Salome HOME
b78056bfb231b87ddf145d4a5f946c0b1dcee346
[tools/medcoupling.git] / src / MEDCoupling_Swig / MEDCouplingCommon.i
1 // Copyright (C) 2007-2014  CEA/DEN, EDF R&D
2 //
3 // This library is free software; you can redistribute it and/or
4 // modify it under the terms of the GNU Lesser General Public
5 // License as published by the Free Software Foundation; either
6 // version 2.1 of the License, or (at your option) any later version.
7 //
8 // This library is distributed in the hope that it will be useful,
9 // but WITHOUT ANY WARRANTY; without even the implied warranty of
10 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11 // Lesser General Public License for more details.
12 //
13 // You should have received a copy of the GNU Lesser General Public
14 // License along with this library; if not, write to the Free Software
15 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
16 //
17 // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
18 //
19 // Author : Anthony Geay (CEA/DEN)
20
21 %module MEDCoupling
22
23 %include std_vector.i
24 %include std_string.i
25
26 %{
27 #include "MEDCouplingMemArray.hxx"
28 #include "MEDCouplingUMesh.hxx"
29 #include "MEDCouplingExtrudedMesh.hxx"
30 #include "MEDCouplingCMesh.hxx"
31 #include "MEDCouplingIMesh.hxx"
32 #include "MEDCouplingCurveLinearMesh.hxx"
33 #include "MEDCoupling1GTUMesh.hxx"
34 #include "MEDCouplingField.hxx"
35 #include "MEDCouplingFieldDouble.hxx"
36 #include "MEDCouplingFieldTemplate.hxx"
37 #include "MEDCouplingGaussLocalization.hxx"
38 #include "MEDCouplingAutoRefCountObjectPtr.hxx"
39 #include "MEDCouplingMultiFields.hxx"
40 #include "MEDCouplingFieldOverTime.hxx"
41 #include "MEDCouplingDefinitionTime.hxx"
42 #include "MEDCouplingFieldDiscretization.hxx"
43 #include "MEDCouplingCartesianAMRMesh.hxx"
44 #include "MEDCouplingAMRAttribute.hxx"
45 #include "MEDCouplingMatrix.hxx"
46 #include "MEDCouplingPartDefinition.hxx"
47 #include "MEDCouplingTypemaps.i"
48
49 #include "InterpKernelAutoPtr.hxx"
50 #include "BoxSplittingOptions.hxx"
51
52 using namespace ParaMEDMEM;
53 using namespace INTERP_KERNEL;
54
55 %}
56
57 %template(ivec) std::vector<int>;
58 %template(dvec) std::vector<double>;
59 %template(svec) std::vector<std::string>;
60
61 ////////////////////
62 %typemap(out) ParaMEDMEM::MEDCouplingMesh*
63 {
64   $result=convertMesh($1,$owner);
65 }
66
67 %typemap(out) MEDCouplingMesh*
68 {
69   $result=convertMesh($1,$owner);
70 }
71 //$$$$$$$$$$$$$$$$$$
72
73 ////////////////////
74 %typemap(out) ParaMEDMEM::MEDCouplingPointSet*
75 {
76   $result=convertMesh($1,$owner);
77 }
78
79 %typemap(out) MEDCouplingPointSet*
80 {
81   $result=convertMesh($1,$owner);
82 }
83 //$$$$$$$$$$$$$$$$$$
84
85 ////////////////////
86 %typemap(out) MEDCouplingCartesianAMRPatchGen*
87 {
88   $result=convertCartesianAMRPatch($1,$owner);
89 }
90 //$$$$$$$$$$$$$$$$$$
91
92 ////////////////////
93 %typemap(out) MEDCouplingCartesianAMRMeshGen*
94 {
95   $result=convertCartesianAMRMesh($1,$owner);
96 }
97 //$$$$$$$$$$$$$$$$$$
98
99 ////////////////////
100 %typemap(out) MEDCouplingDataForGodFather*
101 {
102   $result=convertDataForGodFather($1,$owner);
103 }
104 //$$$$$$$$$$$$$$$$$$
105
106 ////////////////////
107 %typemap(out) ParaMEDMEM::MEDCoupling1GTUMesh*
108 {
109   $result=convertMesh($1,$owner);
110 }
111
112 %typemap(out) MEDCoupling1GTUMesh*
113 {
114   $result=convertMesh($1,$owner);
115 }
116 //$$$$$$$$$$$$$$$$$$
117
118 ////////////////////
119 %typemap(out) ParaMEDMEM::MEDCouplingStructuredMesh*
120 {
121   $result=convertMesh($1,$owner);
122 }
123
124 %typemap(out) MEDCouplingStructuredMesh*
125 {
126   $result=convertMesh($1,$owner);
127 }
128 //$$$$$$$$$$$$$$$$$$
129
130 ////////////////////
131 %typemap(out) ParaMEDMEM::MEDCouplingFieldDiscretization*
132 {
133   $result=convertFieldDiscretization($1,$owner);
134 }
135
136 %typemap(out) MEDCouplingFieldDiscretization*
137 {
138   $result=convertFieldDiscretization($1,$owner);
139 }
140 //$$$$$$$$$$$$$$$$$$
141
142 ////////////////////
143 %typemap(out) ParaMEDMEM::MEDCouplingMultiFields*
144 {
145   $result=convertMultiFields($1,$owner);
146 }
147
148 %typemap(out) MEDCouplingMultiFields*
149 {
150   $result=convertMultiFields($1,$owner);
151 }
152 //$$$$$$$$$$$$$$$$$$
153
154 ////////////////////
155 %typemap(out) ParaMEDMEM::PartDefinition*
156 {
157   $result=convertPartDefinition($1,$owner);
158 }
159
160 %typemap(out) PartDefinition*
161 {
162   $result=convertPartDefinition($1,$owner);
163 }
164 //$$$$$$$$$$$$$$$$$$
165
166 #ifdef WITH_NUMPY
167 %init %{ import_array(); %}
168 #endif
169
170 %feature("autodoc", "1");
171 %feature("docstring");
172
173 %newobject ParaMEDMEM::MEDCouplingField::buildMeasureField;
174 %newobject ParaMEDMEM::MEDCouplingField::getLocalizationOfDiscr;
175 %newobject ParaMEDMEM::MEDCouplingField::computeTupleIdsToSelectFromCellIds;
176 %newobject ParaMEDMEM::MEDCouplingFieldDouble::New;
177 %newobject ParaMEDMEM::MEDCouplingFieldDouble::getArray;
178 %newobject ParaMEDMEM::MEDCouplingFieldDouble::getEndArray;
179 %newobject ParaMEDMEM::MEDCouplingFieldDouble::MergeFields;
180 %newobject ParaMEDMEM::MEDCouplingFieldDouble::MeldFields;
181 %newobject ParaMEDMEM::MEDCouplingFieldDouble::doublyContractedProduct;
182 %newobject ParaMEDMEM::MEDCouplingFieldDouble::determinant;
183 %newobject ParaMEDMEM::MEDCouplingFieldDouble::eigenValues;
184 %newobject ParaMEDMEM::MEDCouplingFieldDouble::eigenVectors;
185 %newobject ParaMEDMEM::MEDCouplingFieldDouble::inverse;
186 %newobject ParaMEDMEM::MEDCouplingFieldDouble::trace;
187 %newobject ParaMEDMEM::MEDCouplingFieldDouble::deviator;
188 %newobject ParaMEDMEM::MEDCouplingFieldDouble::magnitude;
189 %newobject ParaMEDMEM::MEDCouplingFieldDouble::maxPerTuple;
190 %newobject ParaMEDMEM::MEDCouplingFieldDouble::keepSelectedComponents;
191 %newobject ParaMEDMEM::MEDCouplingFieldDouble::extractSlice3D;
192 %newobject ParaMEDMEM::MEDCouplingFieldDouble::DotFields;
193 %newobject ParaMEDMEM::MEDCouplingFieldDouble::dot;
194 %newobject ParaMEDMEM::MEDCouplingFieldDouble::CrossProductFields;
195 %newobject ParaMEDMEM::MEDCouplingFieldDouble::crossProduct;
196 %newobject ParaMEDMEM::MEDCouplingFieldDouble::MaxFields;
197 %newobject ParaMEDMEM::MEDCouplingFieldDouble::max;
198 %newobject ParaMEDMEM::MEDCouplingFieldDouble::MinFields;
199 %newobject ParaMEDMEM::MEDCouplingFieldDouble::AddFields;
200 %newobject ParaMEDMEM::MEDCouplingFieldDouble::SubstractFields;
201 %newobject ParaMEDMEM::MEDCouplingFieldDouble::MultiplyFields;
202 %newobject ParaMEDMEM::MEDCouplingFieldDouble::DivideFields;
203 %newobject ParaMEDMEM::MEDCouplingFieldDouble::min;
204 %newobject ParaMEDMEM::MEDCouplingFieldDouble::negate;
205 %newobject ParaMEDMEM::MEDCouplingFieldDouble::getIdsInRange;
206 %newobject ParaMEDMEM::MEDCouplingFieldDouble::buildSubPart;
207 %newobject ParaMEDMEM::MEDCouplingFieldDouble::buildSubPartRange;
208 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__getitem__;
209 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__neg__;
210 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__add__;
211 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__sub__;
212 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__mul__;
213 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__div__;
214 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__pow__;
215 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__radd__;
216 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__rsub__;
217 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__rmul__;
218 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__rdiv__;
219 %newobject ParaMEDMEM::MEDCouplingFieldDouble::clone;
220 %newobject ParaMEDMEM::MEDCouplingFieldDouble::cloneWithMesh;
221 %newobject ParaMEDMEM::MEDCouplingFieldDouble::deepCpy;
222 %newobject ParaMEDMEM::MEDCouplingFieldDouble::buildNewTimeReprFromThis;
223 %newobject ParaMEDMEM::MEDCouplingFieldDouble::nodeToCellDiscretization;
224 %newobject ParaMEDMEM::MEDCouplingFieldDouble::cellToNodeDiscretization;
225 %newobject ParaMEDMEM::MEDCouplingFieldDouble::getValueOnMulti;
226 %newobject ParaMEDMEM::MEDCouplingFieldTemplate::New;
227 %newobject ParaMEDMEM::MEDCouplingMesh::deepCpy;
228 %newobject ParaMEDMEM::MEDCouplingMesh::checkDeepEquivalOnSameNodesWith;
229 %newobject ParaMEDMEM::MEDCouplingMesh::checkTypeConsistencyAndContig;
230 %newobject ParaMEDMEM::MEDCouplingMesh::computeNbOfNodesPerCell;
231 %newobject ParaMEDMEM::MEDCouplingMesh::computeNbOfFacesPerCell;
232 %newobject ParaMEDMEM::MEDCouplingMesh::computeEffectiveNbOfNodesPerCell;
233 %newobject ParaMEDMEM::MEDCouplingMesh::buildPartRange;
234 %newobject ParaMEDMEM::MEDCouplingMesh::giveCellsWithType;
235 %newobject ParaMEDMEM::MEDCouplingMesh::getCoordinatesAndOwner;
236 %newobject ParaMEDMEM::MEDCouplingMesh::getBarycenterAndOwner;
237 %newobject ParaMEDMEM::MEDCouplingMesh::computeIsoBarycenterOfNodesPerCell;
238 %newobject ParaMEDMEM::MEDCouplingMesh::buildOrthogonalField;
239 %newobject ParaMEDMEM::MEDCouplingMesh::getCellIdsFullyIncludedInNodeIds;
240 %newobject ParaMEDMEM::MEDCouplingMesh::mergeMyselfWith;
241 %newobject ParaMEDMEM::MEDCouplingMesh::fillFromAnalytic;
242 %newobject ParaMEDMEM::MEDCouplingMesh::fillFromAnalytic2;
243 %newobject ParaMEDMEM::MEDCouplingMesh::fillFromAnalytic3;
244 %newobject ParaMEDMEM::MEDCouplingMesh::getMeasureField;
245 %newobject ParaMEDMEM::MEDCouplingMesh::simplexize;
246 %newobject ParaMEDMEM::MEDCouplingMesh::buildUnstructured;
247 %newobject ParaMEDMEM::MEDCouplingMesh::MergeMeshes;
248 %newobject ParaMEDMEM::MEDCouplingPointSet::zipCoordsTraducer;
249 %newobject ParaMEDMEM::MEDCouplingPointSet::getCellsInBoundingBox;
250 %newobject ParaMEDMEM::MEDCouplingPointSet::findBoundaryNodes;
251 %newobject ParaMEDMEM::MEDCouplingPointSet::buildBoundaryMesh;
252 %newobject ParaMEDMEM::MEDCouplingPointSet::MergeNodesArray;
253 %newobject ParaMEDMEM::MEDCouplingPointSet::buildPartOfMySelf2;
254 %newobject ParaMEDMEM::MEDCouplingPointSet::BuildInstanceFromMeshType;
255 %newobject ParaMEDMEM::MEDCouplingPointSet::zipConnectivityTraducer;
256 %newobject ParaMEDMEM::MEDCouplingPointSet::mergeMyselfWithOnSameCoords;
257 %newobject ParaMEDMEM::MEDCouplingPointSet::fillCellIdsToKeepFromNodeIds;
258 %newobject ParaMEDMEM::MEDCouplingPointSet::getCellIdsLyingOnNodes;
259 %newobject ParaMEDMEM::MEDCouplingPointSet::deepCpyConnectivityOnly;
260 %newobject ParaMEDMEM::MEDCouplingPointSet::getBoundingBoxForBBTree;
261 %newobject ParaMEDMEM::MEDCouplingPointSet::computeFetchedNodeIds;
262 %newobject ParaMEDMEM::MEDCouplingPointSet::ComputeNbOfInteractionsWithSrcCells;
263 %newobject ParaMEDMEM::MEDCouplingPointSet::__getitem__;
264 %newobject ParaMEDMEM::MEDCouplingUMesh::New;
265 %newobject ParaMEDMEM::MEDCouplingUMesh::getNodalConnectivity;
266 %newobject ParaMEDMEM::MEDCouplingUMesh::getNodalConnectivityIndex;
267 %newobject ParaMEDMEM::MEDCouplingUMesh::clone;
268 %newobject ParaMEDMEM::MEDCouplingUMesh::__iter__;
269 %newobject ParaMEDMEM::MEDCouplingUMesh::cellsByType;
270 %newobject ParaMEDMEM::MEDCouplingUMesh::buildDescendingConnectivity;
271 %newobject ParaMEDMEM::MEDCouplingUMesh::buildDescendingConnectivity2;
272 %newobject ParaMEDMEM::MEDCouplingUMesh::explode3DMeshTo1D;
273 %newobject ParaMEDMEM::MEDCouplingUMesh::buildExtrudedMesh;
274 %newobject ParaMEDMEM::MEDCouplingUMesh::buildSpreadZonesWithPoly;
275 %newobject ParaMEDMEM::MEDCouplingUMesh::MergeUMeshes;
276 %newobject ParaMEDMEM::MEDCouplingUMesh::MergeUMeshesOnSameCoords;
277 %newobject ParaMEDMEM::MEDCouplingUMesh::ComputeSpreadZoneGradually;
278 %newobject ParaMEDMEM::MEDCouplingUMesh::ComputeSpreadZoneGraduallyFromSeed;
279 %newobject ParaMEDMEM::MEDCouplingUMesh::buildNewNumberingFromCommNodesFrmt;
280 %newobject ParaMEDMEM::MEDCouplingUMesh::conformize2D;
281 %newobject ParaMEDMEM::MEDCouplingUMesh::colinearize2D;
282 %newobject ParaMEDMEM::MEDCouplingUMesh::rearrange2ConsecutiveCellTypes;
283 %newobject ParaMEDMEM::MEDCouplingUMesh::sortCellsInMEDFileFrmt;
284 %newobject ParaMEDMEM::MEDCouplingUMesh::getRenumArrForMEDFileFrmt;
285 %newobject ParaMEDMEM::MEDCouplingUMesh::convertCellArrayPerGeoType;
286 %newobject ParaMEDMEM::MEDCouplingUMesh::getRenumArrForConsecutiveCellTypesSpec;
287 %newobject ParaMEDMEM::MEDCouplingUMesh::buildDirectionVectorField;
288 %newobject ParaMEDMEM::MEDCouplingUMesh::convertLinearCellsToQuadratic;
289 %newobject ParaMEDMEM::MEDCouplingUMesh::getEdgeRatioField;
290 %newobject ParaMEDMEM::MEDCouplingUMesh::getAspectRatioField;
291 %newobject ParaMEDMEM::MEDCouplingUMesh::getWarpField;
292 %newobject ParaMEDMEM::MEDCouplingUMesh::getSkewField;
293 %newobject ParaMEDMEM::MEDCouplingUMesh::getPartBarycenterAndOwner;
294 %newobject ParaMEDMEM::MEDCouplingUMesh::computePlaneEquationOf3DFaces;
295 %newobject ParaMEDMEM::MEDCouplingUMesh::getPartMeasureField;
296 %newobject ParaMEDMEM::MEDCouplingUMesh::buildPartOrthogonalField;
297 %newobject ParaMEDMEM::MEDCouplingUMesh::keepCellIdsByType;
298 %newobject ParaMEDMEM::MEDCouplingUMesh::Build0DMeshFromCoords;
299 %newobject ParaMEDMEM::MEDCouplingUMesh::findAndCorrectBadOriented3DExtrudedCells;
300 %newobject ParaMEDMEM::MEDCouplingUMesh::findAndCorrectBadOriented3DCells;
301 %newobject ParaMEDMEM::MEDCouplingUMesh::convertIntoSingleGeoTypeMesh;
302 %newobject ParaMEDMEM::MEDCouplingUMesh::convertNodalConnectivityToStaticGeoTypeMesh;
303 %newobject ParaMEDMEM::MEDCouplingUMesh::findCellIdsOnBoundary;
304 %newobject ParaMEDMEM::MEDCouplingUMesh::computeSkin;
305 %newobject ParaMEDMEM::MEDCouplingUMesh::buildSetInstanceFromThis;
306 %newobject ParaMEDMEM::MEDCouplingUMesh::getCellIdsCrossingPlane;
307 %newobject ParaMEDMEM::MEDCouplingUMesh::convexEnvelop2D;
308 %newobject ParaMEDMEM::MEDCouplingUMesh::ComputeRangesFromTypeDistribution;
309 %newobject ParaMEDMEM::MEDCouplingUMesh::buildUnionOf2DMesh;
310 %newobject ParaMEDMEM::MEDCouplingUMesh::buildUnionOf3DMesh;
311 %newobject ParaMEDMEM::MEDCouplingUMesh::orderConsecutiveCells1D;
312 %newobject ParaMEDMEM::MEDCouplingUMesh::getBoundingBoxForBBTreeFast;
313 %newobject ParaMEDMEM::MEDCouplingUMesh::getBoundingBoxForBBTree2DQuadratic;
314 %newobject ParaMEDMEM::MEDCouplingUMesh::getBoundingBoxForBBTree1DQuadratic;
315 %newobject ParaMEDMEM::MEDCouplingUMeshCellByTypeEntry::__iter__;
316 %newobject ParaMEDMEM::MEDCouplingUMeshCellEntry::__iter__;
317 %newobject ParaMEDMEM::MEDCoupling1GTUMesh::New;
318 %newobject ParaMEDMEM::MEDCoupling1GTUMesh::getNodalConnectivity;
319 %newobject ParaMEDMEM::MEDCoupling1GTUMesh::AggregateOnSameCoordsToUMesh;
320 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::New;
321 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::buildSetInstanceFromThis;
322 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::computeDualMesh;
323 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::explodeEachHexa8To6Quad4;
324 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::sortHexa8EachOther;
325 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::Merge1SGTUMeshes;
326 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::Merge1SGTUMeshesOnSameCoords;
327 %newobject ParaMEDMEM::MEDCoupling1DGTUMesh::New;
328 %newobject ParaMEDMEM::MEDCoupling1DGTUMesh::getNodalConnectivityIndex;
329 %newobject ParaMEDMEM::MEDCoupling1DGTUMesh::buildSetInstanceFromThis;
330 %newobject ParaMEDMEM::MEDCoupling1DGTUMesh::Merge1DGTUMeshes;
331 %newobject ParaMEDMEM::MEDCoupling1DGTUMesh::Merge1DGTUMeshesOnSameCoords;
332 %newobject ParaMEDMEM::MEDCouplingExtrudedMesh::New;
333 %newobject ParaMEDMEM::MEDCouplingExtrudedMesh::build3DUnstructuredMesh;
334 %newobject ParaMEDMEM::MEDCouplingStructuredMesh::buildStructuredSubPart;
335 %newobject ParaMEDMEM::MEDCouplingStructuredMesh::build1SGTUnstructured;
336 %newobject ParaMEDMEM::MEDCouplingStructuredMesh::build1SGTSubLevelMesh;
337 %newobject ParaMEDMEM::MEDCouplingStructuredMesh::BuildExplicitIdsFrom;
338 %newobject ParaMEDMEM::MEDCouplingStructuredMesh::ExtractFieldOfDoubleFrom;
339 %newobject ParaMEDMEM::MEDCouplingStructuredMesh::Build1GTNodalConnectivity;
340 %newobject ParaMEDMEM::MEDCouplingStructuredMesh::Build1GTNodalConnectivityOfSubLevelMesh;
341 %newobject ParaMEDMEM::MEDCouplingStructuredMesh::ComputeCornersGhost;
342 %newobject ParaMEDMEM::MEDCouplingCMesh::New;
343 %newobject ParaMEDMEM::MEDCouplingCMesh::clone;
344 %newobject ParaMEDMEM::MEDCouplingCMesh::getCoordsAt;
345 %newobject ParaMEDMEM::MEDCouplingIMesh::New;
346 %newobject ParaMEDMEM::MEDCouplingIMesh::asSingleCell;
347 %newobject ParaMEDMEM::MEDCouplingIMesh::buildWithGhost;
348 %newobject ParaMEDMEM::MEDCouplingIMesh::convertToCartesian;
349 %newobject ParaMEDMEM::MEDCouplingCurveLinearMesh::New;
350 %newobject ParaMEDMEM::MEDCouplingCurveLinearMesh::clone;
351 %newobject ParaMEDMEM::MEDCouplingCurveLinearMesh::getCoords;
352 %newobject ParaMEDMEM::MEDCouplingMultiFields::New;
353 %newobject ParaMEDMEM::MEDCouplingMultiFields::deepCpy;
354 %newobject ParaMEDMEM::MEDCouplingFieldOverTime::New;
355 %newobject ParaMEDMEM::MEDCouplingCartesianAMRPatchGen::getMesh;
356 %newobject ParaMEDMEM::MEDCouplingCartesianAMRPatchGen::__getitem__;
357 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::deepCpy;
358 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::buildUnstructured;
359 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::extractGhostFrom;
360 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::buildMeshFromPatchEnvelop;
361 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::buildMeshOfDirectChildrenOnly;
362 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::getImageMesh;
363 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::getGodFather;
364 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::getFather;
365 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::getPatch;
366 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::createCellFieldOnPatch;
367 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::findPatchesInTheNeighborhoodOf;
368 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::getPatchAtPosition;
369 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::getMeshAtPosition;
370 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMeshGen::__getitem__;
371 %newobject ParaMEDMEM::MEDCouplingCartesianAMRMesh::New;
372 %newobject ParaMEDMEM::MEDCouplingDataForGodFather::getMyGodFather;
373 %newobject ParaMEDMEM::MEDCouplingAMRAttribute::New;
374 %newobject ParaMEDMEM::MEDCouplingAMRAttribute::deepCpy;
375 %newobject ParaMEDMEM::MEDCouplingAMRAttribute::deepCpyWithoutGodFather;
376 %newobject ParaMEDMEM::MEDCouplingAMRAttribute::getFieldOn;
377 %newobject ParaMEDMEM::MEDCouplingAMRAttribute::projectTo;
378 %newobject ParaMEDMEM::MEDCouplingAMRAttribute::buildCellFieldOnRecurseWithoutOverlapWithoutGhost;
379 %newobject ParaMEDMEM::MEDCouplingAMRAttribute::buildCellFieldOnWithGhost;
380 %newobject ParaMEDMEM::MEDCouplingAMRAttribute::buildCellFieldOnWithoutGhost;
381 %newobject ParaMEDMEM::DenseMatrix::New;
382 %newobject ParaMEDMEM::DenseMatrix::deepCpy;
383 %newobject ParaMEDMEM::DenseMatrix::shallowCpy;
384 %newobject ParaMEDMEM::DenseMatrix::getData;
385 %newobject ParaMEDMEM::DenseMatrix::matVecMult;
386 %newobject ParaMEDMEM::DenseMatrix::MatVecMult;
387 %newobject ParaMEDMEM::DenseMatrix::__add__;
388 %newobject ParaMEDMEM::DenseMatrix::__sub__;
389 %newobject ParaMEDMEM::DenseMatrix::__mul__;
390 %newobject ParaMEDMEM::PartDefinition::New;
391 %newobject ParaMEDMEM::PartDefinition::toDAI;
392 %newobject ParaMEDMEM::PartDefinition::__add__;
393 %newobject ParaMEDMEM::PartDefinition::composeWith;
394 %newobject ParaMEDMEM::PartDefinition::tryToSimplify;
395 %newobject ParaMEDMEM::DataArrayPartDefinition::New;
396 %newobject ParaMEDMEM::SlicePartDefinition::New;
397
398 %feature("unref") MEDCouplingPointSet "$this->decrRef();"
399 %feature("unref") MEDCouplingMesh "$this->decrRef();"
400 %feature("unref") MEDCouplingUMesh "$this->decrRef();"
401 %feature("unref") MEDCoupling1GTUMesh "$this->decrRef();"
402 %feature("unref") MEDCoupling1SGTUMesh "$this->decrRef();"
403 %feature("unref") MEDCoupling1DGTUMesh "$this->decrRef();"
404 %feature("unref") MEDCouplingExtrudedMesh "$this->decrRef();"
405 %feature("unref") MEDCouplingCMesh "$this->decrRef();"
406 %feature("unref") MEDCouplingIMesh "$this->decrRef();"
407 %feature("unref") MEDCouplingCurveLinearMesh "$this->decrRef();"
408 %feature("unref") MEDCouplingField "$this->decrRef();"
409 %feature("unref") MEDCouplingFieldDiscretizationP0 "$this->decrRef();"
410 %feature("unref") MEDCouplingFieldDiscretizationP1 "$this->decrRef();"
411 %feature("unref") MEDCouplingFieldDiscretizationGauss "$this->decrRef();"
412 %feature("unref") MEDCouplingFieldDiscretizationGaussNE "$this->decrRef();"
413 %feature("unref") MEDCouplingFieldDiscretizationKriging "$this->decrRef();"
414 %feature("unref") MEDCouplingFieldDouble "$this->decrRef();"
415 %feature("unref") MEDCouplingMultiFields "$this->decrRef();"
416 %feature("unref") MEDCouplingFieldTemplate "$this->decrRef();"
417 %feature("unref") MEDCouplingMultiFields "$this->decrRef();"
418 %feature("unref") MEDCouplingCartesianAMRMeshGen "$this->decrRef();"
419 %feature("unref") MEDCouplingCartesianAMRMesh "$this->decrRef();"
420 %feature("unref") MEDCouplingCartesianAMRMeshSub "$this->decrRef();"
421 %feature("unref") MEDCouplingCartesianAMRPatchGen "$this->decrRef();"
422 %feature("unref") MEDCouplingCartesianAMRPatchGF "$this->decrRef();"
423 %feature("unref") MEDCouplingCartesianAMRPatch "$this->decrRef();"
424 %feature("unref") MEDCouplingDataForGodFather "$this->decrRef();"
425 %feature("unref") MEDCouplingAMRAttribute "$this->decrRef();"
426 %feature("unref") DenseMatrix "$this->decrRef();"
427 %feature("unref") PartDefinition "$this->decrRef();"
428 %feature("unref") DataArrayPartDefinition "$this->decrRef();"
429 %feature("unref") SlicePartDefinition "$this->decrRef();"
430
431 %rename(assign) *::operator=;
432 %ignore ParaMEDMEM::MEDCouplingGaussLocalization::pushTinySerializationIntInfo;
433 %ignore ParaMEDMEM::MEDCouplingGaussLocalization::pushTinySerializationDblInfo;
434 %ignore ParaMEDMEM::MEDCouplingGaussLocalization::fillWithValues;
435 %ignore ParaMEDMEM::MEDCouplingGaussLocalization::buildNewInstanceFromTinyInfo;
436
437 %nodefaultctor;
438
439 %rename (InterpKernelException) INTERP_KERNEL::Exception;
440
441 %include "MEDCouplingRefCountObject.i"
442 %include "MEDCouplingMemArray.i"
443
444 namespace INTERP_KERNEL
445
446   /*!
447    * \class BoxSplittingOptions
448    * Class defining the options for box splitting used for AMR algorithm like creation of patches following a criterion.
449    */
450   class BoxSplittingOptions
451   {
452   public:
453     BoxSplittingOptions();
454     void init() throw(INTERP_KERNEL::Exception);
455     double getEfficiencyGoal() const throw(INTERP_KERNEL::Exception);
456     void setEfficiencyGoal(double efficiency) throw(INTERP_KERNEL::Exception);
457     double getEfficiencyThreshold() const throw(INTERP_KERNEL::Exception);
458     void setEfficiencyThreshold(double efficiencyThreshold) throw(INTERP_KERNEL::Exception);
459     int getMinimumPatchLength() const throw(INTERP_KERNEL::Exception);
460     void setMinimumPatchLength(int minPatchLength) throw(INTERP_KERNEL::Exception);
461     int getMaximumPatchLength() const throw(INTERP_KERNEL::Exception);
462     void setMaximumPatchLength(int maxPatchLength) throw(INTERP_KERNEL::Exception);
463     int getMaximumNbOfCellsInPatch() const throw(INTERP_KERNEL::Exception);
464     void setMaximumNbOfCellsInPatch(int maxNbCellsInPatch) throw(INTERP_KERNEL::Exception);
465     void copyOptions(const BoxSplittingOptions & other) throw(INTERP_KERNEL::Exception);
466     std::string printOptions() const throw(INTERP_KERNEL::Exception);
467     %extend
468     {
469       std::string __str__() const throw(INTERP_KERNEL::Exception)
470       {
471         return self->printOptions();
472       }
473     }
474   };
475 }
476
477 namespace ParaMEDMEM
478 {
479   typedef enum
480     {
481       ON_CELLS = 0,
482       ON_NODES = 1,
483       ON_GAUSS_PT = 2,
484       ON_GAUSS_NE = 3,
485       ON_NODES_KR = 4
486     } TypeOfField;
487
488   typedef enum
489     {
490       NO_TIME = 4,
491       ONE_TIME = 5,
492       LINEAR_TIME = 6,
493       CONST_ON_TIME_INTERVAL = 7
494     } TypeOfTimeDiscretization;
495
496   typedef enum
497     {
498       UNSTRUCTURED = 5,
499       CARTESIAN = 7,
500       EXTRUDED = 8,
501       CURVE_LINEAR = 9,
502       SINGLE_STATIC_GEO_TYPE_UNSTRUCTURED = 10,
503       SINGLE_DYNAMIC_GEO_TYPE_UNSTRUCTURED = 11,
504       IMAGE_GRID = 12
505     } MEDCouplingMeshType;
506
507   class DataArrayInt;
508   class DataArrayDouble;
509   class MEDCouplingUMesh;
510   class MEDCouplingFieldDouble;
511
512   %extend RefCountObject
513   {
514     std::string getHiddenCppPointer() const
515     {
516       std::ostringstream oss; oss << "C++ Pointer address is : " << self;
517       return oss.str();
518     }
519   }
520
521   %extend MEDCouplingGaussLocalization
522   {
523     std::string __str__() const throw(INTERP_KERNEL::Exception)
524     {
525       return self->getStringRepr();
526     }
527
528     std::string __repr__() const throw(INTERP_KERNEL::Exception)
529     {
530       std::ostringstream oss; oss << "MEDCouplingGaussLocalization C++ instance at " << self << "." << std::endl;
531       oss << self->getStringRepr();
532       return oss.str();
533     }
534   }
535
536   //== MEDCouplingMesh
537   
538   class MEDCouplingMesh : public RefCountObject, public TimeLabel
539   {
540   public:
541     void setName(const std::string& name);
542     std::string getName() const;
543     void setDescription(const std::string& descr);
544     std::string getDescription() const;
545     void setTime(double val, int iteration, int order);
546     void setTimeUnit(const std::string& unit);
547     std::string getTimeUnit() const;
548     virtual MEDCouplingMeshType getType() const throw(INTERP_KERNEL::Exception);
549     bool isStructured() const throw(INTERP_KERNEL::Exception);
550     virtual MEDCouplingMesh *deepCpy() const;
551     virtual bool isEqual(const MEDCouplingMesh *other, double prec) const throw(INTERP_KERNEL::Exception);
552     virtual bool isEqualWithoutConsideringStr(const MEDCouplingMesh *other, double prec) const throw(INTERP_KERNEL::Exception);
553     virtual void checkFastEquivalWith(const MEDCouplingMesh *other, double prec) const throw(INTERP_KERNEL::Exception);
554     virtual void copyTinyStringsFrom(const MEDCouplingMesh *other) throw(INTERP_KERNEL::Exception);
555     virtual void copyTinyInfoFrom(const MEDCouplingMesh *other) throw(INTERP_KERNEL::Exception);
556     virtual void checkCoherency() const throw(INTERP_KERNEL::Exception);
557     virtual void checkCoherency1(double eps=1e-12) const throw(INTERP_KERNEL::Exception);
558     virtual void checkCoherency2(double eps=1e-12) const throw(INTERP_KERNEL::Exception);
559     virtual int getNumberOfCells() const throw(INTERP_KERNEL::Exception);
560     virtual int getNumberOfNodes() const throw(INTERP_KERNEL::Exception);
561     virtual int getSpaceDimension() const throw(INTERP_KERNEL::Exception);
562     virtual int getMeshDimension() const throw(INTERP_KERNEL::Exception);
563     virtual DataArrayDouble *getCoordinatesAndOwner() const throw(INTERP_KERNEL::Exception);
564     virtual DataArrayDouble *getBarycenterAndOwner() const throw(INTERP_KERNEL::Exception);
565     virtual DataArrayDouble *computeIsoBarycenterOfNodesPerCell() const throw(INTERP_KERNEL::Exception);
566     virtual DataArrayInt *giveCellsWithType(INTERP_KERNEL::NormalizedCellType type) const throw(INTERP_KERNEL::Exception);
567     virtual DataArrayInt *computeNbOfNodesPerCell() const throw(INTERP_KERNEL::Exception);
568     virtual DataArrayInt *computeNbOfFacesPerCell() const throw(INTERP_KERNEL::Exception);
569     virtual DataArrayInt *computeEffectiveNbOfNodesPerCell() const throw(INTERP_KERNEL::Exception);
570     virtual MEDCouplingMesh *buildPartRange(int beginCellIds, int endCellIds, int stepCellIds) const throw(INTERP_KERNEL::Exception);
571     virtual int getNumberOfCellsWithType(INTERP_KERNEL::NormalizedCellType type) const throw(INTERP_KERNEL::Exception);
572     virtual INTERP_KERNEL::NormalizedCellType getTypeOfCell(int cellId) const throw(INTERP_KERNEL::Exception);
573     virtual std::string simpleRepr() const throw(INTERP_KERNEL::Exception);
574     virtual std::string advancedRepr() const throw(INTERP_KERNEL::Exception);
575     std::string writeVTK(const std::string& fileName, bool isBinary=true) const throw(INTERP_KERNEL::Exception);
576     virtual std::string getVTKFileExtension() const;
577     std::string getVTKFileNameOf(const std::string& fileName) const;
578     // tools
579     virtual MEDCouplingFieldDouble *getMeasureField(bool isAbs) const throw(INTERP_KERNEL::Exception);
580     virtual MEDCouplingFieldDouble *getMeasureFieldOnNode(bool isAbs) const throw(INTERP_KERNEL::Exception);
581     virtual MEDCouplingFieldDouble *fillFromAnalytic(TypeOfField t, int nbOfComp, const std::string& func) const throw(INTERP_KERNEL::Exception);
582     virtual MEDCouplingFieldDouble *fillFromAnalytic2(TypeOfField t, int nbOfComp, const std::string& func) const throw(INTERP_KERNEL::Exception);
583     virtual MEDCouplingFieldDouble *fillFromAnalytic3(TypeOfField t, int nbOfComp, const std::vector<std::string>& varsOrder, const std::string& func) const throw(INTERP_KERNEL::Exception);
584     virtual MEDCouplingFieldDouble *buildOrthogonalField() const throw(INTERP_KERNEL::Exception);
585     virtual MEDCouplingUMesh *buildUnstructured() const throw(INTERP_KERNEL::Exception);
586     virtual MEDCouplingMesh *mergeMyselfWith(const MEDCouplingMesh *other) const throw(INTERP_KERNEL::Exception);
587     virtual bool areCompatibleForMerge(const MEDCouplingMesh *other) const throw(INTERP_KERNEL::Exception);
588     virtual DataArrayInt *simplexize(int policy) throw(INTERP_KERNEL::Exception);
589     static MEDCouplingMesh *MergeMeshes(const MEDCouplingMesh *mesh1, const MEDCouplingMesh *mesh2) throw(INTERP_KERNEL::Exception);
590     static bool IsStaticGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
591     static bool IsLinearGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
592     static INTERP_KERNEL::NormalizedCellType GetCorrespondingPolyType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
593     static int GetNumberOfNodesOfGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
594     static int GetDimensionOfGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
595     static const char *GetReprOfGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
596     %extend
597        {
598          std::string __str__() const throw(INTERP_KERNEL::Exception)
599          {
600            return self->simpleRepr();
601          }
602
603          PyObject *getTime() throw(INTERP_KERNEL::Exception)
604          {
605            int tmp1,tmp2;
606            double tmp0=self->getTime(tmp1,tmp2);
607            PyObject *res = PyList_New(3);
608            PyList_SetItem(res,0,SWIG_From_double(tmp0));
609            PyList_SetItem(res,1,SWIG_From_int(tmp1));
610            PyList_SetItem(res,2,SWIG_From_int(tmp2));
611            return res;
612          }
613
614          int getCellContainingPoint(PyObject *p, double eps) const throw(INTERP_KERNEL::Exception)
615          {
616            double val;
617            DataArrayDouble *a;
618            DataArrayDoubleTuple *aa;
619            std::vector<double> bb;
620            int sw;
621            int spaceDim=self->getSpaceDimension();
622            const char msg[]="Python wrap of MEDCouplingMesh::getCellContainingPoint : ";
623            const double *pos=convertObjToPossibleCpp5_Safe(p,sw,val,a,aa,bb,msg,1,spaceDim,true);
624            return self->getCellContainingPoint(pos,eps);
625          }
626
627          PyObject *getCellsContainingPoints(PyObject *p, int nbOfPoints, double eps) const throw(INTERP_KERNEL::Exception)
628          {
629            double val;
630            DataArrayDouble *a;
631            DataArrayDoubleTuple *aa;
632            std::vector<double> bb;
633            int sw;
634            int spaceDim=self->getSpaceDimension();
635            const char msg[]="Python wrap of MEDCouplingMesh::getCellsContainingPoint : ";
636            const double *pos=convertObjToPossibleCpp5_Safe(p,sw,val,a,aa,bb,msg,nbOfPoints,spaceDim,true);
637            MEDCouplingAutoRefCountObjectPtr<DataArrayInt> elts,eltsIndex;
638            self->getCellsContainingPoints(pos,nbOfPoints,eps,elts,eltsIndex);
639            PyObject *ret=PyTuple_New(2);
640            PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(elts.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
641            PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(eltsIndex.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
642            return ret;
643          }
644
645          PyObject *getCellsContainingPoints(PyObject *p, double eps) const throw(INTERP_KERNEL::Exception)
646          {
647            MEDCouplingAutoRefCountObjectPtr<DataArrayInt> elts,eltsIndex;
648            int spaceDim=self->getSpaceDimension();
649            void *da=0;
650            int res1=SWIG_ConvertPtr(p,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, 0 |  0 );
651            if (!SWIG_IsOK(res1))
652              {
653                int size;
654                INTERP_KERNEL::AutoCPtr<double> tmp=convertPyToNewDblArr2(p,&size);
655                int nbOfPoints=size/spaceDim;
656                if(size%spaceDim!=0)
657                  {
658                    throw INTERP_KERNEL::Exception("MEDCouplingMesh::getCellsContainingPoints : Invalid list length ! Must be a multiple of self.getSpaceDimension() !");
659                  }
660                self->getCellsContainingPoints(tmp,nbOfPoints,eps,elts,eltsIndex);
661              }
662            else
663              {
664                DataArrayDouble *da2=reinterpret_cast< DataArrayDouble * >(da);
665                if(!da2)
666                  throw INTERP_KERNEL::Exception("MEDCouplingMesh::getCellsContainingPoints : Not null DataArrayDouble instance expected !");
667                da2->checkAllocated();
668                int size=da2->getNumberOfTuples();
669                int nbOfCompo=da2->getNumberOfComponents();
670                if(nbOfCompo!=spaceDim)
671                  {
672                    throw INTERP_KERNEL::Exception("MEDCouplingMesh::getCellsContainingPoints : Invalid DataArrayDouble nb of components ! Expected same as self.getSpaceDimension() !");
673                  }
674                self->getCellsContainingPoints(da2->getConstPointer(),size,eps,elts,eltsIndex);
675              }
676            PyObject *ret=PyTuple_New(2);
677            PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(elts.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
678            PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(eltsIndex.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
679            return ret;
680          }
681
682          PyObject *getCellsContainingPoint(PyObject *p, double eps) const throw(INTERP_KERNEL::Exception)
683          {
684            double val;
685            DataArrayDouble *a;
686            DataArrayDoubleTuple *aa;
687            std::vector<double> bb;
688            int sw;
689            int spaceDim=self->getSpaceDimension();
690            const char msg[]="Python wrap of MEDCouplingUMesh::getCellsContainingPoint : ";
691            const double *pos=convertObjToPossibleCpp5_Safe(p,sw,val,a,aa,bb,msg,1,spaceDim,true);
692            std::vector<int> elts;
693            self->getCellsContainingPoint(pos,eps,elts);
694            DataArrayInt *ret=DataArrayInt::New();
695            ret->alloc((int)elts.size(),1);
696            std::copy(elts.begin(),elts.end(),ret->getPointer());
697            return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
698          }
699          
700          virtual PyObject *getReverseNodalConnectivity() const throw(INTERP_KERNEL::Exception)
701          {
702            MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d0=DataArrayInt::New();
703            MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d1=DataArrayInt::New();
704            self->getReverseNodalConnectivity(d0,d1);
705            PyObject *ret=PyTuple_New(2);
706            PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
707            PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
708            return ret;
709          }
710          
711          void renumberCells(PyObject *li, bool check=true) throw(INTERP_KERNEL::Exception)
712          {
713            int sw,sz(-1);
714            int v0; std::vector<int> v1;
715            const int *ids(convertObjToPossibleCpp1_Safe(li,sw,sz,v0,v1));
716            self->renumberCells(ids,check);
717          }
718
719          PyObject *checkGeoEquivalWith(const MEDCouplingMesh *other, int levOfCheck, double prec) const throw(INTERP_KERNEL::Exception)
720          {
721            DataArrayInt *cellCor, *nodeCor;
722            self->checkGeoEquivalWith(other,levOfCheck,prec,cellCor,nodeCor);
723            PyObject *res = PyList_New(2);
724            PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(cellCor),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, cellCor?SWIG_POINTER_OWN | 0:0 ));
725            PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(nodeCor),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, nodeCor?SWIG_POINTER_OWN | 0:0 ));
726            return res;
727          }
728
729          PyObject *checkDeepEquivalWith(const MEDCouplingMesh *other, int cellCompPol, double prec) const throw(INTERP_KERNEL::Exception)
730          {
731            DataArrayInt *cellCor=0,*nodeCor=0;
732            self->checkDeepEquivalWith(other,cellCompPol,prec,cellCor,nodeCor);
733            PyObject *res = PyList_New(2);
734            PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(cellCor),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, cellCor?SWIG_POINTER_OWN | 0:0 ));
735            PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(nodeCor),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, nodeCor?SWIG_POINTER_OWN | 0:0 ));
736            return res;
737          }
738          
739          DataArrayInt *checkDeepEquivalOnSameNodesWith(const MEDCouplingMesh *other, int cellCompPol, double prec) const throw(INTERP_KERNEL::Exception)
740          {
741            DataArrayInt *cellCor=0;
742            self->checkDeepEquivalOnSameNodesWith(other,cellCompPol,prec,cellCor);
743            return cellCor;
744          }
745
746          DataArrayInt *getCellIdsFullyIncludedInNodeIds(PyObject *li) const throw(INTERP_KERNEL::Exception)
747          {
748            void *da=0;
749            int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayInt, 0 |  0 );
750            if (!SWIG_IsOK(res1))
751              {
752                int size;
753                INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
754                return self->getCellIdsFullyIncludedInNodeIds(tmp,((const int *)tmp)+size);
755              }
756            else
757              {
758                DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
759                if(!da2)
760                  throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
761                da2->checkAllocated();
762                return self->getCellIdsFullyIncludedInNodeIds(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems());
763              }
764          }
765          PyObject *getNodeIdsOfCell(int cellId) const throw(INTERP_KERNEL::Exception)
766          {
767            std::vector<int> conn;
768            self->getNodeIdsOfCell(cellId,conn);
769            return convertIntArrToPyList2(conn);
770          }
771
772          PyObject *getCoordinatesOfNode(int nodeId) const throw(INTERP_KERNEL::Exception)
773          {
774            std::vector<double> coo;
775            self->getCoordinatesOfNode(nodeId,coo);
776            return convertDblArrToPyList2(coo);
777          }
778
779          void scale(PyObject *point, double factor) throw(INTERP_KERNEL::Exception)
780          {
781            double val;
782            DataArrayDouble *a;
783            DataArrayDoubleTuple *aa;
784            std::vector<double> bb;
785            int sw;
786            int spaceDim=self->getSpaceDimension();
787            const char msg[]="Python wrap of MEDCouplingPointSet::scale : ";
788            const double *pointPtr=convertObjToPossibleCpp5_Safe(point,sw,val,a,aa,bb,msg,1,spaceDim,true);
789            self->scale(pointPtr,factor);
790          }
791
792          PyObject *getBoundingBox() const throw(INTERP_KERNEL::Exception)
793          {
794            int spaceDim=self->getSpaceDimension();
795            INTERP_KERNEL::AutoPtr<double> tmp=new double[2*spaceDim];
796            self->getBoundingBox(tmp);
797            PyObject *ret=convertDblArrToPyListOfTuple(tmp,2,spaceDim);
798            return ret;
799          }
800
801          PyObject *isEqualIfNotWhy(const MEDCouplingMesh *other, double prec) const throw(INTERP_KERNEL::Exception)
802          {
803            std::string ret1;
804            bool ret0=self->isEqualIfNotWhy(other,prec,ret1);
805            PyObject *ret=PyTuple_New(2);
806            PyObject *ret0Py=ret0?Py_True:Py_False;
807            Py_XINCREF(ret0Py);
808            PyTuple_SetItem(ret,0,ret0Py);
809            PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
810            return ret;
811          }
812
813          PyObject *buildPart(PyObject *li) const throw(INTERP_KERNEL::Exception)
814          {
815            int szArr,sw,iTypppArr;
816            std::vector<int> stdvecTyyppArr;
817            const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
818            MEDCouplingMesh *ret=self->buildPart(tmp,tmp+szArr);
819            if(sw==3)//DataArrayInt
820              { 
821                void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
822                DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
823                std::string name=argpt->getName();
824                if(!name.empty())
825                  ret->setName(name.c_str());
826              }
827            return convertMesh(ret, SWIG_POINTER_OWN | 0 );
828          }
829         
830          PyObject *buildPartAndReduceNodes(PyObject *li) const throw(INTERP_KERNEL::Exception)
831          {
832            int szArr,sw,iTypppArr;
833            std::vector<int> stdvecTyyppArr;
834            DataArrayInt *arr=0;
835            const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
836            MEDCouplingMesh *ret=self->buildPartAndReduceNodes(tmp,tmp+szArr,arr);
837            if(sw==3)//DataArrayInt
838              { 
839                void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
840                DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
841                std::string name=argpt->getName();
842                if(!name.empty())
843                  ret->setName(name.c_str());
844              }
845            //
846            PyObject *res = PyList_New(2);
847            PyObject *obj0=convertMesh(ret, SWIG_POINTER_OWN | 0 );
848            PyObject *obj1=SWIG_NewPointerObj(SWIG_as_voidptr(arr),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
849            PyList_SetItem(res,0,obj0);
850            PyList_SetItem(res,1,obj1);
851            return res;
852          }
853
854          PyObject *buildPartRangeAndReduceNodes(int beginCellIds, int endCellIds, int stepCellIds) const throw(INTERP_KERNEL::Exception)
855          {
856            int a,b,c;
857            DataArrayInt *arr=0;
858            MEDCouplingMesh *ret=self->buildPartRangeAndReduceNodes(beginCellIds,endCellIds,stepCellIds,a,b,c,arr);
859            PyObject *res = PyTuple_New(2);
860            PyObject *obj0=convertMesh(ret, SWIG_POINTER_OWN | 0 );
861            PyObject *obj1=0;
862            if(arr)
863              obj1=SWIG_NewPointerObj(SWIG_as_voidptr(arr),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
864            else
865              obj1=PySlice_New(PyInt_FromLong(a),PyInt_FromLong(b),PyInt_FromLong(b));
866            PyTuple_SetItem(res,0,obj0);
867            PyTuple_SetItem(res,1,obj1);
868            return res;
869          }
870
871         PyObject *getDistributionOfTypes() const throw(INTERP_KERNEL::Exception)
872         {
873           std::vector<int> vals=self->getDistributionOfTypes();
874           if(vals.size()%3!=0)
875             throw INTERP_KERNEL::Exception("Internal Error detected in wrap python ! code returned by MEDCouplingMesh::getDistributionOfTypes is not so that %3==0 !");
876           PyObject *ret=PyList_New((int)vals.size()/3);
877           for(int j=0;j<(int)vals.size()/3;j++)
878              {
879                PyObject *ret1=PyList_New(3);
880                PyList_SetItem(ret1,0,SWIG_From_int(vals[3*j]));
881                PyList_SetItem(ret1,1,SWIG_From_int(vals[3*j+1]));
882                PyList_SetItem(ret1,2,SWIG_From_int(vals[3*j+2]));
883                PyList_SetItem(ret,j,ret1);
884              }
885           return ret;
886         }
887
888         DataArrayInt *checkTypeConsistencyAndContig(PyObject *li, PyObject *li2) const throw(INTERP_KERNEL::Exception)
889         {
890           std::vector<int> code;
891           std::vector<const DataArrayInt *> idsPerType;
892           convertFromPyObjVectorOfObj<const ParaMEDMEM::DataArrayInt *>(li2,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,"DataArrayInt",idsPerType);
893           convertPyToNewIntArr4(li,1,3,code);
894           return self->checkTypeConsistencyAndContig(code,idsPerType);
895         }
896
897         PyObject *splitProfilePerType(const DataArrayInt *profile) const throw(INTERP_KERNEL::Exception)
898         {
899           std::vector<int> code;
900           std::vector<DataArrayInt *> idsInPflPerType;
901           std::vector<DataArrayInt *> idsPerType;
902           self->splitProfilePerType(profile,code,idsInPflPerType,idsPerType);
903           PyObject *ret=PyTuple_New(3);
904           //
905           if(code.size()%3!=0)
906             throw INTERP_KERNEL::Exception("Internal Error detected in wrap python ! code returned by MEDCouplingMesh::splitProfilePerType is not so that %3==0 !");
907           PyObject *ret0=PyList_New((int)code.size()/3);
908           for(int j=0;j<(int)code.size()/3;j++)
909              {
910                PyObject *ret00=PyList_New(3);
911                PyList_SetItem(ret00,0,SWIG_From_int(code[3*j]));
912                PyList_SetItem(ret00,1,SWIG_From_int(code[3*j+1]));
913                PyList_SetItem(ret00,2,SWIG_From_int(code[3*j+2]));
914                PyList_SetItem(ret0,j,ret00);
915              }
916           PyTuple_SetItem(ret,0,ret0);
917           //
918           PyObject *ret1=PyList_New(idsInPflPerType.size());
919           for(std::size_t j=0;j<idsInPflPerType.size();j++)
920             PyList_SetItem(ret1,j,SWIG_NewPointerObj(SWIG_as_voidptr(idsInPflPerType[j]),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
921           PyTuple_SetItem(ret,1,ret1);
922           int n=idsPerType.size();
923           PyObject *ret2=PyList_New(n);
924           for(int i=0;i<n;i++)
925             PyList_SetItem(ret2,i,SWIG_NewPointerObj(SWIG_as_voidptr(idsPerType[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
926           PyTuple_SetItem(ret,2,ret2);
927           return ret;
928         }
929
930         void translate(PyObject *vector) throw(INTERP_KERNEL::Exception)
931         {
932           double val;
933           DataArrayDouble *a;
934           DataArrayDoubleTuple *aa;
935           std::vector<double> bb;
936           int sw;
937           int spaceDim=self->getSpaceDimension();
938           const char msg[]="Python wrap of MEDCouplingPointSet::translate : ";
939           const double *vectorPtr=convertObjToPossibleCpp5_Safe(vector,sw,val,a,aa,bb,msg,1,spaceDim,true);
940           self->translate(vectorPtr);
941         }
942
943          void rotate(PyObject *center, double alpha) throw(INTERP_KERNEL::Exception)
944          {
945            const char msg[]="Python wrap of MEDCouplingPointSet::rotate : ";
946            double val;
947            DataArrayDouble *a;
948            DataArrayDoubleTuple *aa;
949            std::vector<double> bb;
950            int sw;
951            int spaceDim=self->getSpaceDimension();
952            const double *centerPtr=convertObjToPossibleCpp5_Safe(center,sw,val,a,aa,bb,msg,1,spaceDim,true);
953            self->rotate(centerPtr,0,alpha);
954          }
955
956          void rotate(PyObject *center, PyObject *vector, double alpha) throw(INTERP_KERNEL::Exception)
957          {
958            const char msg[]="Python wrap of MEDCouplingPointSet::rotate : ";
959            double val,val2;
960            DataArrayDouble *a,*a2;
961            DataArrayDoubleTuple *aa,*aa2;
962            std::vector<double> bb,bb2;
963            int sw;
964            int spaceDim=self->getSpaceDimension();
965            const double *centerPtr=convertObjToPossibleCpp5_Safe(center,sw,val,a,aa,bb,msg,1,spaceDim,true);
966            const double *vectorPtr=convertObjToPossibleCpp5_Safe(vector,sw,val2,a2,aa2,bb2,msg,1,spaceDim,false);//vectorPtr can be null in case of space dim 2
967            self->rotate(centerPtr,vectorPtr,alpha);
968          }
969
970          PyObject *getAllGeoTypes() const throw(INTERP_KERNEL::Exception)
971          {
972            std::set<INTERP_KERNEL::NormalizedCellType> result=self->getAllGeoTypes();
973            std::set<INTERP_KERNEL::NormalizedCellType>::const_iterator iL=result.begin();
974            PyObject *res=PyList_New(result.size());
975            for(int i=0;iL!=result.end(); i++, iL++)
976              PyList_SetItem(res,i,PyInt_FromLong(*iL));
977            return res;
978          }
979          
980          static MEDCouplingMesh *MergeMeshes(PyObject *li) throw(INTERP_KERNEL::Exception)
981          {
982             std::vector<const ParaMEDMEM::MEDCouplingMesh *> tmp;
983             convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingMesh,"MEDCouplingMesh",tmp);
984             return MEDCouplingMesh::MergeMeshes(tmp);
985          }
986        }
987   };
988 }
989
990 //== MEDCouplingMesh End
991
992 %include "NormalizedGeometricTypes"
993 %include "MEDCouplingNatureOfFieldEnum"
994 //
995 namespace ParaMEDMEM
996 {
997   class MEDCouplingNatureOfField
998   {
999   public:
1000     static const char *GetRepr(NatureOfField nat) throw(INTERP_KERNEL::Exception);
1001     static std::string GetReprNoThrow(NatureOfField nat);
1002     static std::string GetAllPossibilitiesStr();
1003   };
1004 }
1005
1006 // the MEDCouplingTimeDiscretization classes are not swigged : in case the file can help
1007 // include "MEDCouplingTimeDiscretization.i"
1008
1009 namespace ParaMEDMEM
1010 {
1011   class MEDCouplingGaussLocalization
1012   {
1013   public:
1014     MEDCouplingGaussLocalization(INTERP_KERNEL::NormalizedCellType type, const std::vector<double>& refCoo,
1015                                  const std::vector<double>& gsCoo, const std::vector<double>& w) throw(INTERP_KERNEL::Exception);
1016     MEDCouplingGaussLocalization(INTERP_KERNEL::NormalizedCellType typ) throw(INTERP_KERNEL::Exception);
1017     INTERP_KERNEL::NormalizedCellType getType() const throw(INTERP_KERNEL::Exception);
1018     void setType(INTERP_KERNEL::NormalizedCellType typ) throw(INTERP_KERNEL::Exception);
1019     int getNumberOfGaussPt() const throw(INTERP_KERNEL::Exception);
1020     int getDimension() const throw(INTERP_KERNEL::Exception);
1021     int getNumberOfPtsInRefCell() const throw(INTERP_KERNEL::Exception);
1022     std::string getStringRepr() const throw(INTERP_KERNEL::Exception);
1023     void checkCoherency() const throw(INTERP_KERNEL::Exception);
1024     bool isEqual(const MEDCouplingGaussLocalization& other, double eps) const throw(INTERP_KERNEL::Exception);
1025     //
1026     const std::vector<double>& getRefCoords() const throw(INTERP_KERNEL::Exception);
1027     double getRefCoord(int ptIdInCell, int comp) const throw(INTERP_KERNEL::Exception);
1028     const std::vector<double>& getGaussCoords() const throw(INTERP_KERNEL::Exception);
1029     double getGaussCoord(int gaussPtIdInCell, int comp) const throw(INTERP_KERNEL::Exception);
1030     const std::vector<double>& getWeights() const throw(INTERP_KERNEL::Exception);
1031     double getWeight(int gaussPtIdInCell, double newVal) const throw(INTERP_KERNEL::Exception);
1032     void setRefCoord(int ptIdInCell, int comp, double newVal) throw(INTERP_KERNEL::Exception);
1033     void setGaussCoord(int gaussPtIdInCell, int comp, double newVal) throw(INTERP_KERNEL::Exception);
1034     void setWeight(int gaussPtIdInCell, double newVal) throw(INTERP_KERNEL::Exception);
1035     void setRefCoords(const std::vector<double>& refCoo) throw(INTERP_KERNEL::Exception);
1036     void setGaussCoords(const std::vector<double>& gsCoo) throw(INTERP_KERNEL::Exception);
1037     void setWeights(const std::vector<double>& w) throw(INTERP_KERNEL::Exception);
1038     //
1039     static bool AreAlmostEqual(const std::vector<double>& v1, const std::vector<double>& v2, double eps);
1040   };
1041 }
1042
1043 %include "MEDCouplingFieldDiscretization.i"
1044
1045 //== MEDCouplingPointSet
1046
1047 namespace ParaMEDMEM
1048 {
1049   class MEDCouplingPointSet : public ParaMEDMEM::MEDCouplingMesh
1050     {
1051     public:
1052       void setCoords(const DataArrayDouble *coords) throw(INTERP_KERNEL::Exception);
1053       DataArrayDouble *getCoordinatesAndOwner() const throw(INTERP_KERNEL::Exception);
1054       bool areCoordsEqual(const MEDCouplingPointSet& other, double prec) const throw(INTERP_KERNEL::Exception);
1055       void zipCoords() throw(INTERP_KERNEL::Exception);
1056       double getCaracteristicDimension() const throw(INTERP_KERNEL::Exception);
1057       void recenterForMaxPrecision(double eps) throw(INTERP_KERNEL::Exception);
1058       void changeSpaceDimension(int newSpaceDim, double dftVal=0.) throw(INTERP_KERNEL::Exception);
1059       void tryToShareSameCoords(const MEDCouplingPointSet& other, double epsilon) throw(INTERP_KERNEL::Exception);
1060       virtual void shallowCopyConnectivityFrom(const MEDCouplingPointSet *other) throw(INTERP_KERNEL::Exception);
1061       virtual MEDCouplingPointSet *buildPartOfMySelf2(int start, int end, int step) const throw(INTERP_KERNEL::Exception);
1062       virtual void tryToShareSameCoordsPermute(const MEDCouplingPointSet& other, double epsilon) throw(INTERP_KERNEL::Exception);
1063       static DataArrayDouble *MergeNodesArray(const MEDCouplingPointSet *m1, const MEDCouplingPointSet *m2) throw(INTERP_KERNEL::Exception);
1064       static MEDCouplingPointSet *BuildInstanceFromMeshType(MEDCouplingMeshType type) throw(INTERP_KERNEL::Exception);
1065       static DataArrayInt *ComputeNbOfInteractionsWithSrcCells(const MEDCouplingPointSet *srcMesh, const MEDCouplingPointSet *trgMesh, double eps) throw(INTERP_KERNEL::Exception);
1066       virtual DataArrayInt *computeFetchedNodeIds() const throw(INTERP_KERNEL::Exception);
1067       virtual int getNumberOfNodesInCell(int cellId) const throw(INTERP_KERNEL::Exception);
1068       virtual MEDCouplingPointSet *buildBoundaryMesh(bool keepCoords) const throw(INTERP_KERNEL::Exception);
1069       virtual DataArrayInt *getCellsInBoundingBox(const INTERP_KERNEL::DirectedBoundingBox& bbox, double eps) throw(INTERP_KERNEL::Exception);
1070       virtual DataArrayInt *zipCoordsTraducer() throw(INTERP_KERNEL::Exception);
1071       virtual DataArrayInt *findBoundaryNodes() const;
1072       virtual DataArrayInt *zipConnectivityTraducer(int compType, int startCellId=0) throw(INTERP_KERNEL::Exception);
1073       virtual MEDCouplingPointSet *mergeMyselfWithOnSameCoords(const MEDCouplingPointSet *other) const throw(INTERP_KERNEL::Exception);
1074       virtual void checkFullyDefined() const throw(INTERP_KERNEL::Exception);
1075       virtual bool isEmptyMesh(const std::vector<int>& tinyInfo) const throw(INTERP_KERNEL::Exception);
1076       virtual MEDCouplingPointSet *deepCpyConnectivityOnly() const throw(INTERP_KERNEL::Exception);
1077       virtual DataArrayDouble *getBoundingBoxForBBTree(double arcDetEps=1e-12) const throw(INTERP_KERNEL::Exception);
1078       virtual void renumberNodesWithOffsetInConn(int offset) throw(INTERP_KERNEL::Exception);
1079       %extend 
1080          {
1081            std::string __str__() const throw(INTERP_KERNEL::Exception)
1082            {
1083              return self->simpleRepr();
1084            }
1085            
1086            PyObject *buildNewNumberingFromCommonNodesFormat(const DataArrayInt *comm, const DataArrayInt *commIndex) const throw(INTERP_KERNEL::Exception)
1087            {
1088              int newNbOfNodes;
1089              DataArrayInt *ret0=self->buildNewNumberingFromCommonNodesFormat(comm,commIndex,newNbOfNodes);
1090              PyObject *res = PyList_New(2);
1091              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1092              PyList_SetItem(res,1,SWIG_From_int(newNbOfNodes));
1093              return res;
1094            }
1095            
1096            PyObject *findCommonNodes(double prec, int limitTupleId=-1) const throw(INTERP_KERNEL::Exception)
1097            {
1098              DataArrayInt *comm, *commIndex;
1099              self->findCommonNodes(prec,limitTupleId,comm,commIndex);
1100              PyObject *res = PyList_New(2);
1101              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(comm),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1102              PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(commIndex),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1103              return res;
1104            }
1105            
1106            PyObject *getCoords() throw(INTERP_KERNEL::Exception)
1107            {
1108              DataArrayDouble *ret1=self->getCoords();
1109              if (ret1)
1110                 ret1->incrRef();
1111              return SWIG_NewPointerObj((void*)ret1,SWIGTYPE_p_ParaMEDMEM__DataArrayDouble,SWIG_POINTER_OWN | 0);
1112            }
1113            
1114            PyObject *buildPartOfMySelf(PyObject *li, bool keepCoords=true) const throw(INTERP_KERNEL::Exception)
1115            {
1116              int szArr,sw,iTypppArr;
1117              std::vector<int> stdvecTyyppArr;
1118              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1119              MEDCouplingPointSet *ret=self->buildPartOfMySelf(tmp,tmp+szArr,keepCoords);
1120              if(sw==3)//DataArrayInt
1121                { 
1122                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
1123                  DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
1124                  std::string name=argpt->getName();
1125                  if(!name.empty())
1126                    ret->setName(name.c_str());
1127                }
1128              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1129            }
1130            
1131            PyObject *buildPartOfMySelfNode(PyObject *li, bool fullyIn) const throw(INTERP_KERNEL::Exception)
1132            {
1133              int szArr,sw,iTypppArr;
1134              std::vector<int> stdvecTyyppArr;
1135              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1136              MEDCouplingPointSet *ret=self->buildPartOfMySelfNode(tmp,tmp+szArr,fullyIn);
1137              if(sw==3)//DataArrayInt
1138                { 
1139                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
1140                  DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
1141                  std::string name=argpt->getName();
1142                  if(!name.empty())
1143                    ret->setName(name.c_str());
1144                }
1145              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1146            }
1147
1148            virtual PyObject *buildPartOfMySelfKeepCoords(PyObject *li) const throw(INTERP_KERNEL::Exception)
1149            {
1150              int szArr,sw,iTypppArr;
1151              std::vector<int> stdvecTyyppArr;
1152              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1153              MEDCouplingPointSet *ret=self->buildPartOfMySelfKeepCoords(tmp,tmp+szArr);
1154              if(sw==3)//DataArrayInt
1155                { 
1156                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
1157                  DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
1158                  std::string name=argpt->getName();
1159                  if(!name.empty())
1160                    ret->setName(name.c_str());
1161                }
1162              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1163            }
1164
1165            virtual PyObject *buildPartOfMySelfKeepCoords2(int start, int end, int step) const throw(INTERP_KERNEL::Exception)
1166            {
1167              MEDCouplingPointSet *ret=self->buildPartOfMySelfKeepCoords2(start,end,step);
1168              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1169            }
1170
1171            PyObject *buildFacePartOfMySelfNode(PyObject *li, bool fullyIn) const throw(INTERP_KERNEL::Exception)
1172            {
1173              int szArr,sw,iTypppArr;
1174              std::vector<int> stdvecTyyppArr;
1175              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1176              MEDCouplingPointSet *ret=self->buildFacePartOfMySelfNode(tmp,tmp+szArr,fullyIn);
1177              if(sw==3)//DataArrayInt
1178                { 
1179                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
1180                  DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
1181                  std::string name=argpt->getName();
1182                  if(!name.empty())
1183                    ret->setName(name.c_str());
1184                }
1185              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1186            }
1187
1188            void renumberNodes(PyObject *li, int newNbOfNodes) throw(INTERP_KERNEL::Exception)
1189            {
1190              int szArr,sw,iTypppArr;
1191              std::vector<int> stdvecTyyppArr;
1192              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1193              self->renumberNodes(tmp,newNbOfNodes);
1194            }
1195
1196            void renumberNodes2(PyObject *li, int newNbOfNodes) throw(INTERP_KERNEL::Exception)
1197            {
1198              int szArr,sw,iTypppArr;
1199              std::vector<int> stdvecTyyppArr;
1200              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1201              self->renumberNodes2(tmp,newNbOfNodes);
1202            }
1203
1204            PyObject *findNodesOnLine(PyObject *pt, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
1205              {
1206                int spaceDim=self->getSpaceDimension();
1207                double val,val2;
1208                DataArrayDouble *a,*a2;
1209                DataArrayDoubleTuple *aa,*aa2;
1210                std::vector<double> bb,bb2;
1211                int sw;
1212                const char msg[]="Python wrap of MEDCouplingPointSet::findNodesOnLine : 1st paramater for point.";
1213                const char msg2[]="Python wrap of MEDCouplingPointSet::findNodesOnLine : 2nd paramater for vector.";
1214                const double *p=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,1,spaceDim,true);
1215                const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
1216                std::vector<int> nodes;
1217                self->findNodesOnLine(p,v,eps,nodes);
1218                DataArrayInt *ret=DataArrayInt::New();
1219                ret->alloc((int)nodes.size(),1);
1220                std::copy(nodes.begin(),nodes.end(),ret->getPointer());
1221                return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
1222              }
1223            PyObject *findNodesOnPlane(PyObject *pt, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
1224              {
1225                int spaceDim=self->getSpaceDimension();
1226                double val,val2;
1227                DataArrayDouble *a,*a2;
1228                DataArrayDoubleTuple *aa,*aa2;
1229                std::vector<double> bb,bb2;
1230                int sw;
1231                const char msg[]="Python wrap of MEDCouplingPointSet::findNodesOnPlane : 1st paramater for point.";
1232                const char msg2[]="Python wrap of MEDCouplingPointSet::findNodesOnPlane : 2nd paramater for vector.";
1233                const double *p=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,1,spaceDim,true);
1234                const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
1235                std::vector<int> nodes;
1236                self->findNodesOnPlane(p,v,eps,nodes);
1237                DataArrayInt *ret=DataArrayInt::New();
1238                ret->alloc((int)nodes.size(),1);
1239                std::copy(nodes.begin(),nodes.end(),ret->getPointer());
1240                return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
1241              }
1242            
1243            PyObject *getNodeIdsNearPoint(PyObject *pt, double eps) const throw(INTERP_KERNEL::Exception)
1244            {
1245              double val;
1246              DataArrayDouble *a;
1247              DataArrayDoubleTuple *aa;
1248              std::vector<double> bb;
1249              int sw;
1250              int spaceDim=self->getSpaceDimension();
1251              const char msg[]="Python wrap of MEDCouplingPointSet::getNodeIdsNearPoint : ";
1252              const double *pos=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,1,spaceDim,true);
1253              DataArrayInt *ret=self->getNodeIdsNearPoint(pos,eps);
1254              return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
1255            }
1256
1257            PyObject *getNodeIdsNearPoints(PyObject *pt, int nbOfPoints, double eps) const throw(INTERP_KERNEL::Exception)
1258            {
1259              DataArrayInt *c=0,*cI=0;
1260              //
1261              double val;
1262              DataArrayDouble *a;
1263              DataArrayDoubleTuple *aa;
1264              std::vector<double> bb;
1265              int sw;
1266              int spaceDim=self->getSpaceDimension();
1267              const char msg[]="Python wrap of MEDCouplingPointSet::getNodeIdsNearPoints : ";
1268              const double *pos=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,nbOfPoints,spaceDim,true);
1269              self->getNodeIdsNearPoints(pos,nbOfPoints,eps,c,cI);
1270              PyObject *ret=PyTuple_New(2);
1271              PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(c),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1272              PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cI),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1273              return ret;
1274            }
1275
1276            PyObject *getNodeIdsNearPoints(PyObject *pt, double eps) const throw(INTERP_KERNEL::Exception)
1277            {
1278              DataArrayInt *c=0,*cI=0;
1279              int spaceDim=self->getSpaceDimension();
1280              double val;
1281              DataArrayDouble *a;
1282              DataArrayDoubleTuple *aa;
1283              std::vector<double> bb;
1284              int sw;
1285              int nbOfTuples=-1;
1286              const double *ptPtr=convertObjToPossibleCpp5_Safe2(pt,sw,val,a,aa,bb,"Python wrap of MEDCouplingUMesh::getNodeIdsNearPoints",spaceDim,true,nbOfTuples);
1287              self->getNodeIdsNearPoints(ptPtr,nbOfTuples,eps,c,cI);
1288              //
1289              PyObject *ret=PyTuple_New(2);
1290              PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(c),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1291              PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cI),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1292              return ret;
1293            }
1294
1295            PyObject *getCellsInBoundingBox(PyObject *bbox, double eps) const throw(INTERP_KERNEL::Exception)
1296            {
1297              double val;
1298              DataArrayDouble *a;
1299              DataArrayDoubleTuple *aa;
1300              std::vector<double> bb;
1301              int sw;
1302              int spaceDim=self->getSpaceDimension();
1303              const char msg[]="Python wrap of MEDCouplingPointSet::getCellsInBoundingBox : ";
1304              const double *tmp=convertObjToPossibleCpp5_Safe(bbox,sw,val,a,aa,bb,msg,spaceDim,2,true);
1305              //
1306              DataArrayInt *elems=self->getCellsInBoundingBox(tmp,eps);
1307              return SWIG_NewPointerObj(SWIG_as_voidptr(elems),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
1308            }
1309
1310            void duplicateNodesInCoords(PyObject *li) throw(INTERP_KERNEL::Exception)
1311            {
1312              int sw;
1313              int singleVal;
1314              std::vector<int> multiVal;
1315              std::pair<int, std::pair<int,int> > slic;
1316              ParaMEDMEM::DataArrayInt *daIntTyypp=0;
1317              convertObjToPossibleCpp2(li,self->getNumberOfNodes(),sw,singleVal,multiVal,slic,daIntTyypp);
1318              switch(sw)
1319                {
1320                case 1:
1321                  return self->duplicateNodesInCoords(&singleVal,&singleVal+1);
1322                case 2:
1323                  return self->duplicateNodesInCoords(&multiVal[0],&multiVal[0]+multiVal.size());
1324                case 4:
1325                  return self->duplicateNodesInCoords(daIntTyypp->begin(),daIntTyypp->end());
1326                default:
1327                  throw INTERP_KERNEL::Exception("MEDCouplingPointSet::duplicateNodesInCoords : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
1328                }
1329            }
1330
1331            virtual PyObject *findCommonCells(int compType, int startCellId=0) const throw(INTERP_KERNEL::Exception)
1332            {
1333              DataArrayInt *v0=0,*v1=0;
1334              self->findCommonCells(compType,startCellId,v0,v1);
1335              PyObject *res = PyList_New(2);
1336              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(v0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1337              PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(v1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1338              return res;
1339            }
1340
1341       
1342            virtual void renumberNodesInConn(PyObject *li) throw(INTERP_KERNEL::Exception)
1343            {
1344              void *da=0;
1345              int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayInt, 0 | 0 );
1346              if (!SWIG_IsOK(res1))
1347                {
1348                  int size;
1349                  INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
1350                  self->renumberNodesInConn(tmp);
1351                }
1352              else
1353                {
1354                  DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
1355                  if(!da2)
1356                    throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
1357                  da2->checkAllocated();
1358                  self->renumberNodesInConn(da2->getConstPointer());
1359                }
1360            }
1361
1362            virtual PyObject *getNodeIdsInUse() const throw(INTERP_KERNEL::Exception)
1363            {
1364              int ret1=-1;
1365              DataArrayInt *ret0=self->getNodeIdsInUse(ret1);
1366              PyObject *ret=PyTuple_New(2);
1367              PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1368              PyTuple_SetItem(ret,1,PyInt_FromLong(ret1));
1369              return ret;
1370            }
1371
1372            virtual DataArrayInt *fillCellIdsToKeepFromNodeIds(PyObject *li, bool fullyIn) const
1373            {
1374              DataArrayInt *ret=0;
1375              //
1376              int szArr,sw,iTypppArr;
1377              std::vector<int> stdvecTyyppArr;
1378              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1379              self->fillCellIdsToKeepFromNodeIds(tmp,tmp+szArr,fullyIn,ret);
1380              return ret;
1381            }
1382
1383            virtual PyObject *mergeNodes(double precision) throw(INTERP_KERNEL::Exception)
1384            {
1385              bool ret1;
1386              int ret2;
1387              DataArrayInt *ret0=self->mergeNodes(precision,ret1,ret2);
1388              PyObject *res = PyList_New(3);
1389              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1390              PyList_SetItem(res,1,SWIG_From_bool(ret1));
1391              PyList_SetItem(res,2,SWIG_From_int(ret2));
1392              return res;
1393            }
1394            
1395            virtual PyObject *mergeNodes2(double precision) throw(INTERP_KERNEL::Exception)
1396            {
1397              bool ret1;
1398              int ret2;
1399              DataArrayInt *ret0=self->mergeNodes2(precision,ret1,ret2);
1400              PyObject *res = PyList_New(3);
1401              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1402              PyList_SetItem(res,1,SWIG_From_bool(ret1));
1403              PyList_SetItem(res,2,SWIG_From_int(ret2));
1404              return res;
1405            }
1406            
1407            DataArrayInt *getCellIdsLyingOnNodes(PyObject *li, bool fullyIn) const throw(INTERP_KERNEL::Exception)
1408            {
1409              void *da=0;
1410              int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayInt, 0 |  0 );
1411              if (!SWIG_IsOK(res1))
1412                {
1413                  int size;
1414                  INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
1415                  return self->getCellIdsLyingOnNodes(tmp,((const int *)tmp)+size,fullyIn);
1416                }
1417              else
1418                {
1419                  DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
1420                  if(!da2)
1421                    throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
1422                  da2->checkAllocated();
1423                  return self->getCellIdsLyingOnNodes(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems(),fullyIn);
1424                }
1425            }
1426
1427            MEDCouplingPointSet *__getitem__(PyObject *listOrDataArrI) throw(INTERP_KERNEL::Exception)
1428            {
1429              int sw;
1430              int singleVal;
1431              std::vector<int> multiVal;
1432              std::pair<int, std::pair<int,int> > slic;
1433              ParaMEDMEM::DataArrayInt *daIntTyypp=0;
1434              int nbc=self->getNumberOfCells();
1435              convertObjToPossibleCpp2(listOrDataArrI,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
1436              switch(sw)
1437                {
1438                case 1:
1439                  {
1440                    if(singleVal>=nbc)
1441                      {
1442                        std::ostringstream oss;
1443                        oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1444                        throw INTERP_KERNEL::Exception(oss.str().c_str());
1445                      }
1446                    if(singleVal>=0)
1447                      return self->buildPartOfMySelf(&singleVal,&singleVal+1,true);
1448                    else
1449                      {
1450                        if(nbc+singleVal>0)
1451                          {
1452                            int tmp=nbc+singleVal;
1453                            return self->buildPartOfMySelf(&tmp,&tmp+1,true);
1454                          }
1455                        else
1456                          {
1457                            std::ostringstream oss;
1458                            oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1459                            throw INTERP_KERNEL::Exception(oss.str().c_str());
1460                          }
1461                      }
1462                  }
1463                case 2:
1464                  {
1465                    return static_cast<MEDCouplingPointSet *>(self->buildPartOfMySelf(&multiVal[0],&multiVal[0]+multiVal.size(),true));
1466                  }
1467                case 3:
1468                  {
1469                    return self->buildPartOfMySelf2(slic.first,slic.second.first,slic.second.second,true);
1470                  }
1471                case 4:
1472                  {
1473                    if(!daIntTyypp)
1474                      throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__getitem__ : null instance has been given in input !");
1475                    daIntTyypp->checkAllocated();
1476                    return self->buildPartOfMySelf(daIntTyypp->begin(),daIntTyypp->end(),true);
1477                  }
1478                default:
1479                  throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__getitem__ : unrecognized type in input ! Possibilities are : int, list or tuple of int DataArrayInt instance !");
1480                }
1481            }
1482            
1483            static void Rotate2DAlg(PyObject *center, double angle, int nbNodes, PyObject *coords) throw(INTERP_KERNEL::Exception)
1484            {
1485              int sz;
1486              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1487              INTERP_KERNEL::AutoCPtr<double> coo=convertPyToNewDblArr2(coords,&sz);
1488              ParaMEDMEM::MEDCouplingPointSet::Rotate2DAlg(c,angle,nbNodes,coo);
1489              for(int i=0;i<sz;i++)
1490                PyList_SetItem(coords,i,PyFloat_FromDouble(coo[i]));
1491            }
1492            
1493            static void Rotate2DAlg(PyObject *center, double angle, PyObject *coords) throw(INTERP_KERNEL::Exception)
1494            {
1495              int sz;
1496              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1497              int sw,nbNodes=0;
1498              double val0;  ParaMEDMEM::DataArrayDouble *val1=0; ParaMEDMEM::DataArrayDoubleTuple *val2=0;
1499              std::vector<double> val3;
1500              const double *coo=convertObjToPossibleCpp5_Safe2(coords,sw,val0,val1,val2,val3,
1501                                                             "Rotate2DAlg",2,true,nbNodes);
1502              if(sw!=2 && sw!=3)
1503                throw INTERP_KERNEL::Exception("Invalid call to MEDCouplingPointSet::Rotate2DAlg : try another overload method !");
1504              ParaMEDMEM::MEDCouplingPointSet::Rotate2DAlg(c,angle,nbNodes,const_cast<double *>(coo));
1505            }
1506            
1507            static void Rotate3DAlg(PyObject *center, PyObject *vect, double angle, int nbNodes, PyObject *coords) throw(INTERP_KERNEL::Exception)
1508            {
1509              int sz,sz2;
1510              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1511              INTERP_KERNEL::AutoCPtr<double> coo=convertPyToNewDblArr2(coords,&sz);
1512              INTERP_KERNEL::AutoCPtr<double> v=convertPyToNewDblArr2(vect,&sz2);
1513              ParaMEDMEM::MEDCouplingPointSet::Rotate3DAlg(c,v,angle,nbNodes,coo);
1514              for(int i=0;i<sz;i++)
1515                PyList_SetItem(coords,i,PyFloat_FromDouble(coo[i]));
1516            }
1517            
1518            static void Rotate3DAlg(PyObject *center, PyObject *vect, double angle, PyObject *coords) throw(INTERP_KERNEL::Exception)
1519            {
1520              int sz,sz2;
1521              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1522              int sw,nbNodes=0;
1523              double val0;  ParaMEDMEM::DataArrayDouble *val1=0; ParaMEDMEM::DataArrayDoubleTuple *val2=0;
1524              std::vector<double> val3;
1525              const double *coo=convertObjToPossibleCpp5_Safe2(coords,sw,val0,val1,val2,val3,
1526                                                             "Rotate3DAlg",3,true,nbNodes);
1527              if(sw!=2 && sw!=3)
1528                throw INTERP_KERNEL::Exception("Invalid call to MEDCouplingPointSet::Rotate3DAlg : try another overload method !");
1529              INTERP_KERNEL::AutoCPtr<double> v=convertPyToNewDblArr2(vect,&sz2);
1530              ParaMEDMEM::MEDCouplingPointSet::Rotate3DAlg(c,v,angle,nbNodes,const_cast<double *>(coo));
1531            }
1532          }
1533     };
1534
1535   //== MEDCouplingPointSet End
1536
1537   class MEDCouplingUMeshCell
1538   {
1539   public:
1540     INTERP_KERNEL::NormalizedCellType getType() const;
1541     %extend
1542       {
1543         std::string __str__() const throw(INTERP_KERNEL::Exception)
1544         {
1545           return self->repr();
1546         }
1547
1548         PyObject *getAllConn() const throw(INTERP_KERNEL::Exception)
1549         {
1550           int ret2;
1551           const int *r=self->getAllConn(ret2);
1552           PyObject *ret=PyTuple_New(ret2);
1553           for(int i=0;i<ret2;i++)
1554             PyTuple_SetItem(ret,i,PyInt_FromLong(r[i]));
1555           return ret;
1556         }
1557       }
1558   };
1559
1560   class MEDCouplingUMeshCellIterator
1561   {
1562   public:
1563     %extend
1564       {
1565         PyObject *next()
1566         {
1567           MEDCouplingUMeshCell *ret=self->nextt();
1568           if(ret)
1569             return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMeshCell,0|0);
1570           else
1571             {
1572               PyErr_SetString(PyExc_StopIteration,"No more data.");
1573               return 0;
1574             }
1575         }
1576       }
1577   };
1578
1579   class MEDCouplingUMeshCellByTypeIterator
1580   {
1581   public:
1582     ~MEDCouplingUMeshCellByTypeIterator();
1583     %extend
1584       {
1585         PyObject *next()
1586         {
1587           MEDCouplingUMeshCellEntry *ret=self->nextt();
1588           if(ret)
1589             return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMeshCellEntry,SWIG_POINTER_OWN | 0);
1590           else
1591             {
1592               PyErr_SetString(PyExc_StopIteration,"No more data.");
1593               return 0;
1594             }
1595         }
1596       }
1597   };
1598
1599   class MEDCouplingUMeshCellByTypeEntry
1600   {
1601   public:
1602     ~MEDCouplingUMeshCellByTypeEntry();
1603     %extend
1604       {
1605         MEDCouplingUMeshCellByTypeIterator *__iter__()
1606         {
1607           return self->iterator();
1608         }
1609       }
1610   };
1611
1612   class MEDCouplingUMeshCellEntry
1613   {
1614   public:
1615     INTERP_KERNEL::NormalizedCellType getType() const;
1616     int getNumberOfElems() const;
1617     %extend
1618       {
1619         MEDCouplingUMeshCellIterator *__iter__()
1620         {
1621           return self->iterator();
1622         }
1623       }
1624   };
1625   
1626   //== MEDCouplingUMesh
1627
1628   class MEDCouplingUMesh : public ParaMEDMEM::MEDCouplingPointSet
1629   {
1630   public:
1631     static MEDCouplingUMesh *New() throw(INTERP_KERNEL::Exception);
1632     static MEDCouplingUMesh *New(const char *meshName, int meshDim) throw(INTERP_KERNEL::Exception);
1633     MEDCouplingUMesh *clone(bool recDeepCpy) const;
1634     void checkCoherency() const throw(INTERP_KERNEL::Exception);
1635     void setMeshDimension(int meshDim) throw(INTERP_KERNEL::Exception);
1636     void allocateCells(int nbOfCells=0) throw(INTERP_KERNEL::Exception);
1637     void finishInsertingCells() throw(INTERP_KERNEL::Exception);
1638     MEDCouplingUMeshCellByTypeEntry *cellsByType() throw(INTERP_KERNEL::Exception);
1639     void setConnectivity(DataArrayInt *conn, DataArrayInt *connIndex, bool isComputingTypes=true) throw(INTERP_KERNEL::Exception);
1640     INTERP_KERNEL::NormalizedCellType getTypeOfCell(int cellId) const throw(INTERP_KERNEL::Exception);
1641     void setPartOfMySelf2(int start, int end, int step, const MEDCouplingUMesh& otherOnSameCoordsThanThis) throw(INTERP_KERNEL::Exception);
1642     int getMeshLength() const throw(INTERP_KERNEL::Exception);
1643     void computeTypes() throw(INTERP_KERNEL::Exception);
1644     std::string reprConnectivityOfThis() const throw(INTERP_KERNEL::Exception);
1645     MEDCouplingUMesh *buildSetInstanceFromThis(int spaceDim) const throw(INTERP_KERNEL::Exception);
1646     //tools
1647     DataArrayInt *conformize2D(double eps) throw(INTERP_KERNEL::Exception);
1648     DataArrayInt *colinearize2D(double eps) throw(INTERP_KERNEL::Exception);
1649     void shiftNodeNumbersInConn(int delta) throw(INTERP_KERNEL::Exception);
1650     std::vector<bool> getQuadraticStatus() const throw(INTERP_KERNEL::Exception);
1651     DataArrayInt *findCellIdsOnBoundary() const throw(INTERP_KERNEL::Exception);
1652     MEDCouplingUMesh *computeSkin() const throw(INTERP_KERNEL::Exception);
1653     bool checkConsecutiveCellTypes() const throw(INTERP_KERNEL::Exception);
1654     bool checkConsecutiveCellTypesForMEDFileFrmt() const throw(INTERP_KERNEL::Exception);
1655     DataArrayInt *rearrange2ConsecutiveCellTypes() throw(INTERP_KERNEL::Exception);
1656     DataArrayInt *sortCellsInMEDFileFrmt() throw(INTERP_KERNEL::Exception);
1657     DataArrayInt *getRenumArrForMEDFileFrmt() const throw(INTERP_KERNEL::Exception);
1658     DataArrayInt *convertCellArrayPerGeoType(const DataArrayInt *da) const throw(INTERP_KERNEL::Exception);
1659     MEDCouplingUMesh *buildDescendingConnectivity(DataArrayInt *desc, DataArrayInt *descIndx, DataArrayInt *revDesc, DataArrayInt *revDescIndx) const throw(INTERP_KERNEL::Exception);
1660     MEDCouplingUMesh *buildDescendingConnectivity2(DataArrayInt *desc, DataArrayInt *descIndx, DataArrayInt *revDesc, DataArrayInt *revDescIndx) const throw(INTERP_KERNEL::Exception);
1661     MEDCouplingUMesh *explode3DMeshTo1D(DataArrayInt *desc, DataArrayInt *descIndx, DataArrayInt *revDesc, DataArrayInt *revDescIndx) const throw(INTERP_KERNEL::Exception);
1662     void orientCorrectlyPolyhedrons() throw(INTERP_KERNEL::Exception);
1663     bool isPresenceOfQuadratic() const throw(INTERP_KERNEL::Exception);
1664     bool isFullyQuadratic() const throw(INTERP_KERNEL::Exception);
1665     MEDCouplingFieldDouble *buildDirectionVectorField() const throw(INTERP_KERNEL::Exception);
1666     bool isContiguous1D() const throw(INTERP_KERNEL::Exception);
1667     void tessellate2D(double eps) throw(INTERP_KERNEL::Exception);
1668     void tessellate2DCurve(double eps) throw(INTERP_KERNEL::Exception);
1669     void convertQuadraticCellsToLinear() throw(INTERP_KERNEL::Exception);
1670     DataArrayInt *convertLinearCellsToQuadratic(int conversionType=0) throw(INTERP_KERNEL::Exception);
1671     void convertDegeneratedCells() throw(INTERP_KERNEL::Exception);
1672     bool areOnlySimplexCells() const throw(INTERP_KERNEL::Exception);
1673     MEDCouplingFieldDouble *getEdgeRatioField() const throw(INTERP_KERNEL::Exception);
1674     MEDCouplingFieldDouble *getAspectRatioField() const throw(INTERP_KERNEL::Exception);
1675     MEDCouplingFieldDouble *getWarpField() const throw(INTERP_KERNEL::Exception);
1676     MEDCouplingFieldDouble *getSkewField() const throw(INTERP_KERNEL::Exception);
1677     DataArrayDouble *computePlaneEquationOf3DFaces() const throw(INTERP_KERNEL::Exception);
1678     DataArrayInt *convexEnvelop2D() throw(INTERP_KERNEL::Exception);
1679     std::string cppRepr() const throw(INTERP_KERNEL::Exception);
1680     DataArrayInt *findAndCorrectBadOriented3DExtrudedCells() throw(INTERP_KERNEL::Exception);
1681     DataArrayInt *findAndCorrectBadOriented3DCells() throw(INTERP_KERNEL::Exception);
1682     ParaMEDMEM::MEDCoupling1GTUMesh *convertIntoSingleGeoTypeMesh() const throw(INTERP_KERNEL::Exception);
1683     DataArrayInt *convertNodalConnectivityToStaticGeoTypeMesh() const throw(INTERP_KERNEL::Exception);
1684     DataArrayInt *buildUnionOf2DMesh() const throw(INTERP_KERNEL::Exception);
1685     DataArrayInt *buildUnionOf3DMesh() const throw(INTERP_KERNEL::Exception);
1686     DataArrayInt *orderConsecutiveCells1D() const throw(INTERP_KERNEL::Exception);
1687     DataArrayDouble *getBoundingBoxForBBTreeFast() const throw(INTERP_KERNEL::Exception);
1688     DataArrayDouble *getBoundingBoxForBBTree2DQuadratic(double arcDetEps=1e-12) const throw(INTERP_KERNEL::Exception);
1689     DataArrayDouble *getBoundingBoxForBBTree1DQuadratic(double arcDetEps=1e-12) const throw(INTERP_KERNEL::Exception);
1690     int split2DCells(const DataArrayInt *desc, const DataArrayInt *descI, const DataArrayInt *subNodesInSeg, const DataArrayInt *subNodesInSegI, const DataArrayInt *midOpt=0, const DataArrayInt *midOptI=0) throw(INTERP_KERNEL::Exception);
1691     static MEDCouplingUMesh *Build0DMeshFromCoords(DataArrayDouble *da) throw(INTERP_KERNEL::Exception);
1692     static MEDCouplingUMesh *MergeUMeshes(const MEDCouplingUMesh *mesh1, const MEDCouplingUMesh *mesh2) throw(INTERP_KERNEL::Exception);
1693     static MEDCouplingUMesh *MergeUMeshesOnSameCoords(const MEDCouplingUMesh *mesh1, const MEDCouplingUMesh *mesh2) throw(INTERP_KERNEL::Exception);
1694     static DataArrayInt *ComputeSpreadZoneGradually(const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn) throw(INTERP_KERNEL::Exception);
1695     static DataArrayInt *ComputeRangesFromTypeDistribution(const std::vector<int>& code) throw(INTERP_KERNEL::Exception);
1696     %extend {
1697       MEDCouplingUMesh() throw(INTERP_KERNEL::Exception)
1698       {
1699         return MEDCouplingUMesh::New();
1700       }
1701       
1702       MEDCouplingUMesh(const char *meshName, int meshDim) throw(INTERP_KERNEL::Exception)
1703       {
1704         return MEDCouplingUMesh::New(meshName,meshDim);
1705       }
1706       
1707       std::string __str__() const throw(INTERP_KERNEL::Exception)
1708       {
1709         return self->simpleRepr();
1710       }
1711       
1712       std::string __repr__() const throw(INTERP_KERNEL::Exception)
1713       {
1714         std::ostringstream oss;
1715         self->reprQuickOverview(oss);
1716         return oss.str();
1717       }
1718       
1719       MEDCouplingUMeshCellIterator *__iter__() throw(INTERP_KERNEL::Exception)
1720       {
1721         return self->cellIterator();
1722       }
1723
1724       PyObject *getAllGeoTypesSorted() const throw(INTERP_KERNEL::Exception)
1725       {
1726         std::vector<INTERP_KERNEL::NormalizedCellType> result=self->getAllGeoTypesSorted();
1727         std::vector<INTERP_KERNEL::NormalizedCellType>::const_iterator iL=result.begin();
1728         PyObject *res=PyList_New(result.size());
1729         for(int i=0;iL!=result.end(); i++, iL++)
1730           PyList_SetItem(res,i,PyInt_FromLong(*iL));
1731         return res;
1732       }
1733       
1734       void setPartOfMySelf(PyObject *li, const MEDCouplingUMesh& otherOnSameCoordsThanThis) throw(INTERP_KERNEL::Exception)
1735       {
1736         int sw;
1737         int singleVal;
1738         std::vector<int> multiVal;
1739         std::pair<int, std::pair<int,int> > slic;
1740         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
1741         int nbc=self->getNumberOfCells();
1742         convertObjToPossibleCpp2(li,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
1743         switch(sw)
1744           {
1745           case 1:
1746             {
1747               if(singleVal>=nbc)
1748                 {
1749                   std::ostringstream oss;
1750                   oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1751                   throw INTERP_KERNEL::Exception(oss.str().c_str());
1752                 }
1753               if(singleVal>=0)
1754                 {
1755                   self->setPartOfMySelf(&singleVal,&singleVal+1,otherOnSameCoordsThanThis);
1756                   break;
1757                 }
1758               else
1759                 {
1760                   if(nbc+singleVal>0)
1761                     {
1762                       int tmp=nbc+singleVal;
1763                       self->setPartOfMySelf(&tmp,&tmp+1,otherOnSameCoordsThanThis);
1764                       break;
1765                     }
1766                   else
1767                     {
1768                       std::ostringstream oss;
1769                       oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1770                       throw INTERP_KERNEL::Exception(oss.str().c_str());
1771                     }
1772                 }
1773             }
1774           case 2:
1775             {
1776               self->setPartOfMySelf(&multiVal[0],&multiVal[0]+multiVal.size(),otherOnSameCoordsThanThis);
1777               break;
1778             }
1779           case 4:
1780             {
1781               if(!daIntTyypp)
1782                 throw INTERP_KERNEL::Exception("MEDCouplingUMesh::setPartOfMySelf : null instance has been given in input !");
1783               daIntTyypp->checkAllocated();
1784               self->setPartOfMySelf(daIntTyypp->begin(),daIntTyypp->end(),otherOnSameCoordsThanThis);
1785               break;
1786             }
1787           default:
1788             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::setPartOfMySelf : unrecognized type in input ! Possibilities are : int, list or tuple of int DataArrayInt instance !");
1789           }
1790       }
1791
1792       void __setitem__(PyObject *li, const MEDCouplingUMesh& otherOnSameCoordsThanThis) throw(INTERP_KERNEL::Exception)
1793       {
1794         int sw;
1795         int singleVal;
1796         std::vector<int> multiVal;
1797         std::pair<int, std::pair<int,int> > slic;
1798         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
1799         int nbc=self->getNumberOfCells();
1800         convertObjToPossibleCpp2(li,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
1801         switch(sw)
1802           {
1803           case 1:
1804             {
1805               if(singleVal>=nbc)
1806                 {
1807                   std::ostringstream oss;
1808                   oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1809                   throw INTERP_KERNEL::Exception(oss.str().c_str());
1810                 }
1811               if(singleVal>=0)
1812                 {
1813                   self->setPartOfMySelf(&singleVal,&singleVal+1,otherOnSameCoordsThanThis);
1814                   break;
1815                 }
1816               else
1817                 {
1818                   if(nbc+singleVal>0)
1819                     {
1820                       int tmp=nbc+singleVal;
1821                       self->setPartOfMySelf(&tmp,&tmp+1,otherOnSameCoordsThanThis);
1822                       break;
1823                     }
1824                   else
1825                     {
1826                       std::ostringstream oss;
1827                       oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1828                       throw INTERP_KERNEL::Exception(oss.str().c_str());
1829                     }
1830                 }
1831             }
1832           case 2:
1833             {
1834               self->setPartOfMySelf(&multiVal[0],&multiVal[0]+multiVal.size(),otherOnSameCoordsThanThis);
1835               break;
1836             }
1837           case 3:
1838             {
1839               self->setPartOfMySelf2(slic.first,slic.second.first,slic.second.second,otherOnSameCoordsThanThis);
1840               break;
1841             }
1842           case 4:
1843             {
1844               if(!daIntTyypp)
1845                 throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__setitem__ : null instance has been given in input !");
1846               daIntTyypp->checkAllocated();
1847               self->setPartOfMySelf(daIntTyypp->begin(),daIntTyypp->end(),otherOnSameCoordsThanThis);
1848               break;
1849             }
1850           default:
1851             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__setitem__ : unrecognized type in input ! Possibilities are : int, list or tuple of int, slice, DataArrayInt instance !");
1852           }
1853       }
1854
1855       void insertNextCell(INTERP_KERNEL::NormalizedCellType type, int size, PyObject *li) throw(INTERP_KERNEL::Exception)
1856       {
1857         int szArr,sw,iTypppArr;
1858         std::vector<int> stdvecTyyppArr;
1859         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1860         if(size>szArr)
1861           {
1862             std::ostringstream oss; oss << "Wrap of MEDCouplingUMesh::insertNextCell : request of connectivity with length " << size << " whereas the length of input is " << szArr << " !";
1863             throw INTERP_KERNEL::Exception(oss.str().c_str());
1864           }
1865         self->insertNextCell(type,size,tmp);
1866       }
1867
1868       void insertNextCell(INTERP_KERNEL::NormalizedCellType type, PyObject *li) throw(INTERP_KERNEL::Exception)
1869       {
1870         int szArr,sw,iTypppArr;
1871         std::vector<int> stdvecTyyppArr;
1872         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1873         self->insertNextCell(type,szArr,tmp);
1874       }
1875       
1876       DataArrayInt *getNodalConnectivity() throw(INTERP_KERNEL::Exception)
1877       {
1878         DataArrayInt *ret=self->getNodalConnectivity();
1879         if(ret)
1880           ret->incrRef();
1881         return ret;
1882       }
1883       DataArrayInt *getNodalConnectivityIndex() throw(INTERP_KERNEL::Exception)
1884       {
1885         DataArrayInt *ret=self->getNodalConnectivityIndex();
1886         if(ret)
1887           ret->incrRef();
1888         return ret;
1889       }
1890       
1891       static PyObject *ComputeSpreadZoneGraduallyFromSeed(PyObject *seed, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn, int nbOfDepthPeeling=-1) throw(INTERP_KERNEL::Exception)
1892       {
1893         int szArr,sw,iTypppArr;
1894         std::vector<int> stdvecTyyppArr;
1895         const int *seedPtr=convertObjToPossibleCpp1_Safe(seed,sw,szArr,iTypppArr,stdvecTyyppArr);
1896         int nbOfDepthPeelingPerformed=0;
1897         DataArrayInt *ret0=MEDCouplingUMesh::ComputeSpreadZoneGraduallyFromSeed(seedPtr,seedPtr+szArr,arrIn,arrIndxIn,nbOfDepthPeeling,nbOfDepthPeelingPerformed);
1898         PyObject *res=PyTuple_New(2);
1899         PyTuple_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1900         PyTuple_SetItem(res,1,PyInt_FromLong(nbOfDepthPeelingPerformed));
1901         return res;
1902       }
1903
1904       static PyObject *FindCommonCellsAlg(int compType, int startCellId, const DataArrayInt *nodal, const DataArrayInt *nodalI, const DataArrayInt *revNodal, const DataArrayInt *revNodalI) throw(INTERP_KERNEL::Exception)
1905       {
1906         DataArrayInt *v0=0,*v1=0;
1907         MEDCouplingUMesh::FindCommonCellsAlg(compType,startCellId,nodal,nodalI,revNodal,revNodalI,v0,v1);
1908         PyObject *res = PyList_New(2);
1909         PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(v0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1910         PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(v1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1911         return res;
1912       }
1913       
1914       PyObject *distanceToPoint(PyObject *point) const throw(INTERP_KERNEL::Exception)
1915       {
1916         double val;
1917         DataArrayDouble *a;
1918         DataArrayDoubleTuple *aa;
1919         std::vector<double> bb;
1920         int sw;
1921         int nbOfCompo=self->getSpaceDimension();
1922         const double *pt=convertObjToPossibleCpp5_Safe(point,sw,val,a,aa,bb,"Python wrap of MEDCouplingUMesh::distanceToPoint",1,nbOfCompo,true);
1923         //
1924         int cellId=-1;
1925         double ret0=self->distanceToPoint(pt,pt+nbOfCompo,cellId);
1926         PyObject *ret=PyTuple_New(2);
1927         PyTuple_SetItem(ret,0,PyFloat_FromDouble(ret0));
1928         PyTuple_SetItem(ret,1,PyInt_FromLong(cellId));
1929         return ret;
1930       }
1931
1932       PyObject *distanceToPoints(const DataArrayDouble *pts) const throw(INTERP_KERNEL::Exception)
1933       {
1934         DataArrayInt *ret1=0;
1935         DataArrayDouble *ret0=self->distanceToPoints(pts,ret1);
1936         PyObject *ret=PyTuple_New(2);
1937         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
1938         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1939         return ret;
1940       }
1941
1942       PyObject *tetrahedrize(int policy) throw(INTERP_KERNEL::Exception)
1943       {
1944         int ret2(-1);
1945         DataArrayInt *ret1(0);
1946         MEDCoupling1SGTUMesh *ret0(self->tetrahedrize(policy,ret1,ret2));
1947         PyObject *ret=PyTuple_New(3);
1948         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__MEDCoupling1SGTUMesh, SWIG_POINTER_OWN | 0 ));
1949         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1950         PyTuple_SetItem(ret,2,PyInt_FromLong(ret2));
1951         return ret;
1952       }
1953       
1954       PyObject *checkButterflyCells(double eps=1e-12) throw(INTERP_KERNEL::Exception)
1955       {
1956         std::vector<int> cells;
1957         self->checkButterflyCells(cells,eps);
1958         DataArrayInt *ret=DataArrayInt::New();
1959         ret->alloc((int)cells.size(),1);
1960         std::copy(cells.begin(),cells.end(),ret->getPointer());
1961         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
1962       }
1963
1964       PyObject *splitByType() const throw(INTERP_KERNEL::Exception)
1965       {
1966         std::vector<MEDCouplingUMesh *> ms=self->splitByType();
1967         int sz=ms.size();
1968         PyObject *ret = PyList_New(sz);
1969         for(int i=0;i<sz;i++)
1970           PyList_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(ms[i]),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
1971         return ret;
1972       }
1973
1974       PyObject *partitionBySpreadZone() const throw(INTERP_KERNEL::Exception)
1975       {
1976         std::vector<DataArrayInt *> retCpp=self->partitionBySpreadZone();
1977         int sz=retCpp.size();
1978         PyObject *ret=PyList_New(sz);
1979         for(int i=0;i<sz;i++)
1980           PyList_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(retCpp[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1981         return ret;
1982       }
1983
1984       PyObject *keepSpecifiedCells(INTERP_KERNEL::NormalizedCellType type, PyObject *ids) const throw(INTERP_KERNEL::Exception)
1985       {
1986         int size;
1987         INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(ids,&size);
1988         MEDCouplingUMesh *ret=self->keepSpecifiedCells(type,tmp,tmp+size);
1989         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 );
1990       }
1991
1992       bool checkConsecutiveCellTypesAndOrder(PyObject *li) const throw(INTERP_KERNEL::Exception)
1993       {
1994         int sz;
1995         INTERP_KERNEL::AutoPtr<INTERP_KERNEL::NormalizedCellType> order=(INTERP_KERNEL::NormalizedCellType *)convertPyToNewIntArr2(li,&sz);
1996         bool ret=self->checkConsecutiveCellTypesAndOrder(order,order+sz);
1997         return ret;
1998       }
1999
2000       DataArrayInt *getRenumArrForConsecutiveCellTypesSpec(PyObject *li) const throw(INTERP_KERNEL::Exception)
2001       {
2002         int sz;
2003         INTERP_KERNEL::AutoPtr<INTERP_KERNEL::NormalizedCellType> order=(INTERP_KERNEL::NormalizedCellType *)convertPyToNewIntArr2(li,&sz);
2004         DataArrayInt *ret=self->getRenumArrForConsecutiveCellTypesSpec(order,(INTERP_KERNEL::NormalizedCellType *)order+sz);
2005         return ret;
2006       }
2007
2008       PyObject *findNodesToDuplicate(const MEDCouplingUMesh& otherDimM1OnSameCoords) const throw(INTERP_KERNEL::Exception)
2009       {
2010         DataArrayInt *tmp0=0,*tmp1=0,*tmp2=0;
2011         self->findNodesToDuplicate(otherDimM1OnSameCoords,tmp0,tmp1,tmp2);
2012         PyObject *ret=PyTuple_New(3);
2013         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(tmp0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2014         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2015         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(tmp2),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2016         return ret;
2017       }
2018
2019       PyObject *findCellIdsLyingOn(const MEDCouplingUMesh& otherDimM1OnSameCoords) const throw(INTERP_KERNEL::Exception)
2020       {
2021         DataArrayInt *tmp0=0,*tmp1=0;
2022         self->findCellIdsLyingOn(otherDimM1OnSameCoords,tmp0,tmp1);
2023         PyObject *ret=PyTuple_New(2);
2024         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(tmp0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2025         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2026         return ret;
2027       }
2028
2029       void duplicateNodes(PyObject *li) throw(INTERP_KERNEL::Exception)
2030       {
2031         int sw;
2032         int singleVal;
2033         std::vector<int> multiVal;
2034         std::pair<int, std::pair<int,int> > slic;
2035         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
2036         convertObjToPossibleCpp2(li,self->getNumberOfNodes(),sw,singleVal,multiVal,slic,daIntTyypp);
2037         switch(sw)
2038           {
2039           case 1:
2040             return self->duplicateNodes(&singleVal,&singleVal+1);
2041           case 2:
2042             return self->duplicateNodes(&multiVal[0],&multiVal[0]+multiVal.size());
2043           case 4:
2044             return self->duplicateNodes(daIntTyypp->begin(),daIntTyypp->end());
2045           default:
2046             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::duplicateNodes : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2047           }
2048       }
2049
2050       void duplicateNodesInConn(PyObject *li, int offset) throw(INTERP_KERNEL::Exception)
2051       {
2052         int sw;
2053         int singleVal;
2054         std::vector<int> multiVal;
2055         std::pair<int, std::pair<int,int> > slic;
2056         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
2057         convertObjToPossibleCpp2(li,self->getNumberOfNodes(),sw,singleVal,multiVal,slic,daIntTyypp);
2058         switch(sw)
2059           {
2060           case 1:
2061             return self->duplicateNodesInConn(&singleVal,&singleVal+1,offset);
2062           case 2:
2063             return self->duplicateNodesInConn(&multiVal[0],&multiVal[0]+multiVal.size(),offset);
2064           case 4:
2065             return self->duplicateNodesInConn(daIntTyypp->begin(),daIntTyypp->end(),offset);
2066           default:
2067             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::duplicateNodesInConn : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2068           }
2069       }
2070
2071       PyObject *getLevArrPerCellTypes(PyObject *li) const throw(INTERP_KERNEL::Exception)
2072       {
2073         int sz;
2074         INTERP_KERNEL::AutoPtr<INTERP_KERNEL::NormalizedCellType> order=(INTERP_KERNEL::NormalizedCellType *)convertPyToNewIntArr2(li,&sz);
2075         DataArrayInt *tmp0,*tmp1=0;
2076         tmp0=self->getLevArrPerCellTypes(order,(INTERP_KERNEL::NormalizedCellType *)order+sz,tmp1);
2077         PyObject *ret=PyTuple_New(2);
2078         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(tmp0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2079         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2080         return ret;
2081       }
2082
2083       PyObject *convertNodalConnectivityToDynamicGeoTypeMesh() const throw(INTERP_KERNEL::Exception)
2084       {
2085         DataArrayInt *ret0=0,*ret1=0;
2086         self->convertNodalConnectivityToDynamicGeoTypeMesh(ret0,ret1);
2087         PyObject *ret=PyTuple_New(2);
2088         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2089         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2090         return ret;
2091       }
2092
2093       static PyObject *AggregateSortedByTypeMeshesOnSameCoords(PyObject *ms) throw(INTERP_KERNEL::Exception)
2094       {
2095         std::vector<const ParaMEDMEM::MEDCouplingUMesh *> meshes;
2096         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingUMesh *>(ms,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2097         DataArrayInt *ret1=0,*ret2=0;
2098         MEDCouplingUMesh *ret0=MEDCouplingUMesh::AggregateSortedByTypeMeshesOnSameCoords(meshes,ret1,ret2);
2099         PyObject *ret=PyTuple_New(3);
2100         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2101         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2102         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(ret2),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2103         return ret;
2104       }
2105
2106       static PyObject *MergeUMeshesOnSameCoords(PyObject *ms) throw(INTERP_KERNEL::Exception)
2107       {
2108         std::vector<const ParaMEDMEM::MEDCouplingUMesh *> meshes;
2109         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingUMesh *>(ms,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2110         MEDCouplingUMesh *ret=MEDCouplingUMesh::MergeUMeshesOnSameCoords(meshes);
2111         return convertMesh(ret, SWIG_POINTER_OWN | 0 );
2112       }
2113
2114       static PyObject *FuseUMeshesOnSameCoords(PyObject *ms, int compType) throw(INTERP_KERNEL::Exception)
2115       {
2116         int sz;
2117         std::vector<const MEDCouplingUMesh *> meshes;
2118         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingUMesh *>(ms,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2119         std::vector<DataArrayInt *> corr;
2120         MEDCouplingUMesh *um=MEDCouplingUMesh::FuseUMeshesOnSameCoords(meshes,compType,corr);
2121         sz=corr.size();
2122         PyObject *ret1=PyList_New(sz);
2123         for(int i=0;i<sz;i++)
2124           PyList_SetItem(ret1,i,SWIG_NewPointerObj(SWIG_as_voidptr(corr[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2125         PyObject *ret=PyList_New(2);
2126         PyList_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(um),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2127         PyList_SetItem(ret,1,ret1);
2128         return ret;
2129       }
2130
2131       static void PutUMeshesOnSameAggregatedCoords(PyObject *ms) throw(INTERP_KERNEL::Exception)
2132       {
2133         std::vector<MEDCouplingUMesh *> meshes;
2134         convertFromPyObjVectorOfObj<ParaMEDMEM::MEDCouplingUMesh *>(ms,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2135         MEDCouplingUMesh::PutUMeshesOnSameAggregatedCoords(meshes);
2136       }
2137
2138       static void MergeNodesOnUMeshesSharingSameCoords(PyObject *ms, double eps) throw(INTERP_KERNEL::Exception)
2139       {
2140         std::vector<MEDCouplingUMesh *> meshes;
2141         convertFromPyObjVectorOfObj<ParaMEDMEM::MEDCouplingUMesh *>(ms,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2142         MEDCouplingUMesh::MergeNodesOnUMeshesSharingSameCoords(meshes,eps);
2143       }
2144
2145       static bool RemoveIdsFromIndexedArrays(PyObject *li, DataArrayInt *arr, DataArrayInt *arrIndx, int offsetForRemoval=0) throw(INTERP_KERNEL::Exception)
2146       {
2147         int sw;
2148         int singleVal;
2149         std::vector<int> multiVal;
2150         std::pair<int, std::pair<int,int> > slic;
2151         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
2152         if(!arrIndx)
2153           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::RemoveIdsFromIndexedArrays : null pointer as arrIndex !");
2154         convertObjToPossibleCpp2(li,arrIndx->getNumberOfTuples()-1,sw,singleVal,multiVal,slic,daIntTyypp);
2155         switch(sw)
2156           {
2157           case 1:
2158             return MEDCouplingUMesh::RemoveIdsFromIndexedArrays(&singleVal,&singleVal+1,arr,arrIndx,offsetForRemoval);
2159           case 2:
2160             return MEDCouplingUMesh::RemoveIdsFromIndexedArrays(&multiVal[0],&multiVal[0]+multiVal.size(),arr,arrIndx,offsetForRemoval);
2161           case 4:
2162             return MEDCouplingUMesh::RemoveIdsFromIndexedArrays(daIntTyypp->begin(),daIntTyypp->end(),arr,arrIndx,offsetForRemoval);
2163           default:
2164             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::RemoveIdsFromIndexedArrays : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2165           }
2166       }
2167       
2168       static PyObject *ExtractFromIndexedArrays(PyObject *li, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn) throw(INTERP_KERNEL::Exception)
2169       {
2170         DataArrayInt *arrOut=0,*arrIndexOut=0;
2171         int sw;
2172         int singleVal;
2173         std::vector<int> multiVal;
2174         std::pair<int, std::pair<int,int> > slic;
2175         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
2176         if(!arrIndxIn)
2177           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::ExtractFromIndexedArrays : null pointer as arrIndxIn !");
2178         convertObjToPossibleCpp2(li,arrIndxIn->getNumberOfTuples()-1,sw,singleVal,multiVal,slic,daIntTyypp);
2179         switch(sw)
2180           {
2181           case 1:
2182             {
2183               MEDCouplingUMesh::ExtractFromIndexedArrays(&singleVal,&singleVal+1,arrIn,arrIndxIn,arrOut,arrIndexOut);
2184               break;
2185             }
2186           case 2:
2187             {
2188               MEDCouplingUMesh::ExtractFromIndexedArrays(&multiVal[0],&multiVal[0]+multiVal.size(),arrIn,arrIndxIn,arrOut,arrIndexOut);
2189               break;
2190             }
2191           case 4:
2192             {
2193               MEDCouplingUMesh::ExtractFromIndexedArrays(daIntTyypp->begin(),daIntTyypp->end(),arrIn,arrIndxIn,arrOut,arrIndexOut);
2194               break;
2195             }
2196           default:
2197             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::ExtractFromIndexedArrays : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2198           }
2199         PyObject *ret=PyTuple_New(2);
2200         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(arrOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2201         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(arrIndexOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2202         return ret;
2203       }
2204
2205       static PyObject *ExtractFromIndexedArrays2(int strt, int stp, int step, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn) throw(INTERP_KERNEL::Exception)
2206       {
2207         DataArrayInt *arrOut=0,*arrIndexOut=0;
2208         MEDCouplingUMesh::ExtractFromIndexedArrays2(strt,stp,step,arrIn,arrIndxIn,arrOut,arrIndexOut);
2209         PyObject *ret=PyTuple_New(2);
2210         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(arrOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2211         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(arrIndexOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2212         return ret;
2213       }
2214
2215       static PyObject *ExtractFromIndexedArrays2(PyObject *slic, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn) throw(INTERP_KERNEL::Exception)
2216       {
2217         if(!PySlice_Check(slic))
2218           throw INTERP_KERNEL::Exception("ExtractFromIndexedArrays2 (wrap) : the first param is not a pyslice !");
2219         Py_ssize_t strt=2,stp=2,step=2;
2220         PySliceObject *sliC=reinterpret_cast<PySliceObject *>(slic);
2221         if(!arrIndxIn)
2222           throw INTERP_KERNEL::Exception("ExtractFromIndexedArrays2 (wrap) : last array is null !");
2223         arrIndxIn->checkAllocated();
2224         if(arrIndxIn->getNumberOfComponents()!=1)
2225           throw INTERP_KERNEL::Exception("ExtractFromIndexedArrays2 (wrap) : number of components of last argument must be equal to one !");
2226         GetIndicesOfSlice(sliC,arrIndxIn->getNumberOfTuples(),&strt,&stp,&step,"ExtractFromIndexedArrays2 (wrap) : Invalid slice regarding nb of elements !");
2227         DataArrayInt *arrOut=0,*arrIndexOut=0;
2228         MEDCouplingUMesh::ExtractFromIndexedArrays2(strt,stp,step,arrIn,arrIndxIn,arrOut,arrIndexOut);
2229         PyObject *ret=PyTuple_New(2);
2230         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(arrOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2231         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(arrIndexOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2232         return ret;
2233       }
2234
2235       static PyObject *SetPartOfIndexedArrays(PyObject *li,
2236                                               const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn,
2237                                               const DataArrayInt *srcArr, const DataArrayInt *srcArrIndex) throw(INTERP_KERNEL::Exception)
2238       {
2239         DataArrayInt *arrOut=0,*arrIndexOut=0;
2240         int sw;
2241         int singleVal;
2242         std::vector<int> multiVal;
2243         std::pair<int, std::pair<int,int> > slic;
2244         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
2245         if(!arrIndxIn)
2246           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArrays : null pointer as arrIndex !");
2247         convertObjToPossibleCpp2(li,arrIndxIn->getNumberOfTuples()-1,sw,singleVal,multiVal,slic,daIntTyypp);
2248         switch(sw)
2249           {
2250           case 1:
2251             {
2252               MEDCouplingUMesh::SetPartOfIndexedArrays(&singleVal,&singleVal+1,arrIn,arrIndxIn,srcArr,srcArrIndex,arrOut,arrIndexOut);
2253               break;
2254             }
2255           case 2:
2256             {
2257               MEDCouplingUMesh::SetPartOfIndexedArrays(&multiVal[0],&multiVal[0]+multiVal.size(),arrIn,arrIndxIn,srcArr,srcArrIndex,arrOut,arrIndexOut);
2258               break;
2259             }
2260           case 4:
2261             {
2262               MEDCouplingUMesh::SetPartOfIndexedArrays(daIntTyypp->begin(),daIntTyypp->end(),arrIn,arrIndxIn,srcArr,srcArrIndex,arrOut,arrIndexOut);
2263               break;
2264             }
2265           default:
2266             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArrays : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2267           }
2268         PyObject *ret=PyTuple_New(2);
2269         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(arrOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2270         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(arrIndexOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2271         return ret;
2272       }
2273
2274       static void SetPartOfIndexedArraysSameIdx(PyObject *li, DataArrayInt *arrIn, const DataArrayInt *arrIndxIn,
2275                                                 const DataArrayInt *srcArr, const DataArrayInt *srcArrIndex) throw(INTERP_KERNEL::Exception)
2276       {
2277         int sw;
2278         int singleVal;
2279         std::vector<int> multiVal;
2280         std::pair<int, std::pair<int,int> > slic;
2281         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
2282         if(!arrIndxIn)
2283           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx : null pointer as arrIndex !");
2284         convertObjToPossibleCpp2(li,arrIndxIn->getNumberOfTuples()-1,sw,singleVal,multiVal,slic,daIntTyypp);
2285         switch(sw)
2286           {
2287           case 1:
2288             {
2289               MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx(&singleVal,&singleVal+1,arrIn,arrIndxIn,srcArr,srcArrIndex);
2290               break;
2291             }
2292           case 2:
2293             {
2294               MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx(&multiVal[0],&multiVal[0]+multiVal.size(),arrIn,arrIndxIn,srcArr,srcArrIndex);
2295               break;
2296             }
2297           case 4:
2298             {
2299               MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx(daIntTyypp->begin(),daIntTyypp->end(),arrIn,arrIndxIn,srcArr,srcArrIndex);
2300               break;
2301             }
2302           default:
2303             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2304           }
2305       }
2306
2307       PyObject *are2DCellsNotCorrectlyOriented(PyObject *vec, bool polyOnly) const throw(INTERP_KERNEL::Exception)
2308       {
2309         double val;
2310         DataArrayDouble *a;
2311         DataArrayDoubleTuple *aa;
2312         std::vector<double> bb;
2313         int sw;
2314         int spaceDim=self->getSpaceDimension();
2315         const char msg[]="Python wrap of MEDCouplingUMesh::are2DCellsNotCorrectlyOriented : ";
2316         const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val,a,aa,bb,msg,1,spaceDim,true);
2317         //
2318         std::vector<int> cells;
2319         self->are2DCellsNotCorrectlyOriented(v,polyOnly,cells);
2320         DataArrayInt *ret=DataArrayInt::New();
2321         ret->alloc((int)cells.size(),1);
2322         std::copy(cells.begin(),cells.end(),ret->getPointer());
2323         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
2324       }
2325
2326       void orientCorrectly2DCells(PyObject *vec, bool polyOnly) throw(INTERP_KERNEL::Exception)
2327       {
2328         double val;
2329         DataArrayDouble *a;
2330         DataArrayDoubleTuple *aa;
2331         std::vector<double> bb;
2332         int sw;
2333         int spaceDim=self->getSpaceDimension();
2334         const char msg[]="Python wrap of MEDCouplingUMesh::orientCorrectly2DCells : ";
2335         const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val,a,aa,bb,msg,1,spaceDim,true);
2336         self->orientCorrectly2DCells(v,polyOnly);
2337       }
2338       
2339       PyObject *arePolyhedronsNotCorrectlyOriented() const throw(INTERP_KERNEL::Exception)
2340       {
2341         std::vector<int> cells;
2342         self->arePolyhedronsNotCorrectlyOriented(cells);
2343         DataArrayInt *ret=DataArrayInt::New();
2344         ret->alloc((int)cells.size(),1);
2345         std::copy(cells.begin(),cells.end(),ret->getPointer());
2346         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
2347       }
2348
2349       PyObject *getFastAveragePlaneOfThis() const throw(INTERP_KERNEL::Exception)
2350       {
2351         double vec[3];
2352         double pos[3];
2353         self->getFastAveragePlaneOfThis(vec,pos);
2354         double vals[6];
2355         std::copy(vec,vec+3,vals);
2356         std::copy(pos,pos+3,vals+3);
2357         return convertDblArrToPyListOfTuple(vals,3,2);
2358       }
2359       
2360       static MEDCouplingUMesh *MergeUMeshes(PyObject *li) throw(INTERP_KERNEL::Exception)
2361       {
2362         std::vector<const ParaMEDMEM::MEDCouplingUMesh *> tmp;
2363         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingUMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",tmp);
2364         return MEDCouplingUMesh::MergeUMeshes(tmp);
2365       }
2366
2367       PyObject *areCellsIncludedIn(const MEDCouplingUMesh *other, int compType) const throw(INTERP_KERNEL::Exception)
2368       {
2369         DataArrayInt *ret1;
2370         bool ret0=self->areCellsIncludedIn(other,compType,ret1);
2371         PyObject *ret=PyTuple_New(2);
2372         PyObject *ret0Py=ret0?Py_True:Py_False;
2373         Py_XINCREF(ret0Py);
2374         PyTuple_SetItem(ret,0,ret0Py);
2375         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2376         return ret;
2377       }
2378
2379       PyObject *areCellsIncludedIn2(const MEDCouplingUMesh *other) const throw(INTERP_KERNEL::Exception)
2380       {
2381         DataArrayInt *ret1;
2382         bool ret0=self->areCellsIncludedIn2(other,ret1);
2383         PyObject *ret=PyTuple_New(2);
2384         PyObject *ret0Py=ret0?Py_True:Py_False;
2385         Py_XINCREF(ret0Py);
2386         PyTuple_SetItem(ret,0,ret0Py);
2387         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2388         return ret;
2389       }
2390
2391       PyObject *explode3DMeshTo1D() const throw(INTERP_KERNEL::Exception)
2392       {
2393         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d0=DataArrayInt::New();
2394         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d1=DataArrayInt::New();
2395         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d2=DataArrayInt::New();
2396         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d3=DataArrayInt::New();
2397         MEDCouplingUMesh *m=self->explode3DMeshTo1D(d0,d1,d2,d3);
2398         PyObject *ret=PyTuple_New(5);
2399         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2400         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2401         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2402         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2403         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2404         return ret;
2405       }
2406
2407       PyObject *buildDescendingConnectivity() const throw(INTERP_KERNEL::Exception)
2408       {
2409         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d0=DataArrayInt::New();
2410         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d1=DataArrayInt::New();
2411         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d2=DataArrayInt::New();
2412         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d3=DataArrayInt::New();
2413         MEDCouplingUMesh *m=self->buildDescendingConnectivity(d0,d1,d2,d3);
2414         PyObject *ret=PyTuple_New(5);
2415         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2416         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2417         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2418         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2419         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2420         return ret;
2421       }
2422
2423       PyObject *buildDescendingConnectivity2() const throw(INTERP_KERNEL::Exception)
2424       {
2425         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d0=DataArrayInt::New();
2426         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d1=DataArrayInt::New();
2427         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d2=DataArrayInt::New();
2428         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d3=DataArrayInt::New();
2429         MEDCouplingUMesh *m=self->buildDescendingConnectivity2(d0,d1,d2,d3);
2430         PyObject *ret=PyTuple_New(5);
2431         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2432         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2433         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2434         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2435         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2436         return ret;
2437       }
2438       
2439       PyObject *computeNeighborsOfCells() const throw(INTERP_KERNEL::Exception)
2440       {
2441         DataArrayInt *neighbors=0,*neighborsIdx=0;
2442         self->computeNeighborsOfCells(neighbors,neighborsIdx);
2443         PyObject *ret=PyTuple_New(2);
2444         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(neighbors),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2445         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(neighborsIdx),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2446         return ret;
2447       }
2448
2449       PyObject *computeNeighborsOfNodes() const throw(INTERP_KERNEL::Exception)
2450       {
2451         DataArrayInt *neighbors=0,*neighborsIdx=0;
2452         self->computeNeighborsOfNodes(neighbors,neighborsIdx);
2453         PyObject *ret=PyTuple_New(2);
2454         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(neighbors),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2455         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(neighborsIdx),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2456         return ret;
2457       }
2458
2459       static PyObject *ComputeNeighborsOfCellsAdv(const DataArrayInt *desc, const DataArrayInt *descI, const DataArrayInt *revDesc, const DataArrayInt *revDescI) throw(INTERP_KERNEL::Exception)
2460       {
2461         DataArrayInt *neighbors=0,*neighborsIdx=0;
2462         MEDCouplingUMesh::ComputeNeighborsOfCellsAdv(desc,descI,revDesc,revDescI,neighbors,neighborsIdx);
2463         PyObject *ret=PyTuple_New(2);
2464         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(neighbors),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2465         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(neighborsIdx),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2466         return ret;
2467       }
2468
2469       PyObject *emulateMEDMEMBDC(const MEDCouplingUMesh *nM1LevMesh)
2470       {
2471         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d0=DataArrayInt::New();
2472         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d1=DataArrayInt::New();
2473         DataArrayInt *d2,*d3,*d4,*dd5;
2474         MEDCouplingUMesh *mOut=self->emulateMEDMEMBDC(nM1LevMesh,d0,d1,d2,d3,d4,dd5);
2475         PyObject *ret=PyTuple_New(7);
2476         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(mOut),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2477         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2478         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2479         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2480         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2481         PyTuple_SetItem(ret,5,SWIG_NewPointerObj(SWIG_as_voidptr(d4),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2482         PyTuple_SetItem(ret,6,SWIG_NewPointerObj(SWIG_as_voidptr(dd5),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2483         return ret;
2484       }
2485
2486       DataArrayDouble *getPartBarycenterAndOwner(DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2487       {
2488         if(!da)
2489           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2490         da->checkAllocated();
2491         return self->getPartBarycenterAndOwner(da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2492       }
2493
2494       DataArrayDouble *getPartMeasureField(bool isAbs, DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2495       {
2496         if(!da)
2497           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2498         da->checkAllocated();
2499         return self->getPartMeasureField(isAbs,da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2500       }
2501
2502       MEDCouplingFieldDouble *buildPartOrthogonalField(DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2503       {
2504         if(!da)
2505           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2506         da->checkAllocated();
2507         return self->buildPartOrthogonalField(da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2508       }
2509
2510       PyObject *getTypesOfPart(DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2511       {
2512         if(!da)
2513           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2514         da->checkAllocated();
2515         std::set<INTERP_KERNEL::NormalizedCellType> result=self->getTypesOfPart(da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2516         std::set<INTERP_KERNEL::NormalizedCellType>::const_iterator iL=result.begin();
2517         PyObject *res = PyList_New(result.size());
2518         for (int i=0;iL!=result.end(); i++, iL++)
2519           PyList_SetItem(res,i,PyInt_FromLong(*iL));
2520         return res;
2521       }
2522
2523       DataArrayInt *keepCellIdsByType(INTERP_KERNEL::NormalizedCellType type, DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2524       {
2525         if(!da)
2526           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2527         da->checkAllocated();
2528         DataArrayInt *ret=self->keepCellIdsByType(type,da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2529         ret->setName(da->getName().c_str());
2530         return ret;
2531       }
2532
2533       static PyObject *Intersect2DMeshes(const MEDCouplingUMesh *m1, const MEDCouplingUMesh *m2, double eps) throw(INTERP_KERNEL::Exception)
2534       {
2535         DataArrayInt *cellNb1=0,*cellNb2=0;
2536         MEDCouplingUMesh *mret=MEDCouplingUMesh::Intersect2DMeshes(m1,m2,eps,cellNb1,cellNb2);
2537         PyObject *ret=PyTuple_New(3);
2538         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(mret),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2539         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellNb1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2540         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(cellNb2),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2541         return ret;
2542       }
2543
2544       static PyObject *Intersect2DMeshWith1DLine(const MEDCouplingUMesh *mesh2D, const MEDCouplingUMesh *mesh1D, double eps) throw(INTERP_KERNEL::Exception)
2545       {
2546         MEDCouplingUMesh *splitMesh2D(0),*splitMesh1D(0);
2547         DataArrayInt *cellIdInMesh2D(0),*cellIdInMesh1D(0);
2548         MEDCouplingUMesh::Intersect2DMeshWith1DLine(mesh2D,mesh1D,eps,splitMesh2D,splitMesh1D,cellIdInMesh2D,cellIdInMesh1D);
2549         PyObject *ret(PyTuple_New(4));
2550         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(splitMesh2D),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2551         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(splitMesh1D),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2552         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(cellIdInMesh2D),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2553         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(cellIdInMesh1D),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2554         return ret;
2555       }
2556
2557       PyObject *buildSlice3D(PyObject *origin, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
2558       {
2559         int spaceDim=self->getSpaceDimension();
2560         if(spaceDim!=3)
2561           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingUMesh::buildSlice3D : works only for spaceDim 3 !");
2562         double val,val2;
2563         DataArrayDouble *a,*a2;
2564         DataArrayDoubleTuple *aa,*aa2;
2565         std::vector<double> bb,bb2;
2566         int sw;
2567         const char msg[]="Python wrap of MEDCouplingUMesh::buildSlice3D : 1st paramater for origin.";
2568         const char msg2[]="Python wrap of MEDCouplingUMesh::buildSlice3D : 2nd paramater for vector.";
2569         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
2570         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
2571         //
2572         DataArrayInt *cellIds=0;
2573         MEDCouplingUMesh *ret0=self->buildSlice3D(orig,vect,eps,cellIds);
2574         PyObject *ret=PyTuple_New(2);
2575         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2576         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellIds),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2577         return ret;
2578       }
2579
2580       PyObject *buildSlice3DSurf(PyObject *origin, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
2581       {
2582         int spaceDim=self->getSpaceDimension();
2583         if(spaceDim!=3)
2584           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingUMesh::buildSlice3DSurf : works only for spaceDim 3 !");
2585         double val,val2;
2586         DataArrayDouble *a,*a2;
2587         DataArrayDoubleTuple *aa,*aa2;
2588         std::vector<double> bb,bb2;
2589         int sw;
2590         const char msg[]="Python wrap of MEDCouplingUMesh::buildSlice3DSurf : 1st paramater for origin.";
2591         const char msg2[]="Python wrap of MEDCouplingUMesh::buildSlice3DSurf : 2nd paramater for vector.";
2592         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
2593         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
2594         //
2595         DataArrayInt *cellIds=0;
2596         MEDCouplingUMesh *ret0=self->buildSlice3DSurf(orig,vect,eps,cellIds);
2597         PyObject *ret=PyTuple_New(2);
2598         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2599         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellIds),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2600         return ret;
2601       }
2602
2603       DataArrayInt *getCellIdsCrossingPlane(PyObject *origin, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
2604       {
2605         int spaceDim=self->getSpaceDimension();
2606         if(spaceDim!=3)
2607           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingUMesh::getCellIdsCrossingPlane : works only for spaceDim 3 !");
2608         double val,val2;
2609         DataArrayDouble *a,*a2;
2610         DataArrayDoubleTuple *aa,*aa2;
2611         std::vector<double> bb,bb2;
2612         int sw;
2613         const char msg[]="Python wrap of MEDCouplingUMesh::getCellIdsCrossingPlane : 1st paramater for origin.";
2614         const char msg2[]="Python wrap of MEDCouplingUMesh::getCellIdsCrossingPlane : 2nd paramater for vector.";
2615         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
2616         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
2617         return self->getCellIdsCrossingPlane(orig,vect,eps);
2618       }
2619
2620       void convertToPolyTypes(PyObject *li) throw(INTERP_KERNEL::Exception)
2621       {
2622         int sw;
2623         int pos1;
2624         std::vector<int> pos2;
2625         DataArrayInt *pos3=0;
2626         DataArrayIntTuple *pos4=0;
2627         convertObjToPossibleCpp1(li,sw,pos1,pos2,pos3,pos4);
2628         switch(sw)
2629           {
2630           case 1:
2631             {
2632               self->convertToPolyTypes(&pos1,&pos1+1);
2633               return;
2634             }
2635           case 2:
2636             {
2637               if(pos2.empty())
2638                 return;
2639               self->convertToPolyTypes(&pos2[0],&pos2[0]+pos2.size());
2640               return ;
2641             }
2642           case 3:
2643             {
2644               self->convertToPolyTypes(pos3->begin(),pos3->end());
2645               return ;
2646             }
2647           default:
2648             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::convertToPolyTypes : unexpected input array type recognized !");
2649           }
2650       }
2651     }
2652     void convertAllToPoly();
2653     void convertExtrudedPolyhedra() throw(INTERP_KERNEL::Exception);
2654     bool unPolyze() throw(INTERP_KERNEL::Exception);
2655     void simplifyPolyhedra(double eps) throw(INTERP_KERNEL::Exception);
2656     MEDCouplingUMesh *buildSpreadZonesWithPoly() const throw(INTERP_KERNEL::Exception);
2657     MEDCouplingUMesh *buildExtrudedMesh(const MEDCouplingUMesh *mesh1D, int policy) throw(INTERP_KERNEL::Exception);
2658   };
2659
2660   //== MEDCouplingUMesh End
2661
2662   //== MEDCouplingExtrudedMesh
2663
2664   class MEDCouplingExtrudedMesh : public ParaMEDMEM::MEDCouplingMesh
2665   {
2666   public:
2667     static MEDCouplingExtrudedMesh *New(const MEDCouplingUMesh *mesh3D, const MEDCouplingUMesh *mesh2D, int cell2DId) throw(INTERP_KERNEL::Exception);
2668     MEDCouplingUMesh *build3DUnstructuredMesh() const throw(INTERP_KERNEL::Exception);
2669     %extend {
2670       MEDCouplingExtrudedMesh(const MEDCouplingUMesh *mesh3D, const MEDCouplingUMesh *mesh2D, int cell2DId) throw(INTERP_KERNEL::Exception)
2671       {
2672         return MEDCouplingExtrudedMesh::New(mesh3D,mesh2D,cell2DId);
2673       }
2674       
2675       std::string __str__() const throw(INTERP_KERNEL::Exception)
2676       {
2677         return self->simpleRepr();
2678       }
2679
2680       std::string __repr__() const throw(INTERP_KERNEL::Exception)
2681       {
2682         std::ostringstream oss;
2683         self->reprQuickOverview(oss);
2684         return oss.str();
2685       }
2686       
2687       PyObject *getMesh2D() const throw(INTERP_KERNEL::Exception)
2688       {
2689         MEDCouplingUMesh *ret=self->getMesh2D();
2690         if(ret)
2691           ret->incrRef();
2692         return convertMesh(ret, SWIG_POINTER_OWN | 0 );
2693       }
2694       PyObject *getMesh1D() const throw(INTERP_KERNEL::Exception)
2695       {
2696         MEDCouplingUMesh *ret=self->getMesh1D();
2697         if(ret)
2698           ret->incrRef();
2699         return convertMesh(ret, SWIG_POINTER_OWN | 0 );
2700       }
2701       PyObject *getMesh3DIds() const throw(INTERP_KERNEL::Exception)
2702       {
2703         DataArrayInt *ret=self->getMesh3DIds();
2704         if(ret)
2705           ret->incrRef();
2706         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
2707       } 
2708     }
2709   };
2710
2711   //== MEDCouplingExtrudedMesh End
2712
2713   class MEDCoupling1GTUMesh : public ParaMEDMEM::MEDCouplingPointSet
2714   {
2715   public:
2716     static MEDCoupling1GTUMesh *New(const std::string& name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
2717     static MEDCoupling1GTUMesh *New(const MEDCouplingUMesh *m) throw(INTERP_KERNEL::Exception);
2718     INTERP_KERNEL::NormalizedCellType getCellModelEnum() const throw(INTERP_KERNEL::Exception);
2719     int getNodalConnectivityLength() const throw(INTERP_KERNEL::Exception);
2720     virtual void allocateCells(int nbOfCells=0) throw(INTERP_KERNEL::Exception);
2721     virtual void checkCoherencyOfConnectivity() const throw(INTERP_KERNEL::Exception);
2722     %extend
2723     {
2724       virtual void insertNextCell(PyObject *li) throw(INTERP_KERNEL::Exception)
2725       {
2726         int szArr,sw,iTypppArr;
2727         std::vector<int> stdvecTyyppArr;
2728         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
2729         self->insertNextCell(tmp,tmp+szArr);
2730       }
2731
2732       virtual DataArrayInt *getNodalConnectivity() const throw(INTERP_KERNEL::Exception)
2733       {
2734         DataArrayInt *ret=self->getNodalConnectivity();
2735         if(ret) ret->incrRef();
2736         return ret;
2737       }
2738       
2739       static MEDCouplingUMesh *AggregateOnSameCoordsToUMesh(PyObject *li) throw(INTERP_KERNEL::Exception)
2740       {
2741         std::vector< const MEDCoupling1GTUMesh *> parts;
2742         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCoupling1GTUMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCoupling1GTUMesh,"MEDCoupling1GTUMesh",parts);
2743         return MEDCoupling1GTUMesh::AggregateOnSameCoordsToUMesh(parts);
2744       }
2745     }
2746   };
2747
2748   //== MEDCoupling1SGTUMesh
2749
2750   class MEDCoupling1SGTUMesh : public ParaMEDMEM::MEDCoupling1GTUMesh
2751   {
2752   public:
2753     static MEDCoupling1SGTUMesh *New(const std::string& name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
2754     static MEDCoupling1SGTUMesh *New(const MEDCouplingUMesh *m) throw(INTERP_KERNEL::Exception);
2755     void setNodalConnectivity(DataArrayInt *nodalConn) throw(INTERP_KERNEL::Exception);
2756     int getNumberOfNodesPerCell() const throw(INTERP_KERNEL::Exception);
2757     static MEDCoupling1SGTUMesh *Merge1SGTUMeshes(const MEDCoupling1SGTUMesh *mesh1, const MEDCoupling1SGTUMesh *mesh2) throw(INTERP_KERNEL::Exception);
2758     MEDCoupling1SGTUMesh *buildSetInstanceFromThis(int spaceDim) const throw(INTERP_KERNEL::Exception);
2759     MEDCoupling1GTUMesh *computeDualMesh() const throw(INTERP_KERNEL::Exception);
2760     MEDCoupling1SGTUMesh *explodeEachHexa8To6Quad4() const throw(INTERP_KERNEL::Exception);
2761     DataArrayInt *sortHexa8EachOther() throw(INTERP_KERNEL::Exception);
2762     %extend
2763     {
2764       MEDCoupling1SGTUMesh(const std::string& name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception)
2765       {
2766         return MEDCoupling1SGTUMesh::New(name,type);
2767       }
2768
2769       MEDCoupling1SGTUMesh(const MEDCouplingUMesh *m) throw(INTERP_KERNEL::Exception)
2770       {
2771         return MEDCoupling1SGTUMesh::New(m);
2772       }
2773
2774       std::string __str__() const throw(INTERP_KERNEL::Exception)
2775       {
2776         return self->simpleRepr();
2777       }
2778       
2779       std::string __repr__() const throw(INTERP_KERNEL::Exception)
2780       {
2781         std::ostringstream oss;
2782         self->reprQuickOverview(oss);
2783         return oss.str();
2784       }
2785
2786       PyObject *structurizeMe(double eps=1e-12) const throw(INTERP_KERNEL::Exception)
2787       {
2788         DataArrayInt *cellPerm(0),*nodePerm(0);
2789         MEDCouplingCMesh *retCpp(self->structurizeMe(cellPerm,nodePerm,eps));
2790         PyObject *ret(PyTuple_New(3));
2791         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(retCpp),SWIGTYPE_p_ParaMEDMEM__MEDCouplingCMesh, SWIG_POINTER_OWN | 0 ));
2792         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellPerm),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2793         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(nodePerm),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2794         return ret;
2795       }
2796
2797       static MEDCoupling1SGTUMesh *Merge1SGTUMeshes(PyObject *li) throw(INTERP_KERNEL::Exception)
2798       {
2799         std::vector<const ParaMEDMEM::MEDCoupling1SGTUMesh *> tmp;
2800         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCoupling1SGTUMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCoupling1SGTUMesh,"MEDCoupling1SGTUMesh",tmp);
2801         return MEDCoupling1SGTUMesh::Merge1SGTUMeshes(tmp);
2802       }
2803       
2804       static MEDCoupling1SGTUMesh *Merge1SGTUMeshesOnSameCoords(PyObject *li) throw(INTERP_KERNEL::Exception)
2805       {
2806         std::vector<const ParaMEDMEM::MEDCoupling1SGTUMesh *> tmp;
2807         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCoupling1SGTUMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCoupling1SGTUMesh,"MEDCoupling1SGTUMesh",tmp);
2808         return MEDCoupling1SGTUMesh::Merge1SGTUMeshesOnSameCoords(tmp);
2809       }
2810     }
2811   };
2812   
2813   //== MEDCoupling1SGTUMesh End
2814
2815   //== MEDCoupling1DGTUMesh
2816
2817   class MEDCoupling1DGTUMesh : public ParaMEDMEM::MEDCoupling1GTUMesh
2818   {
2819   public:
2820     static MEDCoupling1DGTUMesh *New(const std::string& name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
2821     static MEDCoupling1DGTUMesh *New(const MEDCouplingUMesh *m) throw(INTERP_KERNEL::Exception);
2822     void setNodalConnectivity(DataArrayInt *nodalConn, DataArrayInt *nodalConnIndex) throw(INTERP_KERNEL::Exception);
2823     MEDCoupling1DGTUMesh *buildSetInstanceFromThis(int spaceDim) const throw(INTERP_KERNEL::Exception);
2824     bool isPacked() const throw(INTERP_KERNEL::Exception);
2825     %extend
2826     {
2827       MEDCoupling1DGTUMesh(const std::string& name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception)
2828       {
2829         return MEDCoupling1DGTUMesh::New(name,type);
2830       }
2831
2832       MEDCoupling1DGTUMesh(const MEDCouplingUMesh *m) throw(INTERP_KERNEL::Exception)
2833       {
2834         return MEDCoupling1DGTUMesh::New(m);
2835       }
2836
2837       std::string __str__() const throw(INTERP_KERNEL::Exception)
2838       {
2839         return self->simpleRepr();
2840       }
2841       
2842       std::string __repr__() const throw(INTERP_KERNEL::Exception)
2843       {
2844         std::ostringstream oss;
2845         self->reprQuickOverview(oss);
2846         return oss.str();
2847       }
2848
2849       DataArrayInt *getNodalConnectivityIndex() const throw(INTERP_KERNEL::Exception)
2850       {
2851         DataArrayInt *ret=self->getNodalConnectivityIndex();
2852         if(ret) ret->incrRef();
2853         return ret;
2854       }
2855
2856       PyObject *retrievePackedNodalConnectivity() const throw(INTERP_KERNEL::Exception)
2857       {
2858         DataArrayInt *ret1=0,*ret2=0;
2859         bool ret0=self->retrievePackedNodalConnectivity(ret1,ret2);
2860         PyObject *ret0Py=ret0?Py_True:Py_False;
2861         Py_XINCREF(ret0Py);
2862         PyObject *ret=PyTuple_New(3);
2863         PyTuple_SetItem(ret,0,ret0Py);
2864         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2865         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(ret2),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2866         return ret;
2867       }
2868       
2869       PyObject *copyWithNodalConnectivityPacked() const throw(INTERP_KERNEL::Exception)
2870       {
2871         bool ret1;
2872         MEDCoupling1DGTUMesh *ret0=self->copyWithNodalConnectivityPacked(ret1);
2873         PyObject *ret=PyTuple_New(2);
2874         PyObject *ret1Py=ret1?Py_True:Py_False; Py_XINCREF(ret1Py);
2875         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__MEDCoupling1DGTUMesh, SWIG_POINTER_OWN | 0 ));
2876         PyTuple_SetItem(ret,1,ret1Py);
2877         return ret;
2878       }
2879
2880       static MEDCoupling1DGTUMesh *Merge1DGTUMeshes(PyObject *li) throw(INTERP_KERNEL::Exception)
2881       {
2882         std::vector<const ParaMEDMEM::MEDCoupling1DGTUMesh *> tmp;
2883         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCoupling1DGTUMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCoupling1DGTUMesh,"MEDCoupling1DGTUMesh",tmp);
2884         return MEDCoupling1DGTUMesh::Merge1DGTUMeshes(tmp);
2885       }
2886       
2887       static MEDCoupling1DGTUMesh *Merge1DGTUMeshesOnSameCoords(PyObject *li) throw(INTERP_KERNEL::Exception)
2888       {
2889         std::vector<const ParaMEDMEM::MEDCoupling1DGTUMesh *> tmp;
2890         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCoupling1DGTUMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCoupling1DGTUMesh,"MEDCoupling1DGTUMesh",tmp);
2891         return MEDCoupling1DGTUMesh::Merge1DGTUMeshesOnSameCoords(tmp);
2892       }
2893       
2894       static DataArrayInt *AggregateNodalConnAndShiftNodeIds(PyObject *li, const std::vector<int>& offsetInNodeIdsPerElt) throw(INTERP_KERNEL::Exception)
2895       {
2896         std::vector<const ParaMEDMEM::DataArrayInt *> tmp;
2897         convertFromPyObjVectorOfObj<const ParaMEDMEM::DataArrayInt *>(li,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,"DataArrayInt",tmp);
2898         return MEDCoupling1DGTUMesh::AggregateNodalConnAndShiftNodeIds(tmp,offsetInNodeIdsPerElt);
2899       }
2900     }
2901   };
2902
2903   //== MEDCoupling1DGTUMeshEnd
2904
2905   class MEDCouplingStructuredMesh : public ParaMEDMEM::MEDCouplingMesh
2906   {
2907   public:
2908     int getCellIdFromPos(int i, int j, int k) const throw(INTERP_KERNEL::Exception);
2909     int getNodeIdFromPos(int i, int j, int k) const throw(INTERP_KERNEL::Exception);
2910     int getNumberOfCellsOfSubLevelMesh() const throw(INTERP_KERNEL::Exception);
2911     int getSpaceDimensionOnNodeStruct() const throw(INTERP_KERNEL::Exception);
2912     double computeSquareness() const throw(INTERP_KERNEL::Exception);
2913     virtual std::vector<int> getNodeGridStructure() const throw(INTERP_KERNEL::Exception);
2914     std::vector<int> getCellGridStructure() const throw(INTERP_KERNEL::Exception);
2915     MEDCoupling1SGTUMesh *build1SGTUnstructured() const throw(INTERP_KERNEL::Exception);
2916     static INTERP_KERNEL::NormalizedCellType GetGeoTypeGivenMeshDimension(int meshDim) throw(INTERP_KERNEL::Exception);
2917     MEDCoupling1SGTUMesh *build1SGTSubLevelMesh() const throw(INTERP_KERNEL::Exception);
2918     static int DeduceNumberOfGivenStructure(const std::vector<int>& st) throw(INTERP_KERNEL::Exception);
2919     static DataArrayInt *ComputeCornersGhost(const std::vector<int>& st, int ghostLev) throw(INTERP_KERNEL::Exception);
2920     static std::vector<int> GetSplitVectFromStruct(const std::vector<int>& strct) throw(INTERP_KERNEL::Exception);
2921     %extend
2922     {
2923       virtual MEDCouplingStructuredMesh *buildStructuredSubPart(PyObject *cellPart) const throw(INTERP_KERNEL::Exception)
2924       {
2925         int tmpp1=-1,tmpp2=-1;
2926         std::vector<int> tmp=fillArrayWithPyListInt2(cellPart,tmpp1,tmpp2);
2927         std::vector< std::pair<int,int> > inp;
2928         if(tmpp2==2)
2929           {
2930             inp.resize(tmpp1);
2931             for(int i=0;i<tmpp1;i++)
2932               { inp[i].first=tmp[2*i]; inp[i].second=tmp[2*i+1]; }
2933           }
2934         else if(tmpp2==1)
2935           {
2936             if(tmpp1%2!=0)
2937               throw INTERP_KERNEL::Exception("Wrap of MEDCouplingStructuredMesh.buildStructuredSubPart : invalid input size ! Must be even size !");
2938             inp.resize(tmpp1/2);
2939             for(int i=0;i<tmpp1/2;i++)
2940               { inp[i].first=tmp[2*i]; inp[i].second=tmp[2*i+1]; }
2941           }
2942         else
2943           throw INTERP_KERNEL::Exception("Wrap of MEDCouplingStructuredMesh.buildStructuredSubPart : invalid input size !");
2944         return self->buildStructuredSubPart(inp);
2945       }
2946
2947       static DataArrayInt *BuildExplicitIdsFrom(PyObject *st, PyObject *part) throw(INTERP_KERNEL::Exception)
2948       {
2949         std::vector< std::pair<int,int> > inp;
2950         convertPyToVectorPairInt(part,inp);
2951         //
2952         int szArr,sw,iTypppArr;
2953         std::vector<int> stdvecTyyppArr;
2954         const int *tmp4=convertObjToPossibleCpp1_Safe(st,sw,szArr,iTypppArr,stdvecTyyppArr);
2955         std::vector<int> tmp5(tmp4,tmp4+szArr);
2956         //
2957         return MEDCouplingStructuredMesh::BuildExplicitIdsFrom(tmp5,inp);
2958       }
2959
2960       static void MultiplyPartOf(const std::vector<int>& st, PyObject *part, double factor, DataArrayDouble *da) throw(INTERP_KERNEL::Exception)
2961       {
2962         std::vector< std::pair<int,int> > inp;
2963         convertPyToVectorPairInt(part,inp);
2964         MEDCouplingStructuredMesh::MultiplyPartOf(st,inp,factor,da);
2965       }
2966
2967       static void MultiplyPartOfByGhost(const std::vector<int>& st, PyObject *part, int ghostSize, double factor, DataArrayDouble *da) throw(INTERP_KERNEL::Exception)
2968       {
2969         std::vector< std::pair<int,int> > inp;
2970         convertPyToVectorPairInt(part,inp);
2971         MEDCouplingStructuredMesh::MultiplyPartOfByGhost(st,inp,ghostSize,factor,da);
2972       }
2973
2974       static PyObject *PutInGhostFormat(int ghostSize, const std::vector<int>& st, PyObject *part) throw(INTERP_KERNEL::Exception)
2975       {
2976         std::vector< std::pair<int,int> > inp;
2977         convertPyToVectorPairInt(part,inp);
2978         std::vector<int> stWithGhost;
2979         std::vector< std::pair<int,int> > partWithGhost;
2980         MEDCouplingStructuredMesh::PutInGhostFormat(ghostSize,st,inp,stWithGhost,partWithGhost);
2981         PyObject *ret(PyTuple_New(2));
2982         PyTuple_SetItem(ret,0,convertIntArrToPyList2(stWithGhost));
2983         PyTuple_SetItem(ret,1,convertFromVectorPairInt(partWithGhost));
2984         return ret;
2985       }
2986
2987       static DataArrayDouble *ExtractFieldOfDoubleFrom(const std::vector<int>& st, const DataArrayDouble *fieldOfDbl, PyObject *partCompactFormat) throw(INTERP_KERNEL::Exception)
2988       {
2989         std::vector< std::pair<int,int> > inp;
2990         convertPyToVectorPairInt(partCompactFormat,inp);
2991         return MEDCouplingStructuredMesh::ExtractFieldOfDoubleFrom(st,fieldOfDbl,inp);
2992       }
2993
2994       static void AssignPartOfFieldOfDoubleUsing(const std::vector<int>& st, DataArrayDouble *fieldOfDbl, PyObject *partCompactFormat, const DataArrayDouble *other) throw(INTERP_KERNEL::Exception)
2995       {
2996         std::vector< std::pair<int,int> > inp;
2997         convertPyToVectorPairInt(partCompactFormat,inp);
2998         MEDCouplingStructuredMesh::AssignPartOfFieldOfDoubleUsing(st,fieldOfDbl,inp,other);
2999       }
3000
3001       static int DeduceNumberOfGivenRangeInCompactFrmt(PyObject *part) throw(INTERP_KERNEL::Exception)
3002       {
3003         std::vector< std::pair<int,int> > inp;
3004         convertPyToVectorPairInt(part,inp);
3005         return MEDCouplingStructuredMesh::DeduceNumberOfGivenRangeInCompactFrmt(inp);
3006       }
3007
3008       static DataArrayInt *Build1GTNodalConnectivity(PyObject *li) throw(INTERP_KERNEL::Exception)
3009       {
3010         int szArr,sw,iTypppArr;
3011         std::vector<int> stdvecTyyppArr;
3012         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3013         return MEDCouplingStructuredMesh::Build1GTNodalConnectivity(tmp,tmp+szArr);
3014       }
3015
3016       static DataArrayInt *Build1GTNodalConnectivityOfSubLevelMesh(PyObject *li) throw(INTERP_KERNEL::Exception)
3017       {
3018         int szArr,sw,iTypppArr;
3019         std::vector<int> stdvecTyyppArr;
3020         const int *tmp(convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr));
3021         return MEDCouplingStructuredMesh::Build1GTNodalConnectivityOfSubLevelMesh(tmp,tmp+szArr);
3022       }
3023
3024       static std::vector<int> GetDimensionsFromCompactFrmt(PyObject *partCompactFormat) throw(INTERP_KERNEL::Exception)
3025       {
3026         std::vector< std::pair<int,int> > inp;
3027         convertPyToVectorPairInt(partCompactFormat,inp);
3028         return MEDCouplingStructuredMesh::GetDimensionsFromCompactFrmt(inp);
3029       }
3030
3031       static PyObject *GetCompactFrmtFromDimensions(const std::vector<int>& dims) throw(INTERP_KERNEL::Exception)
3032       {
3033         std::vector< std::pair<int,int> > ret(MEDCouplingStructuredMesh::GetCompactFrmtFromDimensions(dims));
3034         PyObject *retPy=PyList_New(ret.size());
3035         for(std::size_t i=0;i<ret.size();i++)
3036           {
3037             PyObject *tmp=PyTuple_New(2);
3038             PyTuple_SetItem(tmp,0,PyInt_FromLong(ret[i].first));
3039             PyTuple_SetItem(tmp,1,PyInt_FromLong(ret[i].second));
3040             PyList_SetItem(retPy,i,tmp);
3041           }
3042         return retPy;
3043       }
3044
3045       static PyObject *IntersectRanges(PyObject *r1, PyObject *r2) throw(INTERP_KERNEL::Exception)
3046       {
3047         std::vector< std::pair<int,int> > r1Cpp,r2Cpp;
3048         convertPyToVectorPairInt(r1,r1Cpp);
3049         convertPyToVectorPairInt(r2,r2Cpp);
3050         std::vector< std::pair<int,int> > ret(MEDCouplingStructuredMesh::IntersectRanges(r1Cpp,r2Cpp));
3051         PyObject *retPy=PyList_New(ret.size());
3052         for(std::size_t i=0;i<ret.size();i++)
3053           {
3054             PyObject *tmp=PyTuple_New(2);
3055             PyTuple_SetItem(tmp,0,PyInt_FromLong(ret[i].first));
3056             PyTuple_SetItem(tmp,1,PyInt_FromLong(ret[i].second));
3057             PyList_SetItem(retPy,i,tmp);
3058           }
3059         return retPy;
3060       }
3061
3062       static bool AreRangesIntersect(PyObject *r1, PyObject *r2)
3063       {
3064         std::vector< std::pair<int,int> > r1Cpp,r2Cpp;
3065         convertPyToVectorPairInt(r1,r1Cpp);
3066         convertPyToVectorPairInt(r2,r2Cpp);
3067         return MEDCouplingStructuredMesh::AreRangesIntersect(r1Cpp,r2Cpp);
3068       }
3069
3070       static PyObject *IsPartStructured(PyObject *li, PyObject *st) throw(INTERP_KERNEL::Exception)
3071       {
3072         int szArr,sw,iTypppArr;
3073         std::vector<int> stdvecTyyppArr;
3074         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3075         int szArr2,sw2,iTypppArr2;
3076         std::vector<int> stdvecTyyppArr2;
3077         const int *tmp2=convertObjToPossibleCpp1_Safe(st,sw2,szArr2,iTypppArr2,stdvecTyyppArr2);
3078         std::vector<int> tmp3(tmp2,tmp2+szArr2);
3079         std::vector< std::pair<int,int> > partCompactFormat;
3080         bool ret0=MEDCouplingStructuredMesh::IsPartStructured(tmp,tmp+szArr,tmp3,partCompactFormat);
3081         PyObject *ret=PyTuple_New(2);
3082         PyObject *ret0Py=ret0?Py_True:Py_False; Py_XINCREF(ret0Py);
3083         PyTuple_SetItem(ret,0,ret0Py);
3084         PyObject *ret1Py=PyList_New(partCompactFormat.size());
3085         for(std::size_t i=0;i<partCompactFormat.size();i++)
3086           {
3087             PyObject *tmp4=PyTuple_New(2);
3088             PyTuple_SetItem(tmp4,0,PyInt_FromLong(partCompactFormat[i].first));
3089             PyTuple_SetItem(tmp4,1,PyInt_FromLong(partCompactFormat[i].second));
3090             PyList_SetItem(ret1Py,i,tmp4);
3091           }
3092         PyTuple_SetItem(ret,1,ret1Py);
3093         return ret;
3094       }
3095
3096       static PyObject *ChangeReferenceFromGlobalOfCompactFrmt(PyObject *bigInAbs, PyObject *partOfBigInAbs, bool check=true) throw(INTERP_KERNEL::Exception)
3097       {
3098         std::vector< std::pair<int,int> > param0,param1,ret;
3099         convertPyToVectorPairInt(bigInAbs,param0);
3100         convertPyToVectorPairInt(partOfBigInAbs,param1);
3101         MEDCouplingStructuredMesh::ChangeReferenceFromGlobalOfCompactFrmt(param0,param1,ret,check);
3102         PyObject *retPy(PyList_New(ret.size()));
3103         for(std::size_t i=0;i<ret.size();i++)
3104           {
3105             PyObject *tmp(PyTuple_New(2));
3106             PyTuple_SetItem(tmp,0,PyInt_FromLong(ret[i].first));
3107             PyTuple_SetItem(tmp,1,PyInt_FromLong(ret[i].second));
3108             PyList_SetItem(retPy,i,tmp);
3109           }
3110         return retPy;
3111       }
3112
3113       static PyObject *TranslateCompactFrmt(PyObject *part, const std::vector<int>& translation) throw(INTERP_KERNEL::Exception)
3114       {
3115         std::vector< std::pair<int,int> > param0;
3116         convertPyToVectorPairInt(part,param0);
3117         std::vector< std::pair<int,int> > ret(MEDCouplingStructuredMesh::TranslateCompactFrmt(param0,translation));
3118         PyObject *retPy(PyList_New(ret.size()));
3119         for(std::size_t i=0;i<ret.size();i++)
3120           {
3121             PyObject *tmp(PyTuple_New(2));
3122             PyTuple_SetItem(tmp,0,PyInt_FromLong(ret[i].first));
3123             PyTuple_SetItem(tmp,1,PyInt_FromLong(ret[i].second));
3124             PyList_SetItem(retPy,i,tmp);
3125           }
3126         return retPy;
3127       }
3128
3129       static std::vector<int> FindTranslationFrom(PyObject *startingFrom, PyObject *goingTo) throw(INTERP_KERNEL::Exception)
3130       {
3131         std::vector< std::pair<int,int> > param0,param1;
3132         convertPyToVectorPairInt(startingFrom,param0);
3133         convertPyToVectorPairInt(goingTo,param1);
3134         return  MEDCouplingStructuredMesh::FindTranslationFrom(param0,param1);
3135       }
3136
3137       static PyObject *ChangeReferenceToGlobalOfCompactFrmt(PyObject *bigInAbs, PyObject *partOfBigRelativeToBig, bool check=true) throw(INTERP_KERNEL::Exception)
3138       {
3139         std::vector< std::pair<int,int> > param0,param1,ret;
3140         convertPyToVectorPairInt(bigInAbs,param0);
3141         convertPyToVectorPairInt(partOfBigRelativeToBig,param1);
3142         MEDCouplingStructuredMesh::ChangeReferenceToGlobalOfCompactFrmt(param0,param1,ret,check);
3143         PyObject *retPy(PyList_New(ret.size()));
3144         for(std::size_t i=0;i<ret.size();i++)
3145           {
3146             PyObject *tmp(PyTuple_New(2));
3147             PyTuple_SetItem(tmp,0,PyInt_FromLong(ret[i].first));
3148             PyTuple_SetItem(tmp,1,PyInt_FromLong(ret[i].second));
3149             PyList_SetItem(retPy,i,tmp);
3150           }
3151         return retPy;
3152       }
3153     }
3154   };
3155
3156   //== MEDCouplingCMesh
3157   
3158   class MEDCouplingCMesh : public ParaMEDMEM::MEDCouplingStructuredMesh
3159   {
3160   public:
3161     static MEDCouplingCMesh *New() throw(INTERP_KERNEL::Exception);
3162     static MEDCouplingCMesh *New(const std::string& meshName) throw(INTERP_KERNEL::Exception);
3163     MEDCouplingCMesh *clone(bool recDeepCpy) const;
3164     void setCoords(const DataArrayDouble *coordsX,
3165                    const DataArrayDouble *coordsY=0,
3166                    const DataArrayDouble *coordsZ=0) throw(INTERP_KERNEL::Exception);
3167     void setCoordsAt(int i, const DataArrayDouble *arr) throw(INTERP_KERNEL::Exception);
3168     %extend {
3169       MEDCouplingCMesh() throw(INTERP_KERNEL::Exception)
3170       {
3171         return MEDCouplingCMesh::New();
3172       }
3173       MEDCouplingCMesh(const std::string& meshName) throw(INTERP_KERNEL::Exception)
3174       {
3175         return MEDCouplingCMesh::New(meshName);
3176       }
3177       std::string __str__() const throw(INTERP_KERNEL::Exception)
3178       {
3179         return self->simpleRepr();
3180       }
3181       std::string __repr__() const throw(INTERP_KERNEL::Exception)
3182       {
3183         std::ostringstream oss;
3184         self->reprQuickOverview(oss);
3185         return oss.str();
3186       }
3187       DataArrayDouble *getCoordsAt(int i) throw(INTERP_KERNEL::Exception)
3188       {
3189         DataArrayDouble *ret=self->getCoordsAt(i);
3190         if(ret)
3191           ret->incrRef();
3192         return ret;
3193       }
3194     }
3195   };
3196
3197   //== MEDCouplingCMesh End
3198
3199   //== MEDCouplingCurveLinearMesh
3200
3201   class MEDCouplingCurveLinearMesh : public ParaMEDMEM::MEDCouplingStructuredMesh
3202   {
3203   public:
3204     static MEDCouplingCurveLinearMesh *New() throw(INTERP_KERNEL::Exception);
3205     static MEDCouplingCurveLinearMesh *New(const std::string& meshName) throw(INTERP_KERNEL::Exception);
3206     MEDCouplingCurveLinearMesh *clone(bool recDeepCpy) const;
3207     void setCoords(const DataArrayDouble *coords) throw(INTERP_KERNEL::Exception);
3208     %extend {
3209       MEDCouplingCurveLinearMesh() throw(INTERP_KERNEL::Exception)
3210       {
3211         return MEDCouplingCurveLinearMesh::New();
3212       }
3213       MEDCouplingCurveLinearMesh(const std::string& meshName) throw(INTERP_KERNEL::Exception)
3214       {
3215         return MEDCouplingCurveLinearMesh::New(meshName);
3216       }
3217       std::string __str__() const throw(INTERP_KERNEL::Exception) 
3218       {
3219         return self->simpleRepr();
3220       }
3221       std::string __repr__() const throw(INTERP_KERNEL::Exception)
3222       {
3223         std::ostringstream oss;
3224         self->reprQuickOverview(oss);
3225         return oss.str();
3226       }
3227       DataArrayDouble *getCoords() throw(INTERP_KERNEL::Exception)
3228       {
3229         DataArrayDouble *ret=self->getCoords();
3230         if(ret)
3231           ret->incrRef();
3232         return ret;
3233       }
3234       void setNodeGridStructure(PyObject *gridStruct) throw(INTERP_KERNEL::Exception)
3235       {
3236         int szArr,sw,iTypppArr;
3237         std::vector<int> stdvecTyyppArr;
3238         const int *tmp=convertObjToPossibleCpp1_Safe(gridStruct,sw,szArr,iTypppArr,stdvecTyyppArr);
3239         self->setNodeGridStructure(tmp,tmp+szArr);
3240       }
3241     }
3242   };
3243
3244   //== MEDCouplingCurveLinearMesh End
3245
3246   //== MEDCouplingIMesh
3247
3248   class MEDCouplingIMesh : public ParaMEDMEM::MEDCouplingStructuredMesh
3249   {
3250   public:
3251     static MEDCouplingIMesh *New() throw(INTERP_KERNEL::Exception);
3252     //
3253     void setSpaceDimension(int spaceDim) throw(INTERP_KERNEL::Exception);
3254     std::vector<int> getNodeStruct() const throw(INTERP_KERNEL::Exception);
3255     std::vector<double> getOrigin() const throw(INTERP_KERNEL::Exception);
3256     std::vector<double> getDXYZ() const throw(INTERP_KERNEL::Exception);
3257     void setAxisUnit(const std::string& unitName) throw(INTERP_KERNEL::Exception);
3258     std::string getAxisUnit() const throw(INTERP_KERNEL::Exception);
3259     double getMeasureOfAnyCell() const throw(INTERP_KERNEL::Exception);
3260     MEDCouplingCMesh *convertToCartesian() const throw(INTERP_KERNEL::Exception);
3261     void refineWithFactor(const std::vector<int>& factors) throw(INTERP_KERNEL::Exception);
3262     MEDCouplingIMesh *asSingleCell() const throw(INTERP_KERNEL::Exception);
3263     MEDCouplingIMesh *buildWithGhost(int ghostLev) const throw(INTERP_KERNEL::Exception);
3264     %extend
3265     {
3266       MEDCouplingIMesh()
3267       {
3268         return MEDCouplingIMesh::New();
3269       }
3270       static MEDCouplingIMesh *New(const std::string& meshName, int spaceDim, PyObject *nodeStrct, PyObject *origin, PyObject *dxyz) throw(INTERP_KERNEL::Exception)
3271       {
3272         static const char msg0[]="MEDCouplingIMesh::New : error on 'origin' parameter !";
3273         static const char msg1[]="MEDCouplingIMesh::New : error on 'dxyz' parameter !";
3274         const int *nodeStrctPtr(0);
3275         const double *originPtr(0),*dxyzPtr(0);
3276         int sw,sz,val0;
3277         std::vector<int> bb0;
3278         nodeStrctPtr=convertObjToPossibleCpp1_Safe(nodeStrct,sw,sz,val0,bb0);
3279         //
3280         double val,val2;
3281         std::vector<double> bb,bb2;
3282         int sz1,sz2;
3283         originPtr=convertObjToPossibleCpp5_SingleCompo(origin,sw,val,bb,msg0,false,sz1);
3284         dxyzPtr=convertObjToPossibleCpp5_SingleCompo(dxyz,sw,val2,bb2,msg1,false,sz2);
3285         //
3286         return MEDCouplingIMesh::New(meshName,spaceDim,nodeStrctPtr,nodeStrctPtr+sz,originPtr,originPtr+sz1,dxyzPtr,dxyzPtr+sz2);
3287       }
3288
3289       MEDCouplingIMesh(const std::string& meshName, int spaceDim, PyObject *nodeStrct, PyObject *origin, PyObject *dxyz) throw(INTERP_KERNEL::Exception)
3290       {
3291         return ParaMEDMEM_MEDCouplingIMesh_New__SWIG_1(meshName,spaceDim,nodeStrct,origin,dxyz);
3292       }
3293
3294       void setNodeStruct(PyObject *nodeStrct) throw(INTERP_KERNEL::Exception)
3295       {
3296         int sw,sz,val0;
3297         std::vector<int> bb0;
3298         const int *nodeStrctPtr(convertObjToPossibleCpp1_Safe(nodeStrct,sw,sz,val0,bb0));
3299         self->setNodeStruct(nodeStrctPtr,nodeStrctPtr+sz);
3300       }
3301
3302       void setOrigin(PyObject *origin) throw(INTERP_KERNEL::Exception)
3303       {
3304         static const char msg[]="MEDCouplingIMesh::setOrigin : invalid input 'origin' parameter ! integer, float, list/tuple of float, DataArrayDouble or DataArrayDoubleTuple supported !";
3305         double val;
3306         DataArrayDouble *a;
3307         DataArrayDoubleTuple *aa;
3308         std::vector<double> bb;
3309         int sw,nbTuples;
3310         const double *originPtr(convertObjToPossibleCpp5_SingleCompo(origin,sw,val,bb,msg,false,nbTuples));
3311         self->setOrigin(originPtr,originPtr+nbTuples);
3312       }
3313       
3314       void setDXYZ(PyObject *dxyz) throw(INTERP_KERNEL::Exception)
3315       {
3316         static const char msg[]="MEDCouplingIMesh::setDXYZ : invalid input 'dxyz' parameter ! integer, float, list/tuple of float, DataArrayDouble or DataArrayDoubleTuple supported !";
3317         double val;
3318         DataArrayDouble *a;
3319         DataArrayDoubleTuple *aa;
3320         std::vector<double> bb;
3321         int sw,nbTuples;
3322         const double *originPtr(convertObjToPossibleCpp5_SingleCompo(dxyz,sw,val,bb,msg,false,nbTuples));
3323         self->setDXYZ(originPtr,originPtr+nbTuples);
3324       }
3325
3326       static void CondenseFineToCoarse(const std::vector<int>& coarseSt, const DataArrayDouble *fineDA, PyObject *fineLocInCoarse, const std::vector<int>& facts, DataArrayDouble *coarseDA) throw(INTERP_KERNEL::Exception)
3327       {
3328         std::vector< std::pair<int,int> > inp;
3329         convertPyToVectorPairInt(fineLocInCoarse,inp);
3330         MEDCouplingIMesh::CondenseFineToCoarse(coarseSt,fineDA,inp,facts,coarseDA);
3331       }
3332
3333       static void CondenseFineToCoarseGhost(const std::vector<int>& coarseSt, const DataArrayDouble *fineDA, PyObject *fineLocInCoarse, const std::vector<int>& facts, DataArrayDouble *coarseDA, int ghostSize) throw(INTERP_KERNEL::Exception)
3334       {
3335         std::vector< std::pair<int,int> > inp;
3336         convertPyToVectorPairInt(fineLocInCoarse,inp);
3337         MEDCouplingIMesh::CondenseFineToCoarseGhost(coarseSt,fineDA,inp,facts,coarseDA,ghostSize);
3338       }
3339
3340       static void SpreadCoarseToFine(const DataArrayDouble *coarseDA, const std::vector<int>& coarseSt, DataArrayDouble *fineDA, PyObject *fineLocInCoarse, const std::vector<int>& facts) throw(INTERP_KERNEL::Exception)
3341       {
3342         std::vector< std::pair<int,int> > inp;
3343         convertPyToVectorPairInt(fineLocInCoarse,inp);
3344         MEDCouplingIMesh::SpreadCoarseToFine(coarseDA,coarseSt,fineDA,inp,facts);
3345       }
3346
3347       static void SpreadCoarseToFineGhost(const DataArrayDouble *coarseDA, const std::vector<int>& coarseSt, DataArrayDouble *fineDA, PyObject *fineLocInCoarse, const std::vector<int>& facts, int ghostSize) throw(INTERP_KERNEL::Exception)
3348       {
3349         std::vector< std::pair<int,int> > inp;
3350         convertPyToVectorPairInt(fineLocInCoarse,inp);
3351         MEDCouplingIMesh::SpreadCoarseToFineGhost(coarseDA,coarseSt,fineDA,inp,facts,ghostSize);
3352       }
3353
3354       static void SpreadCoarseToFineGhostZone(const DataArrayDouble *coarseDA, const std::vector<int>& coarseSt, DataArrayDouble *fineDA, PyObject *fineLocInCoarse, const std::vector<int>& facts, int ghostSize) throw(INTERP_KERNEL::Exception)
3355       {
3356         std::vector< std::pair<int,int> > inp;
3357         convertPyToVectorPairInt(fineLocInCoarse,inp);
3358         MEDCouplingIMesh::SpreadCoarseToFineGhostZone(coarseDA,coarseSt,fineDA,inp,facts,ghostSize);
3359       }
3360
3361       std::string __str__() const throw(INTERP_KERNEL::Exception)
3362       {
3363         return self->simpleRepr();
3364       }
3365       std::string __repr__() const throw(INTERP_KERNEL::Exception)
3366       {
3367         std::ostringstream oss;
3368         self->reprQuickOverview(oss);
3369         return oss.str();
3370       }
3371     }
3372   };
3373
3374   //== MEDCouplingIMesh End
3375
3376 }
3377
3378 namespace ParaMEDMEM
3379 {
3380   class MEDCouplingField : public ParaMEDMEM::RefCountObject, public ParaMEDMEM::TimeLabel
3381   {
3382   public:
3383     virtual void checkCoherency() const throw(INTERP_KERNEL::Exception);
3384     virtual bool areCompatibleForMerge(const MEDCouplingField *other) const throw(INTERP_KERNEL::Exception);
3385     virtual bool isEqual(const MEDCouplingField *other, double meshPrec, double valsPrec) const throw(INTERP_KERNEL::Exception);
3386     virtual bool isEqualWithoutConsideringStr(const MEDCouplingField *other, double meshPrec, double valsPrec) const throw(INTERP_KERNEL::Exception);
3387     virtual void copyTinyStringsFrom(const MEDCouplingField *other) throw(INTERP_KERNEL::Exception);
3388     void setMesh(const ParaMEDMEM::MEDCouplingMesh *mesh) throw(INTERP_KERNEL::Exception);
3389     void setName(const char *name) throw(INTERP_KERNEL::Exception);
3390     std::string getDescription() const throw(INTERP_KERNEL::Exception);
3391     void setDescription(const char *desc) throw(INTERP_KERNEL::Exception);
3392     std::string getName() const throw(INTERP_KERNEL::Exception);
3393     TypeOfField getTypeOfField() const throw(INTERP_KERNEL::Exception);
3394     NatureOfField getNature() const throw(INTERP_KERNEL::Exception);
3395     virtual void setNature(NatureOfField nat) throw(INTERP_KERNEL::Exception);
3396     DataArrayDouble *getLocalizationOfDiscr() const throw(INTERP_KERNEL::Exception);
3397     MEDCouplingFieldDouble *buildMeasureField(bool isAbs) const throw(INTERP_KERNEL::Exception);
3398     int getNumberOfTuplesExpected() const throw(INTERP_KERNEL::Exception);
3399     int getNumberOfMeshPlacesExpected() const throw(INTERP_KERNEL::Exception);
3400     void setGaussLocalizationOnType(INTERP_KERNEL::NormalizedCellType type, const std::vector<double>& refCoo,
3401                                     const std::vector<double>& gsCoo, const std::vector<double>& wg) throw(INTERP_KERNEL::Exception);
3402     void clearGaussLocalizations() throw(INTERP_KERNEL::Exception);
3403     MEDCouplingGaussLocalization& getGaussLocalization(int locId) throw(INTERP_KERNEL::Exception);
3404     int getNbOfGaussLocalization() const throw(INTERP_KERNEL::Exception);
3405     int getGaussLocalizationIdOfOneCell(int cellId) const throw(INTERP_KERNEL::Exception);
3406     const MEDCouplingGaussLocalization& getGaussLocalization(int locId) const throw(INTERP_KERNEL::Exception);
3407     int getGaussLocalizationIdOfOneType(INTERP_KERNEL::NormalizedCellType type) const throw(INTERP_KERNEL::Exception);
3408     void setDiscretization(MEDCouplingFieldDiscretization *newDisc);
3409     %extend {
3410       PyObject *getMesh() const throw(INTERP_KERNEL::Exception)
3411       {
3412         MEDCouplingMesh *ret1=const_cast<MEDCouplingMesh *>(self->getMesh());
3413         if(ret1)
3414           ret1->incrRef();
3415         return convertMesh(ret1,SWIG_POINTER_OWN | 0 );
3416       }
3417
3418       PyObject *getDiscretization() throw(INTERP_KERNEL::Exception)
3419       {
3420         MEDCouplingFieldDiscretization *ret=self->getDiscretization();
3421         if(ret)
3422           ret->incrRef();
3423         return convertFieldDiscretization(ret,SWIG_POINTER_OWN | 0 );
3424       }
3425
3426       PyObject *getGaussLocalizationIdsOfOneType(INTERP_KERNEL::NormalizedCellType type) const throw(INTERP_KERNEL::Exception)
3427       {
3428         std::set<int> ret=self->getGaussLocalizationIdsOfOneType(type);
3429         return convertIntArrToPyList3(ret);
3430       }
3431
3432       PyObject *isEqualIfNotWhy(const MEDCouplingField *other, double meshPrec, double valsPrec) const throw(INTERP_KERNEL::Exception)
3433       {
3434         std::string ret1;
3435         bool ret0=self->isEqualIfNotWhy(other,meshPrec,valsPrec,ret1);
3436         PyObject *ret=PyTuple_New(2);
3437         PyObject *ret0Py=ret0?Py_True:Py_False;
3438         Py_XINCREF(ret0Py);
3439         PyTuple_SetItem(ret,0,ret0Py);
3440         PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
3441         return ret;
3442       }
3443
3444       PyObject *buildSubMeshData(PyObject *li) const throw(INTERP_KERNEL::Exception)
3445       {
3446         DataArrayInt *ret1=0;
3447         MEDCouplingMesh *ret0=0;
3448         void *da=0;
3449         int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayInt, 0 |  0 );
3450         if (!SWIG_IsOK(res1))
3451           {
3452             int size;
3453             INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
3454             ret0=self->buildSubMeshData(tmp,tmp+size,ret1);
3455           }
3456         else
3457           {
3458             DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
3459             if(!da2)
3460               throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
3461             da2->checkAllocated();
3462             ret0=self->buildSubMeshData(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems(),ret1);
3463           }
3464         PyObject *res = PyList_New(2);
3465         PyList_SetItem(res,0,convertMesh(ret0, SWIG_POINTER_OWN | 0 ));
3466         PyList_SetItem(res,1,SWIG_NewPointerObj((void*)ret1,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,SWIG_POINTER_OWN | 0));
3467         return res;
3468       }
3469
3470       PyObject *buildSubMeshDataRange(int begin, int end, int step) const throw(INTERP_KERNEL::Exception)
3471       {
3472         DataArrayInt *ret1=0;
3473         int bb,ee,ss;
3474         MEDCouplingMesh *ret0=self->buildSubMeshDataRange(begin,end,step,bb,ee,ss,ret1);
3475         PyObject *res=PyTuple_New(2);
3476         PyTuple_SetItem(res,0,convertMesh(ret0, SWIG_POINTER_OWN | 0 ));
3477         if(ret1)
3478           PyTuple_SetItem(res,1,SWIG_NewPointerObj((void*)ret1,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,SWIG_POINTER_OWN | 0));
3479         else
3480           {
3481             PyObject *res1=PySlice_New(PyInt_FromLong(bb),PyInt_FromLong(ee),PyInt_FromLong(ss));
3482             PyTuple_SetItem(res,1,res1);
3483           }
3484         return res;
3485       }
3486
3487       DataArrayInt *computeTupleIdsToSelectFromCellIds(PyObject *cellIds) const
3488       {
3489         int sw,sz(-1);
3490         int v0; std::vector<int> v1;
3491         const int *cellIdsBg(convertObjToPossibleCpp1_Safe(cellIds,sw,sz,v0,v1));
3492         return self->computeTupleIdsToSelectFromCellIds(cellIdsBg,cellIdsBg+sz);
3493       }
3494
3495       void setGaussLocalizationOnCells(PyObject *li, const std::vector<double>& refCoo,
3496                                        const std::vector<double>& gsCoo, const std::vector<double>& wg) throw(INTERP_KERNEL::Exception)
3497       {
3498         void *da=0;
3499         int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayInt, 0 |  0 );
3500         if (!SWIG_IsOK(res1))
3501           {
3502             int size;
3503             INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
3504             self->setGaussLocalizationOnCells(tmp,((int *)tmp)+size,refCoo,gsCoo,wg);
3505           }
3506         else
3507           {
3508             DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
3509             if(!da2)
3510               throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
3511             da2->checkAllocated();
3512             self->setGaussLocalizationOnCells(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems(),refCoo,gsCoo,wg);
3513           }
3514       }
3515
3516       PyObject *getCellIdsHavingGaussLocalization(int locId) const throw(INTERP_KERNEL::Exception)
3517       {
3518         std::vector<int> tmp;
3519         self->getCellIdsHavingGaussLocalization(locId,tmp);
3520         DataArrayInt *ret=DataArrayInt::New();
3521         ret->alloc((int)tmp.size(),1);
3522         std::copy(tmp.begin(),tmp.end(),ret->getPointer());
3523         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
3524       }
3525       
3526       int getNumberOfTuplesExpectedRegardingCode(PyObject *code, PyObject *idsPerType) const throw(INTERP_KERNEL::Exception)
3527       {
3528         std::vector<int> inp0;
3529         convertPyToNewIntArr4(code,1,3,inp0);
3530         std::vector<const DataArrayInt *> inp1;
3531         convertFromPyObjVectorOfObj<const ParaMEDMEM::DataArrayInt *>(idsPerType,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,"DataArrayInt",inp1);
3532         return self->getNumberOfTuplesExpectedRegardingCode(inp0,inp1);
3533       }
3534     }
3535   };
3536   
3537   class MEDCouplingFieldTemplate : public ParaMEDMEM::MEDCouplingField
3538   {
3539   public:
3540     static MEDCouplingFieldTemplate *New(const MEDCouplingFieldDouble& f) throw(INTERP_KERNEL::Exception);
3541     static MEDCouplingFieldTemplate *New(TypeOfField type);
3542     std::string simpleRepr() const throw(INTERP_KERNEL::Exception);
3543     std::string advancedRepr() const throw(INTERP_KERNEL::Exception);
3544     %extend
3545        {
3546          MEDCouplingFieldTemplate(const MEDCouplingFieldDouble& f) throw(INTERP_KERNEL::Exception)
3547          {
3548            return MEDCouplingFieldTemplate::New(f);
3549          }
3550          
3551          MEDCouplingFieldTemplate(TypeOfField type) throw(INTERP_KERNEL::Exception)
3552          {
3553            return MEDCouplingFieldTemplate::New(type);
3554          }
3555          
3556          std::string __str__() const throw(INTERP_KERNEL::Exception)
3557          {
3558            return self->simpleRepr();
3559          }
3560          
3561          std::string __repr__() const throw(INTERP_KERNEL::Exception)
3562          {
3563            std::ostringstream oss;
3564            self->reprQuickOverview(oss);
3565            return oss.str();
3566          }
3567        }
3568   };
3569   
3570   class MEDCouplingFieldDouble : public ParaMEDMEM::MEDCouplingField
3571   {
3572   public:
3573     static MEDCouplingFieldDouble *New(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME);
3574     static MEDCouplingFieldDouble *New(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME);
3575     void setTimeUnit(const std::string& unit);
3576     std::string getTimeUnit() const;
3577     void synchronizeTimeWithSupport() throw(INTERP_KERNEL::Exception);
3578     void copyTinyAttrFrom(const MEDCouplingFieldDouble *other) throw(INTERP_KERNEL::Exception);
3579     void copyAllTinyAttrFrom(const MEDCouplingFieldDouble *other) throw(INTERP_KERNEL::Exception);
3580     std::string simpleRepr() const throw(INTERP_KERNEL::Exception);
3581     std::string advancedRepr() const throw(INTERP_KERNEL::Exception);
3582     std::string  writeVTK(const std::string& fileName, bool isBinary=true) const throw(INTERP_KERNEL::Exception);
3583     MEDCouplingFieldDouble *clone(bool recDeepCpy) const;
3584     MEDCouplingFieldDouble *cloneWithMesh(bool recDeepCpy) const;
3585     MEDCouplingFieldDouble *deepCpy() const;
3586     MEDCouplingFieldDouble *buildNewTimeReprFromThis(TypeOfTimeDiscretization td, bool deepCpy) const throw(INTERP_KERNEL::Exception);
3587     MEDCouplingFieldDouble *nodeToCellDiscretization() const throw(INTERP_KERNEL::Exception);
3588     MEDCouplingFieldDouble *cellToNodeDiscretization() const throw(INTERP_KERNEL::Exception);
3589     TypeOfTimeDiscretization getTimeDiscretization() const throw(INTERP_KERNEL::Exception);
3590     double getIJ(int tupleId, int compoId) const throw(INTERP_KERNEL::Exception);
3591     double getIJK(int cellId, int nodeIdInCell, int compoId) const throw(INTERP_KERNEL::Exception);
3592     void synchronizeTimeWithMesh() throw(INTERP_KERNEL::Exception);
3593     void setArray(DataArrayDouble *array) throw(INTERP_KERNEL::Exception);
3594     void setEndArray(DataArrayDouble *array) throw(INTERP_KERNEL::Exception);
3595     void setTime(double val, int iteration, int order) throw(INTERP_KERNEL::Exception);
3596     void setStartTime(double val, int iteration, int order) throw(INTERP_KERNEL::Exception);
3597     void setEndTime(double val, int iteration, int order) throw(INTERP_KERNEL::Exception);
3598     void applyLin(double a, double b, int compoId) throw(INTERP_KERNEL::Exception);
3599     void applyLin(double a, double b) throw(INTERP_KERNEL::Exception);
3600     int getNumberOfComponents() const throw(INTERP_KERNEL::Exception);
3601     int getNumberOfTuples() const throw(INTERP_KERNEL::Exception);
3602     int getNumberOfValues() const throw(INTERP_KERNEL::Exception);
3603     void setTimeTolerance(double val) throw(INTERP_KERNEL::Exception);
3604     double getTimeTolerance() const throw(INTERP_KERNEL::Exception);
3605     void setIteration(int it) throw(INTERP_KERNEL::Exception);
3606     void setEndIteration(int it) throw(INTERP_KERNEL::Exception);
3607     void setOrder(int order) throw(INTERP_KERNEL::Exception);
3608     void setEndOrder(int order) throw(INTERP_KERNEL::Exception);
3609     void setTimeValue(double val) throw(INTERP_KERNEL::Exception);
3610     void setEndTimeValue(double val) throw(INTERP_KERNEL::Exception);
3611     void changeUnderlyingMesh(const MEDCouplingMesh *other, int levOfCheck, double precOnMesh, double eps=1e-15) throw(INTERP_KERNEL::Exception);
3612     void substractInPlaceDM(const MEDCouplingFieldDouble *f, int levOfCheck, double precOnMesh, double eps=1e-15) throw(INTERP_KERNEL::Exception);
3613     bool mergeNodes(double eps, double epsOnVals=1e-15) throw(INTERP_KERNEL::Exception);
3614     bool mergeNodes2(double eps, double epsOnVals=1e-15) throw(INTERP_KERNEL::Exception);
3615     bool zipCoords(double epsOnVals=1e-15) throw(INTERP_KERNEL::Exception);
3616     bool zipConnectivity(int compType,double epsOnVals=1e-15) throw(INTERP_KERNEL::Exception);
3617     bool simplexize(int policy) throw(INTERP_KERNEL::Exception);
3618     MEDCouplingFieldDouble *doublyContractedProduct() const throw(INTERP_KERNEL::Exception);
3619     MEDCouplingFieldDouble *determinant() const throw(INTERP_KERNEL::Exception);
3620     MEDCouplingFieldDouble *eigenValues() const throw(INTERP_KERNEL::Exception);
3621     MEDCouplingFieldDouble *eigenVectors() const throw(INTERP_KERNEL::Exception);
3622     MEDCouplingFieldDouble *inverse() const throw(INTERP_KERNEL::Exception);
3623     MEDCouplingFieldDouble *trace() const throw(INTERP_KERNEL::Exception);
3624     MEDCouplingFieldDouble *deviator() const throw(INTERP_KERNEL::Exception);
3625     MEDCouplingFieldDouble *magnitude() const throw(INTERP_KERNEL::Exception);
3626     MEDCouplingFieldDouble *maxPerTuple() const throw(INTERP_KERNEL::Exception);
3627     void changeNbOfComponents(int newNbOfComp, double dftValue=0.) throw(INTERP_KERNEL::Exception);
3628     void sortPerTuple(bool asc) throw(INTERP_KERNEL::Exception);
3629     MEDCouplingFieldDouble &operator=(double value) throw(INTERP_KERNEL::Exception);
3630     void fillFromAnalytic(int nbOfComp, const std::string& func) throw(INTERP_KERNEL::Exception);
3631     void fillFromAnalytic2(int nbOfComp, const std::string& func) throw(INTERP_KERNEL::Exception);
3632     void fillFromAnalytic3(int nbOfComp, const std::vector<std::string>& varsOrder, const std::string& func) throw(INTERP_KERNEL::Exception);
3633     void applyFunc(int nbOfComp, const std::string& func) throw(INTERP_KERNEL::Exception);
3634     void applyFunc2(int nbOfComp, const std::string& func) throw(INTERP_KERNEL::Exception);
3635     void applyFunc3(int nbOfComp, const std::vector<std::string>& varsOrder, const std::string& func) throw(INTERP_KERNEL::Exception);
3636     void applyFunc(int nbOfComp, double val) throw(INTERP_KERNEL::Exception);
3637     void applyFunc(const std::string& func) throw(INTERP_KERNEL::Exception);
3638     void applyFuncFast32(const std::string& func) throw(INTERP_KERNEL::Exception);
3639     void applyFuncFast64(const std::string& func) throw(INTERP_KERNEL::Exception);
3640     double accumulate(int compId) const throw(INTERP_KERNEL::Exception);
3641     double getMaxValue() const throw(INTERP_KERNEL::Exception);
3642     double getMinValue() const throw(INTERP_KERNEL::Exception);
3643     double getAverageValue() const throw(INTERP_KERNEL::Exception);
3644     double norm2() const throw(INTERP_KERNEL::Exception);
3645     double normMax() const throw(INTERP_KERNEL::Exception);
3646     //do not put a default value to isWAbs because confusion in python with overloaded getWeightedAverageValue method
3647     double getWeightedAverageValue(int compId, bool isWAbs) const throw(INTERP_KERNEL::Exception);
3648     double integral(int compId, bool isWAbs) const throw(INTERP_KERNEL::Exception);
3649     double normL1(int compId) const throw(INTERP_KERNEL::Exception);
3650     double normL2(int compId) const throw(INTERP_KERNEL::Exception);
3651     DataArrayInt *getIdsInRange(double vmin, double vmax) const throw(INTERP_KERNEL::Exception);
3652     MEDCouplingFieldDouble *buildSubPartRange(int begin, int end, int step) const throw(INTERP_KERNEL::Exception);
3653     static MEDCouplingFieldDouble *MergeFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3654     static MEDCouplingFieldDouble *MeldFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3655     static MEDCouplingFieldDouble *DotFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3656     MEDCouplingFieldDouble *dot(const MEDCouplingFieldDouble& other) const throw(INTERP_KERNEL::Exception);
3657     static MEDCouplingFieldDouble *CrossProductFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3658     MEDCouplingFieldDouble *crossProduct(const MEDCouplingFieldDouble& other) const throw(INTERP_KERNEL::Exception);
3659     static MEDCouplingFieldDouble *MaxFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3660     MEDCouplingFieldDouble *max(const MEDCouplingFieldDouble& other) const throw(INTERP_KERNEL::Exception);
3661     static MEDCouplingFieldDouble *MinFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3662     static MEDCouplingFieldDouble *AddFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3663     static MEDCouplingFieldDouble *SubstractFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3664     static MEDCouplingFieldDouble *MultiplyFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3665     static MEDCouplingFieldDouble *DivideFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3666     MEDCouplingFieldDouble *min(const MEDCouplingFieldDouble& other) const throw(INTERP_KERNEL::Exception);
3667     MEDCouplingFieldDouble *negate() const throw(INTERP_KERNEL::Exception);
3668     %extend {
3669       MEDCouplingFieldDouble(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME)
3670       {
3671         return MEDCouplingFieldDouble::New(type,td);
3672       }
3673
3674       MEDCouplingFieldDouble(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME)
3675       {
3676         return MEDCouplingFieldDouble::New(ft,td);
3677       }
3678
3679       std::string __str__() const throw(INTERP_KERNEL::Exception)
3680       {
3681         return self->simpleRepr();
3682       }
3683
3684       std::string __repr__() const throw(INTERP_KERNEL::Exception)
3685       {
3686         std::ostringstream oss;
3687         self->reprQuickOverview(oss);
3688         return oss.str();
3689       }
3690
3691       DataArrayDouble *getArray() throw(INTERP_KERNEL::Exception)
3692       {
3693         DataArrayDouble *ret=self->getArray();
3694         if(ret)
3695           ret->incrRef();
3696         return ret;
3697       }
3698
3699       PyObject *getArrays() const throw(INTERP_KERNEL::Exception)
3700       {
3701         std::vector<DataArrayDouble *> arrs=self->getArrays();
3702         for(std::vector<DataArrayDouble *>::iterator it=arrs.begin();it!=arrs.end();it++)
3703           if(*it)
3704             (*it)->incrRef();
3705         int sz=arrs.size();
3706         PyObject *ret=PyTuple_New(sz);
3707         for(int i=0;i<sz;i++)
3708           {
3709             if(arrs[i])
3710               PyTuple_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(arrs[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
3711             else
3712               PyTuple_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, 0 | 0 ));
3713           }
3714         return ret;
3715       }
3716
3717       void setArrays(PyObject *ls) throw(INTERP_KERNEL::Exception)
3718       {
3719         std::vector<const DataArrayDouble *> tmp;
3720         convertFromPyObjVectorOfObj<const DataArrayDouble *>(ls,SWIGTYPE_p_ParaMEDMEM__DataArrayDouble,"DataArrayDouble",tmp);
3721         int sz=tmp.size();
3722         std::vector<DataArrayDouble *> arrs(sz);
3723         for(int i=0;i<sz;i++)
3724           arrs[i]=const_cast<DataArrayDouble *>(tmp[i]);
3725         self->setArrays(arrs);
3726       }
3727
3728       DataArrayDouble *getEndArray() throw(INTERP_KERNEL::Exception)
3729       {
3730         DataArrayDouble *ret=self->getEndArray();
3731         if(ret)
3732           ret->incrRef();
3733         return ret;
3734       }
3735
3736       PyObject *getValueOn(PyObject *sl) const throw(INTERP_KERNEL::Exception)
3737       {
3738         double val;
3739         DataArrayDouble *a;
3740         DataArrayDoubleTuple *aa;
3741         std::vector<double> bb;
3742         int sw;
3743         const MEDCouplingMesh *mesh=self->getMesh();
3744         if(!mesh)
3745           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingFieldDouble::getValueOn : no underlying mesh !");
3746         int spaceDim=mesh->getSpaceDimension();
3747         const char msg[]="Python wrap of MEDCouplingFieldDouble::getValueOn : ";
3748         const double *spaceLoc=convertObjToPossibleCpp5_Safe(sl,sw,val,a,aa,bb,msg,1,spaceDim,true);
3749         //
3750         int sz=self->getNumberOfComponents();
3751         INTERP_KERNEL::AutoPtr<double> res=new double[sz];
3752         self->getValueOn(spaceLoc,res);
3753         return convertDblArrToPyList(res,sz);
3754       }
3755
3756        PyObject *getValueOnPos(int i, int j, int k) const throw(INTERP_KERNEL::Exception)
3757        {
3758          int sz=self->getNumberOfComponents();
3759          INTERP_KERNEL::AutoPtr<double> res=new double[sz];
3760          self->getValueOnPos(i,j,k,res);
3761          return convertDblArrToPyList(res,sz);
3762        }
3763
3764       DataArrayDouble *getValueOnMulti(PyObject *locs) const throw(INTERP_KERNEL::Exception)
3765       {
3766         const MEDCouplingMesh *mesh(self->getMesh());
3767         if(!mesh)
3768           throw INTERP_KERNEL::Exception("Python wrap MEDCouplingFieldDouble::getValueOnMulti : lying on a null mesh !");
3769         //
3770         int sw,nbPts;
3771         double v0; ParaMEDMEM::DataArrayDouble *v1(0); ParaMEDMEM::DataArrayDoubleTuple *v2(0); std::vector<double> v3;
3772         const double *inp=convertObjToPossibleCpp5_Safe2(locs,sw,v0,v1,v2,v3,"wrap of MEDCouplingFieldDouble::getValueOnMulti",
3773                                                          mesh->getSpaceDimension(),true,nbPts);
3774         return self->getValueOnMulti(inp,nbPts);
3775       }
3776
3777       PyObject *getValueOn(PyObject *sl, double time) const throw(INTERP_KERNEL::Exception)
3778       {
3779         double val;
3780         DataArrayDouble *a;
3781         DataArrayDoubleTuple *aa;
3782         std::vector<double> bb;
3783         int sw;
3784         const MEDCouplingMesh *mesh=self->getMesh();
3785         if(!mesh)
3786           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingFieldDouble::getValueOn : no underlying mesh !");
3787         int spaceDim=mesh->getSpaceDimension();
3788         const char msg[]="Python wrap of MEDCouplingFieldDouble::getValueOn : ";
3789         const double *spaceLoc=convertObjToPossibleCpp5_Safe(sl,sw,val,a,aa,bb,msg,1,spaceDim,true);
3790         //
3791         //
3792         int sz=self->getNumberOfComponents();
3793         INTERP_KERNEL::AutoPtr<double> res=new double[sz];
3794         self->getValueOn(spaceLoc,time,res);
3795         return convertDblArrToPyList(res,sz);
3796       }
3797
3798       void setValues(PyObject *li, PyObject *nbOfTuples=0, PyObject *nbOfComp=0) throw(INTERP_KERNEL::Exception)
3799       {
3800         if(self->getArray()!=0)
3801           ParaMEDMEM_DataArrayDouble_setValues__SWIG_0(self->getArray(),li,nbOfTuples,nbOfComp);
3802         else
3803           {
3804             MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> arr=DataArrayDouble::New();
3805             ParaMEDMEM_DataArrayDouble_setValues__SWIG_0(arr,li,nbOfTuples,nbOfComp);
3806             self->setArray(arr);
3807           }
3808       }
3809       
3810       PyObject *getTime() throw(INTERP_KERNEL::Exception)
3811       {
3812         int tmp1,tmp2;
3813         double tmp0=self->getTime(tmp1,tmp2);
3814         PyObject *res = PyList_New(3);
3815         PyList_SetItem(res,0,SWIG_From_double(tmp0));
3816         PyList_SetItem(res,1,SWIG_From_int(tmp1));
3817         PyList_SetItem(res,2,SWIG_From_int(tmp2));
3818         return res;
3819       }
3820
3821       PyObject *getStartTime() throw(INTERP_KERNEL::Exception)
3822       {
3823         int tmp1,tmp2;
3824         double tmp0=self->getStartTime(tmp1,tmp2);
3825         PyObject *res = PyList_New(3);
3826         PyList_SetItem(res,0,SWIG_From_double(tmp0));
3827         PyList_SetItem(res,1,SWIG_From_int(tmp1));
3828         PyList_SetItem(res,2,SWIG_From_int(tmp2));
3829         return res;
3830       }
3831
3832       PyObject *getEndTime() throw(INTERP_KERNEL::Exception)
3833       {
3834         int tmp1,tmp2;
3835         double tmp0=self->getEndTime(tmp1,tmp2);
3836         PyObject *res = PyList_New(3);
3837         PyList_SetItem(res,0,SWIG_From_double(tmp0));
3838         PyList_SetItem(res,1,SWIG_From_int(tmp1));
3839         PyList_SetItem(res,2,SWIG_From_int(tmp2));
3840         return res;
3841       }
3842       PyObject *accumulate() const throw(INTERP_KERNEL::Exception)
3843       {
3844         int sz=self->getNumberOfComponents();
3845         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
3846         self->accumulate(tmp);
3847         return convertDblArrToPyList(tmp,sz);
3848       }
3849       PyObject *integral(bool isWAbs) const throw(INTERP_KERNEL::Exception)
3850       {
3851         int sz=self->getNumberOfComponents();
3852         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
3853         self->integral(isWAbs,tmp);
3854         return convertDblArrToPyList(tmp,sz);
3855       }
3856       PyObject *getWeightedAverageValue(bool isWAbs=true) const throw(INTERP_KERNEL::Exception)
3857       {
3858         int sz=self->getNumberOfComponents();
3859         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
3860         self->getWeightedAverageValue(tmp,isWAbs);
3861         return convertDblArrToPyList(tmp,sz);
3862       }
3863       PyObject *normL1() const throw(INTERP_KERNEL::Exception)
3864       {
3865         int sz=self->getNumberOfComponents();
3866         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
3867         self->normL1(tmp);
3868         return convertDblArrToPyList(tmp,sz);
3869       }
3870       PyObject *normL2() const throw(INTERP_KERNEL::Exception)
3871       {
3872         int sz=self->getNumberOfComponents();
3873         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
3874         self->normL2(tmp);
3875         return convertDblArrToPyList(tmp,sz);
3876       }
3877       void renumberCells(PyObject *li, bool check=true) throw(INTERP_KERNEL::Exception)
3878       {
3879         int szArr,sw,iTypppArr;
3880         std::vector<int> stdvecTyyppArr;
3881         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3882         self->renumberCells(tmp,check);
3883       }
3884       
3885       void renumberCellsWithoutMesh(PyObject *li, bool check=true) throw(INTERP_KERNEL::Exception)
3886       {
3887         int szArr,sw,iTypppArr;
3888         std::vector<int> stdvecTyyppArr;
3889         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3890         self->renumberCellsWithoutMesh(tmp,check);
3891       }
3892       
3893       void renumberNodes(PyObject *li, double eps=1e-15) throw(INTERP_KERNEL::Exception)
3894       {
3895         int szArr,sw,iTypppArr;
3896         std::vector<int> stdvecTyyppArr;
3897         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3898         self->renumberNodes(tmp,eps);
3899       }
3900
3901       void renumberNodesWithoutMesh(PyObject *li, int newNbOfNodes, double eps=1e-15) throw(INTERP_KERNEL::Exception)
3902       {
3903         int szArr,sw,iTypppArr;
3904         std::vector<int> stdvecTyyppArr;
3905         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3906         self->renumberNodesWithoutMesh(tmp,newNbOfNodes,eps);
3907       }
3908
3909       MEDCouplingFieldDouble *buildSubPart(PyObject *li) const throw(INTERP_KERNEL::Exception)
3910       {
3911         int sw;
3912         int singleVal;
3913         std::vector<int> multiVal;
3914         std::pair<int, std::pair<int,int> > slic;
3915         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
3916         const MEDCouplingMesh *mesh=self->getMesh();
3917         if(!mesh)
3918           throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::buildSubPart : field lies on a null mesh !");
3919         int nbc=mesh->getNumberOfCells();
3920         convertObjToPossibleCpp2(li,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
3921         switch(sw)
3922           {
3923           case 1:
3924             {
3925               if(singleVal>=nbc)
3926                 {
3927                   std::ostringstream oss;
3928                   oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
3929                   throw INTERP_KERNEL::Exception(oss.str().c_str());
3930                 }
3931               if(singleVal>=0)
3932                 return self->buildSubPart(&singleVal,&singleVal+1);
3933               else
3934                 {
3935                   if(nbc+singleVal>0)
3936                     {
3937                       int tmp=nbc+singleVal;
3938                       return self->buildSubPart(&tmp,&tmp+1);
3939                     }
3940                   else
3941                     {
3942                       std::ostringstream oss;
3943                       oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
3944                       throw INTERP_KERNEL::Exception(oss.str().c_str());
3945                     }
3946                 }
3947             }
3948           case 2:
3949             {
3950               return self->buildSubPart(&multiVal[0],&multiVal[0]+multiVal.size());
3951             }
3952           case 3:
3953             {
3954               return self->buildSubPartRange(slic.first,slic.second.first,slic.second.second);
3955             }
3956           case 4:
3957             {
3958               if(!daIntTyypp)
3959                 throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::buildSubPart : null instance has been given in input !");
3960               daIntTyypp->checkAllocated();
3961               return self->buildSubPart(daIntTyypp->begin(),daIntTyypp->end());
3962             }
3963           default:
3964             throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::buildSubPart : unrecognized type in input ! Possibilities are : int, list or tuple of int DataArrayInt instance !");
3965           }
3966       }
3967
3968       MEDCouplingFieldDouble *__getitem__(PyObject *li) const throw(INTERP_KERNEL::Exception)
3969       {
3970         const char msg[]="MEDCouplingFieldDouble::__getitem__ : invalid call  Available API are : \n-myField[dataArrayInt]\n-myField[slice]\n-myField[pythonListOfCellIds]\n-myField[integer]\n-myField[dataArrayInt,1]\n-myField[slice,1]\n-myField[pythonListOfCellIds,1]\n-myField[integer,1]\n";
3971         if(PyTuple_Check(li))
3972           {
3973             Py_ssize_t sz=PyTuple_Size(li);
3974             if(sz!=2)
3975               throw INTERP_KERNEL::Exception(msg);
3976             PyObject *elt0=PyTuple_GetItem(li,0),*elt1=PyTuple_GetItem(li,1);
3977             int sw;
3978             int singleVal;
3979             std::vector<int> multiVal;
3980             std::pair<int, std::pair<int,int> > slic;
3981             ParaMEDMEM::DataArrayInt *daIntTyypp=0;
3982             if(!self->getArray())
3983               throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::__getitem__ : no array set on field to deduce number of components !");
3984             try
3985               { convertObjToPossibleCpp2(elt1,self->getArray()->getNumberOfComponents(),sw,singleVal,multiVal,slic,daIntTyypp); }
3986             catch(INTERP_KERNEL::Exception& e)
3987               { std::ostringstream oss; oss << "MEDCouplingFieldDouble::__getitem__ : invalid type in 2nd parameter (compo) !" << e.what(); throw INTERP_KERNEL::Exception(oss.str().c_str()); }
3988             MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret0=ParaMEDMEM_MEDCouplingFieldDouble_buildSubPart(self,elt0);
3989             DataArrayDouble *ret0Arr=ret0->getArray();
3990             if(!ret0Arr)
3991               throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::__getitem__ : no array exists to apply restriction on component on it !");
3992             switch(sw)
3993               {
3994               case 1:
3995                 {
3996                   std::vector<int> v2(1,singleVal);
3997                   MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aarr(ret0Arr->keepSelectedComponents(v2));
3998                   ret0->setArray(aarr);
3999                   return ret0.retn();
4000                 }
4001               case 2:
4002                 {
4003                   MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aarr(ret0Arr->keepSelectedComponents(multiVal));
4004                   ret0->setArray(aarr);
4005                   return ret0.retn();
4006                 }
4007               case 3:
4008                 {
4009                   int nbOfComp=DataArray::GetNumberOfItemGivenBESRelative(slic.first,slic.second.first,slic.second.second,"MEDCouplingFieldDouble::__getitem__ : invalid range in 2nd parameter (components) !");
4010                   std::vector<int> v2(nbOfComp);
4011                   for(int i=0;i<nbOfComp;i++)
4012                     v2[i]=slic.first+i*slic.second.second;
4013                   MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aarr(ret0Arr->keepSelectedComponents(v2));
4014                   ret0->setArray(aarr);
4015                   return ret0.retn();
4016                 }
4017               default:
4018                 throw INTERP_KERNEL::Exception(msg);
4019               }
4020             
4021           }
4022         else
4023           return ParaMEDMEM_MEDCouplingFieldDouble_buildSubPart(self,li);
4024       }
4025
4026       PyObject *getMaxValue2() const throw(INTERP_KERNEL::Exception)
4027       {
4028         DataArrayInt *tmp;
4029         double r1=self->getMaxValue2(tmp);
4030         PyObject *ret=PyTuple_New(2);
4031         PyTuple_SetItem(ret,0,PyFloat_FromDouble(r1));
4032         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
4033         return ret;
4034       }
4035       
4036       PyObject *getMinValue2() const throw(INTERP_KERNEL::Exception)
4037       {
4038         DataArrayInt *tmp;
4039         double r1=self->getMinValue2(tmp);
4040         PyObject *ret=PyTuple_New(2);
4041         PyTuple_SetItem(ret,0,PyFloat_FromDouble(r1));
4042         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
4043         return ret;
4044       }
4045       
4046       MEDCouplingFieldDouble *keepSelectedComponents(PyObject *li) const throw(INTERP_KERNEL::Exception)
4047       {
4048         std::vector<int> tmp;
4049         convertPyToNewIntArr3(li,tmp);
4050         return self->keepSelectedComponents(tmp);
4051       }
4052
4053       void setSelectedComponents(const MEDCouplingFieldDouble *f, PyObject *li) throw(INTERP_KERNEL::Exception)
4054       {
4055         std::vector<int> tmp;
4056         convertPyToNewIntArr3(li,tmp);
4057         self->setSelectedComponents(f,tmp);
4058       }
4059
4060       MEDCouplingFieldDouble *extractSlice3D(PyObject *origin, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
4061       {
4062         double val,val2;
4063         DataArrayDouble *a,*a2;
4064         DataArrayDoubleTuple *aa,*aa2;
4065         std::vector<double> bb,bb2;
4066         int sw;
4067         int spaceDim=3;
4068         const char msg[]="Python wrap of MEDCouplingFieldDouble::extractSlice3D : 1st paramater for origin.";
4069         const char msg2[]="Python wrap of MEDCouplingFieldDouble::extractSlice3D : 2nd paramater for vector.";
4070         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
4071         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
4072         //
4073         return self->extractSlice3D(orig,vect,eps);
4074       }
4075
4076       MEDCouplingFieldDouble *__add__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4077       {
4078         return ParaMEDMEM_MEDCouplingFieldDouble___add__Impl(self,obj);
4079       }
4080
4081       MEDCouplingFieldDouble *__radd__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4082       {
4083         return ParaMEDMEM_MEDCouplingFieldDouble___radd__Impl(self,obj);
4084       }
4085
4086       MEDCouplingFieldDouble *__sub__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4087       {
4088         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__sub__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4089         const char msg2[]="in MEDCouplingFieldDouble.__sub__ : self field has no Array of values set !";
4090         void *argp;
4091         //
4092         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
4093           {
4094             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
4095             if(other)
4096               return (*self)-(*other);
4097             else
4098               throw INTERP_KERNEL::Exception(msg);
4099           }
4100         //
4101         double val;
4102         DataArrayDouble *a;
4103         DataArrayDoubleTuple *aa;
4104         std::vector<double> bb;
4105         int sw;
4106         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
4107         switch(sw)
4108           {
4109           case 1:
4110             {
4111               if(!self->getArray())
4112                 throw INTERP_KERNEL::Exception(msg2);
4113               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=self->getArray()->deepCpy();
4114               ret->applyLin(1.,-val);
4115               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4116               ret2->setArray(ret);
4117               return ret2.retn();
4118             }
4119           case 2:
4120             {
4121               if(!self->getArray())
4122                 throw INTERP_KERNEL::Exception(msg2);
4123               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Substract(self->getArray(),a);
4124               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4125               ret2->setArray(ret);
4126               return ret2.retn();
4127             }
4128           case 3:
4129             {
4130               if(!self->getArray())
4131                 throw INTERP_KERNEL::Exception(msg2);
4132               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4133               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Substract(self->getArray(),aaa);
4134               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4135               ret2->setArray(ret);
4136               return ret2.retn();
4137             }
4138           case 4:
4139             {
4140               if(!self->getArray())
4141                 throw INTERP_KERNEL::Exception(msg2);
4142               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4143               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Substract(self->getArray(),aaa);
4144               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4145               ret2->setArray(ret);
4146               return ret2.retn();
4147             }
4148           default:
4149             { throw INTERP_KERNEL::Exception(msg); }
4150           }
4151       }
4152
4153       MEDCouplingFieldDouble *__rsub__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4154       {
4155         return ParaMEDMEM_MEDCouplingFieldDouble___rsub__Impl(self,obj);
4156       }
4157
4158       MEDCouplingFieldDouble *__mul__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4159       {
4160         return ParaMEDMEM_MEDCouplingFieldDouble___mul__Impl(self,obj);
4161       }
4162
4163       MEDCouplingFieldDouble *__rmul__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4164       {
4165         return ParaMEDMEM_MEDCouplingFieldDouble___rmul__Impl(self,obj);
4166       }
4167
4168       MEDCouplingFieldDouble *__div__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4169       {
4170         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__div__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4171         const char msg2[]="in MEDCouplingFieldDouble.__div__ : self field has no Array of values set !";
4172         void *argp;
4173         //
4174         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
4175           {
4176             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
4177             if(other)
4178               return (*self)/(*other);
4179             else
4180               throw INTERP_KERNEL::Exception(msg);
4181           }
4182         //
4183         double val;
4184         DataArrayDouble *a;
4185         DataArrayDoubleTuple *aa;
4186         std::vector<double> bb;
4187         int sw;
4188         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
4189         switch(sw)
4190           {
4191           case 1:
4192             {
4193               if(val==0.)
4194                 throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble.__div__ : trying to divide by zero !");
4195               if(!self->getArray())
4196                 throw INTERP_KERNEL::Exception(msg2);
4197               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=self->getArray()->deepCpy();
4198               ret->applyLin(1./val,0);
4199               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4200               ret2->setArray(ret);
4201               return ret2.retn();
4202             }
4203           case 2:
4204             {
4205               if(!self->getArray())
4206                 throw INTERP_KERNEL::Exception(msg2);
4207               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Divide(self->getArray(),a);
4208               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4209               ret2->setArray(ret);
4210               return ret2.retn();
4211             }
4212           case 3:
4213             {
4214               if(!self->getArray())
4215                 throw INTERP_KERNEL::Exception(msg2);
4216               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4217               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Divide(self->getArray(),aaa);
4218               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4219               ret2->setArray(ret);
4220               return ret2.retn();
4221             }
4222           case 4:
4223             {
4224               if(!self->getArray())
4225                 throw INTERP_KERNEL::Exception(msg2);
4226               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4227               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Divide(self->getArray(),aaa);
4228               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4229               ret2->setArray(ret);
4230               return ret2.retn();
4231             }
4232           default:
4233             { throw INTERP_KERNEL::Exception(msg); }
4234           }
4235       }
4236
4237       MEDCouplingFieldDouble *__rdiv__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4238       {
4239         return ParaMEDMEM_MEDCouplingFieldDouble___rdiv__Impl(self,obj);
4240       }
4241
4242       MEDCouplingFieldDouble *__pow__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4243       {
4244         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__pow__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4245         const char msg2[]="in MEDCouplingFieldDouble.__pow__ : self field has no Array of values set !";
4246         void *argp;
4247         //
4248         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
4249           {
4250             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
4251             if(other)
4252               return (*self)^(*other);
4253             else
4254               throw INTERP_KERNEL::Exception(msg);
4255           }
4256         //
4257         double val;
4258         DataArrayDouble *a;
4259         DataArrayDoubleTuple *aa;
4260         std::vector<double> bb;
4261         int sw;
4262         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
4263         switch(sw)
4264           {
4265           case 1:
4266             {
4267               if(!self->getArray())
4268                 throw INTERP_KERNEL::Exception(msg2);
4269               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=self->getArray()->deepCpy();
4270               ret->applyPow(val);
4271               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4272               ret2->setArray(ret);
4273               return ret2.retn();
4274             }
4275           case 2:
4276             {
4277               if(!self->getArray())
4278                 throw INTERP_KERNEL::Exception(msg2);
4279               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Pow(self->getArray(),a);
4280               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4281               ret2->setArray(ret);
4282               return ret2.retn();
4283             }
4284           case 3:
4285             {
4286               if(!self->getArray())
4287                 throw INTERP_KERNEL::Exception(msg2);
4288               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4289               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Pow(self->getArray(),aaa);
4290               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4291               ret2->setArray(ret);
4292               return ret2.retn();
4293             }
4294           case 4:
4295             {
4296               if(!self->getArray())
4297                 throw INTERP_KERNEL::Exception(msg2);
4298               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4299               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Pow(self->getArray(),aaa);
4300               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4301               ret2->setArray(ret);
4302               return ret2.retn();
4303             }
4304           default:
4305             { throw INTERP_KERNEL::Exception(msg); }
4306           }
4307       }
4308
4309       MEDCouplingFieldDouble *__neg__() const throw(INTERP_KERNEL::Exception)
4310       {
4311         return self->negate();
4312       }
4313
4314       PyObject *___iadd___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
4315       {
4316         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__iadd__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4317         const char msg2[]="in MEDCouplingFieldDouble.__iadd__ : self field has no Array of values set !";
4318         void *argp;
4319         //
4320         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
4321           {
4322             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
4323             if(other)
4324               {
4325                 *self+=*other;
4326                 Py_XINCREF(trueSelf);
4327                 return trueSelf;
4328               }
4329             else
4330               throw INTERP_KERNEL::Exception(msg);
4331           }
4332         //
4333         double val;
4334         DataArrayDouble *a;
4335         DataArrayDoubleTuple *aa;
4336         std::vector<double> bb;
4337         int sw;
4338         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
4339         switch(sw)
4340           {
4341           case 1:
4342             {
4343               if(!self->getArray())
4344                 throw INTERP_KERNEL::Exception(msg2);
4345               self->getArray()->applyLin(1.,val);
4346               Py_XINCREF(trueSelf);
4347               return trueSelf;
4348             }
4349           case 2:
4350             {
4351               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4352               ret2->setArray(a);
4353               *self+=*ret2;
4354               Py_XINCREF(trueSelf);
4355               return trueSelf;
4356             }
4357           case 3:
4358             {
4359               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4360               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4361               ret2->setArray(aaa);
4362               *self+=*ret2;
4363               Py_XINCREF(trueSelf);
4364               return trueSelf;
4365             }
4366           case 4:
4367             {
4368               if(!self->getArray())
4369                 throw INTERP_KERNEL::Exception(msg2);
4370               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4371               self->getArray()->addEqual(aaa);
4372               Py_XINCREF(trueSelf);
4373               return trueSelf;
4374             }
4375           default:
4376             { throw INTERP_KERNEL::Exception(msg); }
4377           }
4378       }
4379
4380       PyObject *___isub___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
4381       {
4382         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__isub__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4383         const char msg2[]="in MEDCouplingFieldDouble.__isub__ : self field has no Array of values set !";
4384         void *argp;
4385         //
4386         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
4387           {
4388             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
4389             if(other)
4390               {
4391                 *self-=*other;
4392                 Py_XINCREF(trueSelf);
4393                 return trueSelf;
4394               }
4395             else
4396               throw INTERP_KERNEL::Exception(msg);
4397           }
4398         //
4399         double val;
4400         DataArrayDouble *a;
4401         DataArrayDoubleTuple *aa;
4402         std::vector<double> bb;
4403         int sw;
4404         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
4405         switch(sw)
4406           {
4407           case 1:
4408             {
4409               if(!self->getArray())
4410                 throw INTERP_KERNEL::Exception(msg2);
4411               self->getArray()->applyLin(1.,-val);
4412               Py_XINCREF(trueSelf);
4413               return trueSelf;
4414             }
4415           case 2:
4416             {
4417               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4418               ret2->setArray(a);
4419               *self-=*ret2;
4420               Py_XINCREF(trueSelf);
4421               return trueSelf;
4422             }
4423           case 3:
4424             {
4425               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4426               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4427               ret2->setArray(aaa);
4428               *self-=*ret2;
4429               Py_XINCREF(trueSelf);
4430               return trueSelf;
4431             }
4432           case 4:
4433             {
4434               if(!self->getArray())
4435                 throw INTERP_KERNEL::Exception(msg2);
4436               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4437               self->getArray()->substractEqual(aaa);
4438               Py_XINCREF(trueSelf);
4439               return trueSelf;
4440             }
4441           default:
4442             { throw INTERP_KERNEL::Exception(msg); }
4443           }
4444       }
4445
4446       PyObject *___imul___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
4447       {
4448         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__imul__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4449         const char msg2[]="in MEDCouplingFieldDouble.__imul__ : self field has no Array of values set !";
4450         void *argp;
4451         //
4452         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
4453           {
4454             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
4455             if(other)
4456               {
4457                 *self*=*other;
4458                 Py_XINCREF(trueSelf);
4459                 return trueSelf;
4460               }
4461             else
4462               throw INTERP_KERNEL::Exception(msg);
4463           }
4464         //
4465         double val;
4466         DataArrayDouble *a;
4467         DataArrayDoubleTuple *aa;
4468         std::vector<double> bb;
4469         int sw;
4470         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
4471         switch(sw)
4472           {
4473           case 1:
4474             {
4475               if(!self->getArray())
4476                 throw INTERP_KERNEL::Exception(msg2);
4477               self->getArray()->applyLin(val,0);
4478               Py_XINCREF(trueSelf);
4479               return trueSelf;
4480             }
4481           case 2:
4482             {
4483               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4484               ret2->setArray(a);
4485               *self*=*ret2;
4486               Py_XINCREF(trueSelf);
4487               return trueSelf;
4488             }
4489           case 3:
4490             {
4491               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4492               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4493               ret2->setArray(aaa);
4494               *self*=*ret2;
4495               Py_XINCREF(trueSelf);
4496               return trueSelf;
4497             }
4498           case 4:
4499             {
4500               if(!self->getArray())
4501                 throw INTERP_KERNEL::Exception(msg2);
4502               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4503               self->getArray()->multiplyEqual(aaa);
4504               Py_XINCREF(trueSelf);
4505               return trueSelf;
4506             }
4507           default:
4508             { throw INTERP_KERNEL::Exception(msg); }
4509           }
4510       }
4511
4512       PyObject *___idiv___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
4513       {
4514         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__idiv__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4515         const char msg2[]="in MEDCouplingFieldDouble.__idiv__ : self field has no Array of values set !";
4516         void *argp;
4517         //
4518         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
4519           {
4520             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
4521             if(other)
4522               {
4523                 *self/=*other;
4524                 Py_XINCREF(trueSelf);
4525                 return trueSelf;
4526               }
4527             else
4528               throw INTERP_KERNEL::Exception(msg);
4529           }
4530         //
4531         double val;
4532         DataArrayDouble *a;
4533         DataArrayDoubleTuple *aa;
4534         std::vector<double> bb;
4535         int sw;
4536         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
4537         switch(sw)
4538           {
4539           case 1:
4540             {
4541               if(val==0.)
4542                 throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble.__idiv__ : trying to divide by zero !");
4543               if(!self->getArray())
4544                 throw INTERP_KERNEL::Exception(msg2);
4545               self->getArray()->applyLin(1./val,0);
4546               Py_XINCREF(trueSelf);
4547               return trueSelf;
4548             }
4549           case 2:
4550             {
4551               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4552               ret2->setArray(a);
4553               *self/=*ret2;
4554               Py_XINCREF(trueSelf);
4555               return trueSelf;
4556             }
4557           case 3:
4558             {
4559               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4560               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4561               ret2->setArray(aaa);
4562               *self/=*ret2;
4563               Py_XINCREF(trueSelf);
4564               return trueSelf;
4565             }
4566           case 4:
4567             {
4568               if(!self->getArray())
4569                 throw INTERP_KERNEL::Exception(msg2);
4570               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4571               self->getArray()->divideEqual(aaa);
4572               Py_XINCREF(trueSelf);
4573               return trueSelf;
4574             }
4575           default:
4576             { throw INTERP_KERNEL::Exception(msg); }
4577           }
4578       }
4579
4580       PyObject *___ipow___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
4581       {
4582         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__ipow__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4583         const char msg2[]="in MEDCouplingFieldDouble.__ipow__ : self field has no Array of values set !";
4584         void *argp;
4585         //
4586         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
4587           {
4588             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
4589             if(other)
4590               {
4591                 *self^=*other;
4592                 Py_XINCREF(trueSelf);
4593                 return trueSelf;
4594               }
4595             else
4596               throw INTERP_KERNEL::Exception(msg);
4597           }
4598         //
4599         double val;
4600         DataArrayDouble *a;
4601         DataArrayDoubleTuple *aa;
4602         std::vector<double> bb;
4603         int sw;
4604         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
4605         switch(sw)
4606           {
4607           case 1:
4608             {
4609               if(!self->getArray())
4610                 throw INTERP_KERNEL::Exception(msg2);
4611               self->getArray()->applyPow(val);
4612               Py_XINCREF(trueSelf);
4613               return trueSelf;
4614             }
4615           case 2:
4616             {
4617               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4618               ret2->setArray(a);
4619               *self^=*ret2;
4620               Py_XINCREF(trueSelf);
4621               return trueSelf;
4622             }
4623           case 3:
4624             {
4625               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4626               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4627               ret2->setArray(aaa);
4628               *self^=*ret2;
4629               Py_XINCREF(trueSelf);
4630               return trueSelf;
4631             }
4632           case 4:
4633             {
4634               if(!self->getArray())
4635                 throw INTERP_KERNEL::Exception(msg2);
4636               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4637               self->getArray()->powEqual(aaa);
4638               Py_XINCREF(trueSelf);
4639               return trueSelf;
4640             }
4641           default:
4642             { throw INTERP_KERNEL::Exception(msg); }
4643           }
4644       }
4645
4646       static MEDCouplingFieldDouble *MergeFields(PyObject *li) throw(INTERP_KERNEL::Exception)
4647       {
4648         std::vector<const MEDCouplingFieldDouble *> tmp;
4649         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4650         return MEDCouplingFieldDouble::MergeFields(tmp);
4651       }
4652
4653       static std::string WriteVTK(const char *fileName, PyObject *li, bool isBinary=true) throw(INTERP_KERNEL::Exception)
4654       {
4655         std::vector<const MEDCouplingFieldDouble *> tmp;
4656         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4657         return MEDCouplingFieldDouble::WriteVTK(fileName,tmp,isBinary);
4658       }
4659     }
4660   };
4661
4662   class MEDCouplingMultiFields : public RefCountObject, public TimeLabel
4663   {
4664   public:
4665     int getNumberOfFields() const;
4666     MEDCouplingMultiFields *deepCpy() const;
4667     virtual std::string simpleRepr() const throw(INTERP_KERNEL::Exception);
4668     virtual std::string advancedRepr() const throw(INTERP_KERNEL::Exception);
4669     virtual bool isEqual(const MEDCouplingMultiFields *other, double meshPrec, double valsPrec) const;
4670     virtual bool isEqualWithoutConsideringStr(const MEDCouplingMultiFields *other, double meshPrec, double valsPrec) const;
4671     virtual void checkCoherency() const throw(INTERP_KERNEL::Exception);
4672     %extend
4673        {
4674          std::string __str__() const throw(INTERP_KERNEL::Exception)
4675          {
4676            return self->simpleRepr();
4677          }
4678          static MEDCouplingMultiFields *New(PyObject *li) throw(INTERP_KERNEL::Exception)
4679          {
4680            std::vector<const ParaMEDMEM::MEDCouplingFieldDouble *> tmp;
4681            convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4682            int sz=tmp.size();
4683            std::vector<MEDCouplingFieldDouble *> fs(sz);
4684            for(int i=0;i<sz;i++)
4685              fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
4686            return MEDCouplingMultiFields::New(fs);
4687          }
4688          MEDCouplingMultiFields(PyObject *li) throw(INTERP_KERNEL::Exception)
4689          {
4690            std::vector<const ParaMEDMEM::MEDCouplingFieldDouble *> tmp;
4691            convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4692            int sz=tmp.size();
4693            std::vector<MEDCouplingFieldDouble *> fs(sz);
4694            for(int i=0;i<sz;i++)
4695              fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
4696            return MEDCouplingMultiFields::New(fs);
4697          }
4698          PyObject *getFields() const
4699          {
4700            std::vector<const MEDCouplingFieldDouble *> fields=self->getFields();
4701            int sz=fields.size();
4702            PyObject *res = PyList_New(sz);
4703            for(int i=0;i<sz;i++)
4704              {
4705                if(fields[i])
4706                  {
4707                    fields[i]->incrRef();
4708                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(fields[i]),SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble, SWIG_POINTER_OWN | 0 ));
4709                  }
4710                else
4711                  {
4712                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble, 0 ));
4713                  }
4714              }
4715            return res;
4716          }
4717          PyObject *getFieldAtPos(int id) const throw(INTERP_KERNEL::Exception)
4718          {
4719            const MEDCouplingFieldDouble *ret=self->getFieldAtPos(id);
4720            if(ret)
4721              {
4722                ret->incrRef();
4723                return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble, SWIG_POINTER_OWN | 0 );
4724              }
4725            else
4726              return SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble, 0 );
4727          }
4728          PyObject *getMeshes() const throw(INTERP_KERNEL::Exception)
4729          {
4730            std::vector<MEDCouplingMesh *> ms=self->getMeshes();
4731            int sz=ms.size();
4732            PyObject *res = PyList_New(sz);
4733            for(int i=0;i<sz;i++)
4734              {
4735                if(ms[i])
4736                  {
4737                    ms[i]->incrRef();
4738                    PyList_SetItem(res,i,convertMesh(ms[i], SWIG_POINTER_OWN | 0 ));
4739                  }
4740                else
4741                  {
4742                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, 0 ));
4743                  }
4744              }
4745            return res;
4746          }
4747          PyObject *getDifferentMeshes() const throw(INTERP_KERNEL::Exception)
4748          {
4749            std::vector<int> refs;
4750            std::vector<MEDCouplingMesh *> ms=self->getDifferentMeshes(refs);
4751            int sz=ms.size();
4752            PyObject *res = PyList_New(sz);
4753            for(int i=0;i<sz;i++)
4754              {
4755                if(ms[i])
4756                  {
4757                    ms[i]->incrRef();
4758                    PyList_SetItem(res,i,convertMesh(ms[i], SWIG_POINTER_OWN | 0 ));
4759                  }
4760                else
4761                  {
4762                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, 0 ));
4763                  }
4764              }
4765            //
4766            PyObject *ret=PyTuple_New(2);
4767            PyTuple_SetItem(ret,0,res);
4768            PyTuple_SetItem(ret,1,convertIntArrToPyList2(refs));
4769            return ret;
4770          }
4771          PyObject *getArrays() const throw(INTERP_KERNEL::Exception)
4772          {
4773            std::vector<DataArrayDouble *> ms=self->getArrays();
4774            int sz=ms.size();
4775            PyObject *res = PyList_New(sz);
4776            for(int i=0;i<sz;i++)
4777              {
4778                if(ms[i])
4779                  {
4780                    ms[i]->incrRef();
4781                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(ms[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
4782                  }
4783                else
4784                  {
4785                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, 0 ));
4786                  }
4787              }
4788            return res;
4789          }
4790          PyObject *getDifferentArrays() const throw(INTERP_KERNEL::Exception)
4791          {
4792            std::vector< std::vector<int> > refs;
4793            std::vector<DataArrayDouble *> ms=self->getDifferentArrays(refs);
4794            int sz=ms.size();
4795            PyObject *res = PyList_New(sz);
4796            PyObject *res2 = PyList_New(sz);
4797            for(int i=0;i<sz;i++)
4798              {
4799                if(ms[i])
4800                  {
4801                    ms[i]->incrRef();
4802                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(ms[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
4803                  }
4804                else
4805                  {
4806                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, 0 ));
4807                  }
4808                PyList_SetItem(res2,i,convertIntArrToPyList2(refs[i]));
4809              }
4810            //
4811            PyObject *ret=PyTuple_New(2);
4812            PyTuple_SetItem(ret,0,res);
4813            PyTuple_SetItem(ret,1,res2);
4814            return ret;
4815          }
4816        }
4817   };
4818   
4819   class MEDCouplingDefinitionTime
4820   {
4821   public:
4822     MEDCouplingDefinitionTime();
4823     void assign(const MEDCouplingDefinitionTime& other);
4824     bool isEqual(const MEDCouplingDefinitionTime& other) const;
4825     double getTimeResolution() const;
4826     std::vector<double> getHotSpotsTime() const;
4827     %extend
4828       {
4829         std::string __str__() const throw(INTERP_KERNEL::Exception)
4830           {
4831             std::ostringstream oss;
4832             self->appendRepr(oss);
4833             return oss.str();
4834           }
4835
4836         PyObject *getIdsOnTimeRight(double tm) const throw(INTERP_KERNEL::Exception)
4837         {
4838           int meshId,arrId,arrIdInField,fieldId;
4839           self->getIdsOnTimeRight(tm,meshId,arrId,arrIdInField,fieldId);
4840           PyObject *res=PyList_New(4);
4841           PyList_SetItem(res,0,PyInt_FromLong(meshId));
4842           PyList_SetItem(res,1,PyInt_FromLong(arrId));
4843           PyList_SetItem(res,2,PyInt_FromLong(arrIdInField));
4844           PyList_SetItem(res,3,PyInt_FromLong(fieldId));
4845           return res;
4846         }
4847
4848         PyObject *getIdsOnTimeLeft(double tm) const throw(INTERP_KERNEL::Exception)
4849         {
4850           int meshId,arrId,arrIdInField,fieldId;
4851           self->getIdsOnTimeLeft(tm,meshId,arrId,arrIdInField,fieldId);
4852           PyObject *res=PyList_New(4);
4853           PyList_SetItem(res,0,PyInt_FromLong(meshId));
4854           PyList_SetItem(res,1,PyInt_FromLong(arrId));
4855           PyList_SetItem(res,2,PyInt_FromLong(arrIdInField));
4856           PyList_SetItem(res,3,PyInt_FromLong(fieldId));
4857           return res;
4858         }
4859       }
4860   };
4861
4862   class MEDCouplingFieldOverTime : public MEDCouplingMultiFields
4863   {
4864   public:
4865     double getTimeTolerance() const throw(INTERP_KERNEL::Exception);
4866     MEDCouplingDefinitionTime getDefinitionTimeZone() const;
4867     
4868     %extend
4869       {
4870         MEDCouplingFieldOverTime(PyObject *li) throw(INTERP_KERNEL::Exception)
4871           {
4872             std::vector<const ParaMEDMEM::MEDCouplingFieldDouble *> tmp;
4873             convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4874             int sz=tmp.size();
4875             std::vector<MEDCouplingFieldDouble *> fs(sz);
4876             for(int i=0;i<sz;i++)
4877               fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
4878             return MEDCouplingFieldOverTime::New(fs);
4879           }
4880         std::string __str__() const throw(INTERP_KERNEL::Exception)
4881           {
4882             return self->simpleRepr();
4883           }
4884         static MEDCouplingFieldOverTime *New(PyObject *li) throw(INTERP_KERNEL::Exception)
4885         {
4886           std::vector<const ParaMEDMEM::MEDCouplingFieldDouble *> tmp;
4887           convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4888            int sz=tmp.size();
4889            std::vector<MEDCouplingFieldDouble *> fs(sz);
4890            for(int i=0;i<sz;i++)
4891              fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
4892            return MEDCouplingFieldOverTime::New(fs);
4893          }
4894       }
4895   };
4896
4897   class MEDCouplingCartesianAMRMesh;
4898   
4899   class MEDCouplingCartesianAMRPatchGen : public RefCountObject
4900   {
4901   public:
4902     int getNumberOfCellsRecursiveWithOverlap() const throw(INTERP_KERNEL::Exception);
4903     int getNumberOfCellsRecursiveWithoutOverlap() const throw(INTERP_KERNEL::Exception);
4904     int getMaxNumberOfLevelsRelativeToThis() const throw(INTERP_KERNEL::Exception);
4905     %extend
4906     {
4907       MEDCouplingCartesianAMRMeshGen *getMesh() const throw(INTERP_KERNEL::Exception)
4908       {
4909         MEDCouplingCartesianAMRMeshGen *ret(const_cast<MEDCouplingCartesianAMRMeshGen *>(self->getMesh()));
4910         if(ret)
4911           ret->incrRef();
4912         return ret;
4913       }
4914     }
4915   };
4916
4917   class MEDCouplingCartesianAMRPatch : public MEDCouplingCartesianAMRPatchGen
4918   {
4919   public:
4920     int getNumberOfOverlapedCellsForFather() const throw(INTERP_KERNEL::Exception);
4921     bool isInMyNeighborhood(const MEDCouplingCartesianAMRPatch *other, int ghostLev) const throw(INTERP_KERNEL::Exception);
4922     std::vector<int> computeCellGridSt() const throw(INTERP_KERNEL::Exception);
4923     %extend
4924     {
4925       PyObject *getBLTRRange() const throw(INTERP_KERNEL::Exception)
4926       {
4927         const std::vector< std::pair<int,int> >& ret(self->getBLTRRange());
4928         return convertFromVectorPairInt(ret);
4929       }
4930
4931       PyObject *getBLTRRangeRelativeToGF() const throw(INTERP_KERNEL::Exception)
4932       {
4933         std::vector< std::pair<int,int> > ret(self->getBLTRRangeRelativeToGF());
4934         return convertFromVectorPairInt(ret);
4935       }
4936
4937       void addPatch(PyObject *bottomLeftTopRight, const std::vector<int>& factors) throw(INTERP_KERNEL::Exception)
4938       {
4939         std::vector< std::pair<int,int> > inp;
4940         convertPyToVectorPairInt(bottomLeftTopRight,inp);
4941         self->addPatch(inp,factors);
4942       }
4943
4944       MEDCouplingCartesianAMRPatch *__getitem__(int patchId) const throw(INTERP_KERNEL::Exception)
4945       {
4946         const MEDCouplingCartesianAMRMeshGen *mesh(self->getMesh());
4947         if(!mesh)
4948           throw INTERP_KERNEL::Exception("wrap MEDCouplingCartesianAMRPatchGen.__getitem__ : no underlying mesh !");
4949         if(patchId==mesh->getNumberOfPatches())
4950           {
4951             std::ostringstream oss;
4952             oss << "Requesting for patchId " << patchId << " having only " << mesh->getNumberOfPatches() << " patches !";
4953             PyErr_SetString(PyExc_StopIteration,oss.str().c_str());
4954             return 0;
4955           }
4956         MEDCouplingCartesianAMRPatch *ret(const_cast<MEDCouplingCartesianAMRPatch *>(mesh->getPatch(patchId)));
4957         if(ret)
4958           ret->incrRef();
4959         return ret;
4960       }
4961
4962       void __delitem__(int patchId) throw(INTERP_KERNEL::Exception)
4963       {
4964         MEDCouplingCartesianAMRMeshGen *mesh(const_cast<MEDCouplingCartesianAMRMeshGen *>(self->getMesh()));
4965         if(!mesh)
4966           throw INTERP_KERNEL::Exception("wrap MEDCouplingCartesianAMRPatch.__delitem__ : no underlying mesh !");
4967         mesh->removePatch(patchId);
4968       }
4969
4970       int __len__() const throw(INTERP_KERNEL::Exception)
4971       {
4972         const MEDCouplingCartesianAMRMeshGen *mesh(self->getMesh());
4973         if(!mesh)
4974           throw INTERP_KERNEL::Exception("wrap MEDCouplingCartesianAMRPatch.__len__ : no underlying mesh !");
4975         return mesh->getNumberOfPatches();
4976       }
4977     }
4978   };
4979
4980   class MEDCouplingCartesianAMRPatchGF : public MEDCouplingCartesianAMRPatchGen
4981   {
4982   };
4983   
4984   class MEDCouplingCartesianAMRMeshGen : public RefCountObject, public TimeLabel
4985   {
4986   public:
4987     int getAbsoluteLevel() const throw(INTERP_KERNEL::Exception);
4988     int getAbsoluteLevelRelativeTo(const MEDCouplingCartesianAMRMeshGen *ref) const throw(INTERP_KERNEL::Exception);
4989     std::vector<int> getPositionRelativeTo(const MEDCouplingCartesianAMRMeshGen *ref) const throw(INTERP_KERNEL::Exception);
4990     int getSpaceDimension() const throw(INTERP_KERNEL::Exception);
4991     const std::vector<int>& getFactors() const throw(INTERP_KERNEL::Exception);
4992     void setFactors(const std::vector<int>& newFactors) throw(INTERP_KERNEL::Exception);
4993     int getMaxNumberOfLevelsRelativeToThis() const throw(INTERP_KERNEL::Exception);
4994     int getNumberOfCellsAtCurrentLevel() const throw(INTERP_KERNEL::Exception);
4995     int getNumberOfCellsAtCurrentLevelGhost(int ghostLev) const throw(INTERP_KERNEL::Exception);
4996     int getNumberOfCellsRecursiveWithOverlap() const throw(INTERP_KERNEL::Exception);
4997     int getNumberOfCellsRecursiveWithoutOverlap() const throw(INTERP_KERNEL::Exception);
4998     bool isPatchInNeighborhoodOf(int patchId1, int patchId2, int ghostLev) const throw(INTERP_KERNEL::Exception);
4999    virtual void detachFromFather() throw(INTERP_KERNEL::Exception);
5000     //
5001     int getNumberOfPatches() const throw(INTERP_KERNEL::Exception);
5002     int getPatchIdFromChildMesh(const MEDCouplingCartesianAMRMeshGen *mesh) const throw(INTERP_KERNEL::Exception);
5003     MEDCouplingUMesh *buildUnstructured() const throw(INTERP_KERNEL::Exception);
5004     DataArrayDouble *extractGhostFrom(int ghostSz, const DataArrayDouble *arr) const throw(INTERP_KERNEL::Exception);
5005     std::vector<int> getPatchIdsInTheNeighborhoodOf(int patchId, int ghostLev) const throw(INTERP_KERNEL::Exception);
5006     MEDCoupling1SGTUMesh *buildMeshFromPatchEnvelop() const throw(INTERP_KERNEL::Exception);
5007     MEDCoupling1SGTUMesh *buildMeshOfDirectChildrenOnly() const throw(INTERP_KERNEL::Exception);
5008     void removeAllPatches() throw(INTERP_KERNEL::Exception);
5009     void removePatch(int patchId) throw(INTERP_KERNEL::Exception);
5010     void createPatchesFromCriterion(const INTERP_KERNEL::BoxSplittingOptions& bso, const DataArrayByte *criterion, const std::vector<int>& factors) throw(INTERP_KERNEL::Exception);
5011     void createPatchesFromCriterion(const INTERP_KERNEL::BoxSplittingOptions& bso, const DataArrayDouble *criterion, const std::vector<int>& factors, double eps) throw(INTERP_KERNEL::Exception);
5012     DataArrayDouble *createCellFieldOnPatch(int patchId, const DataArrayDouble *cellFieldOnThis) const throw(INTERP_KERNEL::Exception);
5013     void fillCellFieldOnPatch(int patchId, const DataArrayDouble *cellFieldOnThis, DataArrayDouble *cellFieldOnPatch, bool isConservative=true) const throw(INTERP_KERNEL::Exception);
5014     void fillCellFieldOnPatchGhost(int patchId, const DataArrayDouble *cellFieldOnThis, DataArrayDouble *cellFieldOnPatch, int ghostLev, bool isConservative=true) const throw(INTERP_KERNEL::Exception);
5015     void fillCellFieldOnPatchOnlyOnGhostZone(int patchId, const DataArrayDouble *cellFieldOnThis, DataArrayDouble *cellFieldOnPatch, int ghostLev) const throw(INTERP_KERNEL::Exception);
5016     void fillCellFieldOnPatchOnlyOnGhostZoneWith(int ghostLev, const MEDCouplingCartesianAMRPatch *patchToBeModified, const MEDCouplingCartesianAMRPatch *neighborPatch, DataArrayDouble *cellFieldOnPatch, const DataArrayDouble *cellFieldNeighbor) const;
5017     void fillCellFieldComingFromPatch(int patchId, const DataArrayDouble *cellFieldOnPatch, DataArrayDouble *cellFieldOnThis, bool isConservative=true) const throw(INTERP_KERNEL::Exception);
5018     void fillCellFieldComingFromPatchGhost(int patchId, const DataArrayDouble *cellFieldOnPatch, DataArrayDouble *cellFieldOnThis, int ghostLev, bool isConservative=true) const throw(INTERP_KERNEL::Exception);
5019     DataArrayInt *findPatchesInTheNeighborhoodOf(int patchId, int ghostLev) const throw(INTERP_KERNEL::Exception);
5020     std::string buildPythonDumpOfThis() const throw(INTERP_KERNEL::Exception);
5021     %extend
5022     {
5023       void addPatch(PyObject *bottomLeftTopRight, const std::vector<int>& factors) throw(INTERP_KERNEL::Exception)
5024       {
5025         std::vector< std::pair<int,int> > inp;
5026         convertPyToVectorPairInt(bottomLeftTopRight,inp);
5027         self->addPatch(inp,factors);
5028       }
5029
5030       PyObject *getPatches() const throw(INTERP_KERNEL::Exception)
5031       {
5032         std::vector< const MEDCouplingCartesianAMRPatch *> ps(self->getPatches());
5033         int sz(ps.size());
5034         PyObject *ret = PyList_New(sz);
5035         for(int i=0;i<sz;i++)
5036           {
5037             MEDCouplingCartesianAMRPatch *elt(const_cast<MEDCouplingCartesianAMRPatch *>(ps[i]));
5038             if(elt)
5039               elt->incrRef();
5040             PyList_SetItem(ret,i,convertCartesianAMRPatch(elt, SWIG_POINTER_OWN | 0 ));
5041           }
5042         return ret;
5043       }
5044
5045       // agy : don't know why typemap fails here ??? let it in the extend section
5046       PyObject *deepCpy(MEDCouplingCartesianAMRMeshGen *father) const throw(INTERP_KERNEL::Exception)
5047       {
5048         return convertCartesianAMRMesh(self->deepCpy(father), SWIG_POINTER_OWN | 0 );
5049       }
5050
5051       MEDCouplingCartesianAMRPatch *getPatchAtPosition(const std::vector<int>& pos) const throw(INTERP_KERNEL::Exception)
5052       {
5053         const MEDCouplingCartesianAMRPatch *ret(self->getPatchAtPosition(pos));
5054         MEDCouplingCartesianAMRPatch *ret2(const_cast<MEDCouplingCartesianAMRPatch *>(ret));
5055         if(ret2)
5056           ret2->incrRef();
5057         return ret2;
5058       }
5059
5060       MEDCouplingCartesianAMRMeshGen *getMeshAtPosition(const std::vector<int>& pos) const throw(INTERP_KERNEL::Exception)
5061       {
5062         const MEDCouplingCartesianAMRMeshGen *ret(self->getMeshAtPosition(pos));
5063         MEDCouplingCartesianAMRMeshGen *ret2(const_cast<MEDCouplingCartesianAMRMeshGen *>(ret));
5064         if(ret2)
5065           ret2->incrRef();
5066         return ret2;
5067       }
5068
5069       virtual PyObject *positionRelativeToGodFather() const throw(INTERP_KERNEL::Exception)
5070       {
5071         std::vector<int> out1;
5072         std::vector< std::pair<int,int> > out0(self->positionRelativeToGodFather(out1));
5073         PyObject *ret(PyTuple_New(2));
5074         PyTuple_SetItem(ret,0,convertFromVectorPairInt(out0));
5075         PyTuple_SetItem(ret,1,convertIntArrToPyList2(out1));
5076         return ret;
5077       }
5078
5079       virtual PyObject *retrieveGridsAt(int absoluteLev) const throw(INTERP_KERNEL::Exception)
5080       {
5081         std::vector<MEDCouplingCartesianAMRPatchGen *> ps(self->retrieveGridsAt(absoluteLev));
5082         int sz(ps.size());
5083         PyObject *ret = PyList_New(sz);
5084         for(int i=0;i<sz;i++)
5085           PyList_SetItem(ret,i,convertCartesianAMRPatch(ps[i], SWIG_POINTER_OWN | 0 ));
5086         return ret;
5087       }
5088
5089       MEDCouplingFieldDouble *buildCellFieldOnRecurseWithoutOverlapWithoutGhost(int ghostSz, PyObject *recurseArrs) const
5090       {
5091         std::vector<const DataArrayDouble *> inp;
5092         convertFromPyObjVectorOfObj<const ParaMEDMEM::DataArrayDouble *>(recurseArrs,SWIGTYPE_p_ParaMEDMEM__DataArrayDouble,"DataArrayDouble",inp);
5093         return self->buildCellFieldOnRecurseWithoutOverlapWithoutGhost(ghostSz,inp);
5094       }
5095
5096       virtual MEDCouplingCartesianAMRMeshGen *getFather() const throw(INTERP_KERNEL::Exception)
5097       {
5098         MEDCouplingCartesianAMRMeshGen *ret(const_cast<MEDCouplingCartesianAMRMeshGen *>(self->getFather()));
5099         if(ret)
5100           ret->incrRef();
5101         return ret;
5102       }
5103       
5104       virtual MEDCouplingCartesianAMRMeshGen *getGodFather() const throw(INTERP_KERNEL::Exception)
5105       {
5106         MEDCouplingCartesianAMRMeshGen *ret(const_cast<MEDCouplingCartesianAMRMeshGen *>(self->getGodFather()));
5107         if(ret)
5108           ret->incrRef();
5109         return ret;
5110       }
5111
5112       MEDCouplingCartesianAMRPatch *getPatch(int patchId) const throw(INTERP_KERNEL::Exception)
5113       {
5114         MEDCouplingCartesianAMRPatch *ret(const_cast<MEDCouplingCartesianAMRPatch *>(self->getPatch(patchId)));
5115         if(ret)
5116           ret->incrRef();
5117         return ret;
5118       }
5119
5120       MEDCouplingIMesh *getImageMesh() const throw(INTERP_KERNEL::Exception)
5121       {
5122         const MEDCouplingIMesh *ret(self->getImageMesh());
5123         if(ret)
5124           ret->incrRef();
5125         return const_cast<MEDCouplingIMesh *>(ret);
5126       }
5127
5128       MEDCouplingCartesianAMRPatch *__getitem__(int patchId) const throw(INTERP_KERNEL::Exception)
5129       {
5130         if(patchId==self->getNumberOfPatches())
5131           {
5132             std::ostringstream oss;
5133             oss << "Requesting for patchId " << patchId << " having only " << self->getNumberOfPatches() << " patches !";
5134             PyErr_SetString(PyExc_StopIteration,oss.str().c_str());
5135             return 0;
5136           }
5137         MEDCouplingCartesianAMRPatch *ret(const_cast<MEDCouplingCartesianAMRPatch *>(self->getPatch(patchId)));
5138         if(ret)
5139           ret->incrRef();
5140         return ret;
5141       }
5142
5143       void fillCellFieldOnPatchGhostAdv(int patchId, const DataArrayDouble *cellFieldOnThis, int ghostLev, PyObject *arrsOnPatches, bool isConservative=true) const throw(INTERP_KERNEL::Exception)
5144       {
5145         std::vector<const ParaMEDMEM::DataArrayDouble *> arrsOnPatches2;
5146         convertFromPyObjVectorOfObj<const ParaMEDMEM::DataArrayDouble *>(arrsOnPatches,SWIGTYPE_p_ParaMEDMEM__DataArrayDouble,"DataArrayDouble",arrsOnPatches2);
5147         self->fillCellFieldOnPatchGhostAdv(patchId,cellFieldOnThis,ghostLev,arrsOnPatches2,isConservative);
5148       }
5149
5150       void fillCellFieldOnPatchOnlyGhostAdv(int patchId, int ghostLev, PyObject *arrsOnPatches) const
5151       {
5152         std::vector<const ParaMEDMEM::DataArrayDouble *> arrsOnPatches2;
5153         convertFromPyObjVectorOfObj<const ParaMEDMEM::DataArrayDouble *>(arrsOnPatches,SWIGTYPE_p_ParaMEDMEM__DataArrayDouble,"DataArrayDouble",arrsOnPatches2);
5154         self->fillCellFieldOnPatchOnlyGhostAdv(patchId,ghostLev,arrsOnPatches2);
5155       }
5156
5157       void __delitem__(int patchId) throw(INTERP_KERNEL::Exception)
5158       {
5159         self->removePatch(patchId);
5160       }
5161
5162       int __len__() const throw(INTERP_KERNEL::Exception)
5163       {
5164         return self->getNumberOfPatches();
5165       }
5166     }
5167   };
5168
5169   class MEDCouplingCartesianAMRMeshSub : public MEDCouplingCartesianAMRMeshGen
5170   {
5171   };
5172
5173   class MEDCouplingCartesianAMRMesh : public MEDCouplingCartesianAMRMeshGen
5174   {
5175   public:
5176     static MEDCouplingCartesianAMRMesh *New(MEDCouplingIMesh *mesh) throw(INTERP_KERNEL::Exception);
5177     %extend
5178     {
5179       static MEDCouplingCartesianAMRMesh *New(const std::string& meshName, int spaceDim, PyObject *nodeStrct, PyObject *origin, PyObject *dxyz) throw(INTERP_KERNEL::Exception)
5180       {
5181         static const char msg0[]="MEDCouplingCartesianAMRMesh::New : error on 'origin' parameter !";
5182         static const char msg1[]="MEDCouplingCartesianAMRMesh::New : error on 'dxyz' parameter !";
5183         const int *nodeStrctPtr(0);
5184         const double *originPtr(0),*dxyzPtr(0);
5185         int sw,sz,val0;
5186         std::vector<int> bb0;
5187         nodeStrctPtr=convertObjToPossibleCpp1_Safe(nodeStrct,sw,sz,val0,bb0);
5188         //
5189         double val,val2;
5190         std::vector<double> bb,bb2;
5191         int sz1,sz2;
5192         originPtr=convertObjToPossibleCpp5_SingleCompo(origin,sw,val,bb,msg0,false,sz1);
5193         dxyzPtr=convertObjToPossibleCpp5_SingleCompo(dxyz,sw,val2,bb2,msg1,false,sz2);
5194         //
5195         return MEDCouplingCartesianAMRMesh::New(meshName,spaceDim,nodeStrctPtr,nodeStrctPtr+sz,originPtr,originPtr+sz1,dxyzPtr,dxyzPtr+sz2);
5196       }
5197
5198       void createPatchesFromCriterionML(PyObject *bso, const DataArrayDouble *criterion, PyObject *factors, double eps) throw(INTERP_KERNEL::Exception)
5199       {
5200         std::vector<const INTERP_KERNEL::BoxSplittingOptions *> inp0;
5201         convertFromPyObjVectorOfObj<const INTERP_KERNEL::BoxSplittingOptions *>(bso,SWIGTYPE_p_INTERP_KERNEL__BoxSplittingOptions,"BoxSplittingOptions",inp0);
5202         std::vector< std::vector<int> > inp2;
5203         convertPyToVectorOfVectorOfInt(factors,inp2);
5204         self->createPatchesFromCriterionML(inp0,criterion,inp2,eps);
5205       }
5206
5207       MEDCouplingCartesianAMRMesh(const std::string& meshName, int spaceDim, PyObject *nodeStrct, PyObject *origin, PyObject *dxyz) throw(INTERP_KERNEL::Exception)
5208       {
5209         return ParaMEDMEM_MEDCouplingCartesianAMRMesh_New__SWIG_1(meshName,spaceDim,nodeStrct,origin,dxyz);
5210       }
5211
5212       MEDCouplingCartesianAMRMesh(MEDCouplingIMesh *mesh) throw(INTERP_KERNEL::Exception)
5213       {
5214         return MEDCouplingCartesianAMRMesh::New(mesh);
5215       }
5216     }
5217   };
5218
5219   class MEDCouplingDataForGodFather : public RefCountObject
5220   {
5221   public:
5222     virtual void synchronizeFineToCoarse() throw(INTERP_KERNEL::Exception);
5223     virtual void synchronizeFineToCoarseBetween(int fromLev, int toLev) throw(INTERP_KERNEL::Exception);
5224     virtual void synchronizeCoarseToFine() throw(INTERP_KERNEL::Exception);
5225     virtual void synchronizeCoarseToFineBetween(int fromLev, int toLev) throw(INTERP_KERNEL::Exception);
5226     virtual void synchronizeAllGhostZones() throw(INTERP_KERNEL::Exception);
5227     virtual void synchronizeAllGhostZonesOfDirectChidrenOf(const MEDCouplingCartesianAMRMeshGen *mesh) throw(INTERP_KERNEL::Exception);
5228     virtual void synchronizeAllGhostZonesAtASpecifiedLevel(int level) throw(INTERP_KERNEL::Exception);
5229     virtual void synchronizeAllGhostZonesAtASpecifiedLevelUsingOnlyFather(int level) throw(INTERP_KERNEL::Exception);
5230     virtual void alloc() throw(INTERP_KERNEL::Exception);
5231     virtual void dealloc() throw(INTERP_KERNEL::Exception);
5232     %extend
5233     {
5234       MEDCouplingCartesianAMRMesh *getMyGodFather() throw(INTERP_KERNEL::Exception)
5235       {
5236         MEDCouplingCartesianAMRMesh *ret(self->getMyGodFather());
5237         if(ret)
5238           ret->incrRef();
5239         return ret;
5240       }
5241     }
5242   };
5243   
5244   class MEDCouplingAMRAttribute : public MEDCouplingDataForGodFather, public TimeLabel
5245   {
5246   public:
5247     int getNumberOfLevels() const throw(INTERP_KERNEL::Exception);
5248     MEDCouplingAMRAttribute *deepCpy() const throw(INTERP_KERNEL::Exception);
5249     MEDCouplingAMRAttribute *deepCpyWithoutGodFather() const throw(INTERP_KERNEL::Exception);
5250     MEDCouplingFieldDouble *buildCellFieldOnRecurseWithoutOverlapWithoutGhost(MEDCouplingCartesianAMRMeshGen *mesh, const std::string& fieldName) const throw(INTERP_KERNEL::Exception);
5251     MEDCouplingFieldDouble *buildCellFieldOnWithGhost(MEDCouplingCartesianAMRMeshGen *mesh, const std::string& fieldName) const throw(INTERP_KERNEL::Exception);
5252     MEDCouplingFieldDouble *buildCellFieldOnWithoutGhost(MEDCouplingCartesianAMRMeshGen *mesh, const std::string& fieldName) const throw(INTERP_KERNEL::Exception);
5253     bool changeGodFather(MEDCouplingCartesianAMRMesh *gf) throw(INTERP_KERNEL::Exception);
5254     MEDCouplingAMRAttribute *projectTo(MEDCouplingCartesianAMRMesh *targetGF) const throw(INTERP_KERNEL::Exception);
5255     std::string writeVTHB(const std::string& fileName) const throw(INTERP_KERNEL::Exception);
5256     %extend
5257     {
5258       static MEDCouplingAMRAttribute *New(MEDCouplingCartesianAMRMesh *gf, PyObject *fieldNames, int ghostLev) throw(INTERP_KERNEL::Exception)
5259       {
5260         std::vector< std::pair<std::string,int> > fieldNamesCpp0;
5261         std::vector< std::pair<std::string, std::vector<std::string> > > fieldNamesCpp1;
5262         MEDCouplingAMRAttribute *ret(0);
5263         try
5264           {
5265             convertPyToVectorPairStringInt(fieldNames,fieldNamesCpp0);
5266             ret=MEDCouplingAMRAttribute::New(gf,fieldNamesCpp0,ghostLev);
5267           }
5268         catch(INTERP_KERNEL::Exception&)
5269           {
5270             convertPyToVectorPairStringVecString(fieldNames,fieldNamesCpp1);
5271             ret=MEDCouplingAMRAttribute::New(gf,fieldNamesCpp1,ghostLev);
5272           }
5273         return ret;
5274       }
5275
5276       MEDCouplingAMRAttribute(MEDCouplingCartesianAMRMesh *gf, PyObject *fieldNames, int ghostLev) throw(INTERP_KERNEL::Exception)
5277       {
5278         return ParaMEDMEM_MEDCouplingAMRAttribute_New(gf,fieldNames,ghostLev);
5279       }
5280
5281       DataArrayDouble *getFieldOn(MEDCouplingCartesianAMRMeshGen *mesh, const std::string& fieldName) const throw(INTERP_KERNEL::Exception)
5282       {
5283         const DataArrayDouble *ret(self->getFieldOn(mesh,fieldName));
5284         DataArrayDouble *ret2(const_cast<DataArrayDouble *>(ret));
5285         if(ret2)
5286           ret2->incrRef();
5287         return ret2;
5288       }
5289
5290       void spillInfoOnComponents(PyObject *compNames) throw(INTERP_KERNEL::Exception)
5291       {
5292         std::vector< std::vector<std::string> > compNamesCpp;
5293         convertPyToVectorOfVectorOfString(compNames,compNamesCpp);
5294         self->spillInfoOnComponents(compNamesCpp);
5295       }
5296
5297       void spillNatures(PyObject *nfs) throw(INTERP_KERNEL::Exception)
5298       {
5299         std::vector<int> inp0;
5300         if(!fillIntVector(nfs,inp0))
5301           throw INTERP_KERNEL::Exception("wrap of MEDCouplingAMRAttribute::spillNatures : vector of NatureOfField enum expected !");
5302         std::size_t sz(inp0.size());
5303         std::vector<NatureOfField> inp00(sz);
5304         for(std::size_t i=0;i<sz;i++)
5305           inp00[i]=(NatureOfField)inp0[i];
5306         self->spillNatures(inp00);
5307       }
5308       
5309       PyObject *retrieveFieldsOn(MEDCouplingCartesianAMRMeshGen *mesh) const throw(INTERP_KERNEL::Exception)
5310       {
5311         std::vector<DataArrayDouble *> ret(self->retrieveFieldsOn(mesh));
5312         int sz((int)ret.size());
5313         PyObject *retPy(PyList_New(sz));
5314         for(int i=0;i<sz;i++)
5315           PyList_SetItem(retPy,i,SWIG_NewPointerObj(SWIG_as_voidptr(ret[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
5316         return retPy;
5317       }
5318     }
5319   };
5320
5321   class DenseMatrix : public RefCountObject, public TimeLabel
5322   {
5323   public:
5324     static DenseMatrix *New(int nbRows, int nbCols) throw(INTERP_KERNEL::Exception);
5325     static DenseMatrix *New(DataArrayDouble *array, int nbRows, int nbCols) throw(INTERP_KERNEL::Exception);
5326     DenseMatrix *deepCpy() const throw(INTERP_KERNEL::Exception);
5327     DenseMatrix *shallowCpy() const throw(INTERP_KERNEL::Exception);
5328     //
5329     int getNumberOfRows() const throw(INTERP_KERNEL::Exception);
5330     int getNumberOfCols() const throw(INTERP_KERNEL::Exception);
5331     int getNbOfElems() const throw(INTERP_KERNEL::Exception);
5332     void reBuild(DataArrayDouble *array, int nbRows=-1, int nbCols=-1) throw(INTERP_KERNEL::Exception);
5333     void reShape(int nbRows, int nbCols) throw(INTERP_KERNEL::Exception);
5334     void transpose() throw(INTERP_KERNEL::Exception);
5335     //
5336     bool isEqual(const DenseMatrix& other, double eps) const throw(INTERP_KERNEL::Exception);
5337     DataArrayDouble *matVecMult(const DataArrayDouble *vec) const throw(INTERP_KERNEL::Exception);
5338     static DataArrayDouble *MatVecMult(const DenseMatrix *mat, const DataArrayDouble *vec) throw(INTERP_KERNEL::Exception);
5339     %extend
5340     {
5341       DenseMatrix(int nbRows, int nbCols) throw(INTERP_KERNEL::Exception)
5342       {
5343         return DenseMatrix::New(nbRows,nbCols);
5344       }
5345
5346       DenseMatrix(DataArrayDouble *array, int nbRows, int nbCols) throw(INTERP_KERNEL::Exception)
5347       {
5348         return DenseMatrix::New(array,nbRows,nbCols);
5349       }
5350
5351       PyObject *isEqualIfNotWhy(const DenseMatrix& other, double eps) const throw(INTERP_KERNEL::Exception)
5352       {
5353         std::string ret1;
5354         bool ret0=self->isEqualIfNotWhy(other,eps,ret1);
5355         PyObject *ret=PyTuple_New(2);
5356         PyObject *ret0Py=ret0?Py_True:Py_False;
5357         Py_XINCREF(ret0Py);
5358         PyTuple_SetItem(ret,0,ret0Py);
5359         PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
5360         return ret;
5361       }
5362
5363       DataArrayDouble *getData() throw(INTERP_KERNEL::Exception)
5364       {
5365         DataArrayDouble *ret(self->getData());
5366         if(ret)
5367           ret->incrRef();
5368         return ret;
5369       }
5370
5371       DenseMatrix *__add__(const DenseMatrix *other) throw(INTERP_KERNEL::Exception)
5372       {
5373         return ParaMEDMEM::DenseMatrix::Add(self,other);
5374       }
5375
5376       DenseMatrix *__sub__(const DenseMatrix *other) throw(INTERP_KERNEL::Exception)
5377       {
5378         return ParaMEDMEM::DenseMatrix::Substract(self,other);
5379       }
5380
5381       DenseMatrix *__mul__(const DenseMatrix *other) throw(INTERP_KERNEL::Exception)
5382       {
5383         return ParaMEDMEM::DenseMatrix::Multiply(self,other);
5384       }
5385
5386       DenseMatrix *__mul__(const DataArrayDouble *other) throw(INTERP_KERNEL::Exception)
5387       {
5388         return ParaMEDMEM::DenseMatrix::Multiply(self,other);
5389       }
5390
5391       PyObject *___iadd___(PyObject *trueSelf, const DenseMatrix *other) throw(INTERP_KERNEL::Exception)
5392       {
5393         self->addEqual(other);
5394         Py_XINCREF(trueSelf);
5395         return trueSelf;
5396       }
5397
5398       PyObject *___isub___(PyObject *trueSelf, const DenseMatrix *other) throw(INTERP_KERNEL::Exception)
5399       {
5400         self->substractEqual(other);
5401         Py_XINCREF(trueSelf);
5402         return trueSelf;
5403       }
5404 #ifdef WITH_NUMPY
5405       PyObject *toNumPyMatrix() throw(INTERP_KERNEL::Exception) // not const. It is not a bug !
5406       {
5407         PyObject *obj(ToNumPyArrayUnderground<DataArrayDouble,double>(self->getData(),NPY_DOUBLE,"DataArrayDouble",self->getNumberOfRows(),self->getNumberOfCols()));
5408         return obj;
5409       }
5410 #endif
5411     }
5412   };
5413   
5414   class PartDefinition : public RefCountObject, public TimeLabel
5415   {
5416   public:
5417     static PartDefinition *New(int start, int stop, int step) throw(INTERP_KERNEL::Exception);
5418     static PartDefinition *New(DataArrayInt *listOfIds) throw(INTERP_KERNEL::Exception);
5419     virtual DataArrayInt *toDAI() const throw(INTERP_KERNEL::Exception);
5420     virtual int getNumberOfElems() const throw(INTERP_KERNEL::Exception);
5421     virtual std::string getRepr() const throw(INTERP_KERNEL::Exception);
5422     virtual PartDefinition *composeWith(const PartDefinition *other) const throw(INTERP_KERNEL::Exception);
5423     virtual void checkCoherency() const throw(INTERP_KERNEL::Exception);
5424     virtual PartDefinition *tryToSimplify() const throw(INTERP_KERNEL::Exception);
5425     %extend
5426     {
5427       virtual PartDefinition *__add__(const PartDefinition& other) const throw(INTERP_KERNEL::Exception)
5428       {
5429         return (*self)+other;
5430       }
5431     }
5432   protected:
5433     virtual ~PartDefinition();
5434   };
5435
5436   class DataArrayPartDefinition : public PartDefinition
5437   {
5438   public:
5439     static DataArrayPartDefinition *New(DataArrayInt *listOfIds) throw(INTERP_KERNEL::Exception);
5440     %extend
5441     {
5442       DataArrayPartDefinition(DataArrayInt *listOfIds) throw(INTERP_KERNEL::Exception)
5443       {
5444         return DataArrayPartDefinition::New(listOfIds);
5445       }
5446
5447       std::string __str__() const throw(INTERP_KERNEL::Exception)
5448       {
5449         return self->getRepr();
5450       }
5451       
5452       std::string __repr__() const throw(INTERP_KERNEL::Exception)
5453       {
5454         std::ostringstream oss; oss << "DataArrayPartDefinition C++ instance at " << self << "." << std::endl;
5455         oss << self->getRepr();
5456         return oss.str();
5457       }
5458     }
5459   protected:
5460     virtual ~DataArrayPartDefinition();
5461   };
5462
5463   class SlicePartDefinition : public PartDefinition
5464   {
5465   public:
5466     static SlicePartDefinition *New(int start, int stop, int step) throw(INTERP_KERNEL::Exception);
5467     int getEffectiveStop() const throw(INTERP_KERNEL::Exception);
5468     %extend
5469     {
5470       SlicePartDefinition(int start, int stop, int step) throw(INTERP_KERNEL::Exception)
5471       {
5472         return SlicePartDefinition::New(start,stop,step);
5473       }
5474
5475       PyObject *getSlice() const throw(INTERP_KERNEL::Exception)
5476       {
5477         int a,b,c;
5478         self->getSlice(a,b,c);
5479         return PySlice_New(PyInt_FromLong(a),PyInt_FromLong(b),PyInt_FromLong(c));
5480       }
5481       
5482       std::string __str__() const throw(INTERP_KERNEL::Exception)
5483       {
5484         return self->getRepr();
5485       }
5486       
5487       std::string __repr__() const throw(INTERP_KERNEL::Exception)
5488       {
5489         std::ostringstream oss; oss << "SlicePartDefinition C++ instance at " << self << "." << std::endl;
5490         oss << self->getRepr();
5491         return oss.str();
5492       }
5493     }
5494   protected:
5495     virtual ~SlicePartDefinition();
5496   };
5497 }
5498
5499 %pythoncode %{
5500 import os
5501 __filename=os.environ.get('PYTHONSTARTUP')
5502 if __filename and os.path.isfile(__filename):
5503   execfile(__filename)
5504   pass
5505 %}