuickOverview(oss);
3566            return oss.str();
3567          }
3568        }
3569   };
3570   
3571   class MEDCouplingFieldDouble : public ParaMEDMEM::MEDCouplingField
3572   {
3573   public:
3574     static MEDCouplingFieldDouble *New(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME);
3575     static MEDCouplingFieldDouble *New(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME);
3576     void setTimeUnit(const std::string& unit);
3577     std::string getTimeUnit() const;
3578     void synchronizeTimeWithSupport() throw(INTERP_KERNEL::Exception);
3579     void copyTinyAttrFrom(const MEDCouplingFieldDouble *other) throw(INTERP_KERNEL::Exception);
3580     void copyAllTinyAttrFrom(const MEDCouplingFieldDouble *other) throw(INTERP_KERNEL::Exception);
3581     std::string simpleRepr() const throw(INTERP_KERNEL::Exception);
3582     std::string advancedRepr() const throw(INTERP_KERNEL::Exception);
3583     std::string  writeVTK(const std::string& fileName, bool isBinary=true) const throw(INTERP_KERNEL::Exception);
3584     MEDCouplingFieldDouble *clone(bool recDeepCpy) const;
3585     MEDCouplingFieldDouble *cloneWithMesh(bool recDeepCpy) const;
3586     MEDCouplingFieldDouble *deepCpy() const;
3587     MEDCouplingFieldDouble *buildNewTimeReprFromThis(TypeOfTimeDiscretization td, bool deepCpy) const throw(INTERP_KERNEL::Exception);
3588     MEDCouplingFieldDouble *nodeToCellDiscretization() const throw(INTERP_KERNEL::Exception);
3589     MEDCouplingFieldDouble *cellToNodeDiscretization() const throw(INTERP_KERNEL::Exception);
3590     TypeOfTimeDiscretization getTimeDiscretization() const throw(INTERP_KERNEL::Exception);
3591     double getIJ(int tupleId, int compoId) const throw(INTERP_KERNEL::Exception);
3592     double getIJK(int cellId, int nodeIdInCell, int compoId) const throw(INTERP_KERNEL::Exception);
3593     void synchronizeTimeWithMesh() throw(INTERP_KERNEL::Exception);
3594     void setArray(DataArrayDouble *array) throw(INTERP_KERNEL::Exception);
3595     void setEndArray(DataArrayDouble *array) throw(INTERP_KERNEL::Exception);
3596     void setTime(double val, int iteration, int order) throw(INTERP_KERNEL::Exception);
3597     void setStartTime(double val, int iteration, int order) throw(INTERP_KERNEL::Exception);
3598     void setEndTime(double val, int iteration, int order) throw(INTERP_KERNEL::Exception);
3599     void applyLin(double a, double b, int compoId) throw(INTERP_KERNEL::Exception);
3600     void applyLin(double a, double b) throw(INTERP_KERNEL::Exception);
3601     int getNumberOfComponents() const throw(INTERP_KERNEL::Exception);
3602     int getNumberOfTuples() const throw(INTERP_KERNEL::Exception);
3603     int getNumberOfValues() const throw(INTERP_KERNEL::Exception);
3604     void setTimeTolerance(double val) throw(INTERP_KERNEL::Exception);
3605     double getTimeTolerance() const throw(INTERP_KERNEL::Exception);
3606     void setIteration(int it) throw(INTERP_KERNEL::Exception);
3607     void setEndIteration(int it) throw(INTERP_KERNEL::Exception);
3608     void setOrder(int order) throw(INTERP_KERNEL::Exception);
3609     void setEndOrder(int order) throw(INTERP_KERNEL::Exception);
3610     void setTimeValue(double val) throw(INTERP_KERNEL::Exception);
3611     void setEndTimeValue(double val) throw(INTERP_KERNEL::Exception);
3612     void changeUnderlyingMesh(const MEDCouplingMesh *other, int levOfCheck, double precOnMesh, double eps=1e-15) throw(INTERP_KERNEL::Exception);
3613     void substractInPlaceDM(const MEDCouplingFieldDouble *f, int levOfCheck, double precOnMesh, double eps=1e-15) throw(INTERP_KERNEL::Exception);
3614     bool mergeNodes(double eps, double epsOnVals=1e-15) throw(INTERP_KERNEL::Exception);
3615     bool mergeNodes2(double eps, double epsOnVals=1e-15) throw(INTERP_KERNEL::Exception);
3616     bool zipCoords(double epsOnVals=1e-15) throw(INTERP_KERNEL::Exception);
3617     bool zipConnectivity(int compType,double epsOnVals=1e-15) throw(INTERP_KERNEL::Exception);
3618     bool simplexize(int policy) throw(INTERP_KERNEL::Exception);
3619     MEDCouplingFieldDouble *doublyContractedProduct() const throw(INTERP_KERNEL::Exception);
3620     MEDCouplingFieldDouble *determinant() const throw(INTERP_KERNEL::Exception);
3621     MEDCouplingFieldDouble *eigenValues() const throw(INTERP_KERNEL::Exception);
3622     MEDCouplingFieldDouble *eigenVectors() const throw(INTERP_KERNEL::Exception);
3623     MEDCouplingFieldDouble *inverse() const throw(INTERP_KERNEL::Exception);
3624     MEDCouplingFieldDouble *trace() const throw(INTERP_KERNEL::Exception);
3625     MEDCouplingFieldDouble *deviator() const throw(INTERP_KERNEL::Exception);
3626     MEDCouplingFieldDouble *magnitude() const throw(INTERP_KERNEL::Exception);
3627     MEDCouplingFieldDouble *maxPerTuple() const throw(INTERP_KERNEL::Exception);
3628     void changeNbOfComponents(int newNbOfComp, double dftValue=0.) throw(INTERP_KERNEL::Exception);
3629     void sortPerTuple(bool asc) throw(INTERP_KERNEL::Exception);
3630     MEDCouplingFieldDouble &operator=(double value) throw(INTERP_KERNEL::Exception);
3631     void fillFromAnalytic(int nbOfComp, const std::string& func) throw(INTERP_KERNEL::Exception);
3632     void fillFromAnalytic2(int nbOfComp, const std::string& func) throw(INTERP_KERNEL::Exception);
3633     void fillFromAnalytic3(int nbOfComp, const std::vector<std::string>& varsOrder, const std::string& func) throw(INTERP_KERNEL::Exception);
3634     void applyFunc(int nbOfComp, const std::string& func) throw(INTERP_KERNEL::Exception);
3635     void applyFunc2(int nbOfComp, const std::string& func) throw(INTERP_KERNEL::Exception);
3636     void applyFunc3(int nbOfComp, const std::vector<std::string>& varsOrder, const std::string& func) throw(INTERP_KERNEL::Exception);
3637     void applyFunc(int nbOfComp, double val) throw(INTERP_KERNEL::Exception);
3638     void applyFunc(const std::string& func) throw(INTERP_KERNEL::Exception);
3639     void applyFuncFast32(const std::string& func) throw(INTERP_KERNEL::Exception);
3640     void applyFuncFast64(const std::string& func) throw(INTERP_KERNEL::Exception);
3641     double accumulate(int compId) const throw(INTERP_KERNEL::Exception);
3642     double getMaxValue() const throw(INTERP_KERNEL::Exception);
3643     double getMinValue() const throw(INTERP_KERNEL::Exception);
3644     double getAverageValue() const throw(INTERP_KERNEL::Exception);
3645     double norm2() const throw(INTERP_KERNEL::Exception);
3646     double normMax() const throw(INTERP_KERNEL::Exception);
3647     //do not put a default value to isWAbs because confusion in python with overloaded getWeightedAverageValue method
3648     double getWeightedAverageValue(int compId, bool isWAbs) const throw(INTERP_KERNEL::Exception);
3649     double integral(int compId, bool isWAbs) const throw(INTERP_KERNEL::Exception);
3650     double normL1(int compId) const throw(INTERP_KERNEL::Exception);
3651     double normL2(int compId) const throw(INTERP_KERNEL::Exception);
3652     DataArrayInt *getIdsInRange(double vmin, double vmax) const throw(INTERP_KERNEL::Exception);
3653     MEDCouplingFieldDouble *buildSubPartRange(int begin, int end, int step) const throw(INTERP_KERNEL::Exception);
3654     static MEDCouplingFieldDouble *MergeFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3655     static MEDCouplingFieldDouble *MeldFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3656     static MEDCouplingFieldDouble *DotFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3657     MEDCouplingFieldDouble *dot(const MEDCouplingFieldDouble& other) const throw(INTERP_KERNEL::Exception);
3658     static MEDCouplingFieldDouble *CrossProductFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3659     MEDCouplingFieldDouble *crossProduct(const MEDCouplingFieldDouble& other) const throw(INTERP_KERNEL::Exception);
3660     static MEDCouplingFieldDouble *MaxFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3661     MEDCouplingFieldDouble *max(const MEDCouplingFieldDouble& other) const throw(INTERP_KERNEL::Exception);
3662     static MEDCouplingFieldDouble *MinFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3663     static MEDCouplingFieldDouble *AddFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3664     static MEDCouplingFieldDouble *SubstractFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3665     static MEDCouplingFieldDouble *MultiplyFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3666     static MEDCouplingFieldDouble *DivideFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3667     MEDCouplingFieldDouble *min(const MEDCouplingFieldDouble& other) const throw(INTERP_KERNEL::Exception);
3668     MEDCouplingFieldDouble *negate() const throw(INTERP_KERNEL::Exception);
3669     %extend {
3670       MEDCouplingFieldDouble(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME)
3671       {
3672         return MEDCouplingFieldDouble::New(type,td);
3673       }
3674
3675       MEDCouplingFieldDouble(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME)
3676       {
3677         return MEDCouplingFieldDouble::New(ft,td);
3678       }
3679
3680       std::string __str__() const throw(INTERP_KERNEL::Exception)
3681       {
3682         return self->simpleRepr();
3683       }
3684
3685       std::string __repr__() const throw(INTERP_KERNEL::Exception)
3686       {
3687         std::ostringstream oss;
3688         self->reprQuickOverview(oss);
3689         return oss.str();
3690       }
3691
3692       DataArrayDouble *getArray() throw(INTERP_KERNEL::Exception)
3693       {
3694         DataArrayDouble *ret=self->getArray();
3695         if(ret)
3696           ret->incrRef();
3697         return ret;
3698       }
3699
3700       PyObject *getArrays() const throw(INTERP_KERNEL::Exception)
3701       {
3702         std::vector<DataArrayDouble *> arrs=self->getArrays();
3703         for(std::vector<DataArrayDouble *>::iterator it=arrs.begin();it!=arrs.end();it++)
3704           if(*it)
3705             (*it)->incrRef();
3706         int sz=arrs.size();
3707         PyObject *ret=PyTuple_New(sz);
3708         for(int i=0;i<sz;i++)
3709           {
3710             if(arrs[i])
3711               PyTuple_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(arrs[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
3712             else
3713               PyTuple_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, 0 | 0 ));
3714           }
3715         return ret;
3716       }
3717
3718       void setArrays(PyObject *ls) throw(INTERP_KERNEL::Exception)
3719       {
3720         std::vector<const DataArrayDouble *> tmp;
3721         convertFromPyObjVectorOfObj<const DataArrayDouble *>(ls,SWIGTYPE_p_ParaMEDMEM__DataArrayDouble,"DataArrayDouble",tmp);
3722         int sz=tmp.size();
3723         std::vector<DataArrayDouble *> arrs(sz);
3724         for(int i=0;i<sz;i++)
3725           arrs[i]=const_cast<DataArrayDouble *>(tmp[i]);
3726         self->setArrays(arrs);
3727       }
3728
3729       DataArrayDouble *getEndArray() throw(INTERP_KERNEL::Exception)
3730       {
3731         DataArrayDouble *ret=self->getEndArray();
3732         if(ret)
3733           ret->incrRef();
3734         return ret;
3735       }
3736
3737       PyObject *getValueOn(PyObject *sl) const throw(INTERP_KERNEL::Exception)
3738       {
3739         double val;
3740         DataArrayDouble *a;
3741         DataArrayDoubleTuple *aa;
3742         std::vector<double> bb;
3743         int sw;
3744         const MEDCouplingMesh *mesh=self->getMesh();
3745         if(!mesh)
3746           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingFieldDouble::getValueOn : no underlying mesh !");
3747         int spaceDim=mesh->getSpaceDimension();
3748         const char msg[]="Python wrap of MEDCouplingFieldDouble::getValueOn : ";
3749         const double *spaceLoc=convertObjToPossibleCpp5_Safe(sl,sw,val,a,aa,bb,msg,1,spaceDim,true);
3750         //
3751         int sz=self->getNumberOfComponents();
3752         INTERP_KERNEL::AutoPtr<double> res=new double[sz];
3753         self->getValueOn(spaceLoc,res);
3754         return convertDblArrToPyList(res,sz);
3755       }
3756
3757        PyObject *getValueOnPos(int i, int j, int k) const throw(INTERP_KERNEL::Exception)
3758        {
3759          int sz=self->getNumberOfComponents();
3760          INTERP_KERNEL::AutoPtr<double> res=new double[sz];
3761          self->getValueOnPos(i,j,k,res);
3762          return convertDblArrToPyList(res,sz);
3763        }
3764
3765       DataArrayDouble *getValueOnMulti(PyObject *locs) const throw(INTERP_KERNEL::Exception)
3766       {
3767         const MEDCouplingMesh *mesh(self->getMesh());
3768         if(!mesh)
3769           throw INTERP_KERNEL::Exception("Python wrap MEDCouplingFieldDouble::getValueOnMulti : lying on a null mesh !");
3770         //
3771         int sw,nbPts;
3772         double v0; ParaMEDMEM::DataArrayDouble *v1(0); ParaMEDMEM::DataArrayDoubleTuple *v2(0); std::vector<double> v3;
3773         const double *inp=convertObjToPossibleCpp5_Safe2(locs,sw,v0,v1,v2,v3,"wrap of MEDCouplingFieldDouble::getValueOnMulti",
3774                                                          mesh->getSpaceDimension(),true,nbPts);
3775         return self->getValueOnMulti(inp,nbPts);
3776       }
3777
3778       PyObject *getValueOn(PyObject *sl, double time) const throw(INTERP_KERNEL::Exception)
3779       {
3780         double val;
3781         DataArrayDouble *a;
3782         DataArrayDoubleTuple *aa;
3783         std::vector<double> bb;
3784         int sw;
3785         const MEDCouplingMesh *mesh=self->getMesh();
3786         if(!mesh)
3787           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingFieldDouble::getValueOn : no underlying mesh !");
3788         int spaceDim=mesh->getSpaceDimension();
3789         const char msg[]="Python wrap of MEDCouplingFieldDouble::getValueOn : ";
3790         const double *spaceLoc=convertObjToPossibleCpp5_Safe(sl,sw,val,a,aa,bb,msg,1,spaceDim,true);
3791         //
3792         //
3793         int sz=self->getNumberOfComponents();
3794         INTERP_KERNEL::AutoPtr<double> res=new double[sz];
3795         self->getValueOn(spaceLoc,time,res);
3796         return convertDblArrToPyList(res,sz);
3797       }
3798
3799       void setValues(PyObject *li, PyObject *nbOfTuples=0, PyObject *nbOfComp=0) throw(INTERP_KERNEL::Exception)
3800       {
3801         if(self->getArray()!=0)
3802           ParaMEDMEM_DataArrayDouble_setValues__SWIG_0(self->getArray(),li,nbOfTuples,nbOfComp);
3803         else
3804           {
3805             MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> arr=DataArrayDouble::New();
3806             ParaMEDMEM_DataArrayDouble_setValues__SWIG_0(arr,li,nbOfTuples,nbOfComp);
3807             self->setArray(arr);
3808           }
3809       }
3810       
3811       PyObject *getTime() throw(INTERP_KERNEL::Exception)
3812       {
3813         int tmp1,tmp2;
3814         double tmp0=self->getTime(tmp1,tmp2);
3815         PyObject *res = PyList_New(3);
3816         PyList_SetItem(res,0,SWIG_From_double(tmp0));
3817         PyList_SetItem(res,1,SWIG_From_int(tmp1));
3818         PyList_SetItem(res,2,SWIG_From_int(tmp2));
3819         return res;
3820       }
3821
3822       PyObject *getStartTime() throw(INTERP_KERNEL::Exception)
3823       {
3824         int tmp1,tmp2;
3825         double tmp0=self->getStartTime(tmp1,tmp2);
3826         PyObject *res = PyList_New(3);
3827         PyList_SetItem(res,0,SWIG_From_double(tmp0));
3828         PyList_SetItem(res,1,SWIG_From_int(tmp1));
3829         PyList_SetItem(res,2,SWIG_From_int(tmp2));
3830         return res;
3831       }
3832
3833       PyObject *getEndTime() throw(INTERP_KERNEL::Exception)
3834       {
3835         int tmp1,tmp2;
3836         double tmp0=self->getEndTime(tmp1,tmp2);
3837         PyObject *res = PyList_New(3);
3838         PyList_SetItem(res,0,SWIG_From_double(tmp0));
3839         PyList_SetItem(res,1,SWIG_From_int(tmp1));
3840         PyList_SetItem(res,2,SWIG_From_int(tmp2));
3841         return res;
3842       }
3843       PyObject *accumulate() const throw(INTERP_KERNEL::Exception)
3844       {
3845         int sz=self->getNumberOfComponents();
3846         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
3847         self->accumulate(tmp);
3848         return convertDblArrToPyList(tmp,sz);
3849       }
3850       PyObject *integral(bool isWAbs) const throw(INTERP_KERNEL::Exception)
3851       {
3852         int sz=self->getNumberOfComponents();
3853         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
3854         self->integral(isWAbs,tmp);
3855         return convertDblArrToPyList(tmp,sz);
3856       }
3857       PyObject *getWeightedAverageValue(bool isWAbs=true) const throw(INTERP_KERNEL::Exception)
3858       {
3859         int sz=self->getNumberOfComponents();
3860         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
3861         self->getWeightedAverageValue(tmp,isWAbs);
3862         return convertDblArrToPyList(tmp,sz);
3863       }
3864       PyObject *normL1() const throw(INTERP_KERNEL::Exception)
3865       {
3866         int sz=self->getNumberOfComponents();
3867         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
3868         self->normL1(tmp);
3869         return convertDblArrToPyList(tmp,sz);
3870       }
3871       PyObject *normL2() const throw(INTERP_KERNEL::Exception)
3872       {
3873         int sz=self->getNumberOfComponents();
3874         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
3875         self->normL2(tmp);
3876         return convertDblArrToPyList(tmp,sz);
3877       }
3878       void renumberCells(PyObject *li, bool check=true) throw(INTERP_KERNEL::Exception)
3879       {
3880         int szArr,sw,iTypppArr;
3881         std::vector<int> stdvecTyyppArr;
3882         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3883         self->renumberCells(tmp,check);
3884       }
3885       
3886       void renumberCellsWithoutMesh(PyObject *li, bool check=true) throw(INTERP_KERNEL::Exception)
3887       {
3888         int szArr,sw,iTypppArr;
3889         std::vector<int> stdvecTyyppArr;
3890         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3891         self->renumberCellsWithoutMesh(tmp,check);
3892       }
3893       
3894       void renumberNodes(PyObject *li, double eps=1e-15) throw(INTERP_KERNEL::Exception)
3895       {
3896         int szArr,sw,iTypppArr;
3897         std::vector<int> stdvecTyyppArr;
3898         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3899         self->renumberNodes(tmp,eps);
3900       }
3901
3902       void renumberNodesWithoutMesh(PyObject *li, int newNbOfNodes, double eps=1e-15) throw(INTERP_KERNEL::Exception)
3903       {
3904         int szArr,sw,iTypppArr;
3905         std::vector<int> stdvecTyyppArr;
3906         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3907         self->renumberNodesWithoutMesh(tmp,newNbOfNodes,eps);
3908       }
3909
3910       MEDCouplingFieldDouble *buildSubPart(PyObject *li) const throw(INTERP_KERNEL::Exception)
3911       {
3912         int sw;
3913         int singleVal;
3914         std::vector<int> multiVal;
3915         std::pair<int, std::pair<int,int> > slic;
3916         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
3917         const MEDCouplingMesh *mesh=self->getMesh();
3918         if(!mesh)
3919           throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::buildSubPart : field lies on a null mesh !");
3920         int nbc=mesh->getNumberOfCells();
3921         convertObjToPossibleCpp2(li,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
3922         switch(sw)
3923           {
3924           case 1:
3925             {
3926               if(singleVal>=nbc)
3927                 {
3928                   std::ostringstream oss;
3929                   oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
3930                   throw INTERP_KERNEL::Exception(oss.str().c_str());
3931                 }
3932               if(singleVal>=0)
3933                 return self->buildSubPart(&singleVal,&singleVal+1);
3934               else
3935                 {
3936                   if(nbc+singleVal>0)
3937                     {
3938                       int tmp=nbc+singleVal;
3939                       return self->buildSubPart(&tmp,&tmp+1);
3940                     }
3941                   else
3942                     {
3943                       std::ostringstream oss;
3944                       oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
3945                       throw INTERP_KERNEL::Exception(oss.str().c_str());
3946                     }
3947                 }
3948             }
3949           case 2:
3950             {
3951               return self->buildSubPart(&multiVal[0],&multiVal[0]+multiVal.size());
3952             }
3953           case 3:
3954             {
3955               return self->buildSubPartRange(slic.first,slic.second.first,slic.second.second);
3956             }
3957           case 4:
3958             {
3959               if(!daIntTyypp)
3960                 throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::buildSubPart : null instance has been given in input !");
3961               daIntTyypp->checkAllocated();
3962               return self->buildSubPart(daIntTyypp->begin(),daIntTyypp->end());
3963             }
3964           default:
3965             throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::buildSubPart : unrecognized type in input ! Possibilities are : int, list or tuple of int DataArrayInt instance !");
3966           }
3967       }
3968
3969       MEDCouplingFieldDouble *__getitem__(PyObject *li) const throw(INTERP_KERNEL::Exception)
3970       {
3971         const char msg[]="MEDCouplingFieldDouble::__getitem__ : invalid call  Available API are : \n-myField[dataArrayInt]\n-myField[slice]\n-myField[pythonListOfCellIds]\n-myField[integer]\n-myField[dataArrayInt,1]\n-myField[slice,1]\n-myField[pythonListOfCellIds,1]\n-myField[integer,1]\n";
3972         if(PyTuple_Check(li))
3973           {
3974             Py_ssize_t sz=PyTuple_Size(li);
3975             if(sz!=2)
3976               throw INTERP_KERNEL::Exception(msg);
3977             PyObject *elt0=PyTuple_GetItem(li,0),*elt1=PyTuple_GetItem(li,1);
3978             int sw;
3979             int singleVal;
3980             std::vector<int> multiVal;
3981             std::pair<int, std::pair<int,int> > slic;
3982             ParaMEDMEM::DataArrayInt *daIntTyypp=0;
3983             if(!self->getArray())
3984               throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::__getitem__ : no array set on field to deduce number of components !");
3985             try
3986               { convertObjToPossibleCpp2(elt1,self->getArray()->getNumberOfComponents(),sw,singleVal,multiVal,slic,daIntTyypp); }
3987             catch(INTERP_KERNEL::Exception& e)
3988               { std::ostringstream oss; oss << "MEDCouplingFieldDouble::__getitem__ : invalid type in 2nd parameter (compo) !" << e.what(); throw INTERP_KERNEL::Exception(oss.str().c_str()); }
3989             MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret0=ParaMEDMEM_MEDCouplingFieldDouble_buildSubPart(self,elt0);
3990             DataArrayDouble *ret0Arr=ret0->getArray();
3991             if(!ret0Arr)
3992               throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::__getitem__ : no array exists to apply restriction on component on it !");
3993             switch(sw)
3994               {
3995               case 1:
3996                 {
3997                   std::vector<int> v2(1,singleVal);
3998                   MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aarr(ret0Arr->keepSelectedComponents(v2));
3999                   ret0->setArray(aarr);
4000                   return ret0.retn();
4001                 }
4002               case 2:
4003                 {
4004                   MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aarr(ret0Arr->keepSelectedComponents(multiVal));
4005                   ret0->setArray(aarr);
4006                   return ret0.retn();
4007                 }
4008               case 3:
4009                 {
4010                   int nbOfComp=DataArray::GetNumberOfItemGivenBESRelative(slic.first,slic.second.first,slic.second.second,"MEDCouplingFieldDouble::__getitem__ : invalid range in 2nd parameter (components) !");
4011                   std::vector<int> v2(nbOfComp);
4012                   for(int i=0;i<nbOfComp;i++)
4013                     v2[i]=slic.first+i*slic.second.second;
4014                   MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aarr(ret0Arr->keepSelectedComponents(v2));
4015                   ret0->setArray(aarr);
4016                   return ret0.retn();
4017                 }
4018               default:
4019                 throw INTERP_KERNEL::Exception(msg);
4020               }
4021             
4022           }
4023         else
4024           return ParaMEDMEM_MEDCouplingFieldDouble_buildSubPart(self,li);
4025       }
4026
4027       PyObject *getMaxValue2() const throw(INTERP_KERNEL::Exception)
4028       {
4029         DataArrayInt *tmp;
4030         double r1=self->getMaxValue2(tmp);
4031         PyObject *ret=PyTuple_New(2);
4032         PyTuple_SetItem(ret,0,PyFloat_FromDouble(r1));
4033         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
4034         return ret;
4035       }
4036       
4037       PyObject *getMinValue2() const throw(INTERP_KERNEL::Exception)
4038       {
4039         DataArrayInt *tmp;
4040         double r1=self->getMinValue2(tmp);
4041         PyObject *ret=PyTuple_New(2);
4042         PyTuple_SetItem(ret,0,PyFloat_FromDouble(r1));
4043         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
4044         return ret;
4045       }
4046       
4047       MEDCouplingFieldDouble *keepSelectedComponents(PyObject *li) const throw(INTERP_KERNEL::Exception)
4048       {
4049         std::vector<int> tmp;
4050         convertPyToNewIntArr3(li,tmp);
4051         return self->keepSelectedComponents(tmp);
4052       }
4053
4054       void setSelectedComponents(const MEDCouplingFieldDouble *f, PyObject *li) throw(INTERP_KERNEL::Exception)
4055       {
4056         std::vector<int> tmp;
4057         convertPyToNewIntArr3(li,tmp);
4058         self->setSelectedComponents(f,tmp);
4059       }
4060
4061       MEDCouplingFieldDouble *extractSlice3D(PyObject *origin, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
4062       {
4063         double val,val2;
4064         DataArrayDouble *a,*a2;
4065         DataArrayDoubleTuple *aa,*aa2;
4066         std::vector<double> bb,bb2;
4067         int sw;
4068         int spaceDim=3;
4069         const char msg[]="Python wrap of MEDCouplingFieldDouble::extractSlice3D : 1st paramater for origin.";
4070         const char msg2[]="Python wrap of MEDCouplingFieldDouble::extractSlice3D : 2nd paramater for vector.";
4071         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
4072         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
4073         //
4074         return self->extractSlice3D(orig,vect,eps);
4075       }
4076
4077       MEDCouplingFieldDouble *__add__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4078       {
4079         return ParaMEDMEM_MEDCouplingFieldDouble___add__Impl(self,obj);
4080       }
4081
4082       MEDCouplingFieldDouble *__radd__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4083       {
4084         return ParaMEDMEM_MEDCouplingFieldDouble___radd__Impl(self,obj);
4085       }
4086
4087       MEDCouplingFieldDouble *__sub__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4088       {
4089         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__sub__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4090         const char msg2[]="in MEDCouplingFieldDouble.__sub__ : self field has no Array of values set !";
4091         void *argp;
4092         //
4093         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
4094           {
4095             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
4096             if(other)
4097               return (*self)-(*other);
4098             else
4099               throw INTERP_KERNEL::Exception(msg);
4100           }
4101         //
4102         double val;
4103         DataArrayDouble *a;
4104         DataArrayDoubleTuple *aa;
4105         std::vector<double> bb;
4106         int sw;
4107         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
4108         switch(sw)
4109           {
4110           case 1:
4111             {
4112               if(!self->getArray())
4113                 throw INTERP_KERNEL::Exception(msg2);
4114               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=self->getArray()->deepCpy();
4115               ret->applyLin(1.,-val);
4116               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4117               ret2->setArray(ret);
4118               return ret2.retn();
4119             }
4120           case 2:
4121             {
4122               if(!self->getArray())
4123                 throw INTERP_KERNEL::Exception(msg2);
4124               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Substract(self->getArray(),a);
4125               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4126               ret2->setArray(ret);
4127               return ret2.retn();
4128             }
4129           case 3:
4130             {
4131               if(!self->getArray())
4132                 throw INTERP_KERNEL::Exception(msg2);
4133               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4134               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Substract(self->getArray(),aaa);
4135               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4136               ret2->setArray(ret);
4137               return ret2.retn();
4138             }
4139           case 4:
4140             {
4141               if(!self->getArray())
4142                 throw INTERP_KERNEL::Exception(msg2);
4143               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4144               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Substract(self->getArray(),aaa);
4145               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4146               ret2->setArray(ret);
4147               return ret2.retn();
4148             }
4149           default:
4150             { throw INTERP_KERNEL::Exception(msg); }
4151           }
4152       }
4153
4154       MEDCouplingFieldDouble *__rsub__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4155       {
4156         return ParaMEDMEM_MEDCouplingFieldDouble___rsub__Impl(self,obj);
4157       }
4158
4159       MEDCouplingFieldDouble *__mul__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4160       {
4161         return ParaMEDMEM_MEDCouplingFieldDouble___mul__Impl(self,obj);
4162       }
4163
4164       MEDCouplingFieldDouble *__rmul__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4165       {
4166         return ParaMEDMEM_MEDCouplingFieldDouble___rmul__Impl(self,obj);
4167       }
4168
4169       MEDCouplingFieldDouble *__div__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4170       {
4171         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__div__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4172         const char msg2[]="in MEDCouplingFieldDouble.__div__ : self field has no Array of values set !";
4173         void *argp;
4174         //
4175         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
4176           {
4177             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
4178             if(other)
4179               return (*self)/(*other);
4180             else
4181               throw INTERP_KERNEL::Exception(msg);
4182           }
4183         //
4184         double val;
4185         DataArrayDouble *a;
4186         DataArrayDoubleTuple *aa;
4187         std::vector<double> bb;
4188         int sw;
4189         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
4190         switch(sw)
4191           {
4192           case 1:
4193             {
4194               if(val==0.)
4195                 throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble.__div__ : trying to divide by zero !");
4196               if(!self->getArray())
4197                 throw INTERP_KERNEL::Exception(msg2);
4198               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=self->getArray()->deepCpy();
4199               ret->applyLin(1./val,0);
4200               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4201               ret2->setArray(ret);
4202               return ret2.retn();
4203             }
4204           case 2:
4205             {
4206               if(!self->getArray())
4207                 throw INTERP_KERNEL::Exception(msg2);
4208               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Divide(self->getArray(),a);
4209               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4210               ret2->setArray(ret);
4211               return ret2.retn();
4212             }
4213           case 3:
4214             {
4215               if(!self->getArray())
4216                 throw INTERP_KERNEL::Exception(msg2);
4217               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4218               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Divide(self->getArray(),aaa);
4219               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4220               ret2->setArray(ret);
4221               return ret2.retn();
4222             }
4223           case 4:
4224             {
4225               if(!self->getArray())
4226                 throw INTERP_KERNEL::Exception(msg2);
4227               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4228               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Divide(self->getArray(),aaa);
4229               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4230               ret2->setArray(ret);
4231               return ret2.retn();
4232             }
4233           default:
4234             { throw INTERP_KERNEL::Exception(msg); }
4235           }
4236       }
4237
4238       MEDCouplingFieldDouble *__rdiv__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4239       {
4240         return ParaMEDMEM_MEDCouplingFieldDouble___rdiv__Impl(self,obj);
4241       }
4242
4243       MEDCouplingFieldDouble *__pow__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4244       {
4245         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__pow__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4246         const char msg2[]="in MEDCouplingFieldDouble.__pow__ : self field has no Array of values set !";
4247         void *argp;
4248         //
4249         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
4250           {
4251             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
4252             if(other)
4253               return (*self)^(*other);
4254             else
4255               throw INTERP_KERNEL::Exception(msg);
4256           }
4257         //
4258         double val;
4259         DataArrayDouble *a;
4260         DataArrayDoubleTuple *aa;
4261         std::vector<double> bb;
4262         int sw;
4263         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
4264         switch(sw)
4265           {
4266           case 1:
4267             {
4268               if(!self->getArray())
4269                 throw INTERP_KERNEL::Exception(msg2);
4270               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=self->getArray()->deepCpy();
4271               ret->applyPow(val);
4272               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4273               ret2->setArray(ret);
4274               return ret2.retn();
4275             }
4276           case 2:
4277             {
4278               if(!self->getArray())
4279                 throw INTERP_KERNEL::Exception(msg2);
4280               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Pow(self->getArray(),a);
4281               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4282               ret2->setArray(ret);
4283               return ret2.retn();
4284             }
4285           case 3:
4286             {
4287               if(!self->getArray())
4288                 throw INTERP_KERNEL::Exception(msg2);
4289               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4290               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Pow(self->getArray(),aaa);
4291               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4292               ret2->setArray(ret);
4293               return ret2.retn();
4294             }
4295           case 4:
4296             {
4297               if(!self->getArray())
4298                 throw INTERP_KERNEL::Exception(msg2);
4299               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4300               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Pow(self->getArray(),aaa);
4301               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4302               ret2->setArray(ret);
4303               return ret2.retn();
4304             }
4305           default:
4306             { throw INTERP_KERNEL::Exception(msg); }
4307           }
4308       }
4309
4310       MEDCouplingFieldDouble *__neg__() const throw(INTERP_KERNEL::Exception)
4311       {
4312         return self->negate();
4313       }
4314
4315       PyObject *___iadd___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
4316       {
4317         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__iadd__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4318         const char msg2[]="in MEDCouplingFieldDouble.__iadd__ : self field has no Array of values set !";
4319         void *argp;
4320         //
4321         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
4322           {
4323             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
4324             if(other)
4325               {
4326                 *self+=*other;
4327                 Py_XINCREF(trueSelf);
4328                 return trueSelf;
4329               }
4330             else
4331               throw INTERP_KERNEL::Exception(msg);
4332           }
4333         //
4334         double val;
4335         DataArrayDouble *a;
4336         DataArrayDoubleTuple *aa;
4337         std::vector<double> bb;
4338         int sw;
4339         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
4340         switch(sw)
4341           {
4342           case 1:
4343             {
4344               if(!self->getArray())
4345                 throw INTERP_KERNEL::Exception(msg2);
4346               self->getArray()->applyLin(1.,val);
4347               Py_XINCREF(trueSelf);
4348               return trueSelf;
4349             }
4350           case 2:
4351             {
4352               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4353               ret2->setArray(a);
4354               *self+=*ret2;
4355               Py_XINCREF(trueSelf);
4356               return trueSelf;
4357             }
4358           case 3:
4359             {
4360               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4361               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4362               ret2->setArray(aaa);
4363               *self+=*ret2;
4364               Py_XINCREF(trueSelf);
4365               return trueSelf;
4366             }
4367           case 4:
4368             {
4369               if(!self->getArray())
4370                 throw INTERP_KERNEL::Exception(msg2);
4371               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4372               self->getArray()->addEqual(aaa);
4373               Py_XINCREF(trueSelf);
4374               return trueSelf;
4375             }
4376           default:
4377             { throw INTERP_KERNEL::Exception(msg); }
4378           }
4379       }
4380
4381       PyObject *___isub___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
4382       {
4383         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__isub__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4384         const char msg2[]="in MEDCouplingFieldDouble.__isub__ : self field has no Array of values set !";
4385         void *argp;
4386         //
4387         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
4388           {
4389             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
4390             if(other)
4391               {
4392                 *self-=*other;
4393                 Py_XINCREF(trueSelf);
4394                 return trueSelf;
4395               }
4396             else
4397               throw INTERP_KERNEL::Exception(msg);
4398           }
4399         //
4400         double val;
4401         DataArrayDouble *a;
4402         DataArrayDoubleTuple *aa;
4403         std::vector<double> bb;
4404         int sw;
4405         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
4406         switch(sw)
4407           {
4408           case 1:
4409             {
4410               if(!self->getArray())
4411                 throw INTERP_KERNEL::Exception(msg2);
4412               self->getArray()->applyLin(1.,-val);
4413               Py_XINCREF(trueSelf);
4414               return trueSelf;
4415             }
4416           case 2:
4417             {
4418               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4419               ret2->setArray(a);
4420               *self-=*ret2;
4421               Py_XINCREF(trueSelf);
4422               return trueSelf;
4423             }
4424           case 3:
4425             {
4426               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4427               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4428               ret2->setArray(aaa);
4429               *self-=*ret2;
4430               Py_XINCREF(trueSelf);
4431               return trueSelf;
4432             }
4433           case 4:
4434             {
4435               if(!self->getArray())
4436                 throw INTERP_KERNEL::Exception(msg2);
4437               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4438               self->getArray()->substractEqual(aaa);
4439               Py_XINCREF(trueSelf);
4440               return trueSelf;
4441             }
4442           default:
4443             { throw INTERP_KERNEL::Exception(msg); }
4444           }
4445       }
4446
4447       PyObject *___imul___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
4448       {
4449         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__imul__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4450         const char msg2[]="in MEDCouplingFieldDouble.__imul__ : self field has no Array of values set !";
4451         void *argp;
4452         //
4453         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
4454           {
4455             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
4456             if(other)
4457               {
4458                 *self*=*other;
4459                 Py_XINCREF(trueSelf);
4460                 return trueSelf;
4461               }
4462             else
4463               throw INTERP_KERNEL::Exception(msg);
4464           }
4465         //
4466         double val;
4467         DataArrayDouble *a;
4468         DataArrayDoubleTuple *aa;
4469         std::vector<double> bb;
4470         int sw;
4471         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
4472         switch(sw)
4473           {
4474           case 1:
4475             {
4476               if(!self->getArray())
4477                 throw INTERP_KERNEL::Exception(msg2);
4478               self->getArray()->applyLin(val,0);
4479               Py_XINCREF(trueSelf);
4480               return trueSelf;
4481             }
4482           case 2:
4483             {
4484               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4485               ret2->setArray(a);
4486               *self*=*ret2;
4487               Py_XINCREF(trueSelf);
4488               return trueSelf;
4489             }
4490           case 3:
4491             {
4492               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4493               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4494               ret2->setArray(aaa);
4495               *self*=*ret2;
4496               Py_XINCREF(trueSelf);
4497               return trueSelf;
4498             }
4499           case 4:
4500             {
4501               if(!self->getArray())
4502                 throw INTERP_KERNEL::Exception(msg2);
4503               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4504               self->getArray()->multiplyEqual(aaa);
4505               Py_XINCREF(trueSelf);
4506               return trueSelf;
4507             }
4508           default:
4509             { throw INTERP_KERNEL::Exception(msg); }
4510           }
4511       }
4512
4513       PyObject *___idiv___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
4514       {
4515         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__idiv__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4516         const char msg2[]="in MEDCouplingFieldDouble.__idiv__ : self field has no Array of values set !";
4517         void *argp;
4518         //
4519         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
4520           {
4521             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
4522             if(other)
4523               {
4524                 *self/=*other;
4525                 Py_XINCREF(trueSelf);
4526                 return trueSelf;
4527               }
4528             else
4529               throw INTERP_KERNEL::Exception(msg);
4530           }
4531         //
4532         double val;
4533         DataArrayDouble *a;
4534         DataArrayDoubleTuple *aa;
4535         std::vector<double> bb;
4536         int sw;
4537         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
4538         switch(sw)
4539           {
4540           case 1:
4541             {
4542               if(val==0.)
4543                 throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble.__idiv__ : trying to divide by zero !");
4544               if(!self->getArray())
4545                 throw INTERP_KERNEL::Exception(msg2);
4546               self->getArray()->applyLin(1./val,0);
4547               Py_XINCREF(trueSelf);
4548               return trueSelf;
4549             }
4550           case 2:
4551             {
4552               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4553               ret2->setArray(a);
4554               *self/=*ret2;
4555               Py_XINCREF(trueSelf);
4556               return trueSelf;
4557             }
4558           case 3:
4559             {
4560               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4561               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4562               ret2->setArray(aaa);
4563               *self/=*ret2;
4564               Py_XINCREF(trueSelf);
4565               return trueSelf;
4566             }
4567           case 4:
4568             {
4569               if(!self->getArray())
4570                 throw INTERP_KERNEL::Exception(msg2);
4571               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4572               self->getArray()->divideEqual(aaa);
4573               Py_XINCREF(trueSelf);
4574               return trueSelf;
4575             }
4576           default:
4577             { throw INTERP_KERNEL::Exception(msg); }
4578           }
4579       }
4580
4581       PyObject *___ipow___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
4582       {
4583         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__ipow__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4584         const char msg2[]="in MEDCouplingFieldDouble.__ipow__ : self field has no Array of values set !";
4585         void *argp;
4586         //
4587         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
4588           {
4589             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
4590             if(other)
4591               {
4592                 *self^=*other;
4593                 Py_XINCREF(trueSelf);
4594                 return trueSelf;
4595               }
4596             else
4597               throw INTERP_KERNEL::Exception(msg);
4598           }
4599         //
4600         double val;
4601         DataArrayDouble *a;
4602         DataArrayDoubleTuple *aa;
4603         std::vector<double> bb;
4604         int sw;
4605         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
4606         switch(sw)
4607           {
4608           case 1:
4609             {
4610               if(!self->getArray())
4611                 throw INTERP_KERNEL::Exception(msg2);
4612               self->getArray()->applyPow(val);
4613               Py_XINCREF(trueSelf);
4614               return trueSelf;
4615             }
4616           case 2:
4617             {
4618               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4619               ret2->setArray(a);
4620               *self^=*ret2;
4621               Py_XINCREF(trueSelf);
4622               return trueSelf;
4623             }
4624           case 3:
4625             {
4626               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4627               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4628               ret2->setArray(aaa);
4629               *self^=*ret2;
4630               Py_XINCREF(trueSelf);
4631               return trueSelf;
4632             }
4633           case 4:
4634             {
4635               if(!self->getArray())
4636                 throw INTERP_KERNEL::Exception(msg2);
4637               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4638               self->getArray()->powEqual(aaa);
4639               Py_XINCREF(trueSelf);
4640               return trueSelf;
4641             }
4642           default:
4643             { throw INTERP_KERNEL::Exception(msg); }
4644           }
4645       }
4646
4647       static MEDCouplingFieldDouble *MergeFields(PyObject *li) throw(INTERP_KERNEL::Exception)
4648       {
4649         std::vector<const MEDCouplingFieldDouble *> tmp;
4650         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4651         return MEDCouplingFieldDouble::MergeFields(tmp);
4652       }
4653
4654       static std::string WriteVTK(const char *fileName, PyObject *li, bool isBinary=true) throw(INTERP_KERNEL::Exception)
4655       {
4656         std::vector<const MEDCouplingFieldDouble *> tmp;
4657         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4658         return MEDCouplingFieldDouble::WriteVTK(fileName,tmp,isBinary);
4659       }
4660     }
4661   };
4662
4663   class MEDCouplingMultiFields : public RefCountObject, public TimeLabel
4664   {
4665   public:
4666     int getNumberOfFields() const;
4667     MEDCouplingMultiFields *deepCpy() const;
4668     virtual std::string simpleRepr() const throw(INTERP_KERNEL::Exception);
4669     virtual std::string advancedRepr() const throw(INTERP_KERNEL::Exception);
4670     virtual bool isEqual(const MEDCouplingMultiFields *other, double meshPrec, double valsPrec) const;
4671     virtual bool isEqualWithoutConsideringStr(const MEDCouplingMultiFields *other, double meshPrec, double valsPrec) const;
4672     virtual void checkCoherency() const throw(INTERP_KERNEL::Exception);
4673     %extend
4674        {
4675          std::string __str__() const throw(INTERP_KERNEL::Exception)
4676          {
4677            return self->simpleRepr();
4678          }
4679          static MEDCouplingMultiFields *New(PyObject *li) throw(INTERP_KERNEL::Exception)
4680          {
4681            std::vector<const ParaMEDMEM::MEDCouplingFieldDouble *> tmp;
4682            convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4683            int sz=tmp.size();
4684            std::vector<MEDCouplingFieldDouble *> fs(sz);
4685            for(int i=0;i<sz;i++)
4686              fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
4687            return MEDCouplingMultiFields::New(fs);
4688          }
4689          MEDCouplingMultiFields(PyObject *li) throw(INTERP_KERNEL::Exception)
4690          {
4691            std::vector<const ParaMEDMEM::MEDCouplingFieldDouble *> tmp;
4692            convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4693            int sz=tmp.size();
4694            std::vector<MEDCouplingFieldDouble *> fs(sz);
4695            for(int i=0;i<sz;i++)
4696              fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
4697            return MEDCouplingMultiFields::New(fs);
4698          }
4699          PyObject *getFields() const
4700          {
4701            std::vector<const MEDCouplingFieldDouble *> fields=self->getFields();
4702            int sz=fields.size();
4703            PyObject *res = PyList_New(sz);
4704            for(int i=0;i<sz;i++)
4705              {
4706                if(fields[i])
4707                  {
4708                    fields[i]->incrRef();
4709                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(fields[i]),SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble, SWIG_POINTER_OWN | 0 ));
4710                  }
4711                else
4712                  {
4713                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble, 0 ));
4714                  }
4715              }
4716            return res;
4717          }
4718          PyObject *getFieldAtPos(int id) const throw(INTERP_KERNEL::Exception)
4719          {
4720            const MEDCouplingFieldDouble *ret=self->getFieldAtPos(id);
4721            if(ret)
4722              {
4723                ret->incrRef();
4724                return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble, SWIG_POINTER_OWN | 0 );
4725              }
4726            else
4727              return SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble, 0 );
4728          }
4729          PyObject *getMeshes() const throw(INTERP_KERNEL::Exception)
4730          {
4731            std::vector<MEDCouplingMesh *> ms=self->getMeshes();
4732            int sz=ms.size();
4733            PyObject *res = PyList_New(sz);
4734            for(int i=0;i<sz;i++)
4735              {
4736                if(ms[i])
4737                  {
4738                    ms[i]->incrRef();
4739                    PyList_SetItem(res,i,convertMesh(ms[i], SWIG_POINTER_OWN | 0 ));
4740                  }
4741                else
4742                  {
4743                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, 0 ));
4744                  }
4745              }
4746            return res;
4747          }
4748          PyObject *getDifferentMeshes() const throw(INTERP_KERNEL::Exception)
4749          {
4750            std::vector<int> refs;
4751            std::vector<MEDCouplingMesh *> ms=self->getDifferentMeshes(refs);
4752            int sz=ms.size();
4753            PyObject *res = PyList_New(sz);
4754            for(int i=0;i<sz;i++)
4755              {
4756                if(ms[i])
4757                  {
4758                    ms[i]->incrRef();
4759                    PyList_SetItem(res,i,convertMesh(ms[i], SWIG_POINTER_OWN | 0 ));
4760                  }
4761                else
4762                  {
4763                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, 0 ));
4764                  }
4765              }
4766            //
4767            PyObject *ret=PyTuple_New(2);
4768            PyTuple_SetItem(ret,0,res);
4769            PyTuple_SetItem(ret,1,convertIntArrToPyList2(refs));
4770            return ret;
4771          }
4772          PyObject *getArrays() const throw(INTERP_KERNEL::Exception)
4773          {
4774            std::vector<DataArrayDouble *> ms=self->getArrays();
4775            int sz=ms.size();
4776            PyObject *res = PyList_New(sz);
4777            for(int i=0;i<sz;i++)
4778              {
4779                if(ms[i])
4780                  {
4781                    ms[i]->incrRef();
4782                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(ms[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
4783                  }
4784                else
4785                  {
4786                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, 0 ));
4787                  }
4788              }
4789            return res;
4790          }
4791          PyObject *getDifferentArrays() const throw(INTERP_KERNEL::Exception)
4792          {
4793            std::vector< std::vector<int> > refs;
4794            std::vector<DataArrayDouble *> ms=self->getDifferentArrays(refs);
4795            int sz=ms.size();
4796            PyObject *res = PyList_New(sz);
4797            PyObject *res2 = PyList_New(sz);
4798            for(int i=0;i<sz;i++)
4799              {
4800                if(ms[i])
4801                  {
4802                    ms[i]->incrRef();
4803                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(ms[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
4804                  }
4805                else
4806                  {
4807                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, 0 ));
4808                  }
4809                PyList_SetItem(res2,i,convertIntArrToPyList2(refs[i]));
4810              }
4811            //
4812            PyObject *ret=PyTuple_New(2);
4813            PyTuple_SetItem(ret,0,res);
4814            PyTuple_SetItem(ret,1,res2);
4815            return ret;
4816          }
4817        }
4818   };
4819   
4820   class MEDCouplingDefinitionTime
4821   {
4822   public:
4823     MEDCouplingDefinitionTime();
4824     void assign(const MEDCouplingDefinitionTime& other);
4825     bool isEqual(const MEDCouplingDefinitionTime& other) const;
4826     double getTimeResolution() const;
4827     std::vector<double> getHotSpotsTime() const;
4828     %extend
4829       {
4830         std::string __str__() const throw(INTERP_KERNEL::Exception)
4831           {
4832             std::ostringstream oss;
4833             self->appendRepr(oss);
4834             return oss.str();
4835           }
4836
4837         PyObject *getIdsOnTimeRight(double tm) const throw(INTERP_KERNEL::Exception)
4838         {
4839           int meshId,arrId,arrIdInField,fieldId;
4840           self->getIdsOnTimeRight(tm,meshId,arrId,arrIdInField,fieldId);
4841           PyObject *res=PyList_New(4);
4842           PyList_SetItem(res,0,PyInt_FromLong(meshId));
4843           PyList_SetItem(res,1,PyInt_FromLong(arrId));
4844           PyList_SetItem(res,2,PyInt_FromLong(arrIdInField));
4845           PyList_SetItem(res,3,PyInt_FromLong(fieldId));
4846           return res;
4847         }
4848
4849         PyObject *getIdsOnTimeLeft(double tm) const throw(INTERP_KERNEL::Exception)
4850         {
4851           int meshId,arrId,arrIdInField,fieldId;
4852           self->getIdsOnTimeLeft(tm,meshId,arrId,arrIdInField,fieldId);
4853           PyObject *res=PyList_New(4);
4854           PyList_SetItem(res,0,PyInt_FromLong(meshId));
4855           PyList_SetItem(res,1,PyInt_FromLong(arrId));
4856           PyList_SetItem(res,2,PyInt_FromLong(arrIdInField));
4857           PyList_SetItem(res,3,PyInt_FromLong(fieldId));
4858           return res;
4859         }
4860       }
4861   };
4862
4863   class MEDCouplingFieldOverTime : public MEDCouplingMultiFields
4864   {
4865   public:
4866     double getTimeTolerance() const throw(INTERP_KERNEL::Exception);
4867     MEDCouplingDefinitionTime getDefinitionTimeZone() const;
4868     
4869     %extend
4870       {
4871         MEDCouplingFieldOverTime(PyObject *li) throw(INTERP_KERNEL::Exception)
4872           {
4873             std::vector<const ParaMEDMEM::MEDCouplingFieldDouble *> tmp;
4874             convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4875             int sz=tmp.size();
4876             std::vector<MEDCouplingFieldDouble *> fs(sz);
4877             for(int i=0;i<sz;i++)
4878               fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
4879             return MEDCouplingFieldOverTime::New(fs);
4880           }
4881         std::string __str__() const throw(INTERP_KERNEL::Exception)
4882           {
4883             return self->simpleRepr();
4884           }
4885         static MEDCouplingFieldOverTime *New(PyObject *li) throw(INTERP_KERNEL::Exception)
4886         {
4887           std::vector<const ParaMEDMEM::MEDCouplingFieldDouble *> tmp;
4888           convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4889            int sz=tmp.size();
4890            std::vector<MEDCouplingFieldDouble *> fs(sz);
4891            for(int i=0;i<sz;i++)
4892              fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
4893            return MEDCouplingFieldOverTime::New(fs);
4894          }
4895       }
4896   };
4897
4898   class MEDCouplingCartesianAMRMesh;
4899   
4900   class MEDCouplingCartesianAMRPatchGen : public RefCountObject
4901   {
4902   public:
4903     int getNumberOfCellsRecursiveWithOverlap() const throw(INTERP_KERNEL::Exception);
4904     int getNumberOfCellsRecursiveWithoutOverlap() const throw(INTERP_KERNEL::Exception);
4905     int getMaxNumberOfLevelsRelativeToThis() const throw(INTERP_KERNEL::Exception);
4906     %extend
4907     {
4908       MEDCouplingCartesianAMRMeshGen *getMesh() const throw(INTERP_KERNEL::Exception)
4909       {
4910         MEDCouplingCartesianAMRMeshGen *ret(const_cast<MEDCouplingCartesianAMRMeshGen *>(self->getMesh()));
4911         if(ret)
4912           ret->incrRef();
4913         return ret;
4914       }
4915     }
4916   };
4917
4918   class MEDCouplingCartesianAMRPatch : public MEDCouplingCartesianAMRPatchGen
4919   {
4920   public:
4921     int getNumberOfOverlapedCellsForFather() const throw(INTERP_KERNEL::Exception);
4922     bool isInMyNeighborhood(const MEDCouplingCartesianAMRPatch *other, int ghostLev) const throw(INTERP_KERNEL::Exception);
4923     std::vector<int> computeCellGridSt() const throw(INTERP_KERNEL::Exception);
4924     %extend
4925     {
4926       PyObject *getBLTRRange() const throw(INTERP_KERNEL::Exception)
4927       {
4928         const std::vector< std::pair<int,int> >& ret(self->getBLTRRange());
4929         return convertFromVectorPairInt(ret);
4930       }
4931
4932       PyObject *getBLTRRangeRelativeToGF() const throw(INTERP_KERNEL::Exception)
4933       {
4934         std::vector< std::pair<int,int> > ret(self->getBLTRRangeRelativeToGF());
4935         return convertFromVectorPairInt(ret);
4936       }
4937
4938       void addPatch(PyObject *bottomLeftTopRight, const std::vector<int>& factors) throw(INTERP_KERNEL::Exception)
4939       {
4940         std::vector< std::pair<int,int> > inp;
4941         convertPyToVectorPairInt(bottomLeftTopRight,inp);
4942         self->addPatch(inp,factors);
4943       }
4944
4945       MEDCouplingCartesianAMRPatch *__getitem__(int patchId) const throw(INTERP_KERNEL::Exception)
4946       {
4947         const MEDCouplingCartesianAMRMeshGen *mesh(self->getMesh());
4948         if(!mesh)
4949           throw INTERP_KERNEL::Exception("wrap MEDCouplingCartesianAMRPatchGen.__getitem__ : no underlying mesh !");
4950         if(patchId==mesh->getNumberOfPatches())
4951           {
4952             std::ostringstream oss;
4953             oss << "Requesting for patchId " << patchId << " having only " << mesh->getNumberOfPatches() << " patches !";
4954             PyErr_SetString(PyExc_StopIteration,oss.str().c_str());
4955             return 0;
4956           }
4957         MEDCouplingCartesianAMRPatch *ret(const_cast<MEDCouplingCartesianAMRPatch *>(mesh->getPatch(patchId)));
4958         if(ret)
4959           ret->incrRef();
4960         return ret;
4961       }
4962
4963       void __delitem__(int patchId) throw(INTERP_KERNEL::Exception)
4964       {
4965         MEDCouplingCartesianAMRMeshGen *mesh(const_cast<MEDCouplingCartesianAMRMeshGen *>(self->getMesh()));
4966         if(!mesh)
4967           throw INTERP_KERNEL::Exception("wrap MEDCouplingCartesianAMRPatch.__delitem__ : no underlying mesh !");
4968         mesh->removePatch(patchId);
4969       }
4970
4971       int __len__() const throw(INTERP_KERNEL::Exception)
4972       {
4973         const MEDCouplingCartesianAMRMeshGen *mesh(self->getMesh());
4974         if(!mesh)
4975           throw INTERP_KERNEL::Exception("wrap MEDCouplingCartesianAMRPatch.__len__ : no underlying mesh !");
4976         return mesh->getNumberOfPatches();
4977       }
4978     }
4979   };
4980
4981   class MEDCouplingCartesianAMRPatchGF : public MEDCouplingCartesianAMRPatchGen
4982   {
4983   };
4984   
4985   class MEDCouplingCartesianAMRMeshGen : public RefCountObject, public TimeLabel
4986   {
4987   public:
4988     int getAbsoluteLevel() const throw(INTERP_KERNEL::Exception);
4989     int getAbsoluteLevelRelativeTo(const MEDCouplingCartesianAMRMeshGen *ref) const throw(INTERP_KERNEL::Exception);
4990     std::vector<int> getPositionRelativeTo(const MEDCouplingCartesianAMRMeshGen *ref) const throw(INTERP_KERNEL::Exception);
4991     int getSpaceDimension() const throw(INTERP_KERNEL::Exception);
4992     const std::vector<int>& getFactors() const throw(INTERP_KERNEL::Exception);
4993     void setFactors(const std::vector<int>& newFactors) throw(INTERP_KERNEL::Exception);
4994     int getMaxNumberOfLevelsRelativeToThis() const throw(INTERP_KERNEL::Exception);
4995     int getNumberOfCellsAtCurrentLevel() const throw(INTERP_KERNEL::Exception);
4996     int getNumberOfCellsAtCurrentLevelGhost(int ghostLev) const throw(INTERP_KERNEL::Exception);
4997     int getNumberOfCellsRecursiveWithOverlap() const throw(INTERP_KERNEL::Exception);
4998     int getNumberOfCellsRecursiveWithoutOverlap() const throw(INTERP_KERNEL::Exception);
4999     bool isPatchInNeighborhoodOf(int patchId1, int patchId2, int ghostLev) const throw(INTERP_KERNEL::Exception);
5000    virtual void detachFromFather() throw(INTERP_KERNEL::Exception);
5001     //
5002     int getNumberOfPatches() const throw(INTERP_KERNEL::Exception);
5003     int getPatchIdFromChildMesh(const MEDCouplingCartesianAMRMeshGen *mesh) const throw(INTERP_KERNEL::Exception);
5004     MEDCouplingUMesh *buildUnstructured() const throw(INTERP_KERNEL::Exception);
5005     DataArrayDouble *extractGhostFrom(int ghostSz, const DataArrayDouble *arr) const throw(INTERP_KERNEL::Exception);
5006     std::vector<int> getPatchIdsInTheNeighborhoodOf(int patchId, int ghostLev) const throw(INTERP_KERNEL::Exception);
5007     MEDCoupling1SGTUMesh *buildMeshFromPatchEnvelop() const throw(INTERP_KERNEL::Exception);
5008     MEDCoupling1SGTUMesh *buildMeshOfDirectChildrenOnly() const throw(INTERP_KERNEL::Exception);
5009     void removeAllPatches() throw(INTERP_KERNEL::Exception);
5010     void removePatch(int patchId) throw(INTERP_KERNEL::Exception);
5011     void createPatchesFromCriterion(const INTERP_KERNEL::BoxSplittingOptions& bso, const DataArrayByte *criterion, const std::vector<int>& factors) throw(INTERP_KERNEL::Exception);
5012     void createPatchesFromCriterion(const INTERP_KERNEL::BoxSplittingOptions& bso, const DataArrayDouble *criterion, const std::vector<int>& factors, double eps) throw(INTERP_KERNEL::Exception);
5013     DataArrayDouble *createCellFieldOnPatch(int patchId, const DataArrayDouble *cellFieldOnThis) const throw(INTERP_KERNEL::Exception);
5014     void fillCellFieldOnPatch(int patchId, const DataArrayDouble *cellFieldOnThis, DataArrayDouble *cellFieldOnPatch, bool isConservative=true) const throw(INTERP_KERNEL::Exception);
5015     void fillCellFieldOnPatchGhost(int patchId, const DataArrayDouble *cellFieldOnThis, DataArrayDouble *cellFieldOnPatch, int ghostLev, bool isConservative=true) const throw(INTERP_KERNEL::Exception);
5016     void fillCellFieldOnPatchOnlyOnGhostZone(int patchId, const DataArrayDouble *cellFieldOnThis, DataArrayDouble *cellFieldOnPatch, int ghostLev) const throw(INTERP_KERNEL::Exception);
5017     void fillCellFieldOnPatchOnlyOnGhostZoneWith(int ghostLev, const MEDCouplingCartesianAMRPatch *patchToBeModified, const MEDCouplingCartesianAMRPatch *neighborPatch, DataArrayDouble *cellFieldOnPatch, const DataArrayDouble *cellFieldNeighbor) const;
5018     void fillCellFieldComingFromPatch(int patchId, const DataArrayDouble *cellFieldOnPatch, DataArrayDouble *cellFieldOnThis, bool isConservative=true) const throw(INTERP_KERNEL::Exception);
5019     void fillCellFieldComingFromPatchGhost(int patchId, const DataArrayDouble *cellFieldOnPatch, DataArrayDouble *cellFieldOnThis, int ghostLev, bool isConservative=true) const throw(INTERP_KERNEL::Exception);
5020     DataArrayInt *findPatchesInTheNeighborhoodOf(int patchId, int ghostLev) const throw(INTERP_KERNEL::Exception);
5021     std::string buildPythonDumpOfThis() const throw(INTERP_KERNEL::Exception);
5022     %extend
5023     {
5024       void addPatch(PyObject *bottomLeftTopRight, const std::vector<int>& factors) throw(INTERP_KERNEL::Exception)
5025       {
5026         std::vector< std::pair<int,int> > inp;
5027         convertPyToVectorPairInt(bottomLeftTopRight,inp);
5028         self->addPatch(inp,factors);
5029       }
5030
5031       PyObject *getPatches() const throw(INTERP_KERNEL::Exception)
5032       {
5033         std::vector< const MEDCouplingCartesianAMRPatch *> ps(self->getPatches());
5034         int sz(ps.size());
5035         PyObject *ret = PyList_New(sz);
5036         for(int i=0;i<sz;i++)
5037           {
5038             MEDCouplingCartesianAMRPatch *elt(const_cast<MEDCouplingCartesianAMRPatch *>(ps[i]));
5039             if(elt)
5040               elt->incrRef();
5041             PyList_SetItem(ret,i,convertCartesianAMRPatch(elt, SWIG_POINTER_OWN | 0 ));
5042           }
5043         return ret;
5044       }
5045
5046       // agy : don't know why typemap fails here ??? let it in the extend section
5047       PyObject *deepCpy(MEDCouplingCartesianAMRMeshGen *father) const throw(INTERP_KERNEL::Exception)
5048       {
5049         return convertCartesianAMRMesh(self->deepCpy(father), SWIG_POINTER_OWN | 0 );
5050       }
5051
5052       MEDCouplingCartesianAMRPatch *getPatchAtPosition(const std::vector<int>& pos) const throw(INTERP_KERNEL::Exception)
5053       {
5054         const MEDCouplingCartesianAMRPatch *ret(self->getPatchAtPosition(pos));
5055         MEDCouplingCartesianAMRPatch *ret2(const_cast<MEDCouplingCartesianAMRPatch *>(ret));
5056         if(ret2)
5057           ret2->incrRef();
5058         return ret2;
5059       }
5060
5061       MEDCouplingCartesianAMRMeshGen *getMeshAtPosition(const std::vector<int>& pos) const throw(INTERP_KERNEL::Exception)
5062       {
5063         const MEDCouplingCartesianAMRMeshGen *ret(self->getMeshAtPosition(pos));
5064         MEDCouplingCartesianAMRMeshGen *ret2(const_cast<MEDCouplingCartesianAMRMeshGen *>(ret));
5065         if(ret2)
5066           ret2->incrRef();
5067         return ret2;
5068       }
5069
5070       virtual PyObject *positionRelativeToGodFather() const throw(INTERP_KERNEL::Exception)
5071       {
5072         std::vector<int> out1;
5073         std::vector< std::pair<int,int> > out0(self->positionRelativeToGodFather(out1));
5074         PyObject *ret(PyTuple_New(2));
5075         PyTuple_SetItem(ret,0,convertFromVectorPairInt(out0));
5076         PyTuple_SetItem(ret,1,convertIntArrToPyList2(out1));
5077         return ret;
5078       }
5079
5080       virtual PyObject *retrieveGridsAt(int absoluteLev) const throw(INTERP_KERNEL::Exception)
5081       {
5082         std::vector<MEDCouplingCartesianAMRPatchGen *> ps(self->retrieveGridsAt(absoluteLev));
5083         int sz(ps.size());
5084         PyObject *ret = PyList_New(sz);
5085         for(int i=0;i<sz;i++)
5086           PyList_SetItem(ret,i,convertCartesianAMRPatch(ps[i], SWIG_POINTER_OWN | 0 ));
5087         return ret;
5088       }
5089
5090       MEDCouplingFieldDouble *buildCellFieldOnRecurseWithoutOverlapWithoutGhost(int ghostSz, PyObject *recurseArrs) const
5091       {
5092         std::vector<const DataArrayDouble *> inp;
5093         convertFromPyObjVectorOfObj<const ParaMEDMEM::DataArrayDouble *>(recurseArrs,SWIGTYPE_p_ParaMEDMEM__DataArrayDouble,"DataArrayDouble",inp);
5094         return self->buildCellFieldOnRecurseWithoutOverlapWithoutGhost(ghostSz,inp);
5095       }
5096
5097       virtual MEDCouplingCartesianAMRMeshGen *getFather() const throw(INTERP_KERNEL::Exception)
5098       {
5099         MEDCouplingCartesianAMRMeshGen *ret(const_cast<MEDCouplingCartesianAMRMeshGen *>(self->getFather()));
5100         if(ret)
5101           ret->incrRef();
5102         return ret;
5103       }
5104       
5105       virtual MEDCouplingCartesianAMRMeshGen *getGodFather() const throw(INTERP_KERNEL::Exception)
5106       {
5107         MEDCouplingCartesianAMRMeshGen *ret(const_cast<MEDCouplingCartesianAMRMeshGen *>(self->getGodFather()));
5108         if(ret)
5109           ret->incrRef();
5110         return ret;
5111       }
5112
5113       MEDCouplingCartesianAMRPatch *getPatch(int patchId) const throw(INTERP_KERNEL::Exception)
5114       {
5115         MEDCouplingCartesianAMRPatch *ret(const_cast<MEDCouplingCartesianAMRPatch *>(self->getPatch(patchId)));
5116         if(ret)
5117           ret->incrRef();
5118         return ret;
5119       }
5120
5121       MEDCouplingIMesh *getImageMesh() const throw(INTERP_KERNEL::Exception)
5122       {
5123         const MEDCouplingIMesh *ret(self->getImageMesh());
5124         if(ret)
5125           ret->incrRef();
5126         return const_cast<MEDCouplingIMesh *>(ret);
5127       }
5128
5129       MEDCouplingCartesianAMRPatch *__getitem__(int patchId) const throw(INTERP_KERNEL::Exception)
5130       {
5131         if(patchId==self->getNumberOfPatches())
5132           {
5133             std::ostringstream oss;
5134             oss << "Requesting for patchId " << patchId << " having only " << self->getNumberOfPatches() << " patches !";
5135             PyErr_SetString(PyExc_StopIteration,oss.str().c_str());
5136             return 0;
5137           }
5138         MEDCouplingCartesianAMRPatch *ret(const_cast<MEDCouplingCartesianAMRPatch *>(self->getPatch(patchId)));
5139         if(ret)
5140           ret->incrRef();
5141         return ret;
5142       }
5143
5144       void fillCellFieldOnPatchGhostAdv(int patchId, const DataArrayDouble *cellFieldOnThis, int ghostLev, PyObject *arrsOnPatches, bool isConservative=true) const throw(INTERP_KERNEL::Exception)
5145       {
5146         std::vector<const ParaMEDMEM::DataArrayDouble *> arrsOnPatches2;
5147         convertFromPyObjVectorOfObj<const ParaMEDMEM::DataArrayDouble *>(arrsOnPatches,SWIGTYPE_p_ParaMEDMEM__DataArrayDouble,"DataArrayDouble",arrsOnPatches2);
5148         self->fillCellFieldOnPatchGhostAdv(patchId,cellFieldOnThis,ghostLev,arrsOnPatches2,isConservative);
5149       }
5150
5151       void fillCellFieldOnPatchOnlyGhostAdv(int patchId, int ghostLev, PyObject *arrsOnPatches) const
5152       {
5153         std::vector<const ParaMEDMEM::DataArrayDouble *> arrsOnPatches2;
5154         convertFromPyObjVectorOfObj<const ParaMEDMEM::DataArrayDouble *>(arrsOnPatches,SWIGTYPE_p_ParaMEDMEM__DataArrayDouble,"DataArrayDouble",arrsOnPatches2);
5155         self->fillCellFieldOnPatchOnlyGhostAdv(patchId,ghostLev,arrsOnPatches2);
5156       }
5157
5158       void __delitem__(int patchId) throw(INTERP_KERNEL::Exception)
5159       {
5160         self->removePatch(patchId);
5161       }
5162
5163       int __len__() const throw(INTERP_KERNEL::Exception)
5164       {
5165         return self->getNumberOfPatches();
5166       }
5167     }
5168   };
5169
5170   class MEDCouplingCartesianAMRMeshSub : public MEDCouplingCartesianAMRMeshGen
5171   {
5172   };
5173
5174   class MEDCouplingCartesianAMRMesh : public MEDCouplingCartesianAMRMeshGen
5175   {
5176   public:
5177     static MEDCouplingCartesianAMRMesh *New(MEDCouplingIMesh *mesh) throw(INTERP_KERNEL::Exception);
5178     %extend
5179     {
5180       static MEDCouplingCartesianAMRMesh *New(const std::string& meshName, int spaceDim, PyObject *nodeStrct, PyObject *origin, PyObject *dxyz) throw(INTERP_KERNEL::Exception)
5181       {
5182         static const char msg0[]="MEDCouplingCartesianAMRMesh::New : error on 'origin' parameter !";
5183         static const char msg1[]="MEDCouplingCartesianAMRMesh::New : error on 'dxyz' parameter !";
5184         const int *nodeStrctPtr(0);
5185         const double *originPtr(0),*dxyzPtr(0);
5186         int sw,sz,val0;
5187         std::vector<int> bb0;
5188         nodeStrctPtr=convertObjToPossibleCpp1_Safe(nodeStrct,sw,sz,val0,bb0);
5189         //
5190         double val,val2;
5191         std::vector<double> bb,bb2;
5192         int sz1,sz2;
5193         originPtr=convertObjToPossibleCpp5_SingleCompo(origin,sw,val,bb,msg0,false,sz1);
5194         dxyzPtr=convertObjToPossibleCpp5_SingleCompo(dxyz,sw,val2,bb2,msg1,false,sz2);
5195         //
5196         return MEDCouplingCartesianAMRMesh::New(meshName,spaceDim,nodeStrctPtr,nodeStrctPtr+sz,originPtr,originPtr+sz1,dxyzPtr,dxyzPtr+sz2);
5197       }
5198
5199       void createPatchesFromCriterionML(PyObject *bso, const DataArrayDouble *criterion, PyObject *factors, double eps) throw(INTERP_KERNEL::Exception)
5200       {
5201         std::vector<const INTERP_KERNEL::BoxSplittingOptions *> inp0;
5202         convertFromPyObjVectorOfObj<const INTERP_KERNEL::BoxSplittingOptions *>(bso,SWIGTYPE_p_INTERP_KERNEL__BoxSplittingOptions,"BoxSplittingOptions",inp0);
5203         std::vector< std::vector<int> > inp2;
5204         convertPyToVectorOfVectorOfInt(factors,inp2);
5205         self->createPatchesFromCriterionML(inp0,criterion,inp2,eps);
5206       }
5207
5208       MEDCouplingCartesianAMRMesh(const std::string& meshName, int spaceDim, PyObject *nodeStrct, PyObject *origin, PyObject *dxyz) throw(INTERP_KERNEL::Exception)
5209       {
5210         return ParaMEDMEM_MEDCouplingCartesianAMRMesh_New__SWIG_1(meshName,spaceDim,nodeStrct,origin,dxyz);
5211       }
5212
5213       MEDCouplingCartesianAMRMesh(MEDCouplingIMesh *mesh) throw(INTERP_KERNEL::Exception)
5214       {
5215         return MEDCouplingCartesianAMRMesh::New(mesh);
5216       }
5217     }
5218   };
5219
5220   class MEDCouplingDataForGodFather : public RefCountObject
5221   {
5222   public:
5223     virtual void synchronizeFineToCoarse() throw(INTERP_KERNEL::Exception);
5224     virtual void synchronizeFineToCoarseBetween(int fromLev, int toLev) throw(INTERP_KERNEL::Exception);
5225     virtual void synchronizeCoarseToFine() throw(INTERP_KERNEL::Exception);
5226     virtual void synchronizeCoarseToFineBetween(int fromLev, int toLev) throw(INTERP_KERNEL::Exception);
5227     virtual void synchronizeAllGhostZones() throw(INTERP_KERNEL::Exception);
5228     virtual void synchronizeAllGhostZonesOfDirectChidrenOf(const MEDCouplingCartesianAMRMeshGen *mesh) throw(INTERP_KERNEL::Exception);
5229     virtual void synchronizeAllGhostZonesAtASpecifiedLevel(int level) throw(INTERP_KERNEL::Exception);
5230     virtual void synchronizeAllGhostZonesAtASpecifiedLevelUsingOnlyFather(int level) throw(INTERP_KERNEL::Exception);
5231     virtual void alloc() throw(INTERP_KERNEL::Exception);
5232     virtual void dealloc() throw(INTERP_KERNEL::Exception);
5233     %extend
5234     {
5235       MEDCouplingCartesianAMRMesh *getMyGodFather() throw(INTERP_KERNEL::Exception)
5236       {
5237         MEDCouplingCartesianAMRMesh *ret(self->getMyGodFather());
5238         if(ret)
5239           ret->incrRef();
5240         return ret;
5241       }
5242     }
5243   };
5244   
5245   class MEDCouplingAMRAttribute : public MEDCouplingDataForGodFather, public TimeLabel
5246   {
5247   public:
5248     int getNumberOfLevels() const throw(INTERP_KERNEL::Exception);
5249     MEDCouplingAMRAttribute *deepCpy() const throw(INTERP_KERNEL::Exception);
5250     MEDCouplingAMRAttribute *deepCpyWithoutGodFather() const throw(INTERP_KERNEL::Exception);
5251     MEDCouplingFieldDouble *buildCellFieldOnRecurseWithoutOverlapWithoutGhost(MEDCouplingCartesianAMRMeshGen *mesh, const std::string& fieldName) const throw(INTERP_KERNEL::Exception);
5252     MEDCouplingFieldDouble *buildCellFieldOnWithGhost(MEDCouplingCartesianAMRMeshGen *mesh, const std::string& fieldName) const throw(INTERP_KERNEL::Exception);
5253     MEDCouplingFieldDouble *buildCellFieldOnWithoutGhost(MEDCouplingCartesianAMRMeshGen *mesh, const std::string& fieldName) const throw(INTERP_KERNEL::Exception);
5254     bool changeGodFather(MEDCouplingCartesianAMRMesh *gf) throw(INTERP_KERNEL::Exception);
5255     MEDCouplingAMRAttribute *projectTo(MEDCouplingCartesianAMRMesh *targetGF) const throw(INTERP_KERNEL::Exception);
5256     std::string writeVTHB(const std::string& fileName) const throw(INTERP_KERNEL::Exception);
5257     %extend
5258     {
5259       static MEDCouplingAMRAttribute *New(MEDCouplingCartesianAMRMesh *gf, PyObject *fieldNames, int ghostLev) throw(INTERP_KERNEL::Exception)
5260       {
5261         std::vector< std::pair<std::string,int> > fieldNamesCpp0;
5262         std::vector< std::pair<std::string, std::vector<std::string> > > fieldNamesCpp1;
5263         MEDCouplingAMRAttribute *ret(0);
5264         try
5265           {
5266             convertPyToVectorPairStringInt(fieldNames,fieldNamesCpp0);
5267             ret=MEDCouplingAMRAttribute::New(gf,fieldNamesCpp0,ghostLev);
5268           }
5269         catch(INTERP_KERNEL::Exception&)
5270           {
5271             convertPyToVectorPairStringVecString(fieldNames,fieldNamesCpp1);
5272             ret=MEDCouplingAMRAttribute::New(gf,fieldNamesCpp1,ghostLev);
5273           }
5274         return ret;
5275       }
5276
5277       MEDCouplingAMRAttribute(MEDCouplingCartesianAMRMesh *gf, PyObject *fieldNames, int ghostLev) throw(INTERP_KERNEL::Exception)
5278       {
5279         return ParaMEDMEM_MEDCouplingAMRAttribute_New(gf,fieldNames,ghostLev);
5280       }
5281
5282       DataArrayDouble *getFieldOn(MEDCouplingCartesianAMRMeshGen *mesh, const std::string& fieldName) const throw(INTERP_KERNEL::Exception)
5283       {
5284         const DataArrayDouble *ret(self->getFieldOn(mesh,fieldName));
5285         DataArrayDouble *ret2(const_cast<DataArrayDouble *>(ret));
5286         if(ret2)
5287           ret2->incrRef();
5288         return ret2;
5289       }
5290
5291       void spillInfoOnComponents(PyObject *compNames) throw(INTERP_KERNEL::Exception)
5292       {
5293         std::vector< std::vector<std::string> > compNamesCpp;
5294         convertPyToVectorOfVectorOfString(compNames,compNamesCpp);
5295         self->spillInfoOnComponents(compNamesCpp);
5296       }
5297
5298       void spillNatures(PyObject *nfs) throw(INTERP_KERNEL::Exception)
5299       {
5300         std::vector<int> inp0;
5301         if(!fillIntVector(nfs,inp0))
5302           throw INTERP_KERNEL::Exception("wrap of MEDCouplingAMRAttribute::spillNatures : vector of NatureOfField enum expected !");
5303         std::size_t sz(inp0.size());
5304         std::vector<NatureOfField> inp00(sz);
5305         for(std::size_t i=0;i<sz;i++)
5306           inp00[i]=(NatureOfField)inp0[i];
5307         self->spillNatures(inp00);
5308       }
5309       
5310       PyObject *retrieveFieldsOn(MEDCouplingCartesianAMRMeshGen *mesh) const throw(INTERP_KERNEL::Exception)
5311       {
5312         std::vector<DataArrayDouble *> ret(self->retrieveFieldsOn(mesh));
5313         int sz((int)ret.size());
5314         PyObject *retPy(PyList_New(sz));
5315         for(int i=0;i<sz;i++)
5316           PyList_SetItem(retPy,i,SWIG_NewPointerObj(SWIG_as_voidptr(ret[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
5317         return retPy;
5318       }
5319     }
5320   };
5321
5322   class DenseMatrix : public RefCountObject, public TimeLabel
5323   {
5324   public:
5325     static DenseMatrix *New(int nbRows, int nbCols) throw(INTERP_KERNEL::Exception);
5326     static DenseMatrix *New(DataArrayDouble *array, int nbRows, int nbCols) throw(INTERP_KERNEL::Exception);
5327     DenseMatrix *deepCpy() const throw(INTERP_KERNEL::Exception);
5328     DenseMatrix *shallowCpy() const throw(INTERP_KERNEL::Exception);
5329     //
5330     int getNumberOfRows() const throw(INTERP_KERNEL::Exception);
5331     int getNumberOfCols() const throw(INTERP_KERNEL::Exception);
5332     int getNbOfElems() const throw(INTERP_KERNEL::Exception);
5333     void reBuild(DataArrayDouble *array, int nbRows=-1, int nbCols=-1) throw(INTERP_KERNEL::Exception);
5334     void reShape(int nbRows, int nbCols) throw(INTERP_KERNEL::Exception);
5335     void transpose() throw(INTERP_KERNEL::Exception);
5336     //
5337     bool isEqual(const DenseMatrix& other, double eps) const throw(INTERP_KERNEL::Exception);
5338     DataArrayDouble *matVecMult(const DataArrayDouble *vec) const throw(INTERP_KERNEL::Exception);
5339     static DataArrayDouble *MatVecMult(const DenseMatrix *mat, const DataArrayDouble *vec) throw(INTERP_KERNEL::Exception);
5340     %extend
5341     {
5342       DenseMatrix(int nbRows, int nbCols) throw(INTERP_KERNEL::Exception)
5343       {
5344         return DenseMatrix::New(nbRows,nbCols);
5345       }
5346
5347       DenseMatrix(DataArrayDouble *array, int nbRows, int nbCols) throw(INTERP_KERNEL::Exception)
5348       {
5349         return DenseMatrix::New(array,nbRows,nbCols);
5350       }
5351
5352       PyObject *isEqualIfNotWhy(const DenseMatrix& other, double eps) const throw(INTERP_KERNEL::Exception)
5353       {
5354         std::string ret1;
5355         bool ret0=self->isEqualIfNotWhy(other,eps,ret1);
5356         PyObject *ret=PyTuple_New(2);
5357         PyObject *ret0Py=ret0?Py_True:Py_False;
5358         Py_XINCREF(ret0Py);
5359         PyTuple_SetItem(ret,0,ret0Py);
5360         PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
5361         return ret;
5362       }
5363
5364       DataArrayDouble *getData() throw(INTERP_KERNEL::Exception)
5365       {
5366         DataArrayDouble *ret(self->getData());
5367         if(ret)
5368           ret->incrRef();
5369         return ret;
5370       }
5371
5372       DenseMatrix *__add__(const DenseMatrix *other) throw(INTERP_KERNEL::Exception)
5373       {
5374         return ParaMEDMEM::DenseMatrix::Add(self,other);
5375       }
5376
5377       DenseMatrix *__sub__(const DenseMatrix *other) throw(INTERP_KERNEL::Exception)
5378       {
5379         return ParaMEDMEM::DenseMatrix::Substract(self,other);
5380       }
5381
5382       DenseMatrix *__mul__(const DenseMatrix *other) throw(INTERP_KERNEL::Exception)
5383       {
5384         return ParaMEDMEM::DenseMatrix::Multiply(self,other);
5385       }
5386
5387       DenseMatrix *__mul__(const DataArrayDouble *other) throw(INTERP_KERNEL::Exception)
5388       {
5389         return ParaMEDMEM::DenseMatrix::Multiply(self,other);
5390       }
5391
5392       PyObject *___iadd___(PyObject *trueSelf, const DenseMatrix *other) throw(INTERP_KERNEL::Exception)
5393       {
5394         self->addEqual(other);
5395         Py_XINCREF(trueSelf);
5396         return trueSelf;
5397       }
5398
5399       PyObject *___isub___(PyObject *trueSelf, const DenseMatrix *other) throw(INTERP_KERNEL::Exception)
5400       {
5401         self->substractEqual(other);
5402         Py_XINCREF(trueSelf);
5403         return trueSelf;
5404       }
5405 #ifdef WITH_NUMPY
5406       PyObject *toNumPyMatrix() throw(INTERP_KERNEL::Exception) // not const. It is not a bug !
5407       {
5408         PyObject *obj(ToNumPyArrayUnderground<DataArrayDouble,double>(self->getData(),NPY_DOUBLE,"DataArrayDouble",self->getNumberOfRows(),self->getNumberOfCols()));
5409         return obj;
5410       }
5411 #endif
5412     }
5413   };
5414   
5415   class PartDefinition : public RefCountObject, public TimeLabel
5416   {
5417   public:
5418     static PartDefinition *New(int start, int stop, int step) throw(INTERP_KERNEL::Exception);
5419     static PartDefinition *New(DataArrayInt *listOfIds) throw(INTERP_KERNEL::Exception);
5420     virtual DataArrayInt *toDAI() const throw(INTERP_KERNEL::Exception);
5421     virtual int getNumberOfElems() const throw(INTERP_KERNEL::Exception);
5422     virtual std::string getRepr() const throw(INTERP_KERNEL::Exception);
5423     virtual PartDefinition *composeWith(const PartDefinition *other) const throw(INTERP_KERNEL::Exception);
5424     virtual void checkCoherency() const throw(INTERP_KERNEL::Exception);
5425     virtual PartDefinition *tryToSimplify() const throw(INTERP_KERNEL::Exception);
5426     %extend
5427     {
5428       virtual PartDefinition *__add__(const PartDefinition& other) const throw(INTERP_KERNEL::Exception)
5429       {
5430         return (*self)+other;
5431       }
5432     }
5433   protected:
5434     virtual ~PartDefinition();
5435   };
5436
5437   class DataArrayPartDefinition : public PartDefinition
5438   {
5439   public:
5440     static DataArrayPartDefinition *New(DataArrayInt *listOfIds) throw(INTERP_KERNEL::Exception);
5441     %extend
5442     {
5443       DataArrayPartDefinition(DataArrayInt *listOfIds) throw(INTERP_KERNEL::Exception)
5444       {
5445         return DataArrayPartDefinition::New(listOfIds);
5446       }
5447
5448       std::string __str__() const throw(INTERP_KERNEL::Exception)
5449       {
5450         return self->getRepr();
5451       }
5452       
5453       std::string __repr__() const throw(INTERP_KERNEL::Exception)
5454       {
5455         std::ostringstream oss; oss << "DataArrayPartDefinition C++ instance at " << self << "." << std::endl;
5456         oss << self->getRepr();
5457         return oss.str();
5458       }
5459     }
5460   protected:
5461     virtual ~DataArrayPartDefinition();
5462   };
5463
5464   class SlicePartDefinition : public PartDefinition
5465   {
5466   public:
5467     static SlicePartDefinition *New(int start, int stop, int step) throw(INTERP_KERNEL::Exception);
5468     int getEffectiveStop() const throw(INTERP_KERNEL::Exception);
5469     %extend
5470     {
5471       SlicePartDefinition(int start, int stop, int step) throw(INTERP_KERNEL::Exception)
5472       {
5473         return SlicePartDefinition::New(start,stop,step);
5474       }
5475
5476       PyObject *getSlice() const throw(INTERP_KERNEL::Exception)
5477       {
5478         int a,b,c;
5479         self->getSlice(a,b,c);
5480         return PySlice_New(PyInt_FromLong(a),PyInt_FromLong(b),PyInt_FromLong(c));
5481       }
5482       
5483       std::string __str__() const throw(INTERP_KERNEL::Exception)
5484       {
5485         return self->getRepr();
5486       }
5487       
5488       std::string __repr__() const throw(INTERP_KERNEL::Exception)
5489       {
5490         std::ostringstream oss; oss << "SlicePartDefinition C++ instance at " << self << "." << std::endl;
5491         oss << self->getRepr();
5492         return oss.str();
5493       }
5494     }
5495   protected:
5496     virtual ~SlicePartDefinition();
5497   };
5498 }
5499
5500 %pythoncode %{
5501 import os
5502 __filename=os.environ.get('PYTHONSTARTUP')
5503 if __filename and os.path.isfile(__filename):
5504   execfile(__filename)
5505   pass
5506 %}