Salome HOME
[EDF27859] : In salome test mechanism : explicit python executable.
[tools/medcoupling.git] / src / MEDCoupling_Swig / MEDCouplingCommon.i
1 // Copyright (C) 2017-2023  CEA, EDF
2 //
3 // This library is free software; you can redistribute it and/or
4 // modify it under the terms of the GNU Lesser General Public
5 // License as published by the Free Software Foundation; either
6 // version 2.1 of the License, or (at your option) any later version.
7 //
8 // This library is distributed in the hope that it will be useful,
9 // but WITHOUT ANY WARRANTY; without even the implied warranty of
10 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11 // Lesser General Public License for more details.
12 //
13 // You should have received a copy of the GNU Lesser General Public
14 // License along with this library; if not, write to the Free Software
15 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
16 //
17 // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
18 //
19 // Author : Anthony Geay (EDF R&D)
20
21 #ifdef WITH_DOCSTRINGS
22 %include MEDCoupling_doc.i
23 #endif
24
25 %include std_vector.i
26 %include std_string.i
27
28 %{
29 #include "MEDCouplingMemArray.hxx"
30 #include "MEDCouplingMemArray.txx"
31 #include "MEDCouplingUMesh.hxx"
32 #include "MEDCouplingMappedExtrudedMesh.hxx"
33 #include "MEDCouplingCMesh.hxx"
34 #include "MEDCouplingIMesh.hxx"
35 #include "MEDCouplingMap.txx"
36 #include "MEDCouplingCurveLinearMesh.hxx"
37 #include "MEDCoupling1GTUMesh.hxx"
38 #include "MEDCouplingField.hxx"
39 #include "MEDCouplingFieldDouble.hxx"
40 #include "MEDCouplingFieldInt32.hxx"
41 #include "MEDCouplingFieldInt64.hxx"
42 #include "MEDCouplingFieldFloat.hxx"
43 #include "MEDCouplingFieldTemplate.hxx"
44 #include "MEDCouplingGaussLocalization.hxx"
45 #include "MCAuto.hxx"
46 #include "MEDCouplingMultiFields.hxx"
47 #include "MEDCouplingFieldOverTime.hxx"
48 #include "MEDCouplingDefinitionTime.hxx"
49 #include "MEDCouplingFieldDiscretization.hxx"
50 #include "MEDCouplingFieldDiscretizationOnNodesFE.hxx"
51 #include "MEDCouplingCartesianAMRMesh.hxx"
52 #include "MEDCouplingAMRAttribute.hxx"
53 #include "MEDCouplingMatrix.hxx"
54 #include "MEDCouplingPartDefinition.hxx"
55 #include "MEDCouplingSkyLineArray.hxx"
56 #include "MEDCouplingTypemaps.i"
57
58 #include "InterpKernelAutoPtr.hxx"
59 #include "BoxSplittingOptions.hxx"
60
61 using namespace MEDCoupling;
62 using namespace INTERP_KERNEL;
63
64 %}
65
66 %template(dvec) std::vector<double>;
67 %template(svec) std::vector<std::string>;
68
69 //%include stdint.i
70
71 #ifndef MEDCOUPLING_USE_64BIT_IDS
72 //typedef std::int32_t mcIdType;
73 typedef int mcIdType;
74 typedef DataArrayInt32 DataArrayIdType;
75 %template(ivec) std::vector<int>;
76 %template(i64vec) std::vector<int64_t>;
77 #else
78 //typedef std::int64_t mcIdType;
79 typedef DataArrayInt64 DataArrayIdType;
80 #ifdef WIN32
81 %template(ivec) std::vector<long long>;
82 typedef long long mcIdType;
83 #else 
84 %template(ivec) std::vector<long>;
85 typedef long int mcIdType;
86 #endif
87 %template(i32vec) std::vector<int>;
88 #endif
89 #ifdef WIN32
90 typedef long long mcPyPtrType;
91 #else
92 typedef long mcPyPtrType;
93 #endif
94
95 ////////////////////
96 %typemap(out) MEDCoupling::MEDCouplingMesh*
97 {
98   $result=convertMesh($1,$owner);
99 }
100
101 %typemap(out) MEDCouplingMesh*
102 {
103   $result=convertMesh($1,$owner);
104 }
105 //$$$$$$$$$$$$$$$$$$
106
107 ////////////////////
108 %typemap(out) MEDCoupling::MEDCouplingPointSet*
109 {
110   $result=convertMesh($1,$owner);
111 }
112
113 %typemap(out) MEDCouplingPointSet*
114 {
115   $result=convertMesh($1,$owner);
116 }
117 //$$$$$$$$$$$$$$$$$$
118
119 ////////////////////
120 %typemap(out) MEDCouplingCartesianAMRPatchGen*
121 {
122   $result=convertCartesianAMRPatch($1,$owner);
123 }
124 //$$$$$$$$$$$$$$$$$$
125
126 ////////////////////
127 %typemap(out) MEDCouplingCartesianAMRMeshGen*
128 {
129   $result=convertCartesianAMRMesh($1,$owner);
130 }
131 //$$$$$$$$$$$$$$$$$$
132
133 ////////////////////
134 %typemap(out) MEDCouplingDataForGodFather*
135 {
136   $result=convertDataForGodFather($1,$owner);
137 }
138 //$$$$$$$$$$$$$$$$$$
139
140 ////////////////////
141 %typemap(out) MEDCoupling::MEDCoupling1GTUMesh*
142 {
143   $result=convertMesh($1,$owner);
144 }
145
146 %typemap(out) MEDCoupling1GTUMesh*
147 {
148   $result=convertMesh($1,$owner);
149 }
150 //$$$$$$$$$$$$$$$$$$
151
152 ////////////////////
153 %typemap(out) MEDCoupling::MEDCouplingStructuredMesh*
154 {
155   $result=convertMesh($1,$owner);
156 }
157
158 %typemap(out) MEDCouplingStructuredMesh*
159 {
160   $result=convertMesh($1,$owner);
161 }
162 //$$$$$$$$$$$$$$$$$$
163
164 ////////////////////
165 %typemap(out) MEDCoupling::MEDCouplingFieldDiscretization*
166 {
167   $result=convertFieldDiscretization($1,$owner);
168 }
169
170 %typemap(out) MEDCouplingFieldDiscretization*
171 {
172   $result=convertFieldDiscretization($1,$owner);
173 }
174 //$$$$$$$$$$$$$$$$$$
175
176 ////////////////////
177 %typemap(out) MEDCoupling::MEDCouplingField*
178 {
179   $result=convertField($1,$owner);
180 }
181
182 %typemap(out) MEDCouplingField*
183 {
184   $result=convertField($1,$owner);
185 }
186 //$$$$$$$$$$$$$$$$$$
187
188 ////////////////////
189 %typemap(out) MEDCoupling::MEDCouplingMultiFields*
190 {
191   $result=convertMultiFields($1,$owner);
192 }
193
194 %typemap(out) MEDCouplingMultiFields*
195 {
196   $result=convertMultiFields($1,$owner);
197 }
198 //$$$$$$$$$$$$$$$$$$
199
200 ////////////////////
201 %typemap(out) MEDCoupling::PartDefinition*
202 {
203   $result=convertPartDefinition($1,$owner);
204 }
205
206 %typemap(out) PartDefinition*
207 {
208   $result=convertPartDefinition($1,$owner);
209 }
210 //$$$$$$$$$$$$$$$$$$
211
212 #ifdef WITH_NUMPY
213 %init %{ import_array(); %}
214 #endif
215
216 %init %{ initializeMe(); %}
217
218 %feature("autodoc", "1");
219 %feature("docstring");
220
221 %newobject MEDCoupling::MEDCouplingFieldDiscretizationOnNodesFE::getCooInRefElement;
222 %newobject MEDCoupling::MEDCouplingField::buildMeasureField;
223 %newobject MEDCoupling::MEDCouplingField::getLocalizationOfDiscr;
224 %newobject MEDCoupling::MEDCouplingField::computeTupleIdsToSelectFromCellIds;
225 %newobject MEDCoupling::MEDCouplingFieldDouble::New;
226 %newobject MEDCoupling::MEDCouplingFieldDouble::getArray;
227 %newobject MEDCoupling::MEDCouplingFieldDouble::getEndArray;
228 %newobject MEDCoupling::MEDCouplingFieldDouble::MergeFields;
229 %newobject MEDCoupling::MEDCouplingFieldDouble::MeldFields;
230 %newobject MEDCoupling::MEDCouplingFieldDouble::convertToIntField;
231 %newobject MEDCoupling::MEDCouplingFieldDouble::convertToFloatField;
232 %newobject MEDCoupling::MEDCouplingFieldDouble::doublyContractedProduct;
233 %newobject MEDCoupling::MEDCouplingFieldDouble::determinant;
234 %newobject MEDCoupling::MEDCouplingFieldDouble::eigenValues;
235 %newobject MEDCoupling::MEDCouplingFieldDouble::eigenVectors;
236 %newobject MEDCoupling::MEDCouplingFieldDouble::inverse;
237 %newobject MEDCoupling::MEDCouplingFieldDouble::trace;
238 %newobject MEDCoupling::MEDCouplingFieldDouble::deviator;
239 %newobject MEDCoupling::MEDCouplingFieldDouble::magnitude;
240 %newobject MEDCoupling::MEDCouplingFieldDouble::maxPerTuple;
241 %newobject MEDCoupling::MEDCouplingFieldDouble::keepSelectedComponents;
242 %newobject MEDCoupling::MEDCouplingFieldDouble::extractSlice3D;
243 %newobject MEDCoupling::MEDCouplingFieldDouble::DotFields;
244 %newobject MEDCoupling::MEDCouplingFieldDouble::dot;
245 %newobject MEDCoupling::MEDCouplingFieldDouble::CrossProductFields;
246 %newobject MEDCoupling::MEDCouplingFieldDouble::crossProduct;
247 %newobject MEDCoupling::MEDCouplingFieldDouble::MaxFields;
248 %newobject MEDCoupling::MEDCouplingFieldDouble::max;
249 %newobject MEDCoupling::MEDCouplingFieldDouble::MinFields;
250 %newobject MEDCoupling::MEDCouplingFieldDouble::AddFields;
251 %newobject MEDCoupling::MEDCouplingFieldDouble::SubstractFields;
252 %newobject MEDCoupling::MEDCouplingFieldDouble::MultiplyFields;
253 %newobject MEDCoupling::MEDCouplingFieldDouble::DivideFields;
254 %newobject MEDCoupling::MEDCouplingFieldDouble::min;
255 %newobject MEDCoupling::MEDCouplingFieldDouble::negate;
256 %newobject MEDCoupling::MEDCouplingFieldDouble::findIdsInRange;
257 %newobject MEDCoupling::MEDCouplingFieldDouble::buildSubPart;
258 %newobject MEDCoupling::MEDCouplingFieldDouble::buildSubPartRange;
259 %newobject MEDCoupling::MEDCouplingFieldDouble::voronoize;
260 %newobject MEDCoupling::MEDCouplingFieldDouble::convertQuadraticCellsToLinear;
261 %newobject MEDCoupling::MEDCouplingFieldDouble::__getitem__;
262 %newobject MEDCoupling::MEDCouplingFieldDouble::__neg__;
263 %newobject MEDCoupling::MEDCouplingFieldDouble::__add__;
264 %newobject MEDCoupling::MEDCouplingFieldDouble::__sub__;
265 %newobject MEDCoupling::MEDCouplingFieldDouble::__mul__;
266 %newobject MEDCoupling::MEDCouplingFieldDouble::__div__;
267 %newobject MEDCoupling::MEDCouplingFieldDouble::__pow__;
268 %newobject MEDCoupling::MEDCouplingFieldDouble::__radd__;
269 %newobject MEDCoupling::MEDCouplingFieldDouble::__rsub__;
270 %newobject MEDCoupling::MEDCouplingFieldDouble::__rmul__;
271 %newobject MEDCoupling::MEDCouplingFieldDouble::__rdiv__;
272 %newobject MEDCoupling::MEDCouplingFieldDouble::clone;
273 %newobject MEDCoupling::MEDCouplingFieldDouble::cloneWithMesh;
274 %newobject MEDCoupling::MEDCouplingFieldDouble::deepCopy;
275 %newobject MEDCoupling::MEDCouplingFieldDouble::buildNewTimeReprFromThis;
276 %newobject MEDCoupling::MEDCouplingFieldDouble::nodeToCellDiscretization;
277 %newobject MEDCoupling::MEDCouplingFieldDouble::cellToNodeDiscretization;
278 %newobject MEDCoupling::MEDCouplingFieldDouble::getValueOnMulti;
279 %newobject MEDCoupling::MEDCouplingFieldDouble::computeVectorFieldCyl;
280 %newobject MEDCoupling::MEDCouplingFieldInt32::New;
281 %newobject MEDCoupling::MEDCouplingFieldInt32::convertToDblField;
282 %newobject MEDCoupling::MEDCouplingFieldInt32::getArray;
283 %newobject MEDCoupling::MEDCouplingFieldInt32::deepCopy;
284 %newobject MEDCoupling::MEDCouplingFieldInt32::clone;
285 %newobject MEDCoupling::MEDCouplingFieldInt32::cloneWithMesh;
286 %newobject MEDCoupling::MEDCouplingFieldInt32::buildSubPart;
287 %newobject MEDCoupling::MEDCouplingFieldInt32::buildSubPartRange;
288 %newobject MEDCoupling::MEDCouplingFieldInt32::__getitem__;
289 %newobject MEDCoupling::MEDCouplingFieldInt64::New;
290 %newobject MEDCoupling::MEDCouplingFieldInt64::convertToDblField;
291 %newobject MEDCoupling::MEDCouplingFieldInt64::getArray;
292 %newobject MEDCoupling::MEDCouplingFieldInt64::deepCopy;
293 %newobject MEDCoupling::MEDCouplingFieldInt64::clone;
294 %newobject MEDCoupling::MEDCouplingFieldInt64::cloneWithMesh;
295 %newobject MEDCoupling::MEDCouplingFieldInt64::buildSubPart;
296 %newobject MEDCoupling::MEDCouplingFieldInt64::buildSubPartRange;
297 %newobject MEDCoupling::MEDCouplingFieldInt64::__getitem__;
298 %newobject MEDCoupling::MEDCouplingFieldFloat::New;
299 %newobject MEDCoupling::MEDCouplingFieldFloat::convertToDblField;
300 %newobject MEDCoupling::MEDCouplingFieldFloat::getArray;
301 %newobject MEDCoupling::MEDCouplingFieldFloat::deepCopy;
302 %newobject MEDCoupling::MEDCouplingFieldFloat::clone;
303 %newobject MEDCoupling::MEDCouplingFieldFloat::cloneWithMesh;
304 %newobject MEDCoupling::MEDCouplingFieldFloat::buildSubPart;
305 %newobject MEDCoupling::MEDCouplingFieldFloat::buildSubPartRange;
306 %newobject MEDCoupling::MEDCouplingFieldFloat::__getitem__;
307 %newobject MEDCoupling::MEDCouplingFieldTemplate::New;
308 %newobject MEDCoupling::MEDCouplingMesh::deepCopy;
309 %newobject MEDCoupling::MEDCouplingMesh::clone;
310 %newobject MEDCoupling::MEDCouplingMesh::checkDeepEquivalOnSameNodesWith;
311 %newobject MEDCoupling::MEDCouplingMesh::checkTypeConsistencyAndContig;
312 %newobject MEDCoupling::MEDCouplingMesh::computeNbOfNodesPerCell;
313 %newobject MEDCoupling::MEDCouplingMesh::computeNbOfFacesPerCell;
314 %newobject MEDCoupling::MEDCouplingMesh::computeEffectiveNbOfNodesPerCell;
315 %newobject MEDCoupling::MEDCouplingMesh::buildPartRange;
316 %newobject MEDCoupling::MEDCouplingMesh::giveCellsWithType;
317 %newobject MEDCoupling::MEDCouplingMesh::getCoordinatesAndOwner;
318 %newobject MEDCoupling::MEDCouplingMesh::computeMeshCenterOfMass;
319 %newobject MEDCoupling::MEDCouplingMesh::computeCellCenterOfMass;
320 %newobject MEDCoupling::MEDCouplingMesh::computeIsoBarycenterOfNodesPerCell;
321 %newobject MEDCoupling::MEDCouplingMesh::buildOrthogonalField;
322 %newobject MEDCoupling::MEDCouplingMesh::getCellIdsFullyIncludedInNodeIds;
323 %newobject MEDCoupling::MEDCouplingMesh::mergeMyselfWith;
324 %newobject MEDCoupling::MEDCouplingMesh::fillFromAnalytic;
325 %newobject MEDCoupling::MEDCouplingMesh::fillFromAnalyticCompo;
326 %newobject MEDCoupling::MEDCouplingMesh::fillFromAnalyticNamedCompo;
327 %newobject MEDCoupling::MEDCouplingMesh::getMeasureField;
328 %newobject MEDCoupling::MEDCouplingMesh::simplexize;
329 %newobject MEDCoupling::MEDCouplingMesh::buildUnstructured;
330 %newobject MEDCoupling::MEDCouplingMesh::MergeMeshes;
331 %newobject MEDCoupling::MEDCouplingMesh::getDirectAccessOfCoordsArrIfInStructure;
332 %newobject MEDCoupling::MEDCouplingPointSet::zipCoordsTraducer;
333 %newobject MEDCoupling::MEDCouplingPointSet::getCellsInBoundingBox;
334 %newobject MEDCoupling::MEDCouplingPointSet::findBoundaryNodes;
335 %newobject MEDCoupling::MEDCouplingPointSet::buildBoundaryMesh;
336 %newobject MEDCoupling::MEDCouplingPointSet::MergeNodesArray;
337 %newobject MEDCoupling::MEDCouplingPointSet::buildPartOfMySelfSlice;
338 %newobject MEDCoupling::MEDCouplingPointSet::BuildInstanceFromMeshType;
339 %newobject MEDCoupling::MEDCouplingPointSet::zipConnectivityTraducer;
340 %newobject MEDCoupling::MEDCouplingPointSet::mergeMyselfWithOnSameCoords;
341 %newobject MEDCoupling::MEDCouplingPointSet::fillCellIdsToKeepFromNodeIds;
342 %newobject MEDCoupling::MEDCouplingPointSet::getCellIdsLyingOnNodes;
343 %newobject MEDCoupling::MEDCouplingPointSet::deepCopyConnectivityOnly;
344 %newobject MEDCoupling::MEDCouplingPointSet::getBoundingBoxForBBTree;
345 %newobject MEDCoupling::MEDCouplingPointSet::computeFetchedNodeIds;
346 %newobject MEDCoupling::MEDCouplingPointSet::ComputeNbOfInteractionsWithSrcCells;
347 %newobject MEDCoupling::MEDCouplingPointSet::computeDiameterField;
348 %newobject MEDCoupling::MEDCouplingPointSet::__getitem__;
349 %newobject MEDCoupling::MEDCouplingUMesh::New;
350 %newobject MEDCoupling::MEDCouplingUMesh::getNodalConnectivity;
351 %newobject MEDCoupling::MEDCouplingUMesh::getNodalConnectivityIndex;
352 %newobject MEDCoupling::MEDCouplingUMesh::__iter__;
353 %newobject MEDCoupling::MEDCouplingUMesh::cellsByType;
354 %newobject MEDCoupling::MEDCouplingUMesh::buildDescendingConnectivity;
355 %newobject MEDCoupling::MEDCouplingUMesh::buildDescendingConnectivity2;
356 %newobject MEDCoupling::MEDCouplingUMesh::explode3DMeshTo1D;
357 %newobject MEDCoupling::MEDCouplingUMesh::explodeMeshIntoMicroEdges;
358 %newobject MEDCoupling::MEDCouplingUMesh::buildExtrudedMesh;
359 %newobject MEDCoupling::MEDCouplingUMesh::buildSpreadZonesWithPoly;
360 %newobject MEDCoupling::MEDCouplingUMesh::MergeUMeshes;
361 %newobject MEDCoupling::MEDCouplingUMesh::MergeUMeshesOnSameCoords;
362 %newobject MEDCoupling::MEDCouplingUMesh::ComputeSpreadZoneGradually;
363 %newobject MEDCoupling::MEDCouplingUMesh::ComputeSpreadZoneGraduallyFromSeed;
364 %newobject MEDCoupling::MEDCouplingUMesh::buildNewNumberingFromCommNodesFrmt;
365 %newobject MEDCoupling::MEDCouplingUMesh::conformize2D;
366 %newobject MEDCoupling::MEDCouplingUMesh::conformize3D;
367 %newobject MEDCoupling::MEDCouplingUMesh::colinearize2D;
368 %newobject MEDCoupling::MEDCouplingUMesh::colinearizeKeepingConform2D;
369 %newobject MEDCoupling::MEDCouplingUMesh::rearrange2ConsecutiveCellTypes;
370 %newobject MEDCoupling::MEDCouplingUMesh::sortCellsInMEDFileFrmt;
371 %newobject MEDCoupling::MEDCouplingUMesh::getRenumArrForMEDFileFrmt;
372 %newobject MEDCoupling::MEDCouplingUMesh::convertCellArrayPerGeoType;
373 %newobject MEDCoupling::MEDCouplingUMesh::getRenumArrForConsecutiveCellTypesSpec;
374 %newobject MEDCoupling::MEDCouplingUMesh::findNodesToDuplicate;
375 %newobject MEDCoupling::MEDCouplingUMesh::buildDirectionVectorField;
376 %newobject MEDCoupling::MEDCouplingUMesh::convertLinearCellsToQuadratic;
377 %newobject MEDCoupling::MEDCouplingUMesh::getEdgeRatioField;
378 %newobject MEDCoupling::MEDCouplingUMesh::getAspectRatioField;
379 %newobject MEDCoupling::MEDCouplingUMesh::getWarpField;
380 %newobject MEDCoupling::MEDCouplingUMesh::getSkewField;
381 %newobject MEDCoupling::MEDCouplingUMesh::getPartBarycenterAndOwner;
382 %newobject MEDCoupling::MEDCouplingUMesh::computePlaneEquationOf3DFaces;
383 %newobject MEDCoupling::MEDCouplingUMesh::getPartMeasureField;
384 %newobject MEDCoupling::MEDCouplingUMesh::buildPartOrthogonalField;
385 %newobject MEDCoupling::MEDCouplingUMesh::keepCellIdsByType;
386 %newobject MEDCoupling::MEDCouplingUMesh::Build0DMeshFromCoords;
387 %newobject MEDCoupling::MEDCouplingUMesh::Build1DMeshFromCoords;
388 %newobject MEDCoupling::MEDCouplingUMesh::findAndCorrectBadOriented3DExtrudedCells;
389 %newobject MEDCoupling::MEDCouplingUMesh::findAndCorrectBadOriented3DCells;
390 %newobject MEDCoupling::MEDCouplingUMesh::convertIntoSingleGeoTypeMesh;
391 %newobject MEDCoupling::MEDCouplingUMesh::convertNodalConnectivityToStaticGeoTypeMesh;
392 %newobject MEDCoupling::MEDCouplingUMesh::findCellIdsOnBoundary;
393 %newobject MEDCoupling::MEDCouplingUMesh::computeSkin;
394 %newobject MEDCoupling::MEDCouplingUMesh::buildSetInstanceFromThis;
395 %newobject MEDCoupling::MEDCouplingUMesh::getCellIdsCrossingPlane;
396 %newobject MEDCoupling::MEDCouplingUMesh::convexEnvelop2D;
397 %newobject MEDCoupling::MEDCouplingUMesh::ComputeRangesFromTypeDistribution;
398 %newobject MEDCoupling::MEDCouplingUMesh::buildUnionOf2DMesh;
399 %newobject MEDCoupling::MEDCouplingUMesh::buildUnionOf3DMesh;
400 %newobject MEDCoupling::MEDCouplingUMesh::generateGraph;
401 %newobject MEDCoupling::MEDCouplingUMesh::orderConsecutiveCells1D;
402 %newobject MEDCoupling::MEDCouplingUMesh::clipSingle3DCellByPlane;
403 %newobject MEDCoupling::MEDCouplingUMesh::getBoundingBoxForBBTreeFast;
404 %newobject MEDCoupling::MEDCouplingUMesh::getBoundingBoxForBBTree2DQuadratic;
405 %newobject MEDCoupling::MEDCouplingUMesh::getBoundingBoxForBBTree1DQuadratic;
406 %newobject MEDCoupling::MEDCouplingUMesh::convertDegeneratedCellsAndRemoveFlatOnes;
407 %newobject MEDCoupling::MEDCouplingUMeshCellByTypeEntry::__iter__;
408 %newobject MEDCoupling::MEDCouplingUMeshCellEntry::__iter__;
409 %newobject MEDCoupling::MEDCoupling1GTUMesh::New;
410 %newobject MEDCoupling::MEDCoupling1GTUMesh::getNodalConnectivity;
411 %newobject MEDCoupling::MEDCoupling1GTUMesh::AggregateOnSameCoordsToUMesh;
412 %newobject MEDCoupling::MEDCoupling1SGTUMesh::New;
413 %newobject MEDCoupling::MEDCoupling1SGTUMesh::buildSetInstanceFromThis;
414 %newobject MEDCoupling::MEDCoupling1SGTUMesh::computeDualMesh;
415 %newobject MEDCoupling::MEDCoupling1SGTUMesh::explodeEachHexa8To6Quad4;
416 %newobject MEDCoupling::MEDCoupling1SGTUMesh::computeTriangleHeight;
417 %newobject MEDCoupling::MEDCoupling1SGTUMesh::sortHexa8EachOther;
418 %newobject MEDCoupling::MEDCoupling1SGTUMesh::Merge1SGTUMeshes;
419 %newobject MEDCoupling::MEDCoupling1SGTUMesh::Merge1SGTUMeshesOnSameCoords;
420 %newobject MEDCoupling::MEDCoupling1DGTUMesh::New;
421 %newobject MEDCoupling::MEDCoupling1DGTUMesh::getNodalConnectivityIndex;
422 %newobject MEDCoupling::MEDCoupling1DGTUMesh::buildSetInstanceFromThis;
423 %newobject MEDCoupling::MEDCoupling1DGTUMesh::Merge1DGTUMeshes;
424 %newobject MEDCoupling::MEDCoupling1DGTUMesh::Merge1DGTUMeshesOnSameCoords;
425 %newobject MEDCoupling::MEDCouplingMappedExtrudedMesh::New;
426 %newobject MEDCoupling::MEDCouplingMappedExtrudedMesh::build3DUnstructuredMesh;
427 %newobject MEDCoupling::MEDCouplingStructuredMesh::buildStructuredSubPart;
428 %newobject MEDCoupling::MEDCouplingStructuredMesh::build1SGTUnstructured;
429 %newobject MEDCoupling::MEDCouplingStructuredMesh::build1SGTSubLevelMesh;
430 %newobject MEDCoupling::MEDCouplingStructuredMesh::BuildExplicitIdsFrom;
431 %newobject MEDCoupling::MEDCouplingStructuredMesh::ExtractFieldOfDoubleFrom;
432 %newobject MEDCoupling::MEDCouplingStructuredMesh::Build1GTNodalConnectivity;
433 %newobject MEDCoupling::MEDCouplingStructuredMesh::Build1GTNodalConnectivityOfSubLevelMesh;
434 %newobject MEDCoupling::MEDCouplingStructuredMesh::ComputeCornersGhost;
435 %newobject MEDCoupling::MEDCouplingCMesh::New;
436 %newobject MEDCoupling::MEDCouplingCMesh::getCoordsAt;
437 %newobject MEDCoupling::MEDCouplingCMesh::buildCurveLinear;
438 %newobject MEDCoupling::MEDCouplingIMesh::New;
439 %newobject MEDCoupling::MEDCouplingIMesh::asSingleCell;
440 %newobject MEDCoupling::MEDCouplingIMesh::buildWithGhost;
441 %newobject MEDCoupling::MEDCouplingIMesh::convertToCartesian;
442 %newobject MEDCoupling::MEDCouplingCurveLinearMesh::New;
443 %newobject MEDCoupling::MEDCouplingCurveLinearMesh::getCoords;
444 %newobject MEDCoupling::MEDCouplingMultiFields::New;
445 %newobject MEDCoupling::MEDCouplingMultiFields::deepCopy;
446 %newobject MEDCoupling::MEDCouplingFieldOverTime::New;
447 %newobject MEDCoupling::MEDCouplingCartesianAMRPatchGen::getMesh;
448 %newobject MEDCoupling::MEDCouplingCartesianAMRPatchGen::__getitem__;
449 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::deepCopy;
450 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::buildUnstructured;
451 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::extractGhostFrom;
452 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::buildMeshFromPatchEnvelop;
453 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::buildMeshOfDirectChildrenOnly;
454 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::getImageMesh;
455 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::getGodFather;
456 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::getFather;
457 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::getPatch;
458 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::createCellFieldOnPatch;
459 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::findPatchesInTheNeighborhoodOf;
460 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::getPatchAtPosition;
461 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::getMeshAtPosition;
462 %newobject MEDCoupling::MEDCouplingCartesianAMRMeshGen::__getitem__;
463 %newobject MEDCoupling::MEDCouplingCartesianAMRMesh::New;
464 %newobject MEDCoupling::MEDCouplingDataForGodFather::getMyGodFather;
465 %newobject MEDCoupling::MEDCouplingAMRAttribute::New;
466 %newobject MEDCoupling::MEDCouplingAMRAttribute::deepCopy;
467 %newobject MEDCoupling::MEDCouplingAMRAttribute::deepCpyWithoutGodFather;
468 %newobject MEDCoupling::MEDCouplingAMRAttribute::getFieldOn;
469 %newobject MEDCoupling::MEDCouplingAMRAttribute::projectTo;
470 %newobject MEDCoupling::MEDCouplingAMRAttribute::buildCellFieldOnRecurseWithoutOverlapWithoutGhost;
471 %newobject MEDCoupling::MEDCouplingAMRAttribute::buildCellFieldOnWithGhost;
472 %newobject MEDCoupling::MEDCouplingAMRAttribute::buildCellFieldOnWithoutGhost;
473 %newobject MEDCoupling::DenseMatrix::New;
474 %newobject MEDCoupling::DenseMatrix::deepCopy;
475 %newobject MEDCoupling::DenseMatrix::shallowCpy;
476 %newobject MEDCoupling::DenseMatrix::getData;
477 %newobject MEDCoupling::DenseMatrix::matVecMult;
478 %newobject MEDCoupling::DenseMatrix::MatVecMult;
479 %newobject MEDCoupling::DenseMatrix::__add__;
480 %newobject MEDCoupling::DenseMatrix::__sub__;
481 %newobject MEDCoupling::DenseMatrix::__mul__;
482 %newobject MEDCoupling::MEDCouplingGaussLocalization::localizePtsInRefCooForEachCell;
483 %newobject MEDCoupling::MEDCouplingGaussLocalization::buildRefCell;
484 %newobject MEDCoupling::MEDCouplingGaussLocalization::getShapeFunctionValues;
485 %newobject MEDCoupling::MEDCouplingGaussLocalization::getDerivativeOfShapeFunctionValues;
486 %newobject MEDCoupling::MEDCouplingGaussLocalization::GetDefaultReferenceCoordinatesOf;
487 %newobject MEDCoupling::MEDCouplingSkyLineArray::BuildFromPolyhedronConn;
488 %newobject MEDCoupling::MEDCouplingSkyLineArray::getSuperIndexArray;
489 %newobject MEDCoupling::MEDCouplingSkyLineArray::getIndexArray;
490 %newobject MEDCoupling::MEDCouplingSkyLineArray::getValuesArray;
491 %newobject MEDCoupling::MEDCouplingSkyLineArray::groupPacks;
492 %newobject MEDCoupling::MEDCouplingSkyLineArray::uniqueNotSortedByPack;
493 %newobject MEDCoupling::MEDCouplingSkyLineArray::AggregatePacks;
494 %newobject MEDCoupling::MEDCouplingSkyLineArray::deepCopy;
495
496 %feature("unref") MEDCouplingPointSet "$this->decrRef();"
497 %feature("unref") MEDCouplingMesh "$this->decrRef();"
498 %feature("unref") MEDCouplingUMesh "$this->decrRef();"
499 %feature("unref") MEDCoupling1GTUMesh "$this->decrRef();"
500 %feature("unref") MEDCoupling1SGTUMesh "$this->decrRef();"
501 %feature("unref") MEDCoupling1DGTUMesh "$this->decrRef();"
502 %feature("unref") MEDCouplingMappedExtrudedMesh "$this->decrRef();"
503 %feature("unref") MEDCouplingCMesh "$this->decrRef();"
504 %feature("unref") MEDCouplingIMesh "$this->decrRef();"
505 %feature("unref") MEDCouplingCurveLinearMesh "$this->decrRef();"
506 %feature("unref") MEDCouplingField "$this->decrRef();"
507 %feature("unref") MEDCouplingFieldDiscretizationP0 "$this->decrRef();"
508 %feature("unref") MEDCouplingFieldDiscretizationP1 "$this->decrRef();"
509 %feature("unref") MEDCouplingFieldDiscretizationGauss "$this->decrRef();"
510 %feature("unref") MEDCouplingFieldDiscretizationGaussNE "$this->decrRef();"
511 %feature("unref") MEDCouplingFieldDiscretizationKriging "$this->decrRef();"
512 %feature("unref") MEDCouplingFieldDiscretizationOnNodesFE "$this->decrRef();"
513 %feature("unref") MEDCouplingFieldDouble "$this->decrRef();"
514 %feature("unref") MEDCouplingFieldFloat "$this->decrRef();"
515 %feature("unref") MEDCouplingFieldInt32 "$this->decrRef();"
516 %feature("unref") MEDCouplingFieldInt64 "$this->decrRef();"
517 %feature("unref") MEDCouplingMultiFields "$this->decrRef();"
518 %feature("unref") MEDCouplingFieldTemplate "$this->decrRef();"
519 %feature("unref") MEDCouplingMultiFields "$this->decrRef();"
520 %feature("unref") MEDCouplingCartesianAMRMeshGen "$this->decrRef();"
521 %feature("unref") MEDCouplingCartesianAMRMesh "$this->decrRef();"
522 %feature("unref") MEDCouplingCartesianAMRMeshSub "$this->decrRef();"
523 %feature("unref") MEDCouplingCartesianAMRPatchGen "$this->decrRef();"
524 %feature("unref") MEDCouplingCartesianAMRPatchGF "$this->decrRef();"
525 %feature("unref") MEDCouplingCartesianAMRPatch "$this->decrRef();"
526 %feature("unref") MEDCouplingDataForGodFather "$this->decrRef();"
527 %feature("unref") MEDCouplingAMRAttribute "$this->decrRef();"
528 %feature("unref") DenseMatrix "$this->decrRef();"
529 %feature("unref") MEDCouplingSkyLineArray "$this->decrRef();"
530
531 %rename(assign) *::operator=;
532 %ignore MEDCoupling::MEDCouplingGaussLocalization::pushTinySerializationIntInfo;
533 %ignore MEDCoupling::MEDCouplingGaussLocalization::pushTinySerializationDblInfo;
534 %ignore MEDCoupling::MEDCouplingGaussLocalization::fillWithValues;
535 %ignore MEDCoupling::MEDCouplingGaussLocalization::buildNewInstanceFromTinyInfo;
536
537 %nodefaultctor;
538
539 // ABN: Instruct SWIG that INTERP_KERNEL::Exception is an exception class and that it should inherit Exception
540 // on the Python side. Must be put BEFORE the %rename clause:
541 %exceptionclass INTERP_KERNEL::Exception;
542 %rename (InterpKernelException) INTERP_KERNEL::Exception;
543
544 %include "MEDCouplingRefCountObject.i"
545 %include "MEDCouplingMemArray.i"
546
547 %{
548   void initializeMe()
549   {// AGY : here initialization of C++ traits in MEDCouplingDataArrayTypemaps.i for code factorization. Awful, I know, but no other solutions.
550     SWIGTITraits<double>::TI=SWIGTYPE_p_MEDCoupling__DataArrayDouble;
551     SWIGTITraits<float>::TI=SWIGTYPE_p_MEDCoupling__DataArrayFloat;
552     SWIGTITraits<Int32>::TI=SWIGTYPE_p_MEDCoupling__DataArrayInt32;
553     SWIGTITraits<Int64>::TI=SWIGTYPE_p_MEDCoupling__DataArrayInt64;
554     SWIGTITraits<double>::TI_TUPLE=SWIGTYPE_p_MEDCoupling__DataArrayDoubleTuple;
555     SWIGTITraits<float>::TI_TUPLE=SWIGTYPE_p_MEDCoupling__DataArrayFloatTuple;
556     SWIGTITraits<Int32>::TI_TUPLE=SWIGTYPE_p_MEDCoupling__DataArrayInt32Tuple;
557     SWIGTITraits<Int64>::TI_TUPLE=SWIGTYPE_p_MEDCoupling__DataArrayInt64Tuple;
558   }
559 %}
560
561 %inline
562 {
563   PyObject *med2vtk_cell_types()
564   {
565     Py_ssize_t sz(sizeof(MEDCOUPLING2VTKTYPETRADUCER)/sizeof(decltype(MEDCOUPLING2VTKTYPETRADUCER[0])));
566     PyObject *ret(PyList_New(sz));
567     for(Py_ssize_t i=0;i<sz;i++)
568       {
569         mcIdType elt = MEDCOUPLING2VTKTYPETRADUCER[i]!=MEDCOUPLING2VTKTYPETRADUCER_NONE ? MEDCOUPLING2VTKTYPETRADUCER[i] : -1;
570         PyList_SetItem(ret,i,PyInt_FromLong(elt));
571       }
572     return ret;
573   }
574
575   PyObject *vtk2med_cell_types()
576   {
577     Py_ssize_t sz(sizeof(MEDCOUPLING2VTKTYPETRADUCER)/sizeof(decltype(MEDCOUPLING2VTKTYPETRADUCER[0])));
578     auto maxElt(*std::max_element(MEDCOUPLING2VTKTYPETRADUCER,MEDCOUPLING2VTKTYPETRADUCER+sz,[](unsigned char a, unsigned char b) { if(b==MEDCOUPLING2VTKTYPETRADUCER_NONE) return false; else return a<b; } ));
579     auto szOut(maxElt+1);
580     std::vector< mcIdType > retCpp(szOut,-1);
581     mcIdType id(0);
582     for(const unsigned char *it=MEDCOUPLING2VTKTYPETRADUCER;it!=MEDCOUPLING2VTKTYPETRADUCER+sz;it++,id++)
583       {
584         if(*it!=MEDCOUPLING2VTKTYPETRADUCER_NONE)
585           retCpp[*it]=id;
586       }
587     //
588     PyObject *ret(PyList_New(szOut));
589     id = 0;
590     for(auto it=retCpp.begin();it!=retCpp.end();it++,id++)
591       PyList_SetItem(ret,id,PyInt_FromLong(*it));
592     return ret;
593   }
594
595   PyObject *AllGeometricTypes()
596   {
597     Py_ssize_t sz(MEDCouplingUMesh::N_MEDMEM_ORDER);
598     PyObject *ret(PyList_New(sz));
599     for(Py_ssize_t i=0;i<sz;i++)
600       PyList_SetItem(ret,i,PyInt_FromLong(MEDCouplingUMesh::MEDMEM_ORDER[i]));
601     return ret;
602   }
603 }
604
605 namespace INTERP_KERNEL
606
607   /*!
608    * \class BoxSplittingOptions
609    * Class defining the options for box splitting used for AMR algorithm like creation of patches following a criterion.
610    */
611   class BoxSplittingOptions
612   {
613   public:
614     BoxSplittingOptions();
615     void init();
616     double getEfficiencyGoal() const;
617     void setEfficiencyGoal(double efficiency);
618     double getEfficiencyThreshold() const;
619     void setEfficiencyThreshold(double efficiencyThreshold);
620     int getMinimumPatchLength() const;
621     void setMinimumPatchLength(int minPatchLength);
622     int getMaximumPatchLength() const;
623     void setMaximumPatchLength(int maxPatchLength);
624     int getMaximumNbOfCellsInPatch() const;
625     void setMaximumNbOfCellsInPatch(int maxNbCellsInPatch);
626     void copyOptions(const BoxSplittingOptions & other);
627     std::string printOptions() const;
628     %extend
629     {
630       std::string __str__() const
631       {
632         return self->printOptions();
633       }
634     }
635   };
636 }
637
638 namespace MEDCoupling
639 {
640   typedef enum
641     {
642       ON_CELLS = 0,
643       ON_NODES = 1,
644       ON_GAUSS_PT = 2,
645       ON_GAUSS_NE = 3,
646       ON_NODES_KR = 4,
647       ON_NODES_FE = 5
648     } TypeOfField;
649
650   typedef enum
651     {
652       NO_TIME = 4,
653       ONE_TIME = 5,
654       LINEAR_TIME = 6,
655       CONST_ON_TIME_INTERVAL = 7
656     } TypeOfTimeDiscretization;
657
658   typedef enum
659     {
660       UNSTRUCTURED = 5,
661       CARTESIAN = 7,
662       EXTRUDED = 8,
663       CURVE_LINEAR = 9,
664       SINGLE_STATIC_GEO_TYPE_UNSTRUCTURED = 10,
665       SINGLE_DYNAMIC_GEO_TYPE_UNSTRUCTURED = 11,
666       IMAGE_GRID = 12
667     } MEDCouplingMeshType;
668
669   class DataArrayInt32;
670   class DataArrayInt64;
671   class DataArrayDouble;
672   class MEDCouplingUMesh;
673   class MEDCouplingCMesh;
674   class MEDCouplingFieldDouble;
675
676   %extend RefCountObject
677   {
678     std::string getHiddenCppPointer() const
679     {
680       std::ostringstream oss; oss << "C++ Pointer address is : " << self;
681       return oss.str();
682     }
683   }
684
685   %extend MEDCouplingGaussLocalization
686   {
687     std::string __str__() const
688     {
689       return self->getStringRepr();
690     }
691
692     std::string __repr__() const
693     {
694       std::ostringstream oss; oss << "MEDCouplingGaussLocalization C++ instance at " << self << "." << std::endl;
695       oss << self->getStringRepr();
696       return oss.str();
697     }
698   }
699
700   //== MEDCouplingMesh
701   
702   class MEDCouplingMesh : public RefCountObject, public TimeLabel
703   {
704   public:
705     void setName(const std::string& name);
706     std::string getName() const;
707     void setDescription(const std::string& descr);
708     std::string getDescription() const;
709     void setTime(double val, int iteration, int order);
710     void setTimeUnit(const std::string& unit);
711     std::string getTimeUnit() const;
712     virtual MEDCouplingMeshType getType() const;
713     bool isStructured() const;
714     virtual MEDCouplingMesh *deepCopy() const;
715     virtual MEDCouplingMesh *clone(bool recDeepCpy) const;
716     virtual bool isEqual(const MEDCouplingMesh *other, double prec) const;
717     virtual bool isEqualWithoutConsideringStr(const MEDCouplingMesh *other, double prec) const;
718     virtual void checkFastEquivalWith(const MEDCouplingMesh *other, double prec) const;
719     virtual void copyTinyStringsFrom(const MEDCouplingMesh *other);
720     virtual void copyTinyInfoFrom(const MEDCouplingMesh *other);
721     virtual void checkConsistencyLight() const;
722     virtual void checkConsistency(double eps=1e-12) const;
723     virtual int getNumberOfCells() const;
724     virtual int getNumberOfNodes() const;
725     virtual int getSpaceDimension() const;
726     virtual int getMeshDimension() const;
727     virtual DataArrayDouble *getCoordinatesAndOwner() const;
728     virtual DataArrayDouble *computeCellCenterOfMass() const;
729     virtual DataArrayDouble *computeIsoBarycenterOfNodesPerCell() const;
730     virtual DataArrayIdType *giveCellsWithType(INTERP_KERNEL::NormalizedCellType type) const;
731     virtual DataArrayIdType *computeNbOfNodesPerCell() const;
732     virtual DataArrayIdType *computeNbOfFacesPerCell() const;
733     virtual DataArrayIdType *computeEffectiveNbOfNodesPerCell() const;
734     virtual MEDCouplingMesh *buildPartRange(int beginCellIds, int endCellIds, int stepCellIds) const;
735     virtual int getNumberOfCellsWithType(INTERP_KERNEL::NormalizedCellType type) const;
736     virtual INTERP_KERNEL::NormalizedCellType getTypeOfCell(int cellId) const;
737     virtual std::string simpleRepr() const;
738     virtual std::string advancedRepr() const;
739     std::string writeVTK(const std::string& fileName, bool isBinary=true) const;
740     virtual std::string getVTKFileExtension() const;
741     std::string getVTKFileNameOf(const std::string& fileName) const;
742     // tools
743     virtual MEDCouplingFieldDouble *getMeasureField(bool isAbs) const;
744     virtual MEDCouplingFieldDouble *getMeasureFieldOnNode(bool isAbs) const;
745     virtual MEDCouplingFieldDouble *fillFromAnalytic(TypeOfField t, int nbOfComp, const std::string& func) const;
746     virtual MEDCouplingFieldDouble *fillFromAnalyticCompo(TypeOfField t, int nbOfComp, const std::string& func) const;
747     virtual MEDCouplingFieldDouble *fillFromAnalyticNamedCompo(TypeOfField t, int nbOfComp, const std::vector<std::string>& varsOrder, const std::string& func) const;
748     virtual MEDCouplingFieldDouble *buildOrthogonalField() const;
749     virtual MEDCouplingUMesh *buildUnstructured() const;
750     virtual MEDCouplingMesh *mergeMyselfWith(const MEDCouplingMesh *other) const;
751     virtual bool areCompatibleForMerge(const MEDCouplingMesh *other) const;
752     virtual DataArrayIdType *simplexize(int policy);
753     virtual void unserialization(const std::vector<double>& tinyInfoD, const std::vector<mcIdType>& tinyInfo, const DataArrayIdType *a1, DataArrayDouble *a2, const std::vector<std::string>& littleStrings);
754     static MEDCouplingMesh *MergeMeshes(const MEDCouplingMesh *mesh1, const MEDCouplingMesh *mesh2);
755     static bool IsStaticGeometricType(INTERP_KERNEL::NormalizedCellType type);
756     static bool IsLinearGeometricType(INTERP_KERNEL::NormalizedCellType type);
757     static INTERP_KERNEL::NormalizedCellType GetCorrespondingPolyType(INTERP_KERNEL::NormalizedCellType type);
758     static int GetNumberOfNodesOfGeometricType(INTERP_KERNEL::NormalizedCellType type);
759     static int GetDimensionOfGeometricType(INTERP_KERNEL::NormalizedCellType type);
760     static const char *GetReprOfGeometricType(INTERP_KERNEL::NormalizedCellType type);
761     %extend
762        {
763          std::string __str__() const
764          {
765            return self->simpleRepr();
766          }
767          
768           DataArrayDouble *computeMeshCenterOfMass() const
769           {
770             MCAuto<DataArrayDouble> ret(self->computeMeshCenterOfMass());
771             return ret.retn();
772           }
773
774          PyObject *getTime()
775          {
776            int tmp1,tmp2;
777            double tmp0=self->getTime(tmp1,tmp2);
778            PyObject *res = PyList_New(3);
779            PyList_SetItem(res,0,SWIG_From_double(tmp0));
780            PyList_SetItem(res,1,SWIG_From_int(tmp1));
781            PyList_SetItem(res,2,SWIG_From_int(tmp2));
782            return res;
783          }
784
785          DataArrayDouble *getDirectAccessOfCoordsArrIfInStructure() const
786          {
787            const DataArrayDouble *ret(self->getDirectAccessOfCoordsArrIfInStructure());
788            DataArrayDouble *ret2(const_cast<DataArrayDouble *>(ret));
789            if(ret2)
790              ret2->incrRef();
791            return ret2;
792          }
793          
794          mcIdType getCellContainingPoint(PyObject *p, double eps) const
795          {
796            double val;
797            DataArrayDouble *a;
798            DataArrayDoubleTuple *aa;
799            std::vector<double> bb;
800            mcIdType sw;
801            int spaceDim=self->getSpaceDimension();
802            const char msg[]="Python wrap of MEDCouplingMesh::getCellContainingPoint : ";
803            const double *pos=convertObjToPossibleCpp5_Safe(p,sw,val,a,aa,bb,msg,1,spaceDim,true);
804            return self->getCellContainingPoint(pos,eps);
805          }
806
807          PyObject *getCellsContainingPoints(PyObject *p, int nbOfPoints, double eps) const
808          {
809            double val;
810            DataArrayDouble *a;
811            DataArrayDoubleTuple *aa;
812            std::vector<double> bb;
813            mcIdType sw;
814            int spaceDim=self->getSpaceDimension();
815            const char msg[]="Python wrap of MEDCouplingMesh::getCellsContainingPoint : ";
816            const double *pos=convertObjToPossibleCpp5_Safe(p,sw,val,a,aa,bb,msg,nbOfPoints,spaceDim,true);
817            MCAuto<DataArrayIdType> elts,eltsIndex;
818            self->getCellsContainingPoints(pos,nbOfPoints,eps,elts,eltsIndex);
819            PyObject *ret=PyTuple_New(2);
820            PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(elts.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
821            PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(eltsIndex.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
822            return ret;
823          }
824
825          PyObject *getCellsContainingPointsLinearPartOnlyOnNonDynType(PyObject *p, int nbOfPoints, double eps) const
826          {
827            double val;
828            DataArrayDouble *a;
829            DataArrayDoubleTuple *aa;
830            std::vector<double> bb;
831            mcIdType sw;
832            int spaceDim=self->getSpaceDimension();
833            const char msg[]="Python wrap of MEDCouplingMesh::getCellsContainingPointsLinearPartOnlyOnNonDynType : ";
834            const double *pos=convertObjToPossibleCpp5_Safe(p,sw,val,a,aa,bb,msg,nbOfPoints,spaceDim,true);
835            MCAuto<DataArrayIdType> elts,eltsIndex;
836            self->getCellsContainingPointsLinearPartOnlyOnNonDynType(pos,nbOfPoints,eps,elts,eltsIndex);
837            PyObject *ret=PyTuple_New(2);
838            PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(elts.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
839            PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(eltsIndex.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
840            return ret;
841          }
842
843          PyObject *getCellsContainingPoints(PyObject *p, double eps) const
844          {
845            auto getCellsContainingPointsFunc=[self](const double *a, int b,double c, MCAuto<DataArrayIdType>& d, MCAuto<DataArrayIdType>& e) { self->getCellsContainingPoints(a,b,c,d,e); };
846            return Mesh_getCellsContainingPointsLike(p,eps,self,getCellsContainingPointsFunc);
847          }
848
849          PyObject *getCellsContainingPointsLinearPartOnlyOnNonDynType(PyObject *p, double eps) const
850          {
851            auto getCellsContainingPointsFunc=[self](const double *a, int b,double c, MCAuto<DataArrayIdType>& d, MCAuto<DataArrayIdType>& e) { self->getCellsContainingPointsLinearPartOnlyOnNonDynType(a,b,c,d,e); };
852            return Mesh_getCellsContainingPointsLike(p,eps,self,getCellsContainingPointsFunc);
853          }
854          
855          PyObject *getCellsContainingPoint(PyObject *p, double eps) const
856          {
857            double val;
858            DataArrayDouble *a;
859            DataArrayDoubleTuple *aa;
860            std::vector<double> bb;
861            mcIdType sw;
862            int spaceDim=self->getSpaceDimension();
863            const char msg[]="Python wrap of MEDCouplingUMesh::getCellsContainingPoint : ";
864            const double *pos=convertObjToPossibleCpp5_Safe(p,sw,val,a,aa,bb,msg,1,spaceDim,true);
865            std::vector<mcIdType> elts;
866            self->getCellsContainingPoint(pos,eps,elts);
867            DataArrayIdType *ret=DataArrayIdType::New();
868            ret->alloc((int)elts.size(),1);
869            std::copy(elts.begin(),elts.end(),ret->getPointer());
870            return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 );
871          }
872          
873          virtual PyObject *getReverseNodalConnectivity() const
874          {
875            MCAuto<DataArrayIdType> d0=DataArrayIdType::New();
876            MCAuto<DataArrayIdType> d1=DataArrayIdType::New();
877            self->getReverseNodalConnectivity(d0,d1);
878            PyObject *ret=PyTuple_New(2);
879            PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
880            PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
881            return ret;
882          }
883          
884          void renumberCells(PyObject *li, bool check=true)
885          {
886            mcIdType sw,sz(-1);
887            mcIdType v0; std::vector<mcIdType> v1;
888            const mcIdType *ids(convertIntStarLikePyObjToCppIntStar(li,sw,sz,v0,v1));
889            self->renumberCells(ids,check);
890          }
891
892          PyObject *checkGeoEquivalWith(const MEDCouplingMesh *other, int levOfCheck, double prec) const
893          {
894            DataArrayIdType *cellCor, *nodeCor;
895            self->checkGeoEquivalWith(other,levOfCheck,prec,cellCor,nodeCor);
896            PyObject *res = PyList_New(2);
897            PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(cellCor),SWIGTITraits<mcIdType>::TI, cellCor?SWIG_POINTER_OWN | 0:0 ));
898            PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(nodeCor),SWIGTITraits<mcIdType>::TI, nodeCor?SWIG_POINTER_OWN | 0:0 ));
899            return res;
900          }
901
902          PyObject *checkDeepEquivalWith(const MEDCouplingMesh *other, int cellCompPol, double prec) const
903          {
904            DataArrayIdType *cellCor=0,*nodeCor=0;
905            self->checkDeepEquivalWith(other,cellCompPol,prec,cellCor,nodeCor);
906            PyObject *res = PyList_New(2);
907            PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(cellCor),SWIGTITraits<mcIdType>::TI, cellCor?SWIG_POINTER_OWN | 0:0 ));
908            PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(nodeCor),SWIGTITraits<mcIdType>::TI, nodeCor?SWIG_POINTER_OWN | 0:0 ));
909            return res;
910          }
911          
912          DataArrayIdType *checkDeepEquivalOnSameNodesWith(const MEDCouplingMesh *other, int cellCompPol, double prec) const
913          {
914            DataArrayIdType *cellCor=0;
915            self->checkDeepEquivalOnSameNodesWith(other,cellCompPol,prec,cellCor);
916            return cellCor;
917          }
918
919          DataArrayIdType *getCellIdsFullyIncludedInNodeIds(PyObject *li) const
920          {
921            void *da=0;
922            int res1=SWIG_ConvertPtr(li,&da,SWIGTITraits<mcIdType>::TI, 0 |  0 );
923            if (!SWIG_IsOK(res1))
924              {
925                mcIdType size;
926                INTERP_KERNEL::AutoPtr<mcIdType> tmp=convertPyToNewIntArr2(li,&size);
927                return self->getCellIdsFullyIncludedInNodeIds(tmp,((const mcIdType *)tmp)+size);
928              }
929            else
930              {
931                DataArrayIdType *da2=reinterpret_cast< DataArrayIdType * >(da);
932                if(!da2)
933                  throw INTERP_KERNEL::Exception("Not null DataArrayIdType instance expected !");
934                da2->checkAllocated();
935                return self->getCellIdsFullyIncludedInNodeIds(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems());
936              }
937          }
938          PyObject *getNodeIdsOfCell(int cellId) const
939          {
940            std::vector<mcIdType> conn;
941            self->getNodeIdsOfCell(cellId,conn);
942            return convertIntArrToPyList2(conn);
943          }
944
945          PyObject *getCoordinatesOfNode(mcIdType nodeId) const
946          {
947            std::vector<double> coo;
948            self->getCoordinatesOfNode(nodeId,coo);
949            return convertDblArrToPyList2(coo);
950          }
951
952          void scale(PyObject *point, double factor)
953          {
954            double val;
955            DataArrayDouble *a;
956            DataArrayDoubleTuple *aa;
957            std::vector<double> bb;
958            mcIdType sw;
959            int spaceDim=self->getSpaceDimension();
960            const char msg[]="Python wrap of MEDCouplingPointSet::scale : ";
961            const double *pointPtr=convertObjToPossibleCpp5_Safe(point,sw,val,a,aa,bb,msg,1,spaceDim,true);
962            self->scale(pointPtr,factor);
963          }
964
965          PyObject *getBoundingBox() const
966          {
967            int spaceDim=self->getSpaceDimension();
968            INTERP_KERNEL::AutoPtr<double> tmp=new double[2*spaceDim];
969            self->getBoundingBox(tmp);
970            PyObject *ret=convertDblArrToPyListOfTuple<double>(tmp,2,spaceDim);
971            return ret;
972          }
973
974          PyObject *isEqualIfNotWhy(const MEDCouplingMesh *other, double prec) const
975          {
976            std::string ret1;
977            bool ret0=self->isEqualIfNotWhy(other,prec,ret1);
978            PyObject *ret=PyTuple_New(2);
979            PyObject *ret0Py=ret0?Py_True:Py_False;
980            Py_XINCREF(ret0Py);
981            PyTuple_SetItem(ret,0,ret0Py);
982            PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
983            return ret;
984          }
985
986          PyObject *buildPart(PyObject *li) const
987          {
988            mcIdType szArr,sw,iTypppArr;
989            std::vector<mcIdType> stdvecTyyppArr;
990            const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
991            MEDCouplingMesh *ret=self->buildPart(tmp,tmp+szArr);
992            if(sw==3)//DataArrayIdType
993              { 
994                void *argp; SWIG_ConvertPtr(li,&argp,SWIGTITraits<mcIdType>::TI,0|0);
995                DataArrayIdType *argpt=reinterpret_cast< MEDCoupling::DataArrayIdType * >(argp);
996                std::string name=argpt->getName();
997                if(!name.empty())
998                  ret->setName(name.c_str());
999              }
1000            return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1001          }
1002         
1003          PyObject *buildPartAndReduceNodes(PyObject *li) const
1004          {
1005            mcIdType szArr,sw,iTypppArr;
1006            std::vector<mcIdType> stdvecTyyppArr;
1007            DataArrayIdType *arr=0;
1008            const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1009            MEDCouplingMesh *ret=self->buildPartAndReduceNodes(tmp,tmp+szArr,arr);
1010            if(sw==3)//DataArrayIdType
1011              { 
1012                void *argp; SWIG_ConvertPtr(li,&argp,SWIGTITraits<mcIdType>::TI,0|0);
1013                DataArrayIdType *argpt=reinterpret_cast< MEDCoupling::DataArrayIdType * >(argp);
1014                std::string name=argpt->getName();
1015                if(!name.empty())
1016                  ret->setName(name.c_str());
1017              }
1018            //
1019            PyObject *res = PyList_New(2);
1020            PyObject *obj0=convertMesh(ret, SWIG_POINTER_OWN | 0 );
1021            PyObject *obj1=SWIG_NewPointerObj(SWIG_as_voidptr(arr),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 );
1022            PyList_SetItem(res,0,obj0);
1023            PyList_SetItem(res,1,obj1);
1024            return res;
1025          }
1026
1027          PyObject *buildPartRangeAndReduceNodes(mcIdType beginCellIds, mcIdType endCellIds, mcIdType stepCellIds) const
1028          {
1029            mcIdType a,b,c;
1030            DataArrayIdType *arr=0;
1031            MEDCouplingMesh *ret=self->buildPartRangeAndReduceNodes(beginCellIds,endCellIds,stepCellIds,a,b,c,arr);
1032            PyObject *res = PyTuple_New(2);
1033            PyObject *obj0=convertMesh(ret, SWIG_POINTER_OWN | 0 );
1034            PyObject *obj1=0;
1035            if(arr)
1036              obj1=SWIG_NewPointerObj(SWIG_as_voidptr(arr),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 );
1037            else
1038              obj1=PySlice_New(PyInt_FromLong(a),PyInt_FromLong(b),PyInt_FromLong(b));
1039            PyTuple_SetItem(res,0,obj0);
1040            PyTuple_SetItem(res,1,obj1);
1041            return res;
1042          }
1043
1044         PyObject *getDistributionOfTypes() const
1045         {
1046           std::vector<mcIdType> vals=self->getDistributionOfTypes();
1047           if(vals.size()%3!=0)
1048             throw INTERP_KERNEL::Exception("Internal Error detected in wrap python ! code returned by MEDCouplingMesh::getDistributionOfTypes is not so that %3==0 !");
1049           PyObject *ret=PyList_New((mcIdType)vals.size()/3);
1050           for(std::size_t j=0;j<vals.size()/3;j++)
1051              {
1052                PyObject *ret1=PyList_New(3);
1053                PyList_SetItem(ret1,0,PyInt_FromLong(vals[3*j]));
1054                PyList_SetItem(ret1,1,PyInt_FromLong(vals[3*j+1]));
1055                PyList_SetItem(ret1,2,PyInt_FromLong(vals[3*j+2]));
1056                PyList_SetItem(ret,j,ret1);
1057              }
1058           return ret;
1059         }
1060
1061         DataArrayIdType *checkTypeConsistencyAndContig(PyObject *li, PyObject *li2) const
1062         {
1063           std::vector<mcIdType> code;
1064           std::vector<const DataArrayIdType *> idsPerType;
1065           convertFromPyObjVectorOfObj<const MEDCoupling::DataArrayIdType *>(li2,SWIGTITraits<mcIdType>::TI,"DataArrayIdType",idsPerType);
1066           convertPyToNewIntArr4(li,1,3,code);
1067           return self->checkTypeConsistencyAndContig(code,idsPerType);
1068         }
1069
1070         PyObject *splitProfilePerType(const DataArrayIdType *profile, bool smartPflKiller=true) const
1071         {
1072           std::vector<mcIdType> code;
1073           std::vector<DataArrayIdType *> idsInPflPerType;
1074           std::vector<DataArrayIdType *> idsPerType;
1075           self->splitProfilePerType(profile,code,idsInPflPerType,idsPerType,smartPflKiller);
1076           PyObject *ret=PyTuple_New(3);
1077           //
1078           if(code.size()%3!=0)
1079             throw INTERP_KERNEL::Exception("Internal Error detected in wrap python ! code returned by MEDCouplingMesh::splitProfilePerType is not so that %3==0 !");
1080           PyObject *ret0=PyList_New((mcIdType)code.size()/3);
1081           for(std::size_t j=0;j<code.size()/3;j++)
1082              {
1083                PyObject *ret00=PyList_New(3);
1084                PyList_SetItem(ret00,0,PyInt_FromLong(code[3*j]));
1085                PyList_SetItem(ret00,1,PyInt_FromLong(code[3*j+1]));
1086                PyList_SetItem(ret00,2,PyInt_FromLong(code[3*j+2]));
1087                PyList_SetItem(ret0,j,ret00);
1088              }
1089           PyTuple_SetItem(ret,0,ret0);
1090           //
1091           PyObject *ret1=PyList_New(idsInPflPerType.size());
1092           for(std::size_t j=0;j<idsInPflPerType.size();j++)
1093             PyList_SetItem(ret1,j,SWIG_NewPointerObj(SWIG_as_voidptr(idsInPflPerType[j]),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
1094           PyTuple_SetItem(ret,1,ret1);
1095           std::size_t n=idsPerType.size();
1096           PyObject *ret2=PyList_New(n);
1097           for(std::size_t i=0;i<n;i++)
1098             PyList_SetItem(ret2,i,SWIG_NewPointerObj(SWIG_as_voidptr(idsPerType[i]),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
1099           PyTuple_SetItem(ret,2,ret2);
1100           return ret;
1101         }
1102
1103         void translate(PyObject *vector)
1104         {
1105           double val;
1106           DataArrayDouble *a;
1107           DataArrayDoubleTuple *aa;
1108           std::vector<double> bb;
1109           mcIdType sw;
1110           int spaceDim=self->getSpaceDimension();
1111           const char msg[]="Python wrap of MEDCouplingPointSet::translate : ";
1112           const double *vectorPtr=convertObjToPossibleCpp5_Safe(vector,sw,val,a,aa,bb,msg,1,spaceDim,true);
1113           self->translate(vectorPtr);
1114         }
1115
1116          void rotate(PyObject *center, double alpha)
1117          {
1118            const char msg[]="Python wrap of MEDCouplingPointSet::rotate : ";
1119            double val;
1120            DataArrayDouble *a;
1121            DataArrayDoubleTuple *aa;
1122            std::vector<double> bb;
1123            mcIdType sw;
1124            int spaceDim=self->getSpaceDimension();
1125            const double *centerPtr=convertObjToPossibleCpp5_Safe(center,sw,val,a,aa,bb,msg,1,spaceDim,true);
1126            self->rotate(centerPtr,0,alpha);
1127          }
1128
1129          void rotate(PyObject *center, PyObject *vector, double alpha)
1130          {
1131            const char msg[]="Python wrap of MEDCouplingPointSet::rotate : ";
1132            double val,val2;
1133            DataArrayDouble *a,*a2;
1134            DataArrayDoubleTuple *aa,*aa2;
1135            std::vector<double> bb,bb2;
1136            mcIdType sw;
1137            int spaceDim=self->getSpaceDimension();
1138            const double *centerPtr=convertObjToPossibleCpp5_Safe(center,sw,val,a,aa,bb,msg,1,spaceDim,true);
1139            const double *vectorPtr=convertObjToPossibleCpp5_Safe(vector,sw,val2,a2,aa2,bb2,msg,1,spaceDim,false);//vectorPtr can be null in case of space dim 2
1140            self->rotate(centerPtr,vectorPtr,alpha);
1141          }
1142
1143          PyObject *getAllGeoTypes() const
1144          {
1145            std::set<INTERP_KERNEL::NormalizedCellType> result=self->getAllGeoTypes();
1146            std::set<INTERP_KERNEL::NormalizedCellType>::const_iterator iL=result.begin();
1147            PyObject *res=PyList_New(result.size());
1148            for(int i=0;iL!=result.end(); i++, iL++)
1149              PyList_SetItem(res,i,PyInt_FromLong(*iL));
1150            return res;
1151          }
1152
1153          virtual PyObject *getTinySerializationInformation() const
1154          {
1155            std::vector<double> a0;
1156            std::vector<mcIdType> a1;
1157            std::vector<std::string> a2;
1158            self->getTinySerializationInformation(a0,a1,a2);
1159            PyObject *ret(PyTuple_New(3));
1160            PyTuple_SetItem(ret,0,convertDblArrToPyList2(a0));
1161            PyTuple_SetItem(ret,1,convertIntArrToPyList2(a1));
1162            std::size_t sz(a2.size());
1163            PyObject *ret2(PyList_New(sz));
1164            {
1165              for(std::size_t i=0;i<sz;i++)
1166                PyList_SetItem(ret2,i,PyString_FromString(a2[i].c_str()));
1167            }
1168            PyTuple_SetItem(ret,2,ret2);
1169            return ret;
1170          }
1171
1172          virtual PyObject *serialize() const
1173          {
1174            DataArrayIdType *a0Tmp(0);
1175            DataArrayDouble *a1Tmp(0);
1176            self->serialize(a0Tmp,a1Tmp);
1177            PyObject *ret(PyTuple_New(2));
1178            PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(a0Tmp),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
1179            PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(a1Tmp),SWIGTYPE_p_MEDCoupling__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
1180            return ret;
1181          }
1182
1183          void resizeForUnserialization(const std::vector<mcIdType>& tinyInfo, DataArrayIdType *a1, DataArrayDouble *a2) const
1184          {
1185            std::vector<std::string> littleStrings;
1186            self->resizeForUnserialization(tinyInfo,a1,a2,littleStrings);
1187          }
1188          
1189          PyObject *__getstate__() const
1190          {
1191            PyObject *ret0(MEDCoupling_MEDCouplingMesh_getTinySerializationInformation(self));
1192            PyObject *ret1(MEDCoupling_MEDCouplingMesh_serialize(self));
1193            PyObject *ret(PyTuple_New(2));
1194            PyTuple_SetItem(ret,0,ret0);
1195            PyTuple_SetItem(ret,1,ret1);
1196            return ret;
1197          }
1198
1199          void __setstate__(PyObject *inp)
1200          {
1201            static const char MSG[]="MEDCouplingMesh.__setstate__ : expected input is a tuple of size 2 !";
1202            if(!PyTuple_Check(inp))
1203              throw INTERP_KERNEL::Exception(MSG);
1204            std::size_t sz(PyTuple_Size(inp));
1205            if(sz!=2)
1206              throw INTERP_KERNEL::Exception(MSG);
1207            PyObject *elt0(PyTuple_GetItem(inp,0));
1208            PyObject *elt1(PyTuple_GetItem(inp,1));
1209            std::vector<double> a0;
1210            std::vector<mcIdType> a1;
1211            std::vector<std::string> a2;
1212            DataArrayIdType *b0(0);
1213            DataArrayDouble *b1(0);
1214            {
1215              if(!PyTuple_Check(elt0) && PyTuple_Size(elt0)!=3)
1216                throw INTERP_KERNEL::Exception(MSG);
1217              PyObject *a0py(PyTuple_GetItem(elt0,0)),*a1py(PyTuple_GetItem(elt0,1)),*a2py(PyTuple_GetItem(elt0,2));
1218              mcIdType tmp(-1);
1219              fillArrayWithPyListDbl3(a0py,tmp,a0);
1220              convertPyToNewIntArr3(a1py,a1);
1221              fillStringVector(a2py,a2);
1222            }
1223            {
1224              if(!PyTuple_Check(elt1) && PyTuple_Size(elt1)!=2)
1225                throw INTERP_KERNEL::Exception(MSG);
1226              PyObject *b0py(PyTuple_GetItem(elt1,0)),*b1py(PyTuple_GetItem(elt1,1));
1227              void *argp(0);
1228              int status(SWIG_ConvertPtr(b0py,&argp,SWIGTITraits<mcIdType>::TI,0|0));
1229              if(!SWIG_IsOK(status))
1230                throw INTERP_KERNEL::Exception(MSG);
1231              b0=reinterpret_cast<DataArrayIdType *>(argp);
1232              status=SWIG_ConvertPtr(b1py,&argp,SWIGTYPE_p_MEDCoupling__DataArrayDouble,0|0);
1233              if(!SWIG_IsOK(status))
1234                throw INTERP_KERNEL::Exception(MSG);
1235              b1=reinterpret_cast<DataArrayDouble *>(argp);
1236            }
1237            // useless here to call resizeForUnserialization because arrays are well resized.
1238            self->unserialization(a0,a1,b0,b1,a2);
1239          }
1240          
1241          static MEDCouplingMesh *MergeMeshes(PyObject *li)
1242          {
1243             std::vector<const MEDCoupling::MEDCouplingMesh *> tmp;
1244             convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingMesh *>(li,SWIGTYPE_p_MEDCoupling__MEDCouplingMesh,"MEDCouplingMesh",tmp);
1245             return MEDCouplingMesh::MergeMeshes(tmp);
1246          }
1247        }
1248   };
1249 }
1250
1251 //== MEDCouplingMesh End
1252
1253 %include "NormalizedGeometricTypes"
1254 %include "MEDCouplingNatureOfFieldEnum"
1255 //
1256 namespace MEDCoupling
1257 {
1258   class MEDCouplingNatureOfField
1259   {
1260   public:
1261     static const char *GetRepr(NatureOfField nat);
1262     static std::string GetReprNoThrow(NatureOfField nat);
1263     static std::string GetAllPossibilitiesStr();
1264   };
1265 }
1266
1267 // the MEDCouplingTimeDiscretization classes are not swigged : in case the file can help
1268 // include "MEDCouplingTimeDiscretization.i"
1269
1270 namespace MEDCoupling
1271 {
1272   class MEDCouplingGaussLocalization
1273   {
1274   public:
1275     MEDCouplingGaussLocalization(INTERP_KERNEL::NormalizedCellType type, const std::vector<double>& refCoo,
1276                                  const std::vector<double>& gsCoo, const std::vector<double>& w);
1277     MEDCouplingGaussLocalization(INTERP_KERNEL::NormalizedCellType typ);
1278     INTERP_KERNEL::NormalizedCellType getType() const;
1279     void setType(INTERP_KERNEL::NormalizedCellType typ);
1280     int getNumberOfGaussPt() const;
1281     int getDimension() const;
1282     int getNumberOfPtsInRefCell() const;
1283     std::string getStringRepr() const;
1284     void checkConsistencyLight() const;
1285     bool isEqual(const MEDCouplingGaussLocalization& other, double eps) const;
1286     //
1287     const std::vector<double>& getRefCoords() const;
1288     double getRefCoord(int ptIdInCell, int comp) const;
1289     const std::vector<double>& getGaussCoords() const;
1290     double getGaussCoord(int gaussPtIdInCell, int comp) const;
1291     const std::vector<double>& getWeights() const;
1292     double getWeight(int gaussPtIdInCell) const;
1293     void setRefCoord(int ptIdInCell, int comp, double newVal);
1294     void setGaussCoord(int gaussPtIdInCell, int comp, double newVal);
1295     void setWeight(int gaussPtIdInCell, double newVal);
1296     void setRefCoords(const std::vector<double>& refCoo);
1297     void setGaussCoords(const std::vector<double>& gsCoo);
1298     void setWeights(const std::vector<double>& w);
1299     //
1300     static bool AreAlmostEqual(const std::vector<double>& v1, const std::vector<double>& v2, double eps);
1301     //
1302     %extend 
1303     {
1304       DataArrayDouble *localizePtsInRefCooForEachCell(const DataArrayDouble *ptsInRefCoo, const MEDCouplingUMesh *mesh) const
1305       {
1306         MCAuto<DataArrayDouble> ret(self->localizePtsInRefCooForEachCell(ptsInRefCoo,mesh));
1307         return ret.retn();
1308       }
1309
1310       MEDCouplingUMesh *buildRefCell() const
1311       {
1312         MCAuto<MEDCouplingUMesh> ret(self->buildRefCell());
1313         return ret.retn();
1314       }
1315       
1316       DataArrayDouble *getShapeFunctionValues() const
1317       {
1318         MCAuto<DataArrayDouble> ret(self->getShapeFunctionValues());
1319         return ret.retn();
1320       }
1321       
1322       DataArrayDouble *getDerivativeOfShapeFunctionValues() const
1323       {
1324         MCAuto<DataArrayDouble> ret(self->getDerivativeOfShapeFunctionValues());
1325         return ret.retn();
1326       }
1327
1328       static DataArrayDouble *GetDefaultReferenceCoordinatesOf(INTERP_KERNEL::NormalizedCellType type)
1329       {
1330         MCAuto<DataArrayDouble> ret(MEDCouplingGaussLocalization::GetDefaultReferenceCoordinatesOf(type));
1331         return ret.retn();
1332       }
1333     }
1334   };
1335
1336   class MEDCouplingSkyLineArray
1337   {
1338   public:  
1339     static MEDCouplingSkyLineArray *BuildFromPolyhedronConn( const DataArrayIdType* c, const DataArrayIdType* cI );
1340   
1341     void set( DataArrayIdType* index, DataArrayIdType* value );
1342     void set3( DataArrayIdType* superIndex, DataArrayIdType* index, DataArrayIdType* value );
1343     
1344     int getSuperNumberOf() const;
1345     int getNumberOf() const;
1346     int getLength() const;
1347     
1348     void deletePack(const int i, const int j);
1349     
1350     void deleteSimplePack(const int i);
1351     void deleteSimplePacks(const DataArrayIdType* idx);
1352
1353     MEDCouplingSkyLineArray *groupPacks(const DataArrayIdType *indexedPacks) const;
1354     MEDCouplingSkyLineArray *uniqueNotSortedByPack() const;
1355
1356     MEDCouplingSkyLineArray *deepCopy() const;
1357     
1358     %extend 
1359     {
1360       MEDCouplingSkyLineArray()
1361       {
1362         return MEDCouplingSkyLineArray::New();
1363       }
1364
1365       MEDCouplingSkyLineArray( const std::vector<mcIdType>& index, const std::vector<mcIdType>& value)
1366       {
1367         return MEDCouplingSkyLineArray::New(index, value);
1368       }
1369
1370       MEDCouplingSkyLineArray( DataArrayIdType* index, DataArrayIdType* value )
1371       {
1372         return MEDCouplingSkyLineArray::New(index, value);
1373       }
1374
1375       MEDCouplingSkyLineArray( const MEDCouplingSkyLineArray & other )
1376       {
1377         return MEDCouplingSkyLineArray::New(other);
1378       }
1379
1380       std::string __str__() const
1381       {
1382         return self->simpleRepr();
1383       }
1384       
1385       DataArrayIdType *getSuperIndexArray() const
1386       {
1387         DataArrayIdType *ret(self->getSuperIndexArray());
1388         if(ret)
1389           ret->incrRef();
1390         return ret;
1391       }
1392       
1393       DataArrayIdType *getIndexArray() const
1394       {
1395         DataArrayIdType *ret(self->getIndexArray());
1396         if(ret)
1397           ret->incrRef();
1398         return ret;
1399       }
1400       
1401       DataArrayIdType *getValuesArray() const
1402       {
1403         DataArrayIdType *ret(self->getValuesArray());
1404         if(ret)
1405           ret->incrRef();
1406         return ret;
1407       }
1408      
1409       PyObject *getSimplePackSafe(mcIdType absolutePackId) const
1410       {
1411         std::vector<mcIdType> ret;
1412         self->getSimplePackSafe(absolutePackId,ret);
1413         return convertIntArrToPyList2(ret);
1414       }
1415
1416       PyObject *findPackIds(PyObject *superPackIndices, PyObject *pack) const
1417       {
1418           std::vector<mcIdType> vpack, vspIdx, out;
1419           
1420           convertPyToNewIntArr3(superPackIndices,vspIdx);
1421           convertPyToNewIntArr3(pack,vpack);
1422           
1423           self->findPackIds(vspIdx, vpack.data(), vpack.data()+vpack.size(), out);
1424           return convertIntArrToPyList2(out);
1425       }
1426       
1427       void pushBackPack(const mcIdType i, PyObject *pack)
1428         {
1429           std::vector<mcIdType> vpack;
1430           convertPyToNewIntArr3(pack,vpack);
1431           self->pushBackPack(i,vpack.data(), vpack.data()+vpack.size());
1432         }
1433         
1434       void replaceSimplePack(const mcIdType idx, PyObject *pack)
1435         {
1436           std::vector<mcIdType> vpack;
1437           convertPyToNewIntArr3(pack,vpack);
1438           self->replaceSimplePack(idx, vpack.data(), vpack.data()+vpack.size());
1439         }
1440         
1441       void replaceSimplePacks(const DataArrayIdType* idx, PyObject *listePacks)
1442         {
1443           std::vector<const DataArrayIdType*> packs;
1444           convertFromPyObjVectorOfObj<const MEDCoupling::DataArrayIdType*>(listePacks,SWIGTITraits<mcIdType>::TI,"DataArrayIdType",packs);
1445           self->replaceSimplePacks(idx, packs);
1446         }
1447
1448       static MEDCouplingSkyLineArray *AggregatePacks(PyObject *sks)
1449       {
1450         std::vector<const MEDCouplingSkyLineArray *> sksCpp;
1451         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingSkyLineArray*>(sks,SWIGTYPE_p_MEDCoupling__MEDCouplingSkyLineArray,"MEDCouplingSkyLineArray",sksCpp);
1452         return MEDCoupling::MEDCouplingSkyLineArray::AggregatePacks(sksCpp);
1453       }
1454         
1455       void replacePack(const mcIdType superIdx, const mcIdType idx, PyObject *pack)
1456         {
1457           std::vector<mcIdType> vpack;
1458           convertPyToNewIntArr3(pack,vpack);
1459           self->replacePack(superIdx, idx, vpack.data(), vpack.data()+vpack.size());
1460         }
1461
1462       PyObject *convertToPolyhedronConn() const
1463          {
1464            MCAuto<DataArrayIdType> d0=DataArrayIdType::New();
1465            MCAuto<DataArrayIdType> d1=DataArrayIdType::New();
1466            self->convertToPolyhedronConn(d0,d1);
1467            PyObject *ret=PyTuple_New(2);
1468            PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
1469            PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
1470            return ret;
1471          } 
1472
1473       PyObject *thresholdPerPack(mcIdType threshold) const
1474       {
1475         MCAuto<MEDCouplingSkyLineArray> left, right;
1476         self->thresholdPerPack(threshold,left,right);
1477         PyObject *ret=PyTuple_New(2);
1478         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(left.retn()),SWIGTYPE_p_MEDCoupling__MEDCouplingSkyLineArray, SWIG_POINTER_OWN | 0 ));
1479         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(right.retn()),SWIGTYPE_p_MEDCoupling__MEDCouplingSkyLineArray, SWIG_POINTER_OWN | 0 ));
1480         return ret;
1481       }
1482     }
1483   };
1484 }
1485
1486 %include "MEDCouplingFieldDiscretization.i"
1487
1488 //== MEDCouplingPointSet
1489
1490 namespace MEDCoupling
1491 {
1492   class MEDCouplingPointSet : public MEDCoupling::MEDCouplingMesh
1493     {
1494     public:
1495       void setCoords(const DataArrayDouble *coords);
1496       DataArrayDouble *getCoordinatesAndOwner() const;
1497       bool areCoordsEqual(const MEDCouplingPointSet& other, double prec) const;
1498       void zipCoords();
1499       double getCaracteristicDimension() const;
1500       void recenterForMaxPrecision(double eps);
1501       void changeSpaceDimension(int newSpaceDim, double dftVal=0.);
1502       void tryToShareSameCoords(const MEDCouplingPointSet& other, double epsilon);
1503       virtual void shallowCopyConnectivityFrom(const MEDCouplingPointSet *other);
1504       virtual MEDCouplingPointSet *buildPartOfMySelfSlice(int start, int end, int step) const;
1505       virtual void tryToShareSameCoordsPermute(const MEDCouplingPointSet& other, double epsilon);
1506       static DataArrayDouble *MergeNodesArray(const MEDCouplingPointSet *m1, const MEDCouplingPointSet *m2);
1507       static MEDCouplingPointSet *BuildInstanceFromMeshType(MEDCouplingMeshType type);
1508       static DataArrayIdType *ComputeNbOfInteractionsWithSrcCells(const MEDCouplingPointSet *srcMesh, const MEDCouplingPointSet *trgMesh, double eps);
1509       virtual DataArrayIdType *computeFetchedNodeIds() const;
1510       virtual int getNumberOfNodesInCell(int cellId) const;
1511       virtual MEDCouplingPointSet *buildBoundaryMesh(bool keepCoords) const;
1512       virtual DataArrayIdType *getCellsInBoundingBox(const INTERP_KERNEL::DirectedBoundingBox& bbox, double eps);
1513       virtual DataArrayIdType *zipCoordsTraducer();
1514       virtual DataArrayIdType *findBoundaryNodes() const;
1515       virtual DataArrayIdType *zipConnectivityTraducer(int compType, int startCellId=0);
1516       virtual MEDCouplingPointSet *mergeMyselfWithOnSameCoords(const MEDCouplingPointSet *other) const;
1517       virtual void checkFullyDefined() const;
1518       virtual bool isEmptyMesh(const std::vector<mcIdType>& tinyInfo) const;
1519       virtual MEDCouplingPointSet *deepCopyConnectivityOnly() const;
1520       virtual DataArrayDouble *getBoundingBoxForBBTree(double arcDetEps=1e-12) const;
1521       virtual void renumberNodesWithOffsetInConn(int offset);
1522       virtual bool areAllNodesFetched() const;
1523       virtual MEDCouplingFieldDouble *computeDiameterField() const;
1524       virtual void invertOrientationOfAllCells();
1525       %extend 
1526          {
1527            std::string __str__() const
1528            {
1529              return self->simpleRepr();
1530            }
1531            
1532            PyObject *buildNewNumberingFromCommonNodesFormat(const DataArrayIdType *comm, const DataArrayIdType *commIndex) const
1533            {
1534              mcIdType newNbOfNodes;
1535              DataArrayIdType *ret0=self->buildNewNumberingFromCommonNodesFormat(comm,commIndex,newNbOfNodes);
1536              PyObject *res = PyList_New(2);
1537              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
1538              PyList_SetItem(res,1,PyInt_FromLong(newNbOfNodes));
1539              return res;
1540            }
1541            
1542            PyObject *findCommonNodes(double prec, mcIdType limitTupleId=-1) const
1543            {
1544              DataArrayIdType *comm, *commIndex;
1545              self->findCommonNodes(prec,limitTupleId,comm,commIndex);
1546              PyObject *res = PyList_New(2);
1547              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(comm),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
1548              PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(commIndex),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
1549              return res;
1550            }
1551            
1552            PyObject *getCoords()
1553            {
1554              DataArrayDouble *ret1=self->getCoords();
1555              if (ret1)
1556                 ret1->incrRef();
1557              return SWIG_NewPointerObj((void*)ret1,SWIGTYPE_p_MEDCoupling__DataArrayDouble,SWIG_POINTER_OWN | 0);
1558            }
1559            
1560            PyObject *buildPartOfMySelf(PyObject *li, bool keepCoords=true) const
1561            {
1562              mcIdType szArr,sw,iTypppArr;
1563              std::vector<mcIdType> stdvecTyyppArr;
1564              const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1565              MEDCouplingPointSet *ret=self->buildPartOfMySelf(tmp,tmp+szArr,keepCoords);
1566              if(sw==3)//DataArrayIdType
1567                { 
1568                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTITraits<mcIdType>::TI,0|0);
1569                  DataArrayIdType *argpt=reinterpret_cast< MEDCoupling::DataArrayIdType * >(argp);
1570                  std::string name=argpt->getName();
1571                  if(!name.empty())
1572                    ret->setName(name.c_str());
1573                }
1574              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1575            }
1576            
1577            PyObject *buildPartOfMySelfNode(PyObject *li, bool fullyIn) const
1578            {
1579              mcIdType szArr,sw,iTypppArr;
1580              std::vector<mcIdType> stdvecTyyppArr;
1581              const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1582              MEDCouplingPointSet *ret=self->buildPartOfMySelfNode(tmp,tmp+szArr,fullyIn);
1583              if(sw==3)//DataArrayIdType
1584                { 
1585                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTITraits<mcIdType>::TI,0|0);
1586                  DataArrayIdType *argpt=reinterpret_cast< MEDCoupling::DataArrayIdType * >(argp);
1587                  std::string name=argpt->getName();
1588                  if(!name.empty())
1589                    ret->setName(name.c_str());
1590                }
1591              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1592            }
1593
1594            virtual PyObject *buildPartOfMySelfKeepCoords(PyObject *li) const
1595            {
1596              mcIdType szArr,sw,iTypppArr;
1597              std::vector<mcIdType> stdvecTyyppArr;
1598              const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1599              MEDCouplingPointSet *ret=self->buildPartOfMySelfKeepCoords(tmp,tmp+szArr);
1600              if(sw==3)//DataArrayIdType
1601                { 
1602                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTITraits<mcIdType>::TI,0|0);
1603                  DataArrayIdType *argpt=reinterpret_cast< MEDCoupling::DataArrayIdType * >(argp);
1604                  std::string name=argpt->getName();
1605                  if(!name.empty())
1606                    ret->setName(name.c_str());
1607                }
1608              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1609            }
1610
1611            virtual PyObject *buildPartOfMySelfKeepCoordsSlice(mcIdType start, mcIdType end, mcIdType step) const
1612            {
1613              MEDCouplingPointSet *ret=self->buildPartOfMySelfKeepCoordsSlice(start,end,step);
1614              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1615            }
1616
1617            PyObject *buildFacePartOfMySelfNode(PyObject *li, bool fullyIn) const
1618            {
1619              mcIdType szArr,sw,iTypppArr;
1620              std::vector<mcIdType> stdvecTyyppArr;
1621              const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1622              MEDCouplingPointSet *ret=self->buildFacePartOfMySelfNode(tmp,tmp+szArr,fullyIn);
1623              if(sw==3)//DataArrayIdType
1624                { 
1625                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTITraits<mcIdType>::TI,0|0);
1626                  DataArrayIdType *argpt=reinterpret_cast< MEDCoupling::DataArrayIdType * >(argp);
1627                  std::string name=argpt->getName();
1628                  if(!name.empty())
1629                    ret->setName(name.c_str());
1630                }
1631              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1632            }
1633
1634            void renumberNodes(PyObject *li, mcIdType newNbOfNodes)
1635            {
1636              mcIdType szArr,sw,iTypppArr;
1637              std::vector<mcIdType> stdvecTyyppArr;
1638              const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1639              self->renumberNodes(tmp,newNbOfNodes);
1640            }
1641
1642            void renumberNodesCenter(PyObject *li, mcIdType newNbOfNodes)
1643            {
1644              mcIdType szArr,sw,iTypppArr;
1645              std::vector<mcIdType> stdvecTyyppArr;
1646              const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1647              self->renumberNodesCenter(tmp,newNbOfNodes);
1648            }
1649
1650            PyObject *findNodesOnLine(PyObject *pt, PyObject *vec, double eps) const
1651              {
1652                int spaceDim=self->getSpaceDimension();
1653                double val,val2;
1654                DataArrayDouble *a,*a2;
1655                DataArrayDoubleTuple *aa,*aa2;
1656                std::vector<double> bb,bb2;
1657                mcIdType sw;
1658                const char msg[]="Python wrap of MEDCouplingPointSet::findNodesOnLine : 1st parameter for point.";
1659                const char msg2[]="Python wrap of MEDCouplingPointSet::findNodesOnLine : 2nd parameter for vector.";
1660                const double *p=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,1,spaceDim,true);
1661                const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
1662                std::vector<mcIdType> nodes;
1663                self->findNodesOnLine(p,v,eps,nodes);
1664                DataArrayIdType *ret=DataArrayIdType::New();
1665                ret->alloc(nodes.size(),1);
1666                std::copy(nodes.begin(),nodes.end(),ret->getPointer());
1667                return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 );
1668              }
1669            PyObject *findNodesOnPlane(PyObject *pt, PyObject *vec, double eps) const
1670              {
1671                int spaceDim=self->getSpaceDimension();
1672                double val,val2;
1673                DataArrayDouble *a,*a2;
1674                DataArrayDoubleTuple *aa,*aa2;
1675                std::vector<double> bb,bb2;
1676                mcIdType sw;
1677                const char msg[]="Python wrap of MEDCouplingPointSet::findNodesOnPlane : 1st parameter for point.";
1678                const char msg2[]="Python wrap of MEDCouplingPointSet::findNodesOnPlane : 2nd parameter for vector.";
1679                const double *p=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,1,spaceDim,true);
1680                const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
1681                std::vector<mcIdType> nodes;
1682                self->findNodesOnPlane(p,v,eps,nodes);
1683                DataArrayIdType *ret=DataArrayIdType::New();
1684                ret->alloc(nodes.size(),1);
1685                std::copy(nodes.begin(),nodes.end(),ret->getPointer());
1686                return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 );
1687              }
1688            
1689            PyObject *getNodeIdsNearPoint(PyObject *pt, double eps) const
1690            {
1691              double val;
1692              DataArrayDouble *a;
1693              DataArrayDoubleTuple *aa;
1694              std::vector<double> bb;
1695              mcIdType sw;
1696              int spaceDim=self->getSpaceDimension();
1697              const char msg[]="Python wrap of MEDCouplingPointSet::getNodeIdsNearPoint : ";
1698              const double *pos=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,1,spaceDim,true);
1699              DataArrayIdType *ret=self->getNodeIdsNearPoint(pos,eps);
1700              return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 );
1701            }
1702
1703            PyObject *getNodeIdsNearPoints(PyObject *pt, mcIdType nbOfPoints, double eps) const
1704            {
1705              DataArrayIdType *c=0,*cI=0;
1706              //
1707              double val;
1708              DataArrayDouble *a;
1709              DataArrayDoubleTuple *aa;
1710              std::vector<double> bb;
1711              mcIdType sw;
1712              int spaceDim=self->getSpaceDimension();
1713              const char msg[]="Python wrap of MEDCouplingPointSet::getNodeIdsNearPoints : ";
1714              const double *pos=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,nbOfPoints,spaceDim,true);
1715              self->getNodeIdsNearPoints(pos,nbOfPoints,eps,c,cI);
1716              PyObject *ret=PyTuple_New(2);
1717              PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(c),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
1718              PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cI),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
1719              return ret;
1720            }
1721
1722            PyObject *getNodeIdsNearPoints(PyObject *pt, double eps) const
1723            {
1724              DataArrayIdType *c=0,*cI=0;
1725              int spaceDim=self->getSpaceDimension();
1726              double val;
1727              DataArrayDouble *a;
1728              DataArrayDoubleTuple *aa;
1729              std::vector<double> bb;
1730              mcIdType sw;
1731              mcIdType nbOfTuples=-1;
1732              const double *ptPtr=convertObjToPossibleCpp5_Safe2(pt,sw,val,a,aa,bb,"Python wrap of MEDCouplingUMesh::getNodeIdsNearPoints",spaceDim,true,nbOfTuples);
1733              self->getNodeIdsNearPoints(ptPtr,nbOfTuples,eps,c,cI);
1734              //
1735              PyObject *ret=PyTuple_New(2);
1736              PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(c),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
1737              PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cI),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
1738              return ret;
1739            }
1740
1741            PyObject *getCellsInBoundingBox(PyObject *bbox, double eps) const
1742            {
1743              double val;
1744              DataArrayDouble *a;
1745              DataArrayDoubleTuple *aa;
1746              std::vector<double> bb;
1747              mcIdType sw;
1748              int spaceDim=self->getSpaceDimension();
1749              const char msg[]="Python wrap of MEDCouplingPointSet::getCellsInBoundingBox : ";
1750              const double *tmp=convertObjToPossibleCpp5_Safe(bbox,sw,val,a,aa,bb,msg,spaceDim,2,true);
1751              //
1752              DataArrayIdType *elems=self->getCellsInBoundingBox(tmp,eps);
1753              return SWIG_NewPointerObj(SWIG_as_voidptr(elems),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 );
1754            }
1755
1756            void duplicateNodesInCoords(PyObject *li)
1757            {
1758              mcIdType sw;
1759              mcIdType singleVal;
1760              std::vector<mcIdType> multiVal;
1761              std::pair<mcIdType, std::pair<mcIdType,mcIdType> > slic;
1762              MEDCoupling::DataArrayIdType *daIntTyypp=0;
1763              convertIntStarOrSliceLikePyObjToCpp(li,self->getNumberOfNodes(),sw,singleVal,multiVal,slic,daIntTyypp);
1764              switch(sw)
1765                {
1766                case 1:
1767                  return self->duplicateNodesInCoords(&singleVal,&singleVal+1);
1768                case 2:
1769                  return self->duplicateNodesInCoords(&multiVal[0],&multiVal[0]+multiVal.size());
1770                case 4:
1771                  return self->duplicateNodesInCoords(daIntTyypp->begin(),daIntTyypp->end());
1772                default:
1773                  throw INTERP_KERNEL::Exception("MEDCouplingPointSet::duplicateNodesInCoords : unrecognized type entered, expected list of int, tuple of int or DataArrayIdType !");
1774                }
1775            }
1776
1777            virtual PyObject *findCommonCells(int compType, mcIdType startCellId=0) const
1778            {
1779              DataArrayIdType *v0(nullptr),*v1(nullptr);
1780              self->findCommonCells(compType,startCellId,v0,v1);
1781              PyObject *res = PyList_New(2);
1782              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(v0),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
1783              PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(v1),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
1784              return res;
1785            }
1786
1787       
1788            virtual void renumberNodesInConn(PyObject *li)
1789            {
1790              void *da(nullptr);
1791              {
1792                int res1(SWIG_ConvertPtr(li,&da,SWIGTYPE_p_MEDCoupling__MapII, 0 |  0 ));
1793                if(SWIG_IsOK(res1))
1794                  {
1795                    MapII *da2(reinterpret_cast<MapII *>(da));
1796                    self->renumberNodesInConn(da2->data());
1797                    return ;
1798                  }
1799              }
1800              int res1(SWIG_ConvertPtr(li,&da,SWIGTITraits<mcIdType>::TI, 0 | 0 ));
1801              if (!SWIG_IsOK(res1))
1802                {
1803                  mcIdType size;
1804                  INTERP_KERNEL::AutoPtr<mcIdType> tmp=convertPyToNewIntArr2(li,&size);
1805                  self->renumberNodesInConn(tmp);
1806                }
1807              else
1808                {
1809                  DataArrayIdType *da2(reinterpret_cast< DataArrayIdType * >(da));
1810                  if(!da2)
1811                    throw INTERP_KERNEL::Exception("Not null DataArrayIdType instance expected !");
1812                  da2->checkAllocated();
1813                  self->renumberNodesInConn(da2->getConstPointer());
1814                }
1815            }
1816
1817            virtual PyObject *getNodeIdsInUse() const
1818            {
1819              mcIdType ret1=-1;
1820              DataArrayIdType *ret0=self->getNodeIdsInUse(ret1);
1821              PyObject *ret=PyTuple_New(2);
1822              PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
1823              PyTuple_SetItem(ret,1,PyInt_FromLong(ret1));
1824              return ret;
1825            }
1826
1827            virtual DataArrayIdType *fillCellIdsToKeepFromNodeIds(PyObject *li, bool fullyIn) const
1828            {
1829              DataArrayIdType *ret(nullptr);
1830              //
1831              mcIdType szArr,sw,iTypppArr;
1832              std::vector<mcIdType> stdvecTyyppArr;
1833              const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1834              self->fillCellIdsToKeepFromNodeIds(tmp,tmp+szArr,fullyIn,ret);
1835              return ret;
1836            }
1837
1838            virtual PyObject *mergeNodes(double precision)
1839            {
1840              bool ret1;
1841              mcIdType ret2;
1842              DataArrayIdType *ret0=self->mergeNodes(precision,ret1,ret2);
1843              PyObject *res = PyList_New(3);
1844              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
1845              PyList_SetItem(res,1,SWIG_From_bool(ret1));
1846              PyList_SetItem(res,2,PyInt_FromLong(ret2));
1847              return res;
1848            }
1849            
1850            virtual PyObject *mergeNodesCenter(double precision)
1851            {
1852              bool ret1;
1853              mcIdType ret2;
1854              DataArrayIdType *ret0=self->mergeNodesCenter(precision,ret1,ret2);
1855              PyObject *res = PyList_New(3);
1856              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
1857              PyList_SetItem(res,1,SWIG_From_bool(ret1));
1858              PyList_SetItem(res,2,PyInt_FromLong(ret2));
1859              return res;
1860            }
1861            
1862            DataArrayIdType *getCellIdsLyingOnNodes(PyObject *li, bool fullyIn) const
1863            {
1864              void *da=0;
1865              int res1=SWIG_ConvertPtr(li,&da,SWIGTITraits<mcIdType>::TI, 0 |  0 );
1866              if (!SWIG_IsOK(res1))
1867                {
1868                  mcIdType size;
1869                  INTERP_KERNEL::AutoPtr<mcIdType> tmp=convertPyToNewIntArr2(li,&size);
1870                  return self->getCellIdsLyingOnNodes(tmp,((const mcIdType *)tmp)+size,fullyIn);
1871                }
1872              else
1873                {
1874                  DataArrayIdType *da2=reinterpret_cast< DataArrayIdType * >(da);
1875                  if(!da2)
1876                    throw INTERP_KERNEL::Exception("Not null DataArrayIdType instance expected !");
1877                  da2->checkAllocated();
1878                  return self->getCellIdsLyingOnNodes(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems(),fullyIn);
1879                }
1880            }
1881
1882            MEDCouplingPointSet *__getitem__(PyObject *listOrDataArrI)
1883            {
1884              mcIdType sw;
1885              mcIdType singleVal;
1886              std::vector<mcIdType> multiVal;
1887              std::pair<mcIdType, std::pair<mcIdType,mcIdType> > slic;
1888              MEDCoupling::DataArrayIdType *daIntTyypp=0;
1889              mcIdType nbc=self->getNumberOfCells();
1890              convertIntStarOrSliceLikePyObjToCpp(listOrDataArrI,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
1891              switch(sw)
1892                {
1893                case 1:
1894                  {
1895                    if(singleVal>=nbc)
1896                      {
1897                        std::ostringstream oss;
1898                        oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1899                        throw INTERP_KERNEL::Exception(oss.str().c_str());
1900                      }
1901                    if(singleVal>=0)
1902                      return self->buildPartOfMySelf(&singleVal,&singleVal+1,true);
1903                    else
1904                      {
1905                        if(nbc+singleVal>0)
1906                          {
1907                            mcIdType tmp=nbc+singleVal;
1908                            return self->buildPartOfMySelf(&tmp,&tmp+1,true);
1909                          }
1910                        else
1911                          {
1912                            std::ostringstream oss;
1913                            oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1914                            throw INTERP_KERNEL::Exception(oss.str().c_str());
1915                          }
1916                      }
1917                  }
1918                case 2:
1919                  {
1920                    return static_cast<MEDCouplingPointSet *>(self->buildPartOfMySelf(&multiVal[0],&multiVal[0]+multiVal.size(),true));
1921                  }
1922                case 3:
1923                  {
1924                    return self->buildPartOfMySelfSlice(slic.first,slic.second.first,slic.second.second,true);
1925                  }
1926                case 4:
1927                  {
1928                    if(!daIntTyypp)
1929                      throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__getitem__ : null instance has been given in input !");
1930                    daIntTyypp->checkAllocated();
1931                    return self->buildPartOfMySelf(daIntTyypp->begin(),daIntTyypp->end(),true);
1932                  }
1933                default:
1934                  throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__getitem__ : unrecognized type in input ! Possibilities are : int, list or tuple of int DataArrayIdType instance !");
1935                }
1936            }
1937            
1938            static void Rotate2DAlg(PyObject *center, double angle, mcIdType nbNodes, PyObject *coords)
1939            {
1940              mcIdType sz;
1941              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1942              INTERP_KERNEL::AutoCPtr<double> coo=convertPyToNewDblArr2(coords,&sz);
1943              MEDCoupling::DataArrayDouble::Rotate2DAlg(c,angle,nbNodes,coo,coo);
1944              for(mcIdType i=0;i<sz;i++)
1945                PyList_SetItem(coords,i,PyFloat_FromDouble(coo[i]));
1946            }
1947            
1948            static void Rotate2DAlg(PyObject *center, double angle, PyObject *coords)
1949            {
1950              mcIdType sz;
1951              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1952              mcIdType sw,nbNodes=0;
1953              double val0;  MEDCoupling::DataArrayDouble *val1=0; MEDCoupling::DataArrayDoubleTuple *val2=0;
1954              std::vector<double> val3;
1955              const double *coo=convertObjToPossibleCpp5_Safe2(coords,sw,val0,val1,val2,val3,
1956                                                             "Rotate2DAlg",2,true,nbNodes);
1957              if(sw!=2 && sw!=3)
1958                throw INTERP_KERNEL::Exception("Invalid call to MEDCouplingPointSet::Rotate2DAlg : try another overload method !");
1959              MEDCoupling::DataArrayDouble::Rotate2DAlg(c,angle,nbNodes,coo,const_cast<double *>(coo));
1960            }
1961            
1962            static void Rotate3DAlg(PyObject *center, PyObject *vect, double angle, mcIdType nbNodes, PyObject *coords)
1963            {
1964              mcIdType sz,sz2;
1965              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1966              INTERP_KERNEL::AutoCPtr<double> coo=convertPyToNewDblArr2(coords,&sz);
1967              INTERP_KERNEL::AutoCPtr<double> v=convertPyToNewDblArr2(vect,&sz2);
1968              MEDCoupling::DataArrayDouble::Rotate3DAlg(c,v,angle,nbNodes,coo,coo);
1969              for(mcIdType i=0;i<sz;i++)
1970                PyList_SetItem(coords,i,PyFloat_FromDouble(coo[i]));
1971            }
1972            
1973            static void Rotate3DAlg(PyObject *center, PyObject *vect, double angle, PyObject *coords)
1974            {
1975              mcIdType sz,sz2;
1976              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1977              mcIdType sw,nbNodes=0;
1978              double val0;  MEDCoupling::DataArrayDouble *val1=0; MEDCoupling::DataArrayDoubleTuple *val2=0;
1979              std::vector<double> val3;
1980              const double *coo=convertObjToPossibleCpp5_Safe2(coords,sw,val0,val1,val2,val3,
1981                                                             "Rotate3DAlg",3,true,nbNodes);
1982              if(sw!=2 && sw!=3)
1983                throw INTERP_KERNEL::Exception("Invalid call to MEDCouplingPointSet::Rotate3DAlg : try another overload method !");
1984              INTERP_KERNEL::AutoCPtr<double> v=convertPyToNewDblArr2(vect,&sz2);
1985              MEDCoupling::DataArrayDouble::Rotate3DAlg(c,v,angle,nbNodes,coo,const_cast<double *>(coo));
1986            }
1987          }
1988     };
1989
1990   //== MEDCouplingPointSet End
1991
1992   class MEDCouplingUMeshCell
1993   {
1994   public:
1995     INTERP_KERNEL::NormalizedCellType getType() const;
1996     %extend
1997       {
1998         std::string __str__() const
1999         {
2000           return self->repr();
2001         }
2002
2003         PyObject *getAllConn() const
2004         {
2005           mcIdType ret2;
2006           const mcIdType *r=self->getAllConn(ret2);
2007           PyObject *ret=PyTuple_New(ret2);
2008           for(mcIdType i=0;i<ret2;i++)
2009             PyTuple_SetItem(ret,i,PyInt_FromLong(r[i]));
2010           return ret;
2011         }
2012       }
2013   };
2014
2015   class MEDCouplingUMeshCellIterator
2016   {
2017   public:
2018     %extend
2019       {
2020         PyObject *next()
2021         {
2022           MEDCouplingUMeshCell *ret=self->nextt();
2023           if(ret)
2024             return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_MEDCoupling__MEDCouplingUMeshCell,0|0);
2025           else
2026             {
2027               PyErr_SetString(PyExc_StopIteration,"No more data.");
2028               return 0;
2029             }
2030         }
2031       }
2032   };
2033
2034   class MEDCouplingUMeshCellByTypeIterator
2035   {
2036   public:
2037     ~MEDCouplingUMeshCellByTypeIterator();
2038     %extend
2039       {
2040         PyObject *next()
2041         {
2042           MEDCouplingUMeshCellEntry *ret=self->nextt();
2043           if(ret)
2044             return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_MEDCoupling__MEDCouplingUMeshCellEntry,SWIG_POINTER_OWN | 0);
2045           else
2046             {
2047               PyErr_SetString(PyExc_StopIteration,"No more data.");
2048               return 0;
2049             }
2050         }
2051       }
2052   };
2053
2054   class MEDCouplingUMeshCellByTypeEntry
2055   {
2056   public:
2057     ~MEDCouplingUMeshCellByTypeEntry();
2058     %extend
2059       {
2060         MEDCouplingUMeshCellByTypeIterator *__iter__()
2061         {
2062           return self->iterator();
2063         }
2064       }
2065   };
2066
2067   class MEDCouplingUMeshCellEntry
2068   {
2069   public:
2070     INTERP_KERNEL::NormalizedCellType getType() const;
2071     int getNumberOfElems() const;
2072     %extend
2073       {
2074         MEDCouplingUMeshCellIterator *__iter__()
2075         {
2076           return self->iterator();
2077         }
2078       }
2079   };
2080   
2081   //== MEDCouplingUMesh
2082
2083   class MEDCouplingUMesh : public MEDCoupling::MEDCouplingPointSet
2084   {
2085   public:
2086     static MEDCouplingUMesh *New();
2087     static MEDCouplingUMesh *New(const char *meshName, int meshDim);
2088     void checkConsistencyLight() const;
2089     void checkGeomConsistency(double eps=1e-12) const;
2090     void setMeshDimension(int meshDim);
2091     void allocateCells(int nbOfCells=0);
2092     void finishInsertingCells();
2093     MEDCouplingUMeshCellByTypeEntry *cellsByType();
2094     void setConnectivity(DataArrayIdType *conn, DataArrayIdType *connIndex, bool isComputingTypes=true);
2095     INTERP_KERNEL::NormalizedCellType getTypeOfCell(int cellId) const;
2096     void setPartOfMySelfSlice(int start, int end, int step, const MEDCouplingUMesh& otherOnSameCoordsThanThis);
2097     int getNodalConnectivityArrayLen() const;
2098     void computeTypes();
2099     std::string reprConnectivityOfThis() const;
2100     MEDCouplingUMesh *buildSetInstanceFromThis(int spaceDim) const;
2101     //tools
2102     DataArrayIdType *conformize2D(double eps);
2103     DataArrayIdType *conformize3D(double eps);
2104     DataArrayIdType *colinearize2D(double eps);
2105     DataArrayIdType *colinearizeKeepingConform2D(double eps);
2106     void shiftNodeNumbersInConn(int delta);
2107     std::vector<bool> getQuadraticStatus() const;
2108     DataArrayIdType *findCellIdsOnBoundary() const;
2109     MEDCouplingUMesh *computeSkin() const;
2110     bool checkConsecutiveCellTypes() const;
2111     bool checkConsecutiveCellTypesForMEDFileFrmt() const;
2112     DataArrayIdType *rearrange2ConsecutiveCellTypes();
2113     DataArrayIdType *sortCellsInMEDFileFrmt();
2114     DataArrayIdType *getRenumArrForMEDFileFrmt() const;
2115     DataArrayIdType *convertCellArrayPerGeoType(const DataArrayIdType *da) const;
2116     MEDCouplingUMesh *buildDescendingConnectivity(DataArrayIdType *desc, DataArrayIdType *descIndx, DataArrayIdType *revDesc, DataArrayIdType *revDescIndx) const;
2117     MEDCouplingUMesh *buildDescendingConnectivity2(DataArrayIdType *desc, DataArrayIdType *descIndx, DataArrayIdType *revDesc, DataArrayIdType *revDescIndx) const;
2118     MEDCouplingUMesh *explode3DMeshTo1D(DataArrayIdType *desc, DataArrayIdType *descIndx, DataArrayIdType *revDesc, DataArrayIdType *revDescIndx) const;
2119     MEDCouplingUMesh *explodeMeshIntoMicroEdges(DataArrayIdType *desc, DataArrayIdType *descIndx, DataArrayIdType *revDesc, DataArrayIdType *revDescIndx) const;
2120     void orientCorrectlyPolyhedrons();
2121     bool isPresenceOfQuadratic() const;
2122     bool isFullyQuadratic() const;
2123     MEDCouplingFieldDouble *buildDirectionVectorField() const;
2124     bool isContiguous1D() const;
2125     void tessellate2D(double eps);
2126     void convertQuadraticCellsToLinear();
2127     DataArrayIdType *convertLinearCellsToQuadratic(int conversionType=0);
2128     void convertDegeneratedCells();
2129     DataArrayIdType *convertDegeneratedCellsAndRemoveFlatOnes();
2130     bool removeDegenerated1DCells();
2131     bool areOnlySimplexCells() const;
2132     MEDCouplingFieldDouble *getEdgeRatioField() const;
2133     MEDCouplingFieldDouble *getAspectRatioField() const;
2134     MEDCouplingFieldDouble *getWarpField() const;
2135     MEDCouplingFieldDouble *getSkewField() const;
2136     DataArrayDouble *computePlaneEquationOf3DFaces() const;
2137     DataArrayIdType *convexEnvelop2D();
2138     std::string cppRepr() const;
2139     DataArrayIdType *findAndCorrectBadOriented3DExtrudedCells();
2140     DataArrayIdType *findAndCorrectBadOriented3DCells();
2141     MEDCoupling::MEDCoupling1GTUMesh *convertIntoSingleGeoTypeMesh() const;
2142     MEDCouplingSkyLineArray *generateGraph() const;
2143     DataArrayIdType *convertNodalConnectivityToStaticGeoTypeMesh() const;
2144     DataArrayIdType *buildUnionOf2DMesh() const;
2145     DataArrayIdType *buildUnionOf3DMesh() const;
2146     DataArrayIdType *orderConsecutiveCells1D() const;
2147     DataArrayDouble *getBoundingBoxForBBTreeFast() const;
2148     DataArrayDouble *getBoundingBoxForBBTree2DQuadratic(double arcDetEps=1e-12) const;
2149     DataArrayDouble *getBoundingBoxForBBTree1DQuadratic(double arcDetEps=1e-12) const;
2150     void changeOrientationOfCells();
2151     void orientCorrectly2DCells(const MEDCouplingUMesh *refFaces);
2152     DataArrayDouble *computeCellCenterOfMassWithPrecision(double eps);
2153     int split2DCells(const DataArrayIdType *desc, const DataArrayIdType *descI, const DataArrayIdType *subNodesInSeg, const DataArrayIdType *subNodesInSegI, const DataArrayIdType *midOpt=0, const DataArrayIdType *midOptI=0);
2154     static MEDCouplingUMesh *Build0DMeshFromCoords(DataArrayDouble *da);
2155     static MEDCouplingUMesh *MergeUMeshes(const MEDCouplingUMesh *mesh1, const MEDCouplingUMesh *mesh2);
2156     static MEDCouplingUMesh *MergeUMeshesOnSameCoords(const MEDCouplingUMesh *mesh1, const MEDCouplingUMesh *mesh2);
2157     static DataArrayIdType *ComputeSpreadZoneGradually(const DataArrayIdType *arrIn, const DataArrayIdType *arrIndxIn);
2158     static DataArrayIdType *ComputeRangesFromTypeDistribution(const std::vector<mcIdType>& code);
2159     %extend {
2160       MEDCouplingUMesh()
2161       {
2162         return MEDCouplingUMesh::New();
2163       }
2164       
2165       MEDCouplingUMesh(const char *meshName, int meshDim)
2166       {
2167         return MEDCouplingUMesh::New(meshName,meshDim);
2168       }
2169
2170       std::string __str__() const
2171       {
2172         return self->simpleRepr();
2173       }
2174       
2175       std::string __repr__() const
2176       {
2177         std::ostringstream oss;
2178         self->reprQuickOverview(oss);
2179         return oss.str();
2180       }
2181       
2182       MEDCouplingUMeshCellIterator *__iter__()
2183       {
2184         return self->cellIterator();
2185       }
2186
2187       static MEDCouplingUMesh *Build1DMeshFromCoords(DataArrayDouble *da)
2188       {
2189         MCAuto<MEDCouplingUMesh> ret(MEDCouplingUMesh::Build1DMeshFromCoords(da));
2190         return ret.retn();
2191       }
2192       
2193       PyObject *getAllGeoTypesSorted() const
2194       {
2195         std::vector<INTERP_KERNEL::NormalizedCellType> result=self->getAllGeoTypesSorted();
2196         std::vector<INTERP_KERNEL::NormalizedCellType>::const_iterator iL=result.begin();
2197         PyObject *res=PyList_New(result.size());
2198         for(int i=0;iL!=result.end(); i++, iL++)
2199           PyList_SetItem(res,i,PyInt_FromLong(*iL));
2200         return res;
2201       }
2202       
2203       void setPartOfMySelf(PyObject *li, const MEDCouplingUMesh& otherOnSameCoordsThanThis)
2204       {
2205         mcIdType sw;
2206         mcIdType singleVal;
2207         std::vector<mcIdType> multiVal;
2208         std::pair<mcIdType, std::pair<mcIdType,mcIdType> > slic;
2209         MEDCoupling::DataArrayIdType *daIntTyypp=0;
2210         mcIdType nbc=self->getNumberOfCells();
2211         convertIntStarOrSliceLikePyObjToCpp(li,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
2212         switch(sw)
2213           {
2214           case 1:
2215             {
2216               if(singleVal>=nbc)
2217                 {
2218                   std::ostringstream oss;
2219                   oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
2220                   throw INTERP_KERNEL::Exception(oss.str().c_str());
2221                 }
2222               if(singleVal>=0)
2223                 {
2224                   self->setPartOfMySelf(&singleVal,&singleVal+1,otherOnSameCoordsThanThis);
2225                   break;
2226                 }
2227               else
2228                 {
2229                   if(nbc+singleVal>0)
2230                     {
2231                       mcIdType tmp=nbc+singleVal;
2232                       self->setPartOfMySelf(&tmp,&tmp+1,otherOnSameCoordsThanThis);
2233                       break;
2234                     }
2235                   else
2236                     {
2237                       std::ostringstream oss;
2238                       oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
2239                       throw INTERP_KERNEL::Exception(oss.str().c_str());
2240                     }
2241                 }
2242             }
2243           case 2:
2244             {
2245               self->setPartOfMySelf(&multiVal[0],&multiVal[0]+multiVal.size(),otherOnSameCoordsThanThis);
2246               break;
2247             }
2248           case 4:
2249             {
2250               if(!daIntTyypp)
2251                 throw INTERP_KERNEL::Exception("MEDCouplingUMesh::setPartOfMySelf : null instance has been given in input !");
2252               daIntTyypp->checkAllocated();
2253               self->setPartOfMySelf(daIntTyypp->begin(),daIntTyypp->end(),otherOnSameCoordsThanThis);
2254               break;
2255             }
2256           default:
2257             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::setPartOfMySelf : unrecognized type in input ! Possibilities are : int, list or tuple of int DataArrayIdType instance !");
2258           }
2259       }
2260
2261       void __setitem__(PyObject *li, const MEDCouplingUMesh& otherOnSameCoordsThanThis)
2262       {
2263         mcIdType sw;
2264         mcIdType singleVal;
2265         std::vector<mcIdType> multiVal;
2266         std::pair<mcIdType, std::pair<mcIdType,mcIdType> > slic;
2267         MEDCoupling::DataArrayIdType *daIntTyypp=0;
2268         mcIdType nbc=self->getNumberOfCells();
2269         convertIntStarOrSliceLikePyObjToCpp(li,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
2270         switch(sw)
2271           {
2272           case 1:
2273             {
2274               if(singleVal>=nbc)
2275                 {
2276                   std::ostringstream oss;
2277                   oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
2278                   throw INTERP_KERNEL::Exception(oss.str().c_str());
2279                 }
2280               if(singleVal>=0)
2281                 {
2282                   self->setPartOfMySelf(&singleVal,&singleVal+1,otherOnSameCoordsThanThis);
2283                   break;
2284                 }
2285               else
2286                 {
2287                   if(nbc+singleVal>0)
2288                     {
2289                       mcIdType tmp=nbc+singleVal;
2290                       self->setPartOfMySelf(&tmp,&tmp+1,otherOnSameCoordsThanThis);
2291                       break;
2292                     }
2293                   else
2294                     {
2295                       std::ostringstream oss;
2296                       oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
2297                       throw INTERP_KERNEL::Exception(oss.str().c_str());
2298                     }
2299                 }
2300             }
2301           case 2:
2302             {
2303               self->setPartOfMySelf(&multiVal[0],&multiVal[0]+multiVal.size(),otherOnSameCoordsThanThis);
2304               break;
2305             }
2306           case 3:
2307             {
2308               self->setPartOfMySelfSlice(slic.first,slic.second.first,slic.second.second,otherOnSameCoordsThanThis);
2309               break;
2310             }
2311           case 4:
2312             {
2313               if(!daIntTyypp)
2314                 throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__setitem__ : null instance has been given in input !");
2315               daIntTyypp->checkAllocated();
2316               self->setPartOfMySelf(daIntTyypp->begin(),daIntTyypp->end(),otherOnSameCoordsThanThis);
2317               break;
2318             }
2319           default:
2320             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__setitem__ : unrecognized type in input ! Possibilities are : int, list or tuple of int, slice, DataArrayIdType instance !");
2321           }
2322       }
2323
2324       void insertNextCell(INTERP_KERNEL::NormalizedCellType type, mcIdType size, PyObject *li)
2325       {
2326         mcIdType szArr,sw,iTypppArr;
2327         std::vector<mcIdType> stdvecTyyppArr;
2328         const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
2329         if(size>szArr)
2330           {
2331             std::ostringstream oss; oss << "Wrap of MEDCouplingUMesh::insertNextCell : request of connectivity with length " << size << " whereas the length of input is " << szArr << " !";
2332             throw INTERP_KERNEL::Exception(oss.str().c_str());
2333           }
2334         self->insertNextCell(type,size,tmp);
2335       }
2336
2337       void insertNextCell(INTERP_KERNEL::NormalizedCellType type, PyObject *li)
2338       {
2339         mcIdType szArr,sw,iTypppArr;
2340         std::vector<mcIdType> stdvecTyyppArr;
2341         const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
2342         self->insertNextCell(type,szArr,tmp);
2343       }
2344       
2345       DataArrayIdType *getNodalConnectivity()
2346       {
2347         DataArrayIdType *ret=self->getNodalConnectivity();
2348         if(ret)
2349           ret->incrRef();
2350         return ret;
2351       }
2352       DataArrayIdType *getNodalConnectivityIndex()
2353       {
2354         DataArrayIdType *ret=self->getNodalConnectivityIndex();
2355         if(ret)
2356           ret->incrRef();
2357         return ret;
2358       }
2359       
2360       static PyObject *ComputeSpreadZoneGraduallyFromSeed(PyObject *seed, const DataArrayIdType *arrIn, const DataArrayIdType *arrIndxIn, mcIdType nbOfDepthPeeling=-1)
2361       {
2362         mcIdType szArr,sw,iTypppArr;
2363         std::vector<mcIdType> stdvecTyyppArr;
2364         const mcIdType *seedPtr=convertIntStarLikePyObjToCppIntStar(seed,sw,szArr,iTypppArr,stdvecTyyppArr);
2365         mcIdType nbOfDepthPeelingPerformed=0;
2366         DataArrayIdType *ret0=MEDCouplingUMesh::ComputeSpreadZoneGraduallyFromSeed(seedPtr,seedPtr+szArr,arrIn,arrIndxIn,nbOfDepthPeeling,nbOfDepthPeelingPerformed);
2367         PyObject *res=PyTuple_New(2);
2368         PyTuple_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2369         PyTuple_SetItem(res,1,PyInt_FromLong(nbOfDepthPeelingPerformed));
2370         return res;
2371       }
2372
2373       static PyObject *FindCommonCellsAlg(int compType, mcIdType startCellId, const DataArrayIdType *nodal, const DataArrayIdType *nodalI, const DataArrayIdType *revNodal, const DataArrayIdType *revNodalI)
2374       {
2375         DataArrayIdType *v0=0,*v1=0;
2376         MEDCouplingUMesh::FindCommonCellsAlg(compType,startCellId,nodal,nodalI,revNodal,revNodalI,v0,v1);
2377         PyObject *res = PyList_New(2);
2378         PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(v0),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2379         PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(v1),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2380         return res;
2381       }
2382       
2383       PyObject *distanceToPoint(PyObject *point) const
2384       {
2385         double val;
2386         DataArrayDouble *a;
2387         DataArrayDoubleTuple *aa;
2388         std::vector<double> bb;
2389         mcIdType sw;
2390         int nbOfCompo=self->getSpaceDimension();
2391         const double *pt=convertObjToPossibleCpp5_Safe(point,sw,val,a,aa,bb,"Python wrap of MEDCouplingUMesh::distanceToPoint",1,nbOfCompo,true);
2392         //
2393         mcIdType cellId=-1;
2394         double ret0=self->distanceToPoint(pt,pt+nbOfCompo,cellId);
2395         PyObject *ret=PyTuple_New(2);
2396         PyTuple_SetItem(ret,0,PyFloat_FromDouble(ret0));
2397         PyTuple_SetItem(ret,1,PyInt_FromLong(cellId));
2398         return ret;
2399       }
2400
2401       PyObject *distanceToPoints(const DataArrayDouble *pts) const
2402       {
2403         DataArrayIdType *ret1=0;
2404         DataArrayDouble *ret0=self->distanceToPoints(pts,ret1);
2405         PyObject *ret=PyTuple_New(2);
2406         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
2407         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2408         return ret;
2409       }
2410
2411       PyObject *tetrahedrize(int policy)
2412       {
2413         mcIdType ret2(-1);
2414         DataArrayIdType *ret1(0);
2415         MEDCoupling1SGTUMesh *ret0(self->tetrahedrize(policy,ret1,ret2));
2416         PyObject *ret=PyTuple_New(3);
2417         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__MEDCoupling1SGTUMesh, SWIG_POINTER_OWN | 0 ));
2418         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2419         PyTuple_SetItem(ret,2,PyInt_FromLong(ret2));
2420         return ret;
2421       }
2422       
2423       PyObject *checkButterflyCells(double eps=1e-12)
2424       {
2425         std::vector<mcIdType> cells;
2426         self->checkButterflyCells(cells,eps);
2427         DataArrayIdType *ret=DataArrayIdType::New();
2428         ret->alloc(cells.size(),1);
2429         std::copy(cells.begin(),cells.end(),ret->getPointer());
2430         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 );
2431       }
2432
2433       PyObject *splitByType() const
2434       {
2435         std::vector<MEDCouplingUMesh *> ms=self->splitByType();
2436         std::size_t sz=ms.size();
2437         PyObject *ret = PyList_New(sz);
2438         for(std::size_t i=0;i<sz;i++)
2439           PyList_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(ms[i]),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2440         return ret;
2441       }
2442
2443       PyObject *partitionBySpreadZone() const
2444       {
2445         std::vector<DataArrayIdType *> retCpp=self->partitionBySpreadZone();
2446         std::size_t sz=retCpp.size();
2447         PyObject *ret=PyList_New(sz);
2448         for(std::size_t i=0;i<sz;i++)
2449           PyList_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(retCpp[i]),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2450         return ret;
2451       }
2452
2453       static PyObject *PartitionBySpreadZone(const DataArrayIdType *arrIn, const DataArrayIdType *arrIndxIn)
2454       {
2455         std::vector<DataArrayIdType *> retCpp(MEDCouplingUMesh::PartitionBySpreadZone(arrIn,arrIndxIn));
2456         std::size_t sz=retCpp.size();
2457         PyObject *ret=PyList_New(sz);
2458         for(std::size_t i=0;i<sz;i++)
2459           PyList_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(retCpp[i]),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2460         return ret;
2461       }
2462
2463       PyObject *keepSpecifiedCells(INTERP_KERNEL::NormalizedCellType type, PyObject *ids) const
2464       {
2465         mcIdType size;
2466         INTERP_KERNEL::AutoPtr<mcIdType> tmp=convertPyToNewIntArr2(ids,&size);
2467         MEDCouplingUMesh *ret=self->keepSpecifiedCells(type,tmp,tmp+size);
2468         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 );
2469       }
2470
2471       bool checkConsecutiveCellTypesAndOrder(PyObject *li) const
2472       {
2473         mcIdType sz;
2474         INTERP_KERNEL::AutoPtr<INTERP_KERNEL::NormalizedCellType> order=convertPyToNewIntArr2<INTERP_KERNEL::NormalizedCellType>(li,&sz);
2475         bool ret=self->checkConsecutiveCellTypesAndOrder(order,order+sz);
2476         return ret;
2477       }
2478
2479       DataArrayIdType *getRenumArrForConsecutiveCellTypesSpec(PyObject *li) const
2480       {
2481         mcIdType sz;
2482         INTERP_KERNEL::AutoPtr<INTERP_KERNEL::NormalizedCellType> order=convertPyToNewIntArr2<INTERP_KERNEL::NormalizedCellType>(li,&sz);
2483         DataArrayIdType *ret=self->getRenumArrForConsecutiveCellTypesSpec(order,(INTERP_KERNEL::NormalizedCellType *)order+sz);
2484         return ret;
2485       }
2486
2487       DataArrayIdType *findNodesToDuplicate(const MEDCouplingUMesh& otherDimM1OnSameCoords) const
2488       {
2489         DataArrayIdType *ret=self->findNodesToDuplicate(otherDimM1OnSameCoords);
2490         return ret;
2491       }
2492
2493       PyObject *findCellsToRenumber(const MEDCouplingUMesh& otherDimM1OnSameCoords, const DataArrayIdType *dupNodes) const
2494       {
2495         DataArrayIdType *tmp0=0,*tmp1=0;
2496         self->findCellsToRenumber(otherDimM1OnSameCoords,dupNodes->begin(), dupNodes->end(), tmp0,tmp1);
2497         PyObject *ret=PyTuple_New(2);
2498         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(tmp0),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2499         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp1),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2500         return ret;
2501       }
2502
2503       PyObject *findCellIdsLyingOn(const MEDCouplingUMesh& otherDimM1OnSameCoords) const
2504       {
2505         DataArrayIdType *tmp0=0,*tmp1=0;
2506         self->findCellIdsLyingOn(otherDimM1OnSameCoords,tmp0,tmp1);
2507         PyObject *ret=PyTuple_New(2);
2508         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(tmp0),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2509         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp1),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2510         return ret;
2511       }
2512
2513       void duplicateNodes(PyObject *li)
2514       {
2515         mcIdType sw;
2516         mcIdType singleVal;
2517         std::vector<mcIdType> multiVal;
2518         std::pair<mcIdType, std::pair<mcIdType,mcIdType> > slic;
2519         MEDCoupling::DataArrayIdType *daIntTyypp=0;
2520         convertIntStarOrSliceLikePyObjToCpp(li,self->getNumberOfNodes(),sw,singleVal,multiVal,slic,daIntTyypp);
2521         switch(sw)
2522           {
2523           case 1:
2524             return self->duplicateNodes(&singleVal,&singleVal+1);
2525           case 2:
2526             return self->duplicateNodes(&multiVal[0],&multiVal[0]+multiVal.size());
2527           case 4:
2528             return self->duplicateNodes(daIntTyypp->begin(),daIntTyypp->end());
2529           default:
2530             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::duplicateNodes : unrecognized type entered, expected list of int, tuple of int or DataArrayIdType !");
2531           }
2532       }
2533
2534       void duplicateNodesInConn(PyObject *li, mcIdType offset)
2535       {
2536         mcIdType sw;
2537         mcIdType singleVal;
2538         std::vector<mcIdType> multiVal;
2539         std::pair<mcIdType, std::pair<mcIdType,mcIdType> > slic;
2540         MEDCoupling::DataArrayIdType *daIntTyypp=0;
2541         convertIntStarOrSliceLikePyObjToCpp(li,self->getNumberOfNodes(),sw,singleVal,multiVal,slic,daIntTyypp);
2542         switch(sw)
2543           {
2544           case 1:
2545             return self->duplicateNodesInConn(&singleVal,&singleVal+1,offset);
2546           case 2:
2547             return self->duplicateNodesInConn(&multiVal[0],&multiVal[0]+multiVal.size(),offset);
2548           case 4:
2549             return self->duplicateNodesInConn(daIntTyypp->begin(),daIntTyypp->end(),offset);
2550           default:
2551             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::duplicateNodesInConn : unrecognized type entered, expected list of int, tuple of int or DataArrayIdType !");
2552           }
2553       }
2554
2555       void attractSeg3MidPtsAroundNodes(double ratio, PyObject *nodeIds)
2556       {
2557         mcIdType szArr,sw,iTypppArr;
2558         std::vector<mcIdType> stdvecTyyppArr;
2559         const mcIdType *nodeIdsPtr(convertIntStarLikePyObjToCppIntStar(nodeIds,sw,szArr,iTypppArr,stdvecTyyppArr));
2560         self->attractSeg3MidPtsAroundNodes(ratio,nodeIdsPtr,nodeIdsPtr+szArr);
2561       }
2562
2563       PyObject *getLevArrPerCellTypes(PyObject *li) const
2564       {
2565         mcIdType sz;
2566         INTERP_KERNEL::AutoPtr<INTERP_KERNEL::NormalizedCellType> order=convertPyToNewIntArr2<INTERP_KERNEL::NormalizedCellType>(li,&sz);
2567         DataArrayIdType *tmp0,*tmp1=0;
2568         tmp0=self->getLevArrPerCellTypes(order,(INTERP_KERNEL::NormalizedCellType *)order+sz,tmp1);
2569         PyObject *ret=PyTuple_New(2);
2570         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(tmp0),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2571         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp1),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2572         return ret;
2573       }
2574
2575       PyObject *convertNodalConnectivityToDynamicGeoTypeMesh() const
2576       {
2577         DataArrayIdType *ret0=0,*ret1=0;
2578         self->convertNodalConnectivityToDynamicGeoTypeMesh(ret0,ret1);
2579         PyObject *ret=PyTuple_New(2);
2580         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2581         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2582         return ret;
2583       }
2584
2585       static PyObject *AggregateSortedByTypeMeshesOnSameCoords(PyObject *ms)
2586       {
2587         std::vector<const MEDCoupling::MEDCouplingUMesh *> meshes;
2588         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingUMesh *>(ms,SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2589         DataArrayIdType *ret1=0,*ret2=0;
2590         MEDCouplingUMesh *ret0=MEDCouplingUMesh::AggregateSortedByTypeMeshesOnSameCoords(meshes,ret1,ret2);
2591         PyObject *ret=PyTuple_New(3);
2592         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2593         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2594         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(ret2),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2595         return ret;
2596       }
2597
2598       static PyObject *MergeUMeshesOnSameCoords(PyObject *ms)
2599       {
2600         std::vector<const MEDCoupling::MEDCouplingUMesh *> meshes;
2601         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingUMesh *>(ms,SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2602         MEDCouplingUMesh *ret=MEDCouplingUMesh::MergeUMeshesOnSameCoords(meshes);
2603         return convertMesh(ret, SWIG_POINTER_OWN | 0 );
2604       }
2605
2606       static PyObject *FuseUMeshesOnSameCoords(PyObject *ms, int compType)
2607       {
2608         std::size_t sz;
2609         std::vector<const MEDCouplingUMesh *> meshes;
2610         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingUMesh *>(ms,SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2611         std::vector<DataArrayIdType *> corr;
2612         MEDCouplingUMesh *um=MEDCouplingUMesh::FuseUMeshesOnSameCoords(meshes,compType,corr);
2613         sz=corr.size();
2614         PyObject *ret1=PyList_New(sz);
2615         for(std::size_t i=0;i<sz;i++)
2616           PyList_SetItem(ret1,i,SWIG_NewPointerObj(SWIG_as_voidptr(corr[i]),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2617         PyObject *ret=PyList_New(2);
2618         PyList_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(um),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2619         PyList_SetItem(ret,1,ret1);
2620         return ret;
2621       }
2622
2623       static void PutUMeshesOnSameAggregatedCoords(PyObject *ms)
2624       {
2625         std::vector<MEDCouplingUMesh *> meshes;
2626         convertFromPyObjVectorOfObj<MEDCoupling::MEDCouplingUMesh *>(ms,SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2627         MEDCouplingUMesh::PutUMeshesOnSameAggregatedCoords(meshes);
2628       }
2629
2630       static void MergeNodesOnUMeshesSharingSameCoords(PyObject *ms, double eps)
2631       {
2632         std::vector<MEDCouplingUMesh *> meshes;
2633         convertFromPyObjVectorOfObj<MEDCoupling::MEDCouplingUMesh *>(ms,SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2634         MEDCouplingUMesh::MergeNodesOnUMeshesSharingSameCoords(meshes,eps);
2635       }
2636
2637       PyObject *are2DCellsNotCorrectlyOriented(PyObject *vec, bool polyOnly) const
2638       {
2639         double val;
2640         DataArrayDouble *a;
2641         DataArrayDoubleTuple *aa;
2642         std::vector<double> bb;
2643         mcIdType sw;
2644         int spaceDim=self->getSpaceDimension();
2645         const char msg[]="Python wrap of MEDCouplingUMesh::are2DCellsNotCorrectlyOriented : ";
2646         const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val,a,aa,bb,msg,1,spaceDim,true);
2647         //
2648         std::vector<mcIdType> cells;
2649         self->are2DCellsNotCorrectlyOriented(v,polyOnly,cells);
2650         DataArrayIdType *ret=DataArrayIdType::New();
2651         ret->alloc(cells.size(),1);
2652         std::copy(cells.begin(),cells.end(),ret->getPointer());
2653         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 );
2654       }
2655
2656       void orientCorrectly2DCells(PyObject *vec, bool polyOnly)
2657       {
2658         double val;
2659         DataArrayDouble *a;
2660         DataArrayDoubleTuple *aa;
2661         std::vector<double> bb;
2662         mcIdType sw;
2663         int spaceDim=self->getSpaceDimension();
2664         const char msg[]="Python wrap of MEDCouplingUMesh::orientCorrectly2DCells : ";
2665         const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val,a,aa,bb,msg,1,spaceDim,true);
2666         self->orientCorrectly2DCells(v,polyOnly);
2667       }
2668       
2669       PyObject *arePolyhedronsNotCorrectlyOriented() const
2670       {
2671         std::vector<mcIdType> cells;
2672         self->arePolyhedronsNotCorrectlyOriented(cells);
2673         DataArrayIdType *ret=DataArrayIdType::New();
2674         ret->alloc(cells.size(),1);
2675         std::copy(cells.begin(),cells.end(),ret->getPointer());
2676         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 );
2677       }
2678
2679       PyObject *getFastAveragePlaneOfThis() const
2680       {
2681         double vec[3];
2682         double pos[3];
2683         self->getFastAveragePlaneOfThis(vec,pos);
2684         double vals[6];
2685         std::copy(vec,vec+3,vals);
2686         std::copy(pos,pos+3,vals+3);
2687         return convertDblArrToPyListOfTuple<double>(vals,3,2);
2688       }
2689       
2690       static MEDCouplingUMesh *MergeUMeshes(PyObject *li)
2691       {
2692         std::vector<const MEDCoupling::MEDCouplingUMesh *> tmp;
2693         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingUMesh *>(li,SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh,"MEDCouplingUMesh",tmp);
2694         return MEDCouplingUMesh::MergeUMeshes(tmp);
2695       }
2696
2697       PyObject *areCellsIncludedIn(const MEDCouplingUMesh *other, int compType) const
2698       {
2699         DataArrayIdType *ret1;
2700         bool ret0=self->areCellsIncludedIn(other,compType,ret1);
2701         PyObject *ret=PyTuple_New(2);
2702         PyObject *ret0Py=ret0?Py_True:Py_False;
2703         Py_XINCREF(ret0Py);
2704         PyTuple_SetItem(ret,0,ret0Py);
2705         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2706         return ret;
2707       }
2708
2709       PyObject *areCellsIncludedInPolicy7(const MEDCouplingUMesh *other) const
2710       {
2711         DataArrayIdType *ret1;
2712         bool ret0=self->areCellsIncludedInPolicy7(other,ret1);
2713         PyObject *ret=PyTuple_New(2);
2714         PyObject *ret0Py=ret0?Py_True:Py_False;
2715         Py_XINCREF(ret0Py);
2716         PyTuple_SetItem(ret,0,ret0Py);
2717         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2718         return ret;
2719       }
2720
2721       PyObject *explode3DMeshTo1D() const
2722       {
2723         MCAuto<DataArrayIdType> d0=DataArrayIdType::New();
2724         MCAuto<DataArrayIdType> d1=DataArrayIdType::New();
2725         MCAuto<DataArrayIdType> d2=DataArrayIdType::New();
2726         MCAuto<DataArrayIdType> d3=DataArrayIdType::New();
2727         MEDCouplingUMesh *m=self->explode3DMeshTo1D(d0,d1,d2,d3);
2728         PyObject *ret=PyTuple_New(5);
2729         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2730         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2731         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2732         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2733         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2734         return ret;
2735       }
2736
2737       PyObject *explodeIntoEdges() const
2738       {
2739         MCAuto<DataArrayIdType> desc,descIndex,revDesc,revDescIndx;
2740         MCAuto<MEDCouplingUMesh> m(self->explodeIntoEdges(desc,descIndex,revDesc,revDescIndx));
2741         PyObject *ret=PyTuple_New(5);
2742         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m.retn()),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2743         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(desc.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2744         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(descIndex.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2745         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(revDesc.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2746         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(revDescIndx.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2747         return ret;
2748       }
2749
2750       PyObject *explodeMeshIntoMicroEdges() const
2751       {
2752         MCAuto<DataArrayIdType> d0=DataArrayIdType::New();
2753         MCAuto<DataArrayIdType> d1=DataArrayIdType::New();
2754         MCAuto<DataArrayIdType> d2=DataArrayIdType::New();
2755         MCAuto<DataArrayIdType> d3=DataArrayIdType::New();
2756         MEDCouplingUMesh *m=self->explodeMeshIntoMicroEdges(d0,d1,d2,d3);
2757         PyObject *ret=PyTuple_New(5);
2758         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2759         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2760         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2761         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2762         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2763         return ret;
2764       }
2765
2766       PyObject *buildDescendingConnectivity() const
2767       {
2768         MCAuto<DataArrayIdType> d0=DataArrayIdType::New();
2769         MCAuto<DataArrayIdType> d1=DataArrayIdType::New();
2770         MCAuto<DataArrayIdType> d2=DataArrayIdType::New();
2771         MCAuto<DataArrayIdType> d3=DataArrayIdType::New();
2772         MEDCouplingUMesh *m=self->buildDescendingConnectivity(d0,d1,d2,d3);
2773         PyObject *ret=PyTuple_New(5);
2774         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2775         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2776         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2777         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2778         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2779         return ret;
2780       }
2781
2782       PyObject *buildDescendingConnectivity2() const
2783       {
2784         MCAuto<DataArrayIdType> d0=DataArrayIdType::New();
2785         MCAuto<DataArrayIdType> d1=DataArrayIdType::New();
2786         MCAuto<DataArrayIdType> d2=DataArrayIdType::New();
2787         MCAuto<DataArrayIdType> d3=DataArrayIdType::New();
2788         MEDCouplingUMesh *m=self->buildDescendingConnectivity2(d0,d1,d2,d3);
2789         PyObject *ret=PyTuple_New(5);
2790         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2791         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2792         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2793         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2794         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2795         return ret;
2796       }
2797       
2798       PyObject *computeNeighborsOfCells() const
2799       {
2800         DataArrayIdType *neighbors=0,*neighborsIdx=0;
2801         self->computeNeighborsOfCells(neighbors,neighborsIdx);
2802         PyObject *ret=PyTuple_New(2);
2803         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(neighbors),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2804         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(neighborsIdx),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2805         return ret;
2806       }
2807
2808       PyObject *computeNeighborsOfNodes() const
2809       {
2810         DataArrayIdType *neighbors=0,*neighborsIdx=0;
2811         self->computeNeighborsOfNodes(neighbors,neighborsIdx);
2812         PyObject *ret=PyTuple_New(2);
2813         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(neighbors),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2814         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(neighborsIdx),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2815         return ret;
2816       }
2817
2818       PyObject *computeEnlargedNeighborsOfNodes() const
2819       {
2820         MCAuto<DataArrayIdType> neighbors,neighborsIdx;
2821         self->computeEnlargedNeighborsOfNodes(neighbors,neighborsIdx);
2822         PyObject *ret=PyTuple_New(2);
2823         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(neighbors.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2824         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(neighborsIdx.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2825         return ret;
2826       }
2827       
2828       PyObject *computeCellNeighborhoodFromNodesOne(const DataArrayIdType *nodeNeigh, const DataArrayIdType *nodeNeighI) const
2829       {
2830         MCAuto<DataArrayIdType> cellNeigh,cellNeighIndex;
2831         self->computeCellNeighborhoodFromNodesOne(nodeNeigh,nodeNeighI,cellNeigh,cellNeighIndex);
2832         PyObject *ret=PyTuple_New(2);
2833         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(cellNeigh.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2834         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellNeighIndex.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2835         return ret;
2836       }
2837       
2838       static PyObject *ComputeNeighborsOfCellsAdv(const DataArrayIdType *desc, const DataArrayIdType *descI, const DataArrayIdType *revDesc, const DataArrayIdType *revDescI)
2839       {
2840         DataArrayIdType *neighbors=0,*neighborsIdx=0;
2841         MEDCouplingUMesh::ComputeNeighborsOfCellsAdv(desc,descI,revDesc,revDescI,neighbors,neighborsIdx);
2842         PyObject *ret=PyTuple_New(2);
2843         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(neighbors),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2844         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(neighborsIdx),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2845         return ret;
2846       }
2847
2848       PyObject *emulateMEDMEMBDC(const MEDCouplingUMesh *nM1LevMesh)
2849       {
2850         MCAuto<DataArrayIdType> d0=DataArrayIdType::New();
2851         MCAuto<DataArrayIdType> d1=DataArrayIdType::New();
2852         DataArrayIdType *d2,*d3,*d4,*dd5;
2853         MEDCouplingUMesh *mOut=self->emulateMEDMEMBDC(nM1LevMesh,d0,d1,d2,d3,d4,dd5);
2854         PyObject *ret=PyTuple_New(7);
2855         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(mOut),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2856         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2857         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2858         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2859         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2860         PyTuple_SetItem(ret,5,SWIG_NewPointerObj(SWIG_as_voidptr(d4),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2861         PyTuple_SetItem(ret,6,SWIG_NewPointerObj(SWIG_as_voidptr(dd5),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2862         return ret;
2863       }
2864
2865       DataArrayDouble *getPartBarycenterAndOwner(DataArrayIdType *da) const
2866       {
2867         if(!da)
2868           throw INTERP_KERNEL::Exception("Not null DataArrayIdType instance expected !");
2869         da->checkAllocated();
2870         return self->getPartBarycenterAndOwner(da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2871       }
2872
2873       DataArrayDouble *getPartMeasureField(bool isAbs, DataArrayIdType *da) const
2874       {
2875         if(!da)
2876           throw INTERP_KERNEL::Exception("Not null DataArrayIdType instance expected !");
2877         da->checkAllocated();
2878         return self->getPartMeasureField(isAbs,da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2879       }
2880
2881       MEDCouplingFieldDouble *buildPartOrthogonalField(DataArrayIdType *da) const
2882       {
2883         if(!da)
2884           throw INTERP_KERNEL::Exception("Not null DataArrayIdType instance expected !");
2885         da->checkAllocated();
2886         return self->buildPartOrthogonalField(da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2887       }
2888
2889       PyObject *getTypesOfPart(DataArrayIdType *da) const
2890       {
2891         if(!da)
2892           throw INTERP_KERNEL::Exception("Not null DataArrayIdType instance expected !");
2893         da->checkAllocated();
2894         std::set<INTERP_KERNEL::NormalizedCellType> result=self->getTypesOfPart(da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2895         std::set<INTERP_KERNEL::NormalizedCellType>::const_iterator iL=result.begin();
2896         PyObject *res = PyList_New(result.size());
2897         for (int i=0;iL!=result.end(); i++, iL++)
2898           PyList_SetItem(res,i,PyInt_FromLong(*iL));
2899         return res;
2900       }
2901
2902       DataArrayIdType *keepCellIdsByType(INTERP_KERNEL::NormalizedCellType type, DataArrayIdType *da) const
2903       {
2904         if(!da)
2905           throw INTERP_KERNEL::Exception("Not null DataArrayIdType instance expected !");
2906         da->checkAllocated();
2907         DataArrayIdType *ret=self->keepCellIdsByType(type,da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2908         ret->setName(da->getName().c_str());
2909         return ret;
2910       }
2911
2912       static PyObject *Intersect2DMeshes(const MEDCouplingUMesh *m1, const MEDCouplingUMesh *m2, double eps)
2913       {
2914         DataArrayIdType *cellNb1=0,*cellNb2=0;
2915         MEDCouplingUMesh *mret=MEDCouplingUMesh::Intersect2DMeshes(m1,m2,eps,cellNb1,cellNb2);
2916         PyObject *ret=PyTuple_New(3);
2917         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(mret),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2918         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellNb1),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2919         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(cellNb2),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2920         return ret;
2921       }
2922
2923       static PyObject *Intersect2DMeshWith1DLine(const MEDCouplingUMesh *mesh2D, const MEDCouplingUMesh *mesh1D, double eps)
2924       {
2925         MEDCouplingUMesh *splitMesh2D(0),*splitMesh1D(0);
2926         DataArrayIdType *cellIdInMesh2D(0),*cellIdInMesh1D(0);
2927         MEDCouplingUMesh::Intersect2DMeshWith1DLine(mesh2D,mesh1D,eps,splitMesh2D,splitMesh1D,cellIdInMesh2D,cellIdInMesh1D);
2928         PyObject *ret(PyTuple_New(4));
2929         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(splitMesh2D),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2930         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(splitMesh1D),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2931         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(cellIdInMesh2D),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2932         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(cellIdInMesh1D),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2933         return ret;
2934       }
2935
2936       PyObject *buildSlice3D(PyObject *origin, PyObject *vec, double eps) const
2937       {
2938         int spaceDim=self->getSpaceDimension();
2939         if(spaceDim!=3)
2940           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingUMesh::buildSlice3D : works only for spaceDim 3 !");
2941         double val,val2;
2942         DataArrayDouble *a,*a2;
2943         DataArrayDoubleTuple *aa,*aa2;
2944         std::vector<double> bb,bb2;
2945         mcIdType sw;
2946         const char msg[]="Python wrap of MEDCouplingUMesh::buildSlice3D : 1st parameter for origin.";
2947         const char msg2[]="Python wrap of MEDCouplingUMesh::buildSlice3D : 2nd parameter for vector.";
2948         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
2949         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
2950         //
2951         DataArrayIdType *cellIds=0;
2952         MEDCouplingUMesh *ret0=self->buildSlice3D(orig,vect,eps,cellIds);
2953         PyObject *ret=PyTuple_New(2);
2954         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2955         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellIds),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2956         return ret;
2957       }
2958
2959       PyObject *buildSlice3DSurf(PyObject *origin, PyObject *vec, double eps) const
2960       {
2961         int spaceDim=self->getSpaceDimension();
2962         if(spaceDim!=3)
2963           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingUMesh::buildSlice3DSurf : works only for spaceDim 3 !");
2964         double val,val2;
2965         DataArrayDouble *a,*a2;
2966         DataArrayDoubleTuple *aa,*aa2;
2967         std::vector<double> bb,bb2;
2968         mcIdType sw;
2969         const char msg[]="Python wrap of MEDCouplingUMesh::buildSlice3DSurf : 1st parameter for origin.";
2970         const char msg2[]="Python wrap of MEDCouplingUMesh::buildSlice3DSurf : 2nd parameter for vector.";
2971         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
2972         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
2973         //
2974         DataArrayIdType *cellIds=0;
2975         MEDCouplingUMesh *ret0=self->buildSlice3DSurf(orig,vect,eps,cellIds);
2976         PyObject *ret=PyTuple_New(2);
2977         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2978         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellIds),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
2979         return ret;
2980       }
2981
2982       MEDCouplingUMesh *clipSingle3DCellByPlane(PyObject *origin, PyObject *vec, double eps) const
2983       {
2984         double val,val2;
2985         DataArrayDouble *a,*a2;
2986         DataArrayDoubleTuple *aa,*aa2;
2987         std::vector<double> bb,bb2;
2988         mcIdType sw;
2989         const char msg[]="Python wrap of MEDCouplingUMesh::clipSingle3DCellByPlane : 1st parameter for origin.";
2990         const char msg2[]="Python wrap of MEDCouplingUMesh::clipSingle3DCellByPlane : 2nd parameter for vector.";
2991         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,3,true);
2992         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,3,true);
2993         MCAuto<MEDCouplingUMesh> ret(self->clipSingle3DCellByPlane(orig,vect,eps));
2994         return ret.retn();
2995       }
2996
2997       DataArrayIdType *getCellIdsCrossingPlane(PyObject *origin, PyObject *vec, double eps) const
2998       {
2999         int spaceDim=self->getSpaceDimension();
3000         if(spaceDim!=3)
3001           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingUMesh::getCellIdsCrossingPlane : works only for spaceDim 3 !");
3002         double val,val2;
3003         DataArrayDouble *a,*a2;
3004         DataArrayDoubleTuple *aa,*aa2;
3005         std::vector<double> bb,bb2;
3006         mcIdType sw;
3007         const char msg[]="Python wrap of MEDCouplingUMesh::getCellIdsCrossingPlane : 1st parameter for origin.";
3008         const char msg2[]="Python wrap of MEDCouplingUMesh::getCellIdsCrossingPlane : 2nd parameter for vector.";
3009         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
3010         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
3011         return self->getCellIdsCrossingPlane(orig,vect,eps);
3012       }
3013
3014       void convertToPolyTypes(PyObject *li)
3015       {
3016         mcIdType sw;
3017         mcIdType pos1;
3018         std::vector<mcIdType> pos2;
3019         DataArrayIdType *pos3=0;
3020         DataArrayIdTypeTuple *pos4=0;
3021         convertIntStarLikePyObjToCpp(li,sw,pos1,pos2,pos3,pos4);
3022         switch(sw)
3023           {
3024           case 1:
3025             {
3026               self->convertToPolyTypes(&pos1,&pos1+1);
3027               return;
3028             }
3029           case 2:
3030             {
3031               if(pos2.empty())
3032                 return;
3033               self->convertToPolyTypes(&pos2[0],&pos2[0]+pos2.size());
3034               return ;
3035             }
3036           case 3:
3037             {
3038               self->convertToPolyTypes(pos3->begin(),pos3->end());
3039               return ;
3040             }
3041           default:
3042             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::convertToPolyTypes : unexpected input array type recognized !");
3043           }
3044       }      
3045     }
3046     void convertAllToPoly();
3047     void convertExtrudedPolyhedra();
3048     bool unPolyze();
3049     void simplifyPolyhedra(double eps);
3050     void colinearizeEdges(double eps);
3051     MEDCouplingUMesh *buildSpreadZonesWithPoly() const;
3052     MEDCouplingUMesh *buildExtrudedMesh(const MEDCouplingUMesh *mesh1D, int policy);
3053   };
3054
3055   //== MEDCouplingUMesh End
3056
3057   //== MEDCouplingMappedExtrudedMesh
3058
3059   class MEDCouplingMappedExtrudedMesh : public MEDCoupling::MEDCouplingMesh
3060   {
3061   public:
3062     static MEDCouplingMappedExtrudedMesh *New(const MEDCouplingUMesh *mesh3D, const MEDCouplingUMesh *mesh2D, int cell2DId);
3063     static MEDCouplingMappedExtrudedMesh *New(const MEDCouplingCMesh *mesh3D);
3064     MEDCouplingUMesh *build3DUnstructuredMesh() const;
3065     int get2DCellIdForExtrusion() const;
3066     %extend {
3067       MEDCouplingMappedExtrudedMesh(const MEDCouplingUMesh *mesh3D, const MEDCouplingUMesh *mesh2D, mcIdType cell2DId)
3068       {
3069         return MEDCouplingMappedExtrudedMesh::New(mesh3D,mesh2D,cell2DId);
3070       }
3071
3072       MEDCouplingMappedExtrudedMesh(const MEDCouplingCMesh *mesh3D)
3073       {
3074         return MEDCouplingMappedExtrudedMesh::New(mesh3D);
3075       }
3076
3077       MEDCouplingMappedExtrudedMesh()
3078       {
3079         return MEDCouplingMappedExtrudedMesh::New();
3080       }
3081       
3082       std::string __str__() const
3083       {
3084         return self->simpleRepr();
3085       }
3086
3087       std::string __repr__() const
3088       {
3089         std::ostringstream oss;
3090         self->reprQuickOverview(oss);
3091         return oss.str();
3092       }
3093       
3094       PyObject *getMesh2D() const
3095       {
3096         MEDCouplingUMesh *ret=self->getMesh2D();
3097         if(ret)
3098           ret->incrRef();
3099         return convertMesh(ret, SWIG_POINTER_OWN | 0 );
3100       }
3101       PyObject *getMesh1D() const
3102       {
3103         MEDCouplingUMesh *ret=self->getMesh1D();
3104         if(ret)
3105           ret->incrRef();
3106         return convertMesh(ret, SWIG_POINTER_OWN | 0 );
3107       }
3108       PyObject *getMesh3DIds() const
3109       {
3110         DataArrayIdType *ret=self->getMesh3DIds();
3111         if(ret)
3112           ret->incrRef();
3113         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 );
3114       } 
3115     }
3116   };
3117
3118   //== MEDCouplingMappedExtrudedMesh End
3119
3120   class MEDCoupling1GTUMesh : public MEDCoupling::MEDCouplingPointSet
3121   {
3122   public:
3123     static MEDCoupling1GTUMesh *New(const std::string& name, INTERP_KERNEL::NormalizedCellType type);
3124     static MEDCoupling1GTUMesh *New(const MEDCouplingUMesh *m);
3125     INTERP_KERNEL::NormalizedCellType getCellModelEnum() const;
3126     int getNodalConnectivityLength() const;
3127     virtual void allocateCells(int nbOfCells=0);
3128     virtual void checkConsistencyOfConnectivity() const;
3129     %extend
3130     {
3131       virtual void insertNextCell(PyObject *li)
3132       {
3133         mcIdType szArr,sw,iTypppArr;
3134         std::vector<mcIdType> stdvecTyyppArr;
3135         const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3136         self->insertNextCell(tmp,tmp+szArr);
3137       }
3138
3139       virtual DataArrayIdType *getNodalConnectivity() const
3140       {
3141         DataArrayIdType *ret=self->getNodalConnectivity();
3142         if(ret) ret->incrRef();
3143         return ret;
3144       }
3145       
3146       static MEDCouplingUMesh *AggregateOnSameCoordsToUMesh(PyObject *li)
3147       {
3148         std::vector< const MEDCoupling1GTUMesh *> parts;
3149         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCoupling1GTUMesh *>(li,SWIGTYPE_p_MEDCoupling__MEDCoupling1GTUMesh,"MEDCoupling1GTUMesh",parts);
3150         return MEDCoupling1GTUMesh::AggregateOnSameCoordsToUMesh(parts);
3151       }
3152     }
3153   };
3154
3155   //== MEDCoupling1SGTUMesh
3156
3157   class MEDCoupling1SGTUMesh : public MEDCoupling::MEDCoupling1GTUMesh
3158   {
3159   public:
3160     static MEDCoupling1SGTUMesh *New(const std::string& name, INTERP_KERNEL::NormalizedCellType type);
3161     static MEDCoupling1SGTUMesh *New(const MEDCouplingUMesh *m);
3162     void setNodalConnectivity(DataArrayIdType *nodalConn);
3163     int getNumberOfNodesPerCell() const;
3164     static MEDCoupling1SGTUMesh *Merge1SGTUMeshes(const MEDCoupling1SGTUMesh *mesh1, const MEDCoupling1SGTUMesh *mesh2);
3165     MEDCoupling1SGTUMesh *buildSetInstanceFromThis(int spaceDim) const;
3166     MEDCoupling1GTUMesh *computeDualMesh() const;
3167     MEDCoupling1SGTUMesh *explodeEachHexa8To6Quad4() const;
3168     DataArrayIdType *sortHexa8EachOther();
3169     %extend
3170     {
3171       MEDCoupling1SGTUMesh()
3172       {
3173         return MEDCoupling1SGTUMesh::New();
3174       }
3175
3176       MEDCoupling1SGTUMesh(const std::string& name, INTERP_KERNEL::NormalizedCellType type)
3177       {
3178         return MEDCoupling1SGTUMesh::New(name,type);
3179       }
3180
3181       MEDCoupling1SGTUMesh(const MEDCouplingUMesh *m)
3182       {
3183         return MEDCoupling1SGTUMesh::New(m);
3184       }
3185
3186       std::string __str__() const
3187       {
3188         return self->simpleRepr();
3189       }
3190       
3191       std::string __repr__() const
3192       {
3193         std::ostringstream oss;
3194         self->reprQuickOverview(oss);
3195         return oss.str();
3196       }
3197
3198       PyObject *structurizeMe(double eps=1e-12) const
3199       {
3200         DataArrayIdType *cellPerm(0),*nodePerm(0);
3201         MEDCouplingCMesh *retCpp(self->structurizeMe(cellPerm,nodePerm,eps));
3202         PyObject *ret(PyTuple_New(3));
3203         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(retCpp),SWIGTYPE_p_MEDCoupling__MEDCouplingCMesh, SWIG_POINTER_OWN | 0 ));
3204         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellPerm),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
3205         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(nodePerm),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
3206         return ret;
3207       }
3208
3209       DataArrayDouble *MEDCoupling1SGTUMesh::computeTriangleHeight() const
3210       {
3211         MCAuto<DataArrayDouble> ret = self->computeTriangleHeight();
3212         return ret.retn();
3213       }
3214
3215       static MEDCoupling1SGTUMesh *Merge1SGTUMeshes(PyObject *li)
3216       {
3217         std::vector<const MEDCoupling::MEDCoupling1SGTUMesh *> tmp;
3218         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCoupling1SGTUMesh *>(li,SWIGTYPE_p_MEDCoupling__MEDCoupling1SGTUMesh,"MEDCoupling1SGTUMesh",tmp);
3219         return MEDCoupling1SGTUMesh::Merge1SGTUMeshes(tmp);
3220       }
3221       
3222       static MEDCoupling1SGTUMesh *Merge1SGTUMeshesOnSameCoords(PyObject *li)
3223       {
3224         std::vector<const MEDCoupling::MEDCoupling1SGTUMesh *> tmp;
3225         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCoupling1SGTUMesh *>(li,SWIGTYPE_p_MEDCoupling__MEDCoupling1SGTUMesh,"MEDCoupling1SGTUMesh",tmp);
3226         return MEDCoupling1SGTUMesh::Merge1SGTUMeshesOnSameCoords(tmp);
3227       }
3228     }
3229   };
3230   
3231   //== MEDCoupling1SGTUMesh End
3232
3233   //== MEDCoupling1DGTUMesh
3234
3235   class MEDCoupling1DGTUMesh : public MEDCoupling::MEDCoupling1GTUMesh
3236   {
3237   public:
3238     static MEDCoupling1DGTUMesh *New(const std::string& name, INTERP_KERNEL::NormalizedCellType type);
3239     static MEDCoupling1DGTUMesh *New(const MEDCouplingUMesh *m);
3240     void setNodalConnectivity(DataArrayIdType *nodalConn, DataArrayIdType *nodalConnIndex);
3241     MEDCoupling1DGTUMesh *buildSetInstanceFromThis(int spaceDim) const;
3242     bool isPacked() const;
3243     %extend
3244     {
3245       MEDCoupling1DGTUMesh()
3246       {
3247         return MEDCoupling1DGTUMesh::New();
3248       }
3249       MEDCoupling1DGTUMesh(const std::string& name, INTERP_KERNEL::NormalizedCellType type)
3250       {
3251         return MEDCoupling1DGTUMesh::New(name,type);
3252       }
3253
3254       MEDCoupling1DGTUMesh(const MEDCouplingUMesh *m)
3255       {
3256         return MEDCoupling1DGTUMesh::New(m);
3257       }
3258
3259       std::string __str__() const
3260       {
3261         return self->simpleRepr();
3262       }
3263       
3264       std::string __repr__() const
3265       {
3266         std::ostringstream oss;
3267         self->reprQuickOverview(oss);
3268         return oss.str();
3269       }
3270
3271       DataArrayIdType *getNodalConnectivityIndex() const
3272       {
3273         DataArrayIdType *ret=self->getNodalConnectivityIndex();
3274         if(ret) ret->incrRef();
3275         return ret;
3276       }
3277
3278       PyObject *retrievePackedNodalConnectivity() const
3279       {
3280         DataArrayIdType *ret1=0,*ret2=0;
3281         bool ret0=self->retrievePackedNodalConnectivity(ret1,ret2);
3282         PyObject *ret0Py=ret0?Py_True:Py_False;
3283         Py_XINCREF(ret0Py);
3284         PyObject *ret=PyTuple_New(3);
3285         PyTuple_SetItem(ret,0,ret0Py);
3286         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
3287         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(ret2),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
3288         return ret;
3289       }
3290       
3291       PyObject *copyWithNodalConnectivityPacked() const
3292       {
3293         bool ret1;
3294         MEDCoupling1DGTUMesh *ret0=self->copyWithNodalConnectivityPacked(ret1);
3295         PyObject *ret=PyTuple_New(2);
3296         PyObject *ret1Py=ret1?Py_True:Py_False; Py_XINCREF(ret1Py);
3297         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__MEDCoupling1DGTUMesh, SWIG_POINTER_OWN | 0 ));
3298         PyTuple_SetItem(ret,1,ret1Py);
3299         return ret;
3300       }
3301
3302       static MEDCoupling1DGTUMesh *Merge1DGTUMeshes(PyObject *li)
3303       {
3304         std::vector<const MEDCoupling::MEDCoupling1DGTUMesh *> tmp;
3305         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCoupling1DGTUMesh *>(li,SWIGTYPE_p_MEDCoupling__MEDCoupling1DGTUMesh,"MEDCoupling1DGTUMesh",tmp);
3306         return MEDCoupling1DGTUMesh::Merge1DGTUMeshes(tmp);
3307       }
3308       
3309       static MEDCoupling1DGTUMesh *Merge1DGTUMeshesOnSameCoords(PyObject *li)
3310       {
3311         std::vector<const MEDCoupling::MEDCoupling1DGTUMesh *> tmp;
3312         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCoupling1DGTUMesh *>(li,SWIGTYPE_p_MEDCoupling__MEDCoupling1DGTUMesh,"MEDCoupling1DGTUMesh",tmp);
3313         return MEDCoupling1DGTUMesh::Merge1DGTUMeshesOnSameCoords(tmp);
3314       }
3315       
3316       static DataArrayIdType *AggregateNodalConnAndShiftNodeIds(PyObject *li, const std::vector<mcIdType>& offsetInNodeIdsPerElt)
3317       {
3318         std::vector<const MEDCoupling::DataArrayIdType *> tmp;
3319         convertFromPyObjVectorOfObj<const MEDCoupling::DataArrayIdType *>(li,SWIGTITraits<mcIdType>::TI,"DataArrayIdType",tmp);
3320         return MEDCoupling1DGTUMesh::AggregateNodalConnAndShiftNodeIds(tmp,offsetInNodeIdsPerElt);
3321       }
3322     }
3323   };
3324
3325   //== MEDCoupling1DGTUMeshEnd
3326
3327   class MEDCouplingStructuredMesh : public MEDCoupling::MEDCouplingMesh
3328   {
3329   public:
3330     mcIdType getCellIdFromPos(mcIdType i, mcIdType j, mcIdType k) const;
3331     mcIdType getNodeIdFromPos(mcIdType i, mcIdType j, mcIdType k) const;
3332     mcIdType getNumberOfCellsOfSubLevelMesh() const;
3333     int getSpaceDimensionOnNodeStruct() const;
3334     double computeSquareness() const;
3335     virtual std::vector<mcIdType> getNodeGridStructure() const;
3336     std::vector<mcIdType> getCellGridStructure() const;
3337     MEDCoupling1SGTUMesh *build1SGTUnstructured() const;
3338     std::vector<mcIdType> getLocationFromCellId(mcIdType cellId) const;
3339     std::vector<mcIdType> getLocationFromNodeId(mcIdType cellId) const;
3340     static INTERP_KERNEL::NormalizedCellType GetGeoTypeGivenMeshDimension(int meshDim);
3341     MEDCoupling1SGTUMesh *build1SGTSubLevelMesh() const;
3342     static mcIdType DeduceNumberOfGivenStructure(const std::vector<mcIdType>& st);
3343     static DataArrayIdType *ComputeCornersGhost(const std::vector<mcIdType>& st, mcIdType ghostLev);
3344     static std::vector<mcIdType> GetSplitVectFromStruct(const std::vector<mcIdType>& strct);
3345     %extend
3346     {
3347       virtual MEDCouplingStructuredMesh *buildStructuredSubPart(PyObject *cellPart) const
3348       {
3349         mcIdType tmpp1=-1,tmpp2=-1;
3350         std::vector<mcIdType> tmp=fillArrayWithPyListInt2(cellPart,tmpp1,tmpp2);
3351         std::vector< std::pair<mcIdType,mcIdType> > inp;
3352         if(tmpp2==2)
3353           {
3354             inp.resize(tmpp1);
3355             for(mcIdType i=0;i<tmpp1;i++)
3356               { inp[i].first=tmp[2*i]; inp[i].second=tmp[2*i+1]; }
3357           }
3358         else if(tmpp2==1)
3359           {
3360             if(tmpp1%2!=0)
3361               throw INTERP_KERNEL::Exception("Wrap of MEDCouplingStructuredMesh.buildStructuredSubPart : invalid input size ! Must be even size !");
3362             inp.resize(tmpp1/2);
3363             for(mcIdType i=0;i<tmpp1/2;i++)
3364               { inp[i].first=tmp[2*i]; inp[i].second=tmp[2*i+1]; }
3365           }
3366         else
3367           throw INTERP_KERNEL::Exception("Wrap of MEDCouplingStructuredMesh.buildStructuredSubPart : invalid input size !");
3368         return self->buildStructuredSubPart(inp);
3369       }
3370
3371       static DataArrayIdType *BuildExplicitIdsFrom(PyObject *st, PyObject *part)
3372       {
3373         std::vector< std::pair<mcIdType,mcIdType> > inp;
3374         convertPyToVectorPairInt(part,inp);
3375         //
3376         mcIdType szArr,sw,iTypppArr;
3377         std::vector<mcIdType> stdvecTyyppArr;
3378         const mcIdType *tmp4=convertIntStarLikePyObjToCppIntStar(st,sw,szArr,iTypppArr,stdvecTyyppArr);
3379         std::vector<mcIdType> tmp5(tmp4,tmp4+szArr);
3380         //
3381         return MEDCouplingStructuredMesh::BuildExplicitIdsFrom(tmp5,inp);
3382       }
3383
3384       static void MultiplyPartOf(const std::vector<mcIdType>& st, PyObject *part, double factor, DataArrayDouble *da)
3385       {
3386         std::vector< std::pair<mcIdType,mcIdType> > inp;
3387         convertPyToVectorPairInt(part,inp);
3388         MEDCouplingStructuredMesh::MultiplyPartOf(st,inp,factor,da);
3389       }
3390
3391       static void MultiplyPartOfByGhost(const std::vector<mcIdType>& st, PyObject *part, mcIdType ghostSize, double factor, DataArrayDouble *da)
3392       {
3393         std::vector< std::pair<mcIdType,mcIdType> > inp;
3394         convertPyToVectorPairInt(part,inp);
3395         MEDCouplingStructuredMesh::MultiplyPartOfByGhost(st,inp,ghostSize,factor,da);
3396       }
3397
3398       static PyObject *PutInGhostFormat(mcIdType ghostSize, const std::vector<mcIdType>& st, PyObject *part)
3399       {
3400         std::vector< std::pair<mcIdType,mcIdType> > inp;
3401         convertPyToVectorPairInt(part,inp);
3402         std::vector<mcIdType> stWithGhost;
3403         std::vector< std::pair<mcIdType,mcIdType> > partWithGhost;
3404         MEDCouplingStructuredMesh::PutInGhostFormat(ghostSize,st,inp,stWithGhost,partWithGhost);
3405         PyObject *ret(PyTuple_New(2));
3406         PyTuple_SetItem(ret,0,convertIntArrToPyList2(stWithGhost));
3407         PyTuple_SetItem(ret,1,convertFromVectorPairInt(partWithGhost));
3408         return ret;
3409       }
3410
3411       static DataArrayDouble *ExtractFieldOfDoubleFrom(const std::vector<mcIdType>& st, const DataArrayDouble *fieldOfDbl, PyObject *partCompactFormat)
3412       {
3413         std::vector< std::pair<mcIdType,mcIdType> > inp;
3414         convertPyToVectorPairInt(partCompactFormat,inp);
3415         return MEDCouplingStructuredMesh::ExtractFieldOfDoubleFrom(st,fieldOfDbl,inp);
3416       }
3417
3418       static void AssignPartOfFieldOfDoubleUsing(const std::vector<mcIdType>& st, DataArrayDouble *fieldOfDbl, PyObject *partCompactFormat, const DataArrayDouble *other)
3419       {
3420         std::vector< std::pair<mcIdType,mcIdType> > inp;
3421         convertPyToVectorPairInt(partCompactFormat,inp);
3422         MEDCouplingStructuredMesh::AssignPartOfFieldOfDoubleUsing(st,fieldOfDbl,inp,other);
3423       }
3424
3425       static mcIdType DeduceNumberOfGivenRangeInCompactFrmt(PyObject *part)
3426       {
3427         std::vector< std::pair<mcIdType,mcIdType> > inp;
3428         convertPyToVectorPairInt(part,inp);
3429         return MEDCouplingStructuredMesh::DeduceNumberOfGivenRangeInCompactFrmt(inp);
3430       }
3431
3432       static DataArrayIdType *Build1GTNodalConnectivity(PyObject *li)
3433       {
3434         mcIdType szArr,sw,iTypppArr;
3435         std::vector<mcIdType> stdvecTyyppArr;
3436         const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3437         return MEDCouplingStructuredMesh::Build1GTNodalConnectivity(tmp,tmp+szArr);
3438       }
3439
3440       static DataArrayIdType *Build1GTNodalConnectivityOfSubLevelMesh(PyObject *li)
3441       {
3442         mcIdType szArr,sw,iTypppArr;
3443         std::vector<mcIdType> stdvecTyyppArr;
3444         const mcIdType *tmp(convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr));
3445         return MEDCouplingStructuredMesh::Build1GTNodalConnectivityOfSubLevelMesh(tmp,tmp+szArr);
3446       }
3447
3448       static std::vector<mcIdType> GetDimensionsFromCompactFrmt(PyObject *partCompactFormat)
3449       {
3450         std::vector< std::pair<mcIdType,mcIdType> > inp;
3451         convertPyToVectorPairInt(partCompactFormat,inp);
3452         return MEDCouplingStructuredMesh::GetDimensionsFromCompactFrmt(inp);
3453       }
3454
3455       static PyObject *GetCompactFrmtFromDimensions(const std::vector<mcIdType>& dims)
3456       {
3457         std::vector< std::pair<mcIdType,mcIdType> > ret(MEDCouplingStructuredMesh::GetCompactFrmtFromDimensions(dims));
3458         PyObject *retPy=PyList_New(ret.size());
3459         for(std::size_t i=0;i<ret.size();i++)
3460           {
3461             PyObject *tmp=PyTuple_New(2);
3462             PyTuple_SetItem(tmp,0,PyInt_FromLong(ret[i].first));
3463             PyTuple_SetItem(tmp,1,PyInt_FromLong(ret[i].second));
3464             PyList_SetItem(retPy,i,tmp);
3465           }
3466         return retPy;
3467       }
3468
3469       static PyObject *IntersectRanges(PyObject *r1, PyObject *r2)
3470       {
3471         std::vector< std::pair<mcIdType,mcIdType> > r1Cpp,r2Cpp;
3472         convertPyToVectorPairInt(r1,r1Cpp);
3473         convertPyToVectorPairInt(r2,r2Cpp);
3474         std::vector< std::pair<mcIdType,mcIdType> > ret(MEDCouplingStructuredMesh::IntersectRanges(r1Cpp,r2Cpp));
3475         PyObject *retPy=PyList_New(ret.size());
3476         for(std::size_t i=0;i<ret.size();i++)
3477           {
3478             PyObject *tmp=PyTuple_New(2);
3479             PyTuple_SetItem(tmp,0,PyInt_FromLong(ret[i].first));
3480             PyTuple_SetItem(tmp,1,PyInt_FromLong(ret[i].second));
3481             PyList_SetItem(retPy,i,tmp);
3482           }
3483         return retPy;
3484       }
3485
3486       static bool AreRangesIntersect(PyObject *r1, PyObject *r2)
3487       {
3488         std::vector< std::pair<mcIdType,mcIdType> > r1Cpp,r2Cpp;
3489         convertPyToVectorPairInt(r1,r1Cpp);
3490         convertPyToVectorPairInt(r2,r2Cpp);
3491         return MEDCouplingStructuredMesh::AreRangesIntersect(r1Cpp,r2Cpp);
3492       }
3493
3494       static PyObject *IsPartStructured(PyObject *li, PyObject *st)
3495       {
3496         mcIdType szArr,sw,iTypppArr;
3497         std::vector<mcIdType> stdvecTyyppArr;
3498         const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3499         mcIdType szArr2,sw2,iTypppArr2;
3500         std::vector<mcIdType> stdvecTyyppArr2;
3501         const mcIdType *tmp2=convertIntStarLikePyObjToCppIntStar(st,sw2,szArr2,iTypppArr2,stdvecTyyppArr2);
3502         std::vector<mcIdType> tmp3(tmp2,tmp2+szArr2);
3503         std::vector< std::pair<mcIdType,mcIdType> > partCompactFormat;
3504         bool ret0=MEDCouplingStructuredMesh::IsPartStructured(tmp,tmp+szArr,tmp3,partCompactFormat);
3505         PyObject *ret=PyTuple_New(2);
3506         PyObject *ret0Py=ret0?Py_True:Py_False; Py_XINCREF(ret0Py);
3507         PyTuple_SetItem(ret,0,ret0Py);
3508         PyObject *ret1Py=PyList_New(partCompactFormat.size());
3509         for(std::size_t i=0;i<partCompactFormat.size();i++)
3510           {
3511             PyObject *tmp4=PyTuple_New(2);
3512             PyTuple_SetItem(tmp4,0,PyInt_FromLong(partCompactFormat[i].first));
3513             PyTuple_SetItem(tmp4,1,PyInt_FromLong(partCompactFormat[i].second));
3514             PyList_SetItem(ret1Py,i,tmp4);
3515           }
3516         PyTuple_SetItem(ret,1,ret1Py);
3517         return ret;
3518       }
3519
3520       static PyObject *ChangeReferenceFromGlobalOfCompactFrmt(PyObject *bigInAbs, PyObject *partOfBigInAbs, bool check=true)
3521       {
3522         std::vector< std::pair<mcIdType,mcIdType> > param0,param1,ret;
3523         convertPyToVectorPairInt(bigInAbs,param0);
3524         convertPyToVectorPairInt(partOfBigInAbs,param1);
3525         MEDCouplingStructuredMesh::ChangeReferenceFromGlobalOfCompactFrmt(param0,param1,ret,check);
3526         PyObject *retPy(PyList_New(ret.size()));
3527         for(std::size_t i=0;i<ret.size();i++)
3528           {
3529             PyObject *tmp(PyTuple_New(2));
3530             PyTuple_SetItem(tmp,0,PyInt_FromLong(ret[i].first));
3531             PyTuple_SetItem(tmp,1,PyInt_FromLong(ret[i].second));
3532             PyList_SetItem(retPy,i,tmp);
3533           }
3534         return retPy;
3535       }
3536
3537       static PyObject *TranslateCompactFrmt(PyObject *part, const std::vector<mcIdType>& translation)
3538       {
3539         std::vector< std::pair<mcIdType,mcIdType> > param0;
3540         convertPyToVectorPairInt(part,param0);
3541         std::vector< std::pair<mcIdType,mcIdType> > ret(MEDCouplingStructuredMesh::TranslateCompactFrmt(param0,translation));
3542         PyObject *retPy(PyList_New(ret.size()));
3543         for(std::size_t i=0;i<ret.size();i++)
3544           {
3545             PyObject *tmp(PyTuple_New(2));
3546             PyTuple_SetItem(tmp,0,PyInt_FromLong(ret[i].first));
3547             PyTuple_SetItem(tmp,1,PyInt_FromLong(ret[i].second));
3548             PyList_SetItem(retPy,i,tmp);
3549           }
3550         return retPy;
3551       }
3552
3553       static std::vector<mcIdType> FindTranslationFrom(PyObject *startingFrom, PyObject *goingTo)
3554       {
3555         std::vector< std::pair<mcIdType,mcIdType> > param0,param1;
3556         convertPyToVectorPairInt(startingFrom,param0);
3557         convertPyToVectorPairInt(goingTo,param1);
3558         return  MEDCouplingStructuredMesh::FindTranslationFrom(param0,param1);
3559       }
3560
3561       static PyObject *ChangeReferenceToGlobalOfCompactFrmt(PyObject *bigInAbs, PyObject *partOfBigRelativeToBig, bool check=true)
3562       {
3563         std::vector< std::pair<mcIdType,mcIdType> > param0,param1,ret;
3564         convertPyToVectorPairInt(bigInAbs,param0);
3565         convertPyToVectorPairInt(partOfBigRelativeToBig,param1);
3566         MEDCouplingStructuredMesh::ChangeReferenceToGlobalOfCompactFrmt(param0,param1,ret,check);
3567         PyObject *retPy(PyList_New(ret.size()));
3568         for(std::size_t i=0;i<ret.size();i++)
3569           {
3570             PyObject *tmp(PyTuple_New(2));
3571             PyTuple_SetItem(tmp,0,PyInt_FromLong(ret[i].first));
3572             PyTuple_SetItem(tmp,1,PyInt_FromLong(ret[i].second));
3573             PyList_SetItem(retPy,i,tmp);
3574           }
3575         return retPy;
3576       }
3577     }
3578   };
3579
3580   class MEDCouplingCurveLinearMesh;
3581
3582   //== MEDCouplingCMesh
3583   
3584   class MEDCouplingCMesh : public MEDCoupling::MEDCouplingStructuredMesh
3585   {
3586   public:
3587     static MEDCouplingCMesh *New();
3588     static MEDCouplingCMesh *New(const std::string& meshName);
3589     void setCoords(const DataArrayDouble *coordsX,
3590                    const DataArrayDouble *coordsY=0,
3591                    const DataArrayDouble *coordsZ=0);
3592     void setCoordsAt(int i, const DataArrayDouble *arr);
3593     MEDCouplingCurveLinearMesh *buildCurveLinear() const;
3594     %extend {
3595       MEDCouplingCMesh()
3596       {
3597         return MEDCouplingCMesh::New();
3598       }
3599       MEDCouplingCMesh(const std::string& meshName)
3600       {
3601         return MEDCouplingCMesh::New(meshName);
3602       }
3603       std::string __str__() const
3604       {
3605         return self->simpleRepr();
3606       }
3607       std::string __repr__() const
3608       {
3609         std::ostringstream oss;
3610         self->reprQuickOverview(oss);
3611         return oss.str();
3612       }
3613       DataArrayDouble *getCoordsAt(int i)
3614       {
3615         DataArrayDouble *ret=self->getCoordsAt(i);
3616         if(ret)
3617           ret->incrRef();
3618         return ret;
3619       }
3620     }
3621   };
3622
3623   //== MEDCouplingCMesh End
3624
3625   //== MEDCouplingCurveLinearMesh
3626
3627   class MEDCouplingCurveLinearMesh : public MEDCoupling::MEDCouplingStructuredMesh
3628   {
3629   public:
3630     static MEDCouplingCurveLinearMesh *New();
3631     static MEDCouplingCurveLinearMesh *New(const std::string& meshName);
3632     void setCoords(const DataArrayDouble *coords);
3633     %extend {
3634       MEDCouplingCurveLinearMesh()
3635       {
3636         return MEDCouplingCurveLinearMesh::New();
3637       }
3638       MEDCouplingCurveLinearMesh(const std::string& meshName)
3639       {
3640         return MEDCouplingCurveLinearMesh::New(meshName);
3641       }
3642       std::string __str__() const 
3643       {
3644         return self->simpleRepr();
3645       }
3646       std::string __repr__() const
3647       {
3648         std::ostringstream oss;
3649         self->reprQuickOverview(oss);
3650         return oss.str();
3651       }
3652       DataArrayDouble *getCoords()
3653       {
3654         DataArrayDouble *ret=self->getCoords();
3655         if(ret)
3656           ret->incrRef();
3657         return ret;
3658       }
3659       void setNodeGridStructure(PyObject *gridStruct)
3660       {
3661         mcIdType szArr,sw,iTypppArr;
3662         std::vector<mcIdType> stdvecTyyppArr;
3663         const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(gridStruct,sw,szArr,iTypppArr,stdvecTyyppArr);
3664         self->setNodeGridStructure(tmp,tmp+szArr);
3665       }
3666     }
3667   };
3668
3669   //== MEDCouplingCurveLinearMesh End
3670
3671   //== MEDCouplingIMesh
3672
3673   class MEDCouplingIMesh : public MEDCoupling::MEDCouplingStructuredMesh
3674   {
3675   public:
3676     static MEDCouplingIMesh *New();
3677     //
3678     void setSpaceDimension(int spaceDim);
3679     std::vector<mcIdType> getNodeStruct() const;
3680     std::vector<double> getOrigin() const;
3681     std::vector<double> getDXYZ() const;
3682     void setAxisUnit(const std::string& unitName);
3683     std::string getAxisUnit() const;
3684     double getMeasureOfAnyCell() const;
3685     MEDCouplingCMesh *convertToCartesian() const;
3686     void refineWithFactor(const std::vector<mcIdType>& factors);
3687     MEDCouplingIMesh *asSingleCell() const;
3688     MEDCouplingIMesh *buildWithGhost(mcIdType ghostLev) const;
3689     %extend
3690     {
3691       MEDCouplingIMesh()
3692       {
3693         return MEDCouplingIMesh::New();
3694       }
3695       static MEDCouplingIMesh *New(const std::string& meshName, int spaceDim, PyObject *nodeStrct, PyObject *origin, PyObject *dxyz)
3696       {
3697         static const char msg0[]="MEDCouplingIMesh::New : error on 'origin' parameter !";
3698         static const char msg1[]="MEDCouplingIMesh::New : error on 'dxyz' parameter !";
3699         const mcIdType *nodeStrctPtr(0);
3700         const double *originPtr(0),*dxyzPtr(0);
3701         mcIdType sw,sz,val0;
3702         std::vector<mcIdType> bb0;
3703         nodeStrctPtr=convertIntStarLikePyObjToCppIntStar(nodeStrct,sw,sz,val0,bb0);
3704         //
3705         double val,val2;
3706         std::vector<double> bb,bb2;
3707         mcIdType sz1,sz2;
3708         originPtr=convertObjToPossibleCpp5_SingleCompo(origin,sw,val,bb,msg0,false,sz1);
3709         dxyzPtr=convertObjToPossibleCpp5_SingleCompo(dxyz,sw,val2,bb2,msg1,false,sz2);
3710         //
3711         return MEDCouplingIMesh::New(meshName,spaceDim,nodeStrctPtr,nodeStrctPtr+sz,originPtr,originPtr+sz1,dxyzPtr,dxyzPtr+sz2);
3712       }
3713
3714       MEDCouplingIMesh(const std::string& meshName, int spaceDim, PyObject *nodeStrct, PyObject *origin, PyObject *dxyz)
3715       {
3716         return MEDCoupling_MEDCouplingIMesh_New__SWIG_1(meshName,spaceDim,nodeStrct,origin,dxyz);
3717       }
3718
3719       void setNodeStruct(PyObject *nodeStrct)
3720       {
3721         mcIdType sw,sz,val0;
3722         std::vector<mcIdType> bb0;
3723         const mcIdType *nodeStrctPtr(convertIntStarLikePyObjToCppIntStar(nodeStrct,sw,sz,val0,bb0));
3724         self->setNodeStruct(nodeStrctPtr,nodeStrctPtr+sz);
3725       }
3726
3727       void setOrigin(PyObject *origin)
3728       {
3729         static const char msg[]="MEDCouplingIMesh::setOrigin : invalid input 'origin' parameter ! integer, float, list/tuple of float, DataArrayDouble or DataArrayDoubleTuple supported !";
3730         double val;
3731         std::vector<double> bb;
3732         mcIdType sw,nbTuples;
3733         const double *originPtr(convertObjToPossibleCpp5_SingleCompo(origin,sw,val,bb,msg,false,nbTuples));
3734         self->setOrigin(originPtr,originPtr+nbTuples);
3735       }
3736       
3737       void setDXYZ(PyObject *dxyz)
3738       {
3739         static const char msg[]="MEDCouplingIMesh::setDXYZ : invalid input 'dxyz' parameter ! integer, float, list/tuple of float, DataArrayDouble or DataArrayDoubleTuple supported !";
3740         double val;
3741         std::vector<double> bb;
3742         mcIdType sw,nbTuples;
3743         const double *originPtr(convertObjToPossibleCpp5_SingleCompo(dxyz,sw,val,bb,msg,false,nbTuples));
3744         self->setDXYZ(originPtr,originPtr+nbTuples);
3745       }
3746
3747       static void CondenseFineToCoarse(const std::vector<mcIdType>& coarseSt, const DataArrayDouble *fineDA, PyObject *fineLocInCoarse, const std::vector<mcIdType>& facts, DataArrayDouble *coarseDA)
3748       {
3749         std::vector< std::pair<mcIdType,mcIdType> > inp;
3750         convertPyToVectorPairInt(fineLocInCoarse,inp);
3751         MEDCouplingIMesh::CondenseFineToCoarse(coarseSt,fineDA,inp,facts,coarseDA);
3752       }
3753
3754       static void CondenseFineToCoarseGhost(const std::vector<mcIdType>& coarseSt, const DataArrayDouble *fineDA, PyObject *fineLocInCoarse, const std::vector<mcIdType>& facts, DataArrayDouble *coarseDA, mcIdType ghostSize)
3755       {
3756         std::vector< std::pair<mcIdType,mcIdType> > inp;
3757         convertPyToVectorPairInt(fineLocInCoarse,inp);
3758         MEDCouplingIMesh::CondenseFineToCoarseGhost(coarseSt,fineDA,inp,facts,coarseDA,ghostSize);
3759       }
3760
3761       static void SpreadCoarseToFine(const DataArrayDouble *coarseDA, const std::vector<mcIdType>& coarseSt, DataArrayDouble *fineDA, PyObject *fineLocInCoarse, const std::vector<mcIdType>& facts)
3762       {
3763         std::vector< std::pair<mcIdType,mcIdType> > inp;
3764         convertPyToVectorPairInt(fineLocInCoarse,inp);
3765         MEDCouplingIMesh::SpreadCoarseToFine(coarseDA,coarseSt,fineDA,inp,facts);
3766       }
3767
3768       static void SpreadCoarseToFineGhost(const DataArrayDouble *coarseDA, const std::vector<mcIdType>& coarseSt, DataArrayDouble *fineDA, PyObject *fineLocInCoarse, const std::vector<mcIdType>& facts, mcIdType ghostSize)
3769       {
3770         std::vector< std::pair<mcIdType,mcIdType> > inp;
3771         convertPyToVectorPairInt(fineLocInCoarse,inp);
3772         MEDCouplingIMesh::SpreadCoarseToFineGhost(coarseDA,coarseSt,fineDA,inp,facts,ghostSize);
3773       }
3774
3775       static void SpreadCoarseToFineGhostZone(const DataArrayDouble *coarseDA, const std::vector<mcIdType>& coarseSt, DataArrayDouble *fineDA, PyObject *fineLocInCoarse, const std::vector<mcIdType>& facts, mcIdType ghostSize)
3776       {
3777         std::vector< std::pair<mcIdType,mcIdType> > inp;
3778         convertPyToVectorPairInt(fineLocInCoarse,inp);
3779         MEDCouplingIMesh::SpreadCoarseToFineGhostZone(coarseDA,coarseSt,fineDA,inp,facts,ghostSize);
3780       }
3781
3782       std::string __str__() const
3783       {
3784         return self->simpleRepr();
3785       }
3786       std::string __repr__() const
3787       {
3788         std::ostringstream oss;
3789         self->reprQuickOverview(oss);
3790         return oss.str();
3791       }
3792     }
3793   };
3794
3795   //== MEDCouplingIMesh End
3796
3797 }
3798
3799 namespace MEDCoupling
3800 {
3801   class MEDCouplingField : public MEDCoupling::RefCountObject, public MEDCoupling::TimeLabel
3802   {
3803   public:
3804     virtual void checkConsistencyLight() const;
3805     virtual bool areCompatibleForMerge(const MEDCouplingField *other) const;
3806     bool areStrictlyCompatible(const MEDCouplingField *other) const;
3807     bool areStrictlyCompatibleForMulDiv(const MEDCouplingField *other) const;
3808     virtual void copyTinyStringsFrom(const MEDCouplingField *other);
3809     void setMesh(const MEDCoupling::MEDCouplingMesh *mesh);
3810     void setName(const char *name);
3811     std::string getDescription() const;
3812     void setDescription(const char *desc);
3813     std::string getName() const;
3814     TypeOfField getTypeOfField() const;
3815     NatureOfField getNature() const;
3816     virtual void setNature(NatureOfField nat);
3817     DataArrayDouble *getLocalizationOfDiscr() const;
3818     MEDCouplingFieldDouble *buildMeasureField(bool isAbs) const;
3819     mcIdType getNumberOfTuplesExpected() const;
3820     mcIdType getNumberOfMeshPlacesExpected() const;
3821     void setGaussLocalizationOnType(INTERP_KERNEL::NormalizedCellType type, const std::vector<double>& refCoo,
3822                                     const std::vector<double>& gsCoo, const std::vector<double>& wg);
3823     void clearGaussLocalizations();
3824     MEDCouplingGaussLocalization& getGaussLocalization(int locId);
3825     mcIdType getNbOfGaussLocalization() const;
3826     mcIdType getGaussLocalizationIdOfOneCell(mcIdType cellId) const;
3827     const MEDCouplingGaussLocalization& getGaussLocalization(int locId) const;
3828     mcIdType getGaussLocalizationIdOfOneType(INTERP_KERNEL::NormalizedCellType type) const;
3829     void setDiscretization(MEDCouplingFieldDiscretization *newDisc);
3830     %extend {
3831       PyObject *getMesh() const
3832       {
3833         MEDCouplingMesh *ret1=const_cast<MEDCouplingMesh *>(self->getMesh());
3834         if(ret1)
3835           ret1->incrRef();
3836         return convertMesh(ret1,SWIG_POINTER_OWN | 0 );
3837       }
3838
3839       PyObject *getDiscretization()
3840       {
3841         MEDCouplingFieldDiscretization *ret=self->getDiscretization();
3842         if(ret)
3843           ret->incrRef();
3844         return convertFieldDiscretization(ret,SWIG_POINTER_OWN | 0 );
3845       }
3846
3847       PyObject *getGaussLocalizationIdsOfOneType(INTERP_KERNEL::NormalizedCellType type) const
3848       {
3849         std::set<mcIdType> ret=self->getGaussLocalizationIdsOfOneType(type);
3850         return convertIntArrToPyList3(ret);
3851       }
3852
3853       PyObject *buildSubMeshData(PyObject *li) const
3854       {
3855         DataArrayIdType *ret1=0;
3856         MEDCouplingMesh *ret0=0;
3857         void *da=0;
3858         int res1=SWIG_ConvertPtr(li,&da,SWIGTITraits<mcIdType>::TI, 0 |  0 );
3859         if (!SWIG_IsOK(res1))
3860           {
3861             mcIdType size;
3862             INTERP_KERNEL::AutoPtr<mcIdType> tmp=convertPyToNewIntArr2(li,&size);
3863             ret0=self->buildSubMeshData(tmp,tmp+size,ret1);
3864           }
3865         else
3866           {
3867             DataArrayIdType *da2=reinterpret_cast< DataArrayIdType * >(da);
3868             if(!da2)
3869               throw INTERP_KERNEL::Exception("Not null DataArrayIdType instance expected !");
3870             da2->checkAllocated();
3871             ret0=self->buildSubMeshData(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems(),ret1);
3872           }
3873         PyObject *res = PyList_New(2);
3874         PyList_SetItem(res,0,convertMesh(ret0, SWIG_POINTER_OWN | 0 ));
3875         PyList_SetItem(res,1,SWIG_NewPointerObj((void*)ret1,SWIGTITraits<mcIdType>::TI,SWIG_POINTER_OWN | 0));
3876         return res;
3877       }
3878
3879       PyObject *buildSubMeshDataRange(mcIdType begin, mcIdType end, mcIdType step) const
3880       {
3881         DataArrayIdType *ret1=0;
3882         mcIdType bb,ee,ss;
3883         MEDCouplingMesh *ret0=self->buildSubMeshDataRange(begin,end,step,bb,ee,ss,ret1);
3884         PyObject *res=PyTuple_New(2);
3885         PyTuple_SetItem(res,0,convertMesh(ret0, SWIG_POINTER_OWN | 0 ));
3886         if(ret1)
3887           PyTuple_SetItem(res,1,SWIG_NewPointerObj((void*)ret1,SWIGTITraits<mcIdType>::TI,SWIG_POINTER_OWN | 0));
3888         else
3889           {
3890             PyObject *res1=PySlice_New(PyInt_FromLong(bb),PyInt_FromLong(ee),PyInt_FromLong(ss));
3891             PyTuple_SetItem(res,1,res1);
3892           }
3893         return res;
3894       }
3895
3896       DataArrayIdType *computeTupleIdsToSelectFromCellIds(PyObject *cellIds) const
3897       {
3898         mcIdType sw,sz(-1);
3899         mcIdType v0; std::vector<mcIdType> v1;
3900         const mcIdType *cellIdsBg(convertIntStarLikePyObjToCppIntStar(cellIds,sw,sz,v0,v1));
3901         return self->computeTupleIdsToSelectFromCellIds(cellIdsBg,cellIdsBg+sz);
3902       }
3903
3904       void setGaussLocalizationOnCells(PyObject *li, const std::vector<double>& refCoo,
3905                                        const std::vector<double>& gsCoo, const std::vector<double>& wg)
3906       {
3907         void *da=0;
3908         int res1=SWIG_ConvertPtr(li,&da,SWIGTITraits<mcIdType>::TI, 0 |  0 );
3909         if (!SWIG_IsOK(res1))
3910           {
3911             mcIdType size;
3912             INTERP_KERNEL::AutoPtr<mcIdType> tmp=convertPyToNewIntArr2(li,&size);
3913             self->setGaussLocalizationOnCells(tmp,((mcIdType *)tmp)+size,refCoo,gsCoo,wg);
3914           }
3915         else
3916           {
3917             DataArrayIdType *da2=reinterpret_cast< DataArrayIdType * >(da);
3918             if(!da2)
3919               throw INTERP_KERNEL::Exception("Not null DataArrayIdType instance expected !");
3920             da2->checkAllocated();
3921             self->setGaussLocalizationOnCells(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems(),refCoo,gsCoo,wg);
3922           }
3923       }
3924
3925       PyObject *getCellIdsHavingGaussLocalization(int locId) const
3926       {
3927         std::vector<mcIdType> tmp;
3928         self->getCellIdsHavingGaussLocalization(locId,tmp);
3929         DataArrayIdType *ret=DataArrayIdType::New();
3930         ret->alloc((mcIdType)tmp.size(),1);
3931         std::copy(tmp.begin(),tmp.end(),ret->getPointer());
3932         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 );
3933       }
3934       
3935       mcIdType getNumberOfTuplesExpectedRegardingCode(PyObject *code, PyObject *idsPerType) const
3936       {
3937         std::vector<mcIdType> inp0;
3938         convertPyToNewIntArr4(code,1,3,inp0);
3939         std::vector<const DataArrayIdType *> inp1;
3940         convertFromPyObjVectorOfObj<const MEDCoupling::DataArrayIdType *>(idsPerType,SWIGTITraits<mcIdType>::TI,"DataArrayIdType",inp1);
3941         return self->getNumberOfTuplesExpectedRegardingCode(inp0,inp1);
3942       }
3943     }
3944   };
3945   
3946   class MEDCouplingFieldTemplate : public MEDCoupling::MEDCouplingField
3947   {
3948   public:
3949     static MEDCouplingFieldTemplate *New(const MEDCouplingFieldDouble& f);
3950     static MEDCouplingFieldTemplate *New(const MEDCouplingFieldFloat& f);
3951     static MEDCouplingFieldTemplate *New(const MEDCouplingFieldInt32& f);
3952     static MEDCouplingFieldTemplate *New(const MEDCouplingFieldInt64& f);
3953     static MEDCouplingFieldTemplate *New(TypeOfField type);
3954     std::string simpleRepr() const;
3955     std::string advancedRepr() const;
3956     bool isEqual(const MEDCouplingFieldTemplate *other, double meshPrec) const;
3957     bool isEqualWithoutConsideringStr(const MEDCouplingFieldTemplate *other, double meshPrec) const;
3958     %extend
3959        {
3960          MEDCouplingFieldTemplate(const MEDCouplingFieldDouble& f)
3961          {
3962            return MEDCouplingFieldTemplate::New(f);
3963          }
3964
3965          MEDCouplingFieldTemplate(const MEDCouplingFieldFloat& f)
3966          {
3967            return MEDCouplingFieldTemplate::New(f);
3968          }
3969          
3970          MEDCouplingFieldTemplate(const MEDCouplingFieldInt32& f)
3971          {
3972            return MEDCouplingFieldTemplate::New(f);
3973          }
3974
3975          MEDCouplingFieldTemplate(const MEDCouplingFieldInt64& f)
3976          {
3977            return MEDCouplingFieldTemplate::New(f);
3978          }
3979          
3980          MEDCouplingFieldTemplate(TypeOfField type)
3981          {
3982            return MEDCouplingFieldTemplate::New(type);
3983          }
3984          
3985          std::string __str__() const
3986          {
3987            return self->simpleRepr();
3988          }
3989          
3990          std::string __repr__() const
3991          {
3992            std::ostringstream oss;
3993            self->reprQuickOverview(oss);
3994            return oss.str();
3995          }
3996
3997          PyObject *isEqualIfNotWhy(const MEDCouplingFieldTemplate *other, double meshPrec) const
3998          {
3999            std::string ret1;
4000            bool ret0=self->isEqualIfNotWhy(other,meshPrec,ret1);
4001            PyObject *ret=PyTuple_New(2);
4002            PyObject *ret0Py=ret0?Py_True:Py_False;
4003            Py_XINCREF(ret0Py);
4004            PyTuple_SetItem(ret,0,ret0Py);
4005            PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
4006            return ret;
4007          }
4008        }
4009   };
4010
4011   template<class T>
4012  class MEDCouplingFieldT : public MEDCoupling::MEDCouplingField
4013   {
4014   public:
4015     TypeOfTimeDiscretization getTimeDiscretization() const;
4016   protected:
4017     MEDCouplingFieldT();
4018     ~MEDCouplingFieldT();
4019   };
4020
4021   %template(MEDCouplingFieldTdouble) MEDCoupling::MEDCouplingFieldT<double>;
4022   %template(MEDCouplingFieldTfloat) MEDCoupling::MEDCouplingFieldT<float>;
4023   %template(MEDCouplingFieldTint) MEDCoupling::MEDCouplingFieldT<int>;
4024   
4025   class MEDCouplingFieldInt32;
4026   class MEDCouplingFieldInt64;
4027   class MEDCouplingFieldFloat;
4028   
4029   class MEDCouplingFieldDouble : public MEDCouplingFieldT<double>
4030   {
4031   public:
4032     static MEDCouplingFieldDouble *New(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME);
4033     static MEDCouplingFieldDouble *New(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME);
4034     bool isEqual(const MEDCouplingFieldDouble *other, double meshPrec, double valsPrec) const;
4035     bool isEqualWithoutConsideringStr(const MEDCouplingFieldDouble *other, double meshPrec, double valsPrec) const;
4036     void setTimeUnit(const std::string& unit);
4037     std::string getTimeUnit() const;
4038     void synchronizeTimeWithSupport();
4039     void copyTinyAttrFrom(const MEDCouplingFieldDouble *other);
4040     void copyAllTinyAttrFrom(const MEDCouplingFieldDouble *other);
4041     std::string simpleRepr() const;
4042     std::string advancedRepr() const;
4043     std::string  writeVTK(const std::string& fileName, bool isBinary=true) const;
4044     MEDCouplingFieldInt32 *convertToIntField() const;
4045     MEDCouplingFieldFloat *convertToFloatField() const;
4046     MEDCouplingFieldDouble *clone(bool recDeepCpy) const;
4047     MEDCouplingFieldDouble *cloneWithMesh(bool recDeepCpy) const;
4048     MEDCouplingFieldDouble *deepCopy() const;
4049     MEDCouplingFieldDouble *buildNewTimeReprFromThis(TypeOfTimeDiscretization td, bool deepCopy) const;
4050     MEDCouplingFieldDouble *nodeToCellDiscretization() const;
4051     MEDCouplingFieldDouble *cellToNodeDiscretization() const;
4052     double getIJ(int tupleId, int compoId) const;
4053     double getIJK(int cellId, int nodeIdInCell, int compoId) const;
4054     void synchronizeTimeWithMesh();
4055     void setArray(DataArrayDouble *array);
4056     void setEndArray(DataArrayDouble *array);
4057     void setTime(double val, int iteration, int order);
4058     void setStartTime(double val, int iteration, int order);
4059     void setEndTime(double val, int iteration, int order);
4060     void applyLin(double a, double b, int compoId);
4061     void applyLin(double a, double b);
4062     int getNumberOfComponents() const;
4063     int getNumberOfTuples() const;
4064     int getNumberOfValues() const;
4065     void setTimeTolerance(double val);
4066     double getTimeTolerance() const;
4067     void setIteration(int it);
4068     void setEndIteration(int it);
4069     void setOrder(int order);
4070     void setEndOrder(int order);
4071     void setTimeValue(double val);
4072     void setEndTimeValue(double val);
4073     void changeUnderlyingMesh(const MEDCouplingMesh *other, int levOfCheck, double precOnMesh, double eps=1e-15);
4074     void substractInPlaceDM(const MEDCouplingFieldDouble *f, int levOfCheck, double precOnMesh, double eps=1e-15);
4075     bool mergeNodes(double eps, double epsOnVals=1e-15);
4076     bool mergeNodesCenter(double eps, double epsOnVals=1e-15);
4077     bool zipCoords(double epsOnVals=1e-15);
4078     bool zipConnectivity(int compType,double epsOnVals=1e-15);
4079     bool simplexize(int policy);
4080     MEDCouplingFieldDouble *doublyContractedProduct() const;
4081     MEDCouplingFieldDouble *determinant() const;
4082     MEDCouplingFieldDouble *eigenValues() const;
4083     MEDCouplingFieldDouble *eigenVectors() const;
4084     MEDCouplingFieldDouble *inverse() const;
4085     MEDCouplingFieldDouble *trace() const;
4086     MEDCouplingFieldDouble *deviator() const;
4087     MEDCouplingFieldDouble *magnitude() const;
4088     MEDCouplingFieldDouble *maxPerTuple() const;
4089     void changeNbOfComponents(std::size_t newNbOfComp, double dftValue=0.);
4090     void sortPerTuple(bool asc);
4091     MEDCouplingFieldDouble &operator=(double value);
4092     void fillFromAnalytic(int nbOfComp, const std::string& func);
4093     void fillFromAnalyticCompo(int nbOfComp, const std::string& func);
4094     void fillFromAnalyticNamedCompo(int nbOfComp, const std::vector<std::string>& varsOrder, const std::string& func);
4095     void applyFunc(int nbOfComp, const std::string& func);
4096     void applyFuncCompo(int nbOfComp, const std::string& func);
4097     void applyFuncNamedCompo(int nbOfComp, const std::vector<std::string>& varsOrder, const std::string& func);
4098     void applyFunc(int nbOfComp, double val);
4099     void applyFunc(const std::string& func);
4100     void applyFuncFast32(const std::string& func);
4101     void applyFuncFast64(const std::string& func);
4102     double accumulate(int compId) const;
4103     double getMaxValue() const;
4104     double getMinValue() const;
4105     double getAverageValue() const;
4106     double norm2() const;
4107     //do not put a default value to isWAbs because confusion in python with overloaded getWeightedAverageValue method
4108     double getWeightedAverageValue(int compId, bool isWAbs) const;
4109     double integral(int compId, bool isWAbs) const;
4110     double normL1(int compId) const;
4111     double normL2(int compId) const;
4112     double normMax(int compId) const;
4113     DataArrayIdType *findIdsInRange(double vmin, double vmax) const;
4114     MEDCouplingFieldDouble *buildSubPartRange(int begin, int end, int step) const;
4115     static MEDCouplingFieldDouble *MergeFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2);
4116     static MEDCouplingFieldDouble *MeldFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2);
4117     static MEDCouplingFieldDouble *DotFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2);
4118     MEDCouplingFieldDouble *dot(const MEDCouplingFieldDouble& other) const;
4119     static MEDCouplingFieldDouble *CrossProductFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2);
4120     MEDCouplingFieldDouble *crossProduct(const MEDCouplingFieldDouble& other) const;
4121     static MEDCouplingFieldDouble *MaxFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2);
4122     MEDCouplingFieldDouble *max(const MEDCouplingFieldDouble& other) const;
4123     static MEDCouplingFieldDouble *MinFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2);
4124     static MEDCouplingFieldDouble *AddFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2);
4125     static MEDCouplingFieldDouble *SubstractFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2);
4126     static MEDCouplingFieldDouble *MultiplyFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2);
4127     static MEDCouplingFieldDouble *DivideFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2);
4128     MEDCouplingFieldDouble *min(const MEDCouplingFieldDouble& other) const;
4129     MEDCouplingFieldDouble *negate() const;
4130     %extend {
4131       MEDCouplingFieldDouble(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME)
4132       {
4133         return MEDCouplingFieldDouble::New(type,td);
4134       }
4135
4136       MEDCouplingFieldDouble(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME)
4137       {
4138         return MEDCouplingFieldDouble::New(ft,td);
4139       }
4140
4141       std::string __str__() const
4142       {
4143         return self->simpleRepr();
4144       }
4145
4146       std::string __repr__() const
4147       {
4148         std::ostringstream oss;
4149         self->reprQuickOverview(oss);
4150         return oss.str();
4151       }
4152
4153       PyObject *isEqualIfNotWhy(const MEDCouplingFieldDouble *other, double meshPrec, double valsPrec) const
4154       {
4155         std::string ret1;
4156         bool ret0=self->isEqualIfNotWhy(other,meshPrec,valsPrec,ret1);
4157         PyObject *ret=PyTuple_New(2);
4158         PyObject *ret0Py=ret0?Py_True:Py_False;
4159         Py_XINCREF(ret0Py);
4160         PyTuple_SetItem(ret,0,ret0Py);
4161         PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
4162         return ret;
4163       }
4164       
4165       MEDCouplingFieldDouble *voronoize(double eps) const
4166       {
4167         MCAuto<MEDCouplingFieldDouble> ret(self->voronoize(eps));
4168         return ret.retn();
4169       }
4170
4171       MEDCouplingFieldDouble *convertQuadraticCellsToLinear() const
4172       {
4173         MCAuto<MEDCouplingFieldDouble> ret(self->convertQuadraticCellsToLinear());
4174         return ret.retn();
4175       }
4176       
4177       MEDCouplingFieldDouble *computeVectorFieldCyl(PyObject *center, PyObject *vector) const
4178       {
4179         const char msg[]="Python wrap of MEDCouplingFieldDouble::computeVectorFieldCyl : ";
4180         double val,val2;
4181         DataArrayDouble *a,*a2;
4182         DataArrayDoubleTuple *aa,*aa2;
4183         std::vector<double> bb,bb2;
4184         mcIdType sw;
4185         const double *centerPtr=convertObjToPossibleCpp5_Safe(center,sw,val,a,aa,bb,msg,1,3,true);
4186         const double *vectorPtr=convertObjToPossibleCpp5_Safe(vector,sw,val2,a2,aa2,bb2,msg,1,3,true);
4187         return self->computeVectorFieldCyl(centerPtr,vectorPtr);
4188       }
4189
4190       DataArrayDouble *getArray()
4191       {
4192         DataArrayDouble *ret=self->getArray();
4193         if(ret)
4194           ret->incrRef();
4195         return ret;
4196       }
4197
4198       PyObject *getArrays() const
4199       {
4200         std::vector<DataArrayDouble *> arrs=self->getArrays();
4201         for(std::vector<DataArrayDouble *>::iterator it=arrs.begin();it!=arrs.end();it++)
4202           if(*it)
4203             (*it)->incrRef();
4204         std::size_t sz=arrs.size();
4205         PyObject *ret=PyTuple_New(sz);
4206         for(std::size_t i=0;i<sz;i++)
4207           {
4208             if(arrs[i])
4209               PyTuple_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(arrs[i]),SWIGTYPE_p_MEDCoupling__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
4210             else
4211               PyTuple_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_MEDCoupling__DataArrayDouble, 0 | 0 ));
4212           }
4213         return ret;
4214       }
4215
4216       void setArrays(PyObject *ls)
4217       {
4218         std::vector<const DataArrayDouble *> tmp;
4219         convertFromPyObjVectorOfObj<const DataArrayDouble *>(ls,SWIGTYPE_p_MEDCoupling__DataArrayDouble,"DataArrayDouble",tmp);
4220         std::size_t sz=tmp.size();
4221         std::vector<DataArrayDouble *> arrs(sz);
4222         for(std::size_t i=0;i<sz;i++)
4223           arrs[i]=const_cast<DataArrayDouble *>(tmp[i]);
4224         self->setArrays(arrs);
4225       }
4226
4227       DataArrayDouble *getEndArray()
4228       {
4229         DataArrayDouble *ret=self->getEndArray();
4230         if(ret)
4231           ret->incrRef();
4232         return ret;
4233       }
4234
4235       PyObject *getValueOn(PyObject *sl) const
4236       {
4237         double val;
4238         DataArrayDouble *a;
4239         DataArrayDoubleTuple *aa;
4240         std::vector<double> bb;
4241         mcIdType sw;
4242         const MEDCouplingMesh *mesh=self->getMesh();
4243         if(!mesh)
4244           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingFieldDouble::getValueOn : no underlying mesh !");
4245         int spaceDim=mesh->getSpaceDimension();
4246         const char msg[]="Python wrap of MEDCouplingFieldDouble::getValueOn : ";
4247         const double *spaceLoc=convertObjToPossibleCpp5_Safe(sl,sw,val,a,aa,bb,msg,1,spaceDim,true);
4248         //
4249         mcIdType sz=ToIdType(self->getNumberOfComponents());
4250         INTERP_KERNEL::AutoPtr<double> res=new double[sz];
4251         self->getValueOn(spaceLoc,res);
4252         return convertDblArrToPyList<double>(res,sz);
4253       }
4254
4255        PyObject *getValueOnPos(mcIdType i, mcIdType j, mcIdType k) const
4256        {
4257          mcIdType sz=ToIdType(self->getNumberOfComponents());
4258          INTERP_KERNEL::AutoPtr<double> res=new double[sz];
4259          self->getValueOnPos(i,j,k,res);
4260          return convertDblArrToPyList<double>(res,sz);
4261        }
4262
4263       DataArrayDouble *getValueOnMulti(PyObject *locs) const
4264       {
4265         const MEDCouplingMesh *mesh(self->getMesh());
4266         if(!mesh)
4267           throw INTERP_KERNEL::Exception("Python wrap MEDCouplingFieldDouble::getValueOnMulti : lying on a null mesh !");
4268         //
4269         mcIdType sw,nbPts;
4270         double v0; MEDCoupling::DataArrayDouble *v1(0); MEDCoupling::DataArrayDoubleTuple *v2(0); std::vector<double> v3;
4271         const double *inp=convertObjToPossibleCpp5_Safe2(locs,sw,v0,v1,v2,v3,"wrap of MEDCouplingFieldDouble::getValueOnMulti",
4272                                                          mesh->getSpaceDimension(),true,nbPts);
4273         return self->getValueOnMulti(inp,(int)nbPts);
4274       }
4275
4276       PyObject *getValueOn(PyObject *sl, double time) const
4277       {
4278         double val;
4279         DataArrayDouble *a;
4280         DataArrayDoubleTuple *aa;
4281         std::vector<double> bb;
4282         mcIdType sw;
4283         const MEDCouplingMesh *mesh=self->getMesh();
4284         if(!mesh)
4285           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingFieldDouble::getValueOn : no underlying mesh !");
4286         int spaceDim=mesh->getSpaceDimension();
4287         const char msg[]="Python wrap of MEDCouplingFieldDouble::getValueOn : ";
4288         const double *spaceLoc=convertObjToPossibleCpp5_Safe(sl,sw,val,a,aa,bb,msg,1,spaceDim,true);
4289         //
4290         //
4291         mcIdType sz=ToIdType(self->getNumberOfComponents());
4292         INTERP_KERNEL::AutoPtr<double> res=new double[sz];
4293         self->getValueOn(spaceLoc,time,res);
4294         return convertDblArrToPyList<double>(res,sz);
4295       }
4296
4297       void setValues(PyObject *li, PyObject *nbOfTuples=0, PyObject *nbOfComp=0)
4298       {
4299         if(self->getArray()!=0)
4300           MEDCoupling_DataArrayDouble_setValues__SWIG_0(self->getArray(),li,nbOfTuples,nbOfComp);
4301         else
4302           {
4303             MCAuto<DataArrayDouble> arr=DataArrayDouble::New();
4304             MEDCoupling_DataArrayDouble_setValues__SWIG_0(arr,li,nbOfTuples,nbOfComp);
4305             self->setArray(arr);
4306           }
4307       }
4308       
4309       PyObject *getTime()
4310       {
4311         int tmp1,tmp2;
4312         double tmp0=self->getTime(tmp1,tmp2);
4313         PyObject *res = PyList_New(3);
4314         PyList_SetItem(res,0,SWIG_From_double(tmp0));
4315         PyList_SetItem(res,1,SWIG_From_int(tmp1));
4316         PyList_SetItem(res,2,SWIG_From_int(tmp2));
4317         return res;
4318       }
4319
4320       PyObject *getStartTime()
4321       {
4322         int tmp1,tmp2;
4323         double tmp0=self->getStartTime(tmp1,tmp2);
4324         PyObject *res = PyList_New(3);
4325         PyList_SetItem(res,0,SWIG_From_double(tmp0));
4326         PyList_SetItem(res,1,SWIG_From_int(tmp1));
4327         PyList_SetItem(res,2,SWIG_From_int(tmp2));
4328         return res;
4329       }
4330
4331       PyObject *getEndTime()
4332       {
4333         int tmp1,tmp2;
4334         double tmp0=self->getEndTime(tmp1,tmp2);
4335         PyObject *res = PyList_New(3);
4336         PyList_SetItem(res,0,SWIG_From_double(tmp0));
4337         PyList_SetItem(res,1,SWIG_From_int(tmp1));
4338         PyList_SetItem(res,2,SWIG_From_int(tmp2));
4339         return res;
4340       }
4341       PyObject *accumulate() const
4342       {
4343         mcIdType sz=ToIdType(self->getNumberOfComponents());
4344         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
4345         self->accumulate(tmp);
4346         return convertDblArrToPyList<double>(tmp,sz);
4347       }
4348       PyObject *integral(bool isWAbs) const
4349       {
4350         mcIdType sz=ToIdType(self->getNumberOfComponents());
4351         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
4352         self->integral(isWAbs,tmp);
4353         return convertDblArrToPyList<double>(tmp,sz);
4354       }
4355       PyObject *getWeightedAverageValue(bool isWAbs=true) const
4356       {
4357         mcIdType sz=ToIdType(self->getNumberOfComponents());
4358         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
4359         self->getWeightedAverageValue(tmp,isWAbs);
4360         return convertDblArrToPyList<double>(tmp,sz);
4361       }
4362       PyObject *normL1() const
4363       {
4364         mcIdType sz=ToIdType(self->getNumberOfComponents());
4365         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
4366         self->normL1(tmp);
4367         return convertDblArrToPyList<double>(tmp,sz);
4368       }
4369       PyObject *normL2() const
4370       {
4371         mcIdType sz=ToIdType(self->getNumberOfComponents());
4372         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
4373         self->normL2(tmp);
4374         return convertDblArrToPyList<double>(tmp,sz);
4375       }
4376       PyObject *normMax() const
4377       {
4378         mcIdType sz=ToIdType(self->getNumberOfComponents());
4379         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
4380         self->normMax(tmp);
4381         return convertDblArrToPyList<double>(tmp,sz);
4382       }
4383       void renumberCells(PyObject *li, bool check=true)
4384       {
4385         mcIdType szArr,sw,iTypppArr;
4386         std::vector<mcIdType> stdvecTyyppArr;
4387         const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
4388         self->renumberCells(tmp,check);
4389       }
4390       
4391       void renumberCellsWithoutMesh(PyObject *li, bool check=true)
4392       {
4393         mcIdType szArr,sw,iTypppArr;
4394         std::vector<mcIdType> stdvecTyyppArr;
4395         const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
4396         self->renumberCellsWithoutMesh(tmp,check);
4397       }
4398       
4399       void renumberNodes(PyObject *li, double eps=1e-15)
4400       {
4401         mcIdType szArr,sw,iTypppArr;
4402         std::vector<mcIdType> stdvecTyyppArr;
4403         const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
4404         self->renumberNodes(tmp,eps);
4405       }
4406
4407       void renumberNodesWithoutMesh(PyObject *li, mcIdType newNbOfNodes, double eps=1e-15)
4408       {
4409         mcIdType szArr,sw,iTypppArr;
4410         std::vector<mcIdType> stdvecTyyppArr;
4411         const mcIdType *tmp=convertIntStarLikePyObjToCppIntStar(li,sw,szArr,iTypppArr,stdvecTyyppArr);
4412         self->renumberNodesWithoutMesh(tmp,newNbOfNodes,eps);
4413       }
4414
4415       MEDCouplingFieldDouble *buildSubPart(PyObject *li) const
4416       {
4417         return fieldT_buildSubPart(self,li);
4418       }
4419
4420       MEDCouplingFieldDouble *__getitem__(PyObject *li) const
4421       {
4422         return fieldT__getitem__(self,li);
4423       }
4424
4425       PyObject *getMaxValue2() const
4426       {
4427         DataArrayIdType *tmp;
4428         double r1=self->getMaxValue2(tmp);
4429         PyObject *ret=PyTuple_New(2);
4430         PyTuple_SetItem(ret,0,PyFloat_FromDouble(r1));
4431         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
4432         return ret;
4433       }
4434       
4435       PyObject *getMinValue2() const
4436       {
4437         DataArrayIdType *tmp;
4438         double r1=self->getMinValue2(tmp);
4439         PyObject *ret=PyTuple_New(2);
4440         PyTuple_SetItem(ret,0,PyFloat_FromDouble(r1));
4441         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp),SWIGTITraits<mcIdType>::TI, SWIG_POINTER_OWN | 0 ));
4442         return ret;
4443       }
4444       
4445       MEDCouplingFieldDouble *keepSelectedComponents(PyObject *li) const
4446       {
4447         std::vector<std::size_t> tmp;
4448         convertPyToNewIntArr3(li,tmp);
4449         return self->keepSelectedComponents(tmp);
4450       }
4451
4452       void setSelectedComponents(const MEDCouplingFieldDouble *f, PyObject *li)
4453       {
4454         std::vector<std::size_t> tmp;
4455         convertPyToNewIntArr3(li,tmp);
4456         self->setSelectedComponents(f,tmp);
4457       }
4458
4459       MEDCouplingFieldDouble *extractSlice3D(PyObject *origin, PyObject *vec, double eps) const
4460       {
4461         double val,val2;
4462         DataArrayDouble *a,*a2;
4463         DataArrayDoubleTuple *aa,*aa2;
4464         std::vector<double> bb,bb2;
4465         mcIdType sw;
4466         int spaceDim=3;
4467         const char msg[]="Python wrap of MEDCouplingFieldDouble::extractSlice3D : 1st parameter for origin.";
4468         const char msg2[]="Python wrap of MEDCouplingFieldDouble::extractSlice3D : 2nd parameter for vector.";
4469         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
4470         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
4471         //
4472         return self->extractSlice3D(orig,vect,eps);
4473       }
4474
4475       MEDCouplingFieldDouble *__add__(PyObject *obj)
4476       {
4477         return MEDCoupling_MEDCouplingFieldDouble___add__Impl(self,obj);
4478       }
4479
4480       MEDCouplingFieldDouble *__radd__(PyObject *obj)
4481       {
4482         return MEDCoupling_MEDCouplingFieldDouble___radd__Impl(self,obj);
4483       }
4484
4485       MEDCouplingFieldDouble *__sub__(PyObject *obj)
4486       {
4487         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__sub__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4488         const char msg2[]="in MEDCouplingFieldDouble.__sub__ : self field has no Array of values set !";
4489         void *argp;
4490         //
4491         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,0|0)))
4492           {
4493             MEDCouplingFieldDouble *other=reinterpret_cast< MEDCoupling::MEDCouplingFieldDouble * >(argp);
4494             if(other)
4495               return (*self)-(*other);
4496             else
4497               throw INTERP_KERNEL::Exception(msg);
4498           }
4499         //
4500         double val;
4501         DataArrayDouble *a;
4502         DataArrayDoubleTuple *aa;
4503         std::vector<double> bb;
4504         mcIdType sw;
4505         convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb);
4506         switch(sw)
4507           {
4508           case 1:
4509             {
4510               if(!self->getArray())
4511                 throw INTERP_KERNEL::Exception(msg2);
4512               MCAuto<DataArrayDouble> ret=self->getArray()->deepCopy();
4513               ret->applyLin(1.,-val);
4514               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4515               ret2->setArray(ret);
4516               return ret2.retn();
4517             }
4518           case 2:
4519             {
4520               if(!self->getArray())
4521                 throw INTERP_KERNEL::Exception(msg2);
4522               MCAuto<DataArrayDouble> ret=DataArrayDouble::Substract(self->getArray(),a);
4523               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4524               ret2->setArray(ret);
4525               return ret2.retn();
4526             }
4527           case 3:
4528             {
4529               if(!self->getArray())
4530                 throw INTERP_KERNEL::Exception(msg2);
4531               MCAuto<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4532               MCAuto<DataArrayDouble> ret=DataArrayDouble::Substract(self->getArray(),aaa);
4533               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4534               ret2->setArray(ret);
4535               return ret2.retn();
4536             }
4537           case 4:
4538             {
4539               if(!self->getArray())
4540                 throw INTERP_KERNEL::Exception(msg2);
4541               MCAuto<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,DeallocType::CPP_DEALLOC,1,bb.size());
4542               MCAuto<DataArrayDouble> ret=DataArrayDouble::Substract(self->getArray(),aaa);
4543               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4544               ret2->setArray(ret);
4545               return ret2.retn();
4546             }
4547           default:
4548             { throw INTERP_KERNEL::Exception(msg); }
4549           }
4550       }
4551
4552       MEDCouplingFieldDouble *__rsub__(PyObject *obj)
4553       {
4554         return MEDCoupling_MEDCouplingFieldDouble___rsub__Impl(self,obj);
4555       }
4556
4557       MEDCouplingFieldDouble *__mul__(PyObject *obj)
4558       {
4559         return MEDCoupling_MEDCouplingFieldDouble___mul__Impl(self,obj);
4560       }
4561
4562       MEDCouplingFieldDouble *__rmul__(PyObject *obj)
4563       {
4564         return MEDCoupling_MEDCouplingFieldDouble___rmul__Impl(self,obj);
4565       }
4566
4567       MEDCouplingFieldDouble *__div__(PyObject *obj)
4568       {
4569         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__div__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4570         const char msg2[]="in MEDCouplingFieldDouble.__div__ : self field has no Array of values set !";
4571         void *argp;
4572         //
4573         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,0|0)))
4574           {
4575             MEDCouplingFieldDouble *other=reinterpret_cast< MEDCoupling::MEDCouplingFieldDouble * >(argp);
4576             if(other)
4577               return (*self)/(*other);
4578             else
4579               throw INTERP_KERNEL::Exception(msg);
4580           }
4581         //
4582         double val;
4583         DataArrayDouble *a;
4584         DataArrayDoubleTuple *aa;
4585         std::vector<double> bb;
4586         mcIdType sw;
4587         convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb);
4588         switch(sw)
4589           {
4590           case 1:
4591             {
4592               if(val==0.)
4593                 throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble.__div__ : trying to divide by zero !");
4594               if(!self->getArray())
4595                 throw INTERP_KERNEL::Exception(msg2);
4596               MCAuto<DataArrayDouble> ret=self->getArray()->deepCopy();
4597               ret->applyLin(1./val,0);
4598               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4599               ret2->setArray(ret);
4600               return ret2.retn();
4601             }
4602           case 2:
4603             {
4604               if(!self->getArray())
4605                 throw INTERP_KERNEL::Exception(msg2);
4606               MCAuto<DataArrayDouble> ret=DataArrayDouble::Divide(self->getArray(),a);
4607               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4608               ret2->setArray(ret);
4609               return ret2.retn();
4610             }
4611           case 3:
4612             {
4613               if(!self->getArray())
4614                 throw INTERP_KERNEL::Exception(msg2);
4615               MCAuto<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4616               MCAuto<DataArrayDouble> ret=DataArrayDouble::Divide(self->getArray(),aaa);
4617               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4618               ret2->setArray(ret);
4619               return ret2.retn();
4620             }
4621           case 4:
4622             {
4623               if(!self->getArray())
4624                 throw INTERP_KERNEL::Exception(msg2);
4625               MCAuto<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,DeallocType::CPP_DEALLOC,1,bb.size());
4626               MCAuto<DataArrayDouble> ret=DataArrayDouble::Divide(self->getArray(),aaa);
4627               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4628               ret2->setArray(ret);
4629               return ret2.retn();
4630             }
4631           default:
4632             { throw INTERP_KERNEL::Exception(msg); }
4633           }
4634       }
4635
4636       MEDCouplingFieldDouble *__rdiv__(PyObject *obj)
4637       {
4638         return MEDCoupling_MEDCouplingFieldDouble___rdiv__Impl(self,obj);
4639       }
4640
4641       MEDCouplingFieldDouble *__pow__(PyObject *obj)
4642       {
4643         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__pow__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4644         const char msg2[]="in MEDCouplingFieldDouble.__pow__ : self field has no Array of values set !";
4645         void *argp;
4646         //
4647         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,0|0)))
4648           {
4649             MEDCouplingFieldDouble *other=reinterpret_cast< MEDCoupling::MEDCouplingFieldDouble * >(argp);
4650             if(other)
4651               return (*self)^(*other);
4652             else
4653               throw INTERP_KERNEL::Exception(msg);
4654           }
4655         //
4656         double val;
4657         DataArrayDouble *a;
4658         DataArrayDoubleTuple *aa;
4659         std::vector<double> bb;
4660         mcIdType sw;
4661         convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb);
4662         switch(sw)
4663           {
4664           case 1:
4665             {
4666               if(!self->getArray())
4667                 throw INTERP_KERNEL::Exception(msg2);
4668               MCAuto<DataArrayDouble> ret=self->getArray()->deepCopy();
4669               ret->applyPow(val);
4670               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4671               ret2->setArray(ret);
4672               return ret2.retn();
4673             }
4674           case 2:
4675             {
4676               if(!self->getArray())
4677                 throw INTERP_KERNEL::Exception(msg2);
4678               MCAuto<DataArrayDouble> ret=DataArrayDouble::Pow(self->getArray(),a);
4679               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4680               ret2->setArray(ret);
4681               return ret2.retn();
4682             }
4683           case 3:
4684             {
4685               if(!self->getArray())
4686                 throw INTERP_KERNEL::Exception(msg2);
4687               MCAuto<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4688               MCAuto<DataArrayDouble> ret=DataArrayDouble::Pow(self->getArray(),aaa);
4689               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4690               ret2->setArray(ret);
4691               return ret2.retn();
4692             }
4693           case 4:
4694             {
4695               if(!self->getArray())
4696                 throw INTERP_KERNEL::Exception(msg2);
4697               MCAuto<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,DeallocType::CPP_DEALLOC,1,bb.size());
4698               MCAuto<DataArrayDouble> ret=DataArrayDouble::Pow(self->getArray(),aaa);
4699               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4700               ret2->setArray(ret);
4701               return ret2.retn();
4702             }
4703           default:
4704             { throw INTERP_KERNEL::Exception(msg); }
4705           }
4706       }
4707
4708       MEDCouplingFieldDouble *__neg__() const
4709       {
4710         return self->negate();
4711       }
4712
4713       PyObject *___iadd___(PyObject *trueSelf, PyObject *obj)
4714       {
4715         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__iadd__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4716         const char msg2[]="in MEDCouplingFieldDouble.__iadd__ : self field has no Array of values set !";
4717         void *argp;
4718         //
4719         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,0|0)))
4720           {
4721             MEDCouplingFieldDouble *other=reinterpret_cast< MEDCoupling::MEDCouplingFieldDouble * >(argp);
4722             if(other)
4723               {
4724                 *self+=*other;
4725                 Py_XINCREF(trueSelf);
4726                 return trueSelf;
4727               }
4728             else
4729               throw INTERP_KERNEL::Exception(msg);
4730           }
4731         //
4732         double val;
4733         DataArrayDouble *a;
4734         DataArrayDoubleTuple *aa;
4735         std::vector<double> bb;
4736         mcIdType sw;
4737         convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb);
4738         switch(sw)
4739           {
4740           case 1:
4741             {
4742               if(!self->getArray())
4743                 throw INTERP_KERNEL::Exception(msg2);
4744               self->getArray()->applyLin(1.,val);
4745               Py_XINCREF(trueSelf);
4746               return trueSelf;
4747             }
4748           case 2:
4749             {
4750               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4751               ret2->setArray(a);
4752               *self+=*ret2;
4753               Py_XINCREF(trueSelf);
4754               return trueSelf;
4755             }
4756           case 3:
4757             {
4758               MCAuto<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4759               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4760               ret2->setArray(aaa);
4761               *self+=*ret2;
4762               Py_XINCREF(trueSelf);
4763               return trueSelf;
4764             }
4765           case 4:
4766             {
4767               if(!self->getArray())
4768                 throw INTERP_KERNEL::Exception(msg2);
4769               MCAuto<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,DeallocType::CPP_DEALLOC,1,bb.size());
4770               self->getArray()->addEqual(aaa);
4771               Py_XINCREF(trueSelf);
4772               return trueSelf;
4773             }
4774           default:
4775             { throw INTERP_KERNEL::Exception(msg); }
4776           }
4777       }
4778
4779       PyObject *___isub___(PyObject *trueSelf, PyObject *obj)
4780       {
4781         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__isub__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4782         const char msg2[]="in MEDCouplingFieldDouble.__isub__ : self field has no Array of values set !";
4783         void *argp;
4784         //
4785         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,0|0)))
4786           {
4787             MEDCouplingFieldDouble *other=reinterpret_cast< MEDCoupling::MEDCouplingFieldDouble * >(argp);
4788             if(other)
4789               {
4790                 *self-=*other;
4791                 Py_XINCREF(trueSelf);
4792                 return trueSelf;
4793               }
4794             else
4795               throw INTERP_KERNEL::Exception(msg);
4796           }
4797         //
4798         double val;
4799         DataArrayDouble *a;
4800         DataArrayDoubleTuple *aa;
4801         std::vector<double> bb;
4802         mcIdType sw;
4803         convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb);
4804         switch(sw)
4805           {
4806           case 1:
4807             {
4808               if(!self->getArray())
4809                 throw INTERP_KERNEL::Exception(msg2);
4810               self->getArray()->applyLin(1.,-val);
4811               Py_XINCREF(trueSelf);
4812               return trueSelf;
4813             }
4814           case 2:
4815             {
4816               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4817               ret2->setArray(a);
4818               *self-=*ret2;
4819               Py_XINCREF(trueSelf);
4820               return trueSelf;
4821             }
4822           case 3:
4823             {
4824               MCAuto<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4825               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4826               ret2->setArray(aaa);
4827               *self-=*ret2;
4828               Py_XINCREF(trueSelf);
4829               return trueSelf;
4830             }
4831           case 4:
4832             {
4833               if(!self->getArray())
4834                 throw INTERP_KERNEL::Exception(msg2);
4835               MCAuto<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,DeallocType::CPP_DEALLOC,1,bb.size());
4836               self->getArray()->substractEqual(aaa);
4837               Py_XINCREF(trueSelf);
4838               return trueSelf;
4839             }
4840           default:
4841             { throw INTERP_KERNEL::Exception(msg); }
4842           }
4843       }
4844
4845       PyObject *___imul___(PyObject *trueSelf, PyObject *obj)
4846       {
4847         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__imul__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4848         const char msg2[]="in MEDCouplingFieldDouble.__imul__ : self field has no Array of values set !";
4849         void *argp;
4850         //
4851         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,0|0)))
4852           {
4853             MEDCouplingFieldDouble *other=reinterpret_cast< MEDCoupling::MEDCouplingFieldDouble * >(argp);
4854             if(other)
4855               {
4856                 *self*=*other;
4857                 Py_XINCREF(trueSelf);
4858                 return trueSelf;
4859               }
4860             else
4861               throw INTERP_KERNEL::Exception(msg);
4862           }
4863         //
4864         double val;
4865         DataArrayDouble *a;
4866         DataArrayDoubleTuple *aa;
4867         std::vector<double> bb;
4868         mcIdType sw;
4869         convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb);
4870         switch(sw)
4871           {
4872           case 1:
4873             {
4874               if(!self->getArray())
4875                 throw INTERP_KERNEL::Exception(msg2);
4876               self->getArray()->applyLin(val,0);
4877               Py_XINCREF(trueSelf);
4878               return trueSelf;
4879             }
4880           case 2:
4881             {
4882               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4883               ret2->setArray(a);
4884               *self*=*ret2;
4885               Py_XINCREF(trueSelf);
4886               return trueSelf;
4887             }
4888           case 3:
4889             {
4890               MCAuto<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4891               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4892               ret2->setArray(aaa);
4893               *self*=*ret2;
4894               Py_XINCREF(trueSelf);
4895               return trueSelf;
4896             }
4897           case 4:
4898             {
4899               if(!self->getArray())
4900                 throw INTERP_KERNEL::Exception(msg2);
4901               MCAuto<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,DeallocType::CPP_DEALLOC,1,(int)bb.size());
4902               self->getArray()->multiplyEqual(aaa);
4903               Py_XINCREF(trueSelf);
4904               return trueSelf;
4905             }
4906           default:
4907             { throw INTERP_KERNEL::Exception(msg); }
4908           }
4909       }
4910
4911       PyObject *___idiv___(PyObject *trueSelf, PyObject *obj)
4912       {
4913         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__idiv__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4914         const char msg2[]="in MEDCouplingFieldDouble.__idiv__ : self field has no Array of values set !";
4915         void *argp;
4916         //
4917         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,0|0)))
4918           {
4919             MEDCouplingFieldDouble *other=reinterpret_cast< MEDCoupling::MEDCouplingFieldDouble * >(argp);
4920             if(other)
4921               {
4922                 *self/=*other;
4923                 Py_XINCREF(trueSelf);
4924                 return trueSelf;
4925               }
4926             else
4927               throw INTERP_KERNEL::Exception(msg);
4928           }
4929         //
4930         double val;
4931         DataArrayDouble *a;
4932         DataArrayDoubleTuple *aa;
4933         std::vector<double> bb;
4934         mcIdType sw;
4935         convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb);
4936         switch(sw)
4937           {
4938           case 1:
4939             {
4940               if(val==0.)
4941                 throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble.__idiv__ : trying to divide by zero !");
4942               if(!self->getArray())
4943                 throw INTERP_KERNEL::Exception(msg2);
4944               self->getArray()->applyLin(1./val,0);
4945               Py_XINCREF(trueSelf);
4946               return trueSelf;
4947             }
4948           case 2:
4949             {
4950               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4951               ret2->setArray(a);
4952               *self/=*ret2;
4953               Py_XINCREF(trueSelf);
4954               return trueSelf;
4955             }
4956           case 3:
4957             {
4958               MCAuto<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4959               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
4960               ret2->setArray(aaa);
4961               *self/=*ret2;
4962               Py_XINCREF(trueSelf);
4963               return trueSelf;
4964             }
4965           case 4:
4966             {
4967               if(!self->getArray())
4968                 throw INTERP_KERNEL::Exception(msg2);
4969               MCAuto<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,DeallocType::CPP_DEALLOC,1,bb.size());
4970               self->getArray()->divideEqual(aaa);
4971               Py_XINCREF(trueSelf);
4972               return trueSelf;
4973             }
4974           default:
4975             { throw INTERP_KERNEL::Exception(msg); }
4976           }
4977       }
4978
4979       PyObject *___ipow___(PyObject *trueSelf, PyObject *obj)
4980       {
4981         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__ipow__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4982         const char msg2[]="in MEDCouplingFieldDouble.__ipow__ : self field has no Array of values set !";
4983         void *argp;
4984         //
4985         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,0|0)))
4986           {
4987             MEDCouplingFieldDouble *other=reinterpret_cast< MEDCoupling::MEDCouplingFieldDouble * >(argp);
4988             if(other)
4989               {
4990                 *self^=*other;
4991                 Py_XINCREF(trueSelf);
4992                 return trueSelf;
4993               }
4994             else
4995               throw INTERP_KERNEL::Exception(msg);
4996           }
4997         //
4998         double val;
4999         DataArrayDouble *a;
5000         DataArrayDoubleTuple *aa;
5001         std::vector<double> bb;
5002         mcIdType sw;
5003         convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb);
5004         switch(sw)
5005           {
5006           case 1:
5007             {
5008               if(!self->getArray())
5009                 throw INTERP_KERNEL::Exception(msg2);
5010               self->getArray()->applyPow(val);
5011               Py_XINCREF(trueSelf);
5012               return trueSelf;
5013             }
5014           case 2:
5015             {
5016               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
5017               ret2->setArray(a);
5018               *self^=*ret2;
5019               Py_XINCREF(trueSelf);
5020               return trueSelf;
5021             }
5022           case 3:
5023             {
5024               MCAuto<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
5025               MCAuto<MEDCouplingFieldDouble> ret2=self->clone(false);
5026               ret2->setArray(aaa);
5027               *self^=*ret2;
5028               Py_XINCREF(trueSelf);
5029               return trueSelf;
5030             }
5031           case 4:
5032             {
5033               if(!self->getArray())
5034                 throw INTERP_KERNEL::Exception(msg2);
5035               MCAuto<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,DeallocType::CPP_DEALLOC,1,bb.size());
5036               self->getArray()->powEqual(aaa);
5037               Py_XINCREF(trueSelf);
5038               return trueSelf;
5039             }
5040           default:
5041             { throw INTERP_KERNEL::Exception(msg); }
5042           }
5043       }
5044
5045       static MEDCouplingFieldDouble *MergeFields(PyObject *li)
5046       {
5047         std::vector<const MEDCouplingFieldDouble *> tmp;
5048         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
5049         return MEDCouplingFieldDouble::MergeFields(tmp);
5050       }
5051
5052       static std::string WriteVTK(const char *fileName, PyObject *li, bool isBinary=true)
5053       {
5054         std::vector<const MEDCouplingFieldDouble *> tmp;
5055         convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
5056         return MEDCouplingFieldDouble::WriteVTK(fileName,tmp,isBinary);
5057       }
5058
5059       PyObject *getTinySerializationInformation() const
5060       {
5061         return field_getTinySerializationInformation<MEDCouplingFieldDouble>(self);
5062       }
5063       
5064       PyObject *serialize() const
5065       {
5066         return field_serialize<double>(self);
5067       }
5068
5069       PyObject *__getstate__() const
5070       {
5071         return field__getstate__<MEDCouplingFieldDouble>(self,MEDCoupling_MEDCouplingFieldDouble_getTinySerializationInformation,MEDCoupling_MEDCouplingFieldDouble_serialize);
5072       }
5073       
5074       void __setstate__(PyObject *inp)
5075       {
5076         field__setstate__<double>(self,inp);
5077       }
5078     }
5079   };
5080
5081   class MEDCouplingMultiFields : public RefCountObject, public TimeLabel
5082   {
5083   public:
5084     int getNumberOfFields() const;
5085     MEDCouplingMultiFields *deepCopy() const;
5086     virtual std::string simpleRepr() const;
5087     virtual std::string advancedRepr() const;
5088     virtual bool isEqual(const MEDCouplingMultiFields *other, double meshPrec, double valsPrec) const;
5089     virtual bool isEqualWithoutConsideringStr(const MEDCouplingMultiFields *other, double meshPrec, double valsPrec) const;
5090     virtual void checkConsistencyLight() const;
5091     %extend
5092        {
5093          std::string __str__() const
5094          {
5095            return self->simpleRepr();
5096          }
5097          static MEDCouplingMultiFields *New(PyObject *li)
5098          {
5099            std::vector<const MEDCoupling::MEDCouplingFieldDouble *> tmp;
5100            convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
5101            std::size_t sz=tmp.size();
5102            std::vector<MEDCouplingFieldDouble *> fs(sz);
5103            for(std::size_t i=0;i<sz;i++)
5104              fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
5105            return MEDCouplingMultiFields::New(fs);
5106          }
5107          MEDCouplingMultiFields(PyObject *li)
5108          {
5109            std::vector<const MEDCoupling::MEDCouplingFieldDouble *> tmp;
5110            convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
5111            std::size_t sz=tmp.size();
5112            std::vector<MEDCouplingFieldDouble *> fs(sz);
5113            for(std::size_t i=0;i<sz;i++)
5114              fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
5115            return MEDCouplingMultiFields::New(fs);
5116          }
5117          PyObject *getFields() const
5118          {
5119            std::vector<const MEDCouplingFieldDouble *> fields=self->getFields();
5120            std::size_t sz=fields.size();
5121            PyObject *res = PyList_New(sz);
5122            for(std::size_t i=0;i<sz;i++)
5123              {
5124                if(fields[i])
5125                  {
5126                    fields[i]->incrRef();
5127                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(fields[i]),SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble, SWIG_POINTER_OWN | 0 ));
5128                  }
5129                else
5130                  {
5131                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble, 0 ));
5132                  }
5133              }
5134            return res;
5135          }
5136          PyObject *getFieldAtPos(int id) const
5137          {
5138            const MEDCouplingFieldDouble *ret=self->getFieldAtPos(id);
5139            if(ret)
5140              {
5141                ret->incrRef();
5142                return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble, SWIG_POINTER_OWN | 0 );
5143              }
5144            else
5145              return SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble, 0 );
5146          }
5147          PyObject *getMeshes() const
5148          {
5149            std::vector<MEDCouplingMesh *> ms=self->getMeshes();
5150            std::size_t sz=ms.size();
5151            PyObject *res = PyList_New(sz);
5152            for(std::size_t i=0;i<sz;i++)
5153              {
5154                if(ms[i])
5155                  {
5156                    ms[i]->incrRef();
5157                    PyList_SetItem(res,i,convertMesh(ms[i], SWIG_POINTER_OWN | 0 ));
5158                  }
5159                else
5160                  {
5161                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, 0 ));
5162                  }
5163              }
5164            return res;
5165          }
5166          PyObject *getDifferentMeshes() const
5167          {
5168            std::vector<int> refs;
5169            std::vector<MEDCouplingMesh *> ms=self->getDifferentMeshes(refs);
5170            std::size_t sz=ms.size();
5171            PyObject *res = PyList_New(sz);
5172            for(std::size_t i=0;i<sz;i++)
5173              {
5174                if(ms[i])
5175                  {
5176                    ms[i]->incrRef();
5177                    PyList_SetItem(res,i,convertMesh(ms[i], SWIG_POINTER_OWN | 0 ));
5178                  }
5179                else
5180                  {
5181                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_MEDCoupling__MEDCouplingUMesh, 0 ));
5182                  }
5183              }
5184            //
5185            PyObject *ret=PyTuple_New(2);
5186            PyTuple_SetItem(ret,0,res);
5187            PyTuple_SetItem(ret,1,convertIntArrToPyList2(refs));
5188            return ret;
5189          }
5190          PyObject *getArrays() const
5191          {
5192            std::vector<DataArrayDouble *> ms=self->getArrays();
5193            std::size_t sz=ms.size();
5194            PyObject *res = PyList_New(sz);
5195            for(std::size_t i=0;i<sz;i++)
5196              {
5197                if(ms[i])
5198                  {
5199                    ms[i]->incrRef();
5200                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(ms[i]),SWIGTYPE_p_MEDCoupling__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
5201                  }
5202                else
5203                  {
5204                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_MEDCoupling__DataArrayDouble, 0 ));
5205                  }
5206              }
5207            return res;
5208          }
5209          PyObject *getDifferentArrays() const
5210          {
5211            std::vector< std::vector<int> > refs;
5212            std::vector<DataArrayDouble *> ms=self->getDifferentArrays(refs);
5213            std::size_t sz=ms.size();
5214            PyObject *res = PyList_New(sz);
5215            PyObject *res2 = PyList_New(sz);
5216            for(std::size_t i=0;i<sz;i++)
5217              {
5218                if(ms[i])
5219                  {
5220                    ms[i]->incrRef();
5221                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(ms[i]),SWIGTYPE_p_MEDCoupling__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
5222                  }
5223                else
5224                  {
5225                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_MEDCoupling__DataArrayDouble, 0 ));
5226                  }
5227                PyList_SetItem(res2,i,convertIntArrToPyList2(refs[i]));
5228              }
5229            //
5230            PyObject *ret=PyTuple_New(2);
5231            PyTuple_SetItem(ret,0,res);
5232            PyTuple_SetItem(ret,1,res2);
5233            return ret;
5234          }
5235        }
5236   };
5237
5238   class MEDCouplingFieldInt32 : public MEDCouplingFieldT<int>
5239   {
5240   public:
5241     static MEDCouplingFieldInt32 *New(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME);
5242     static MEDCouplingFieldInt32 *New(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME);
5243     bool isEqual(const MEDCouplingFieldInt32 *other, double meshPrec, int valsPrec) const;
5244     bool isEqualWithoutConsideringStr(const MEDCouplingFieldInt32 *other, double meshPrec, int valsPrec) const;
5245     void setTimeUnit(const std::string& unit);
5246     std::string getTimeUnit() const;
5247     void setTime(double val, int iteration, int order);
5248     void setArray(DataArrayInt32 *array);
5249     MEDCouplingFieldInt32 *deepCopy() const;
5250     MEDCouplingFieldInt32 *clone(bool recDeepCpy) const;
5251     MEDCouplingFieldInt32 *cloneWithMesh(bool recDeepCpy) const;
5252     MEDCouplingFieldDouble *convertToDblField() const;
5253     MEDCouplingFieldInt32 *buildSubPartRange(int begin, int end, int step) const;
5254     %extend {
5255       MEDCouplingFieldInt32(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME)
5256       {
5257         return MEDCouplingFieldInt32::New(type,td);
5258       }
5259
5260       MEDCouplingFieldInt32(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME)
5261       {
5262         return MEDCouplingFieldInt32::New(ft,td);
5263       }
5264
5265       PyObject *isEqualIfNotWhy(const MEDCouplingFieldInt32 *other, double meshPrec, int valsPrec) const
5266       {
5267         std::string ret1;
5268         bool ret0=self->isEqualIfNotWhy(other,meshPrec,valsPrec,ret1);
5269         PyObject *ret=PyTuple_New(2);
5270         PyObject *ret0Py=ret0?Py_True:Py_False;
5271         Py_XINCREF(ret0Py);
5272         PyTuple_SetItem(ret,0,ret0Py);
5273         PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
5274         return ret;
5275       }
5276       
5277       std::string __str__() const
5278       {
5279         return self->simpleRepr();
5280       }
5281
5282       std::string __repr__() const
5283       {
5284         std::ostringstream oss;
5285         self->reprQuickOverview(oss);
5286         return oss.str();
5287       }
5288
5289       MEDCouplingFieldInt32 *buildSubPart(PyObject *li) const
5290       {
5291         return fieldT_buildSubPart(self,li);
5292       }
5293
5294       MEDCouplingFieldInt32 *__getitem__(PyObject *li) const
5295       {
5296         return fieldT__getitem__(self,li);
5297       }
5298
5299       DataArrayInt32 *getArray()
5300       {
5301         DataArrayInt32 *ret=self->getArray();
5302         if(ret)
5303           ret->incrRef();
5304         return ret;
5305       }
5306       
5307       PyObject *getTime()
5308         {
5309         int tmp1,tmp2;
5310         double tmp0=self->getTime(tmp1,tmp2);
5311         PyObject *res = PyList_New(3);
5312         PyList_SetItem(res,0,SWIG_From_double(tmp0));
5313         PyList_SetItem(res,1,SWIG_From_int(tmp1));
5314         PyList_SetItem(res,2,SWIG_From_int(tmp2));
5315         return res;
5316         }
5317
5318       PyObject *getTinySerializationInformation() const
5319       {
5320         return field_getTinySerializationInformation<MEDCouplingFieldInt32>(self);
5321       }
5322       
5323       PyObject *serialize() const
5324       {
5325         return field_serialize<int>(self);
5326       }
5327
5328       PyObject *__getstate__() const
5329       {
5330         return field__getstate__<MEDCouplingFieldInt32>(self,MEDCoupling_MEDCouplingFieldInt32_getTinySerializationInformation,MEDCoupling_MEDCouplingFieldInt32_serialize);
5331       }
5332       
5333       void __setstate__(PyObject *inp)
5334       {
5335         field__setstate__<int>(self,inp);
5336       }
5337     }
5338   };
5339
5340   class MEDCouplingFieldInt64 : public MEDCouplingFieldT<int>
5341   {
5342   public:
5343     static MEDCouplingFieldInt64 *New(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME);
5344     static MEDCouplingFieldInt64 *New(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME);
5345     bool isEqual(const MEDCouplingFieldInt64 *other, double meshPrec, int valsPrec) const;
5346     bool isEqualWithoutConsideringStr(const MEDCouplingFieldInt64 *other, double meshPrec, int valsPrec) const;
5347     void setTimeUnit(const std::string& unit);
5348     std::string getTimeUnit() const;
5349     void setTime(double val, int iteration, int order);
5350     void setArray(DataArrayInt64 *array);
5351     MEDCouplingFieldInt64 *deepCopy() const;
5352     MEDCouplingFieldInt64 *clone(bool recDeepCpy) const;
5353     MEDCouplingFieldInt64 *cloneWithMesh(bool recDeepCpy) const;
5354     MEDCouplingFieldDouble *convertToDblField() const;
5355     MEDCouplingFieldInt64 *buildSubPartRange(int begin, int end, int step) const;
5356     %extend {
5357       MEDCouplingFieldInt64(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME)
5358       {
5359         return MEDCouplingFieldInt64::New(type,td);
5360       }
5361
5362       MEDCouplingFieldInt64(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME)
5363       {
5364         return MEDCouplingFieldInt64::New(ft,td);
5365       }
5366
5367       PyObject *isEqualIfNotWhy(const MEDCouplingFieldInt64 *other, double meshPrec, int valsPrec) const
5368       {
5369         std::string ret1;
5370         bool ret0=self->isEqualIfNotWhy(other,meshPrec,valsPrec,ret1);
5371         PyObject *ret=PyTuple_New(2);
5372         PyObject *ret0Py=ret0?Py_True:Py_False;
5373         Py_XINCREF(ret0Py);
5374         PyTuple_SetItem(ret,0,ret0Py);
5375         PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
5376         return ret;
5377       }
5378       
5379       std::string __str__() const
5380       {
5381         return self->simpleRepr();
5382       }
5383
5384       std::string __repr__() const
5385       {
5386         std::ostringstream oss;
5387         self->reprQuickOverview(oss);
5388         return oss.str();
5389       }
5390
5391       MEDCouplingFieldInt64 *buildSubPart(PyObject *li) const
5392       {
5393         return fieldT_buildSubPart(self,li);
5394       }
5395
5396       MEDCouplingFieldInt64 *__getitem__(PyObject *li) const
5397       {
5398         return fieldT__getitem__(self,li);
5399       }
5400
5401       DataArrayInt64 *getArray()
5402       {
5403         DataArrayInt64 *ret=self->getArray();
5404         if(ret)
5405           ret->incrRef();
5406         return ret;
5407       }
5408       
5409       PyObject *getTime()
5410         {
5411         int tmp1,tmp2;
5412         double tmp0=self->getTime(tmp1,tmp2);
5413         PyObject *res = PyList_New(3);
5414         PyList_SetItem(res,0,SWIG_From_double(tmp0));
5415         PyList_SetItem(res,1,SWIG_From_int(tmp1));
5416         PyList_SetItem(res,2,SWIG_From_int(tmp2));
5417         return res;
5418         }
5419
5420       PyObject *getTinySerializationInformation() const
5421       {
5422         return field_getTinySerializationInformation<MEDCouplingFieldInt64>(self);
5423       }
5424       
5425       PyObject *serialize() const
5426       {
5427         return field_serialize<Int64>(self);
5428       }
5429
5430       PyObject *__getstate__() const
5431       {
5432         return field__getstate__<MEDCouplingFieldInt64>(self,MEDCoupling_MEDCouplingFieldInt64_getTinySerializationInformation,MEDCoupling_MEDCouplingFieldInt64_serialize);
5433       }
5434       
5435       void __setstate__(PyObject *inp)
5436       {
5437         field__setstate__<Int64>(self,inp);
5438       }
5439     }
5440   };
5441
5442   class MEDCouplingFieldFloat : public MEDCouplingFieldT<float>
5443   {
5444   public:
5445     static MEDCouplingFieldFloat *New(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME);
5446     static MEDCouplingFieldFloat *New(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME);
5447     bool isEqual(const MEDCouplingFieldFloat *other, double meshPrec, float valsPrec) const;
5448     bool isEqualWithoutConsideringStr(const MEDCouplingFieldFloat *other, double meshPrec, float valsPrec) const;
5449     void setTimeUnit(const std::string& unit);
5450     std::string getTimeUnit() const;
5451     void setTime(double val, int iteration, int order);
5452     void setArray(DataArrayFloat *array);
5453     MEDCouplingFieldFloat *deepCopy() const;
5454     MEDCouplingFieldFloat *clone(bool recDeepCpy) const;
5455     MEDCouplingFieldFloat *cloneWithMesh(bool recDeepCpy) const;
5456     MEDCouplingFieldDouble *convertToDblField() const;
5457     MEDCouplingFieldFloat *buildSubPartRange(int begin, int end, int step) const;
5458     %extend {
5459       MEDCouplingFieldFloat(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME)
5460       {
5461         return MEDCouplingFieldFloat::New(type,td);
5462       }
5463
5464       MEDCouplingFieldFloat(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME)
5465       {
5466         return MEDCouplingFieldFloat::New(ft,td);
5467       }
5468
5469       PyObject *isEqualIfNotWhy(const MEDCouplingFieldFloat *other, double meshPrec, float valsPrec) const
5470       {
5471         std::string ret1;
5472         bool ret0=self->isEqualIfNotWhy(other,meshPrec,valsPrec,ret1);
5473         PyObject *ret=PyTuple_New(2);
5474         PyObject *ret0Py=ret0?Py_True:Py_False;
5475         Py_XINCREF(ret0Py);
5476         PyTuple_SetItem(ret,0,ret0Py);
5477         PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
5478         return ret;
5479       }
5480
5481       std::string __str__() const
5482       {
5483         return self->simpleRepr();
5484       }
5485
5486       std::string __repr__() const
5487       {
5488         std::ostringstream oss;
5489         self->reprQuickOverview(oss);
5490         return oss.str();
5491       }
5492
5493       MEDCouplingFieldFloat *buildSubPart(PyObject *li) const
5494       {
5495         return fieldT_buildSubPart(self,li);
5496       }
5497
5498       MEDCouplingFieldFloat *__getitem__(PyObject *li) const
5499       {
5500         return fieldT__getitem__(self,li);
5501       }
5502
5503       DataArrayFloat *getArray()
5504       {
5505         DataArrayFloat *ret=self->getArray();
5506         if(ret)
5507           ret->incrRef();
5508         return ret;
5509       }
5510       
5511       PyObject *getTime()
5512       {
5513         int tmp1,tmp2;
5514         double tmp0=self->getTime(tmp1,tmp2);
5515         PyObject *res = PyList_New(3);
5516         PyList_SetItem(res,0,SWIG_From_double(tmp0));
5517         PyList_SetItem(res,1,SWIG_From_int(tmp1));
5518         PyList_SetItem(res,2,SWIG_From_int(tmp2));
5519         return res;
5520       }
5521
5522       PyObject *getTinySerializationInformation() const
5523       {
5524         return field_getTinySerializationInformation<MEDCouplingFieldFloat>(self);
5525       }
5526       
5527       PyObject *serialize() const
5528       {
5529         return field_serialize<float>(self);
5530       }
5531       
5532       PyObject *__getstate__() const
5533       {
5534         return field__getstate__<MEDCouplingFieldFloat>(self,MEDCoupling_MEDCouplingFieldFloat_getTinySerializationInformation,MEDCoupling_MEDCouplingFieldFloat_serialize);
5535       }
5536         
5537       void __setstate__(PyObject *inp)
5538       {
5539         field__setstate__<float>(self,inp);
5540       }
5541     }
5542   };
5543   
5544   class MEDCouplingDefinitionTime
5545   {
5546   public:
5547     MEDCouplingDefinitionTime();
5548     void assign(const MEDCouplingDefinitionTime& other);
5549     bool isEqual(const MEDCouplingDefinitionTime& other) const;
5550     double getTimeResolution() const;
5551     std::vector<double> getHotSpotsTime() const;
5552     %extend
5553       {
5554         std::string __str__() const
5555           {
5556             std::ostringstream oss;
5557             self->appendRepr(oss);
5558             return oss.str();
5559           }
5560
5561         PyObject *getIdsOnTimeRight(double tm) const
5562         {
5563           int meshId,arrId,arrIdInField,fieldId;
5564           self->getIdsOnTimeRight(tm,meshId,arrId,arrIdInField,fieldId);
5565           PyObject *res=PyList_New(4);
5566           PyList_SetItem(res,0,PyInt_FromLong(meshId));
5567           PyList_SetItem(res,1,PyInt_FromLong(arrId));
5568           PyList_SetItem(res,2,PyInt_FromLong(arrIdInField));
5569           PyList_SetItem(res,3,PyInt_FromLong(fieldId));
5570           return res;
5571         }
5572
5573         PyObject *getIdsOnTimeLeft(double tm) const
5574         {
5575           int meshId,arrId,arrIdInField,fieldId;
5576           self->getIdsOnTimeLeft(tm,meshId,arrId,arrIdInField,fieldId);
5577           PyObject *res=PyList_New(4);
5578           PyList_SetItem(res,0,PyInt_FromLong(meshId));
5579           PyList_SetItem(res,1,PyInt_FromLong(arrId));
5580           PyList_SetItem(res,2,PyInt_FromLong(arrIdInField));
5581           PyList_SetItem(res,3,PyInt_FromLong(fieldId));
5582           return res;
5583         }
5584       }
5585   };
5586
5587   class MEDCouplingFieldOverTime : public MEDCouplingMultiFields
5588   {
5589   public:
5590     double getTimeTolerance() const;
5591     MEDCouplingDefinitionTime getDefinitionTimeZone() const;
5592     
5593     %extend
5594       {
5595         MEDCouplingFieldOverTime(PyObject *li)
5596           {
5597             std::vector<const MEDCoupling::MEDCouplingFieldDouble *> tmp;
5598             convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
5599             std::size_t sz=tmp.size();
5600             std::vector<MEDCouplingFieldDouble *> fs(sz);
5601             for(std::size_t i=0;i<sz;i++)
5602               fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
5603             return MEDCouplingFieldOverTime::New(fs);
5604           }
5605         std::string __str__() const
5606           {
5607             return self->simpleRepr();
5608           }
5609         static MEDCouplingFieldOverTime *New(PyObject *li)
5610           {
5611             std::vector<const MEDCoupling::MEDCouplingFieldDouble *> tmp;
5612             convertFromPyObjVectorOfObj<const MEDCoupling::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
5613             std::size_t sz=tmp.size();
5614             std::vector<MEDCouplingFieldDouble *> fs(sz);
5615             for(std::size_t i=0;i<sz;i++)
5616               fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
5617             return MEDCouplingFieldOverTime::New(fs);
5618           }
5619       }
5620   };
5621
5622   class MEDCouplingCartesianAMRMesh;
5623   
5624   class MEDCouplingCartesianAMRPatchGen : public RefCountObject
5625   {
5626   public:
5627     int getNumberOfCellsRecursiveWithOverlap() const;
5628     int getNumberOfCellsRecursiveWithoutOverlap() const;
5629     int getMaxNumberOfLevelsRelativeToThis() const;
5630     %extend
5631     {
5632       MEDCouplingCartesianAMRMeshGen *getMesh() const
5633       {
5634         MEDCouplingCartesianAMRMeshGen *ret(const_cast<MEDCouplingCartesianAMRMeshGen *>(self->getMesh()));
5635         if(ret)
5636           ret->incrRef();
5637         return ret;
5638       }
5639     }
5640   };
5641
5642   class MEDCouplingCartesianAMRPatch : public MEDCouplingCartesianAMRPatchGen
5643   {
5644   public:
5645     int getNumberOfOverlapedCellsForFather() const;
5646     bool isInMyNeighborhood(const MEDCouplingCartesianAMRPatch *other, int ghostLev) const;
5647     std::vector<mcIdType> computeCellGridSt() const;
5648     %extend
5649     {
5650       PyObject *getBLTRRange() const
5651       {
5652         const std::vector< std::pair<mcIdType,mcIdType> >& ret(self->getBLTRRange());
5653         return convertFromVectorPairInt(ret);
5654       }
5655
5656       PyObject *getBLTRRangeRelativeToGF() const
5657       {
5658         std::vector< std::pair<mcIdType,mcIdType> > ret(self->getBLTRRangeRelativeToGF());
5659         return convertFromVectorPairInt(ret);
5660       }
5661
5662       void addPatch(PyObject *bottomLeftTopRight, const std::vector<mcIdType>& factors)
5663       {
5664         std::vector< std::pair<mcIdType,mcIdType> > inp;
5665         convertPyToVectorPairInt(bottomLeftTopRight,inp);
5666         self->addPatch(inp,factors);
5667       }
5668
5669       MEDCouplingCartesianAMRPatch *__getitem__(mcIdType patchId) const
5670       {
5671         const MEDCouplingCartesianAMRMeshGen *mesh(self->getMesh());
5672         if(!mesh)
5673           throw INTERP_KERNEL::Exception("wrap MEDCouplingCartesianAMRPatchGen.__getitem__ : no underlying mesh !");
5674         if(patchId==mesh->getNumberOfPatches())
5675           {
5676             std::ostringstream oss;
5677             oss << "Requesting for patchId " << patchId << " having only " << mesh->getNumberOfPatches() << " patches !";
5678             PyErr_SetString(PyExc_StopIteration,oss.str().c_str());
5679             return 0;
5680           }
5681         MEDCouplingCartesianAMRPatch *ret(const_cast<MEDCouplingCartesianAMRPatch *>(mesh->getPatch(patchId)));
5682         if(ret)
5683           ret->incrRef();
5684         return ret;
5685       }
5686
5687       void __delitem__(mcIdType patchId)
5688       {
5689         MEDCouplingCartesianAMRMeshGen *mesh(const_cast<MEDCouplingCartesianAMRMeshGen *>(self->getMesh()));
5690         if(!mesh)
5691           throw INTERP_KERNEL::Exception("wrap MEDCouplingCartesianAMRPatch.__delitem__ : no underlying mesh !");
5692         mesh->removePatch(patchId);
5693       }
5694
5695       mcIdType __len__() const
5696       {
5697         const MEDCouplingCartesianAMRMeshGen *mesh(self->getMesh());
5698         if(!mesh)
5699           throw INTERP_KERNEL::Exception("wrap MEDCouplingCartesianAMRPatch.__len__ : no underlying mesh !");
5700         return mesh->getNumberOfPatches();
5701       }
5702     }
5703   };
5704
5705   class MEDCouplingCartesianAMRPatchGF : public MEDCouplingCartesianAMRPatchGen
5706   {
5707   };
5708   
5709   class MEDCouplingCartesianAMRMeshGen : public RefCountObject, public TimeLabel
5710   {
5711   public:
5712     mcIdType getAbsoluteLevel() const;
5713     mcIdType getAbsoluteLevelRelativeTo(const MEDCouplingCartesianAMRMeshGen *ref) const;
5714     std::vector<mcIdType> getPositionRelativeTo(const MEDCouplingCartesianAMRMeshGen *ref) const;
5715     int getSpaceDimension() const;
5716     const std::vector<mcIdType>& getFactors() const;
5717     void setFactors(const std::vector<mcIdType>& newFactors);
5718     mcIdType getMaxNumberOfLevelsRelativeToThis() const;
5719     mcIdType getNumberOfCellsAtCurrentLevel() const;
5720     mcIdType getNumberOfCellsAtCurrentLevelGhost(mcIdType ghostLev) const;
5721     mcIdType getNumberOfCellsRecursiveWithOverlap() const;
5722     mcIdType getNumberOfCellsRecursiveWithoutOverlap() const;
5723     bool isPatchInNeighborhoodOf(mcIdType patchId1, mcIdType patchId2, mcIdType ghostLev) const;
5724    virtual void detachFromFather();
5725     //
5726     mcIdType getNumberOfPatches() const;
5727     mcIdType getPatchIdFromChildMesh(const MEDCouplingCartesianAMRMeshGen *mesh) const;
5728     MEDCouplingUMesh *buildUnstructured() const;
5729     DataArrayDouble *extractGhostFrom(mcIdType ghostSz, const DataArrayDouble *arr) const;
5730     std::vector<mcIdType> getPatchIdsInTheNeighborhoodOf(mcIdType patchId, mcIdType ghostLev) const;
5731     MEDCoupling1SGTUMesh *buildMeshFromPatchEnvelop() const;
5732     MEDCoupling1SGTUMesh *buildMeshOfDirectChildrenOnly() const;
5733     void removeAllPatches();
5734     void removePatch(mcIdType patchId);
5735     void createPatchesFromCriterion(const INTERP_KERNEL::BoxSplittingOptions& bso, const DataArrayByte *criterion, const std::vector<mcIdType>& factors);
5736     void createPatchesFromCriterion(const INTERP_KERNEL::BoxSplittingOptions& bso, const DataArrayDouble *criterion, const std::vector<mcIdType>& factors, double eps);
5737     DataArrayDouble *createCellFieldOnPatch(mcIdType patchId, const DataArrayDouble *cellFieldOnThis) const;
5738     void fillCellFieldOnPatch(mcIdType patchId, const DataArrayDouble *cellFieldOnThis, DataArrayDouble *cellFieldOnPatch, bool isConservative=true) const;
5739     void fillCellFieldOnPatchGhost(mcIdType patchId, const DataArrayDouble *cellFieldOnThis, DataArrayDouble *cellFieldOnPatch, mcIdType ghostLev, bool isConservative=true) const;
5740     void fillCellFieldOnPatchOnlyOnGhostZone(mcIdType patchId, const DataArrayDouble *cellFieldOnThis, DataArrayDouble *cellFieldOnPatch, mcIdType ghostLev) const;
5741     void fillCellFieldOnPatchOnlyOnGhostZoneWith(mcIdType ghostLev, const MEDCouplingCartesianAMRPatch *patchToBeModified, const MEDCouplingCartesianAMRPatch *neighborPatch, DataArrayDouble *cellFieldOnPatch, const DataArrayDouble *cellFieldNeighbor) const;
5742     void fillCellFieldComingFromPatch(mcIdType patchId, const DataArrayDouble *cellFieldOnPatch, DataArrayDouble *cellFieldOnThis, bool isConservative=true) const;
5743     void fillCellFieldComingFromPatchGhost(mcIdType patchId, const DataArrayDouble *cellFieldOnPatch, DataArrayDouble *cellFieldOnThis, mcIdType ghostLev, bool isConservative=true) const;
5744     DataArrayIdType *findPatchesInTheNeighborhoodOf(mcIdType patchId, mcIdType ghostLev) const;
5745     std::string buildPythonDumpOfThis() const;
5746     %extend
5747     {
5748       void addPatch(PyObject *bottomLeftTopRight, const std::vector<mcIdType>& factors)
5749       {
5750         std::vector< std::pair<mcIdType,mcIdType> > inp;
5751         convertPyToVectorPairInt(bottomLeftTopRight,inp);
5752         self->addPatch(inp,factors);
5753       }
5754
5755       PyObject *getPatches() const
5756       {
5757         std::vector< const MEDCouplingCartesianAMRPatch *> ps(self->getPatches());
5758         std::size_t sz(ps.size());
5759         PyObject *ret = PyList_New(sz);
5760         for(std::size_t i=0;i<sz;i++)
5761           {
5762             MEDCouplingCartesianAMRPatch *elt(const_cast<MEDCouplingCartesianAMRPatch *>(ps[i]));
5763             if(elt)
5764               elt->incrRef();
5765             PyList_SetItem(ret,i,convertCartesianAMRPatch(elt, SWIG_POINTER_OWN | 0 ));
5766           }
5767         return ret;
5768       }
5769
5770       // agy : don't know why typemap fails here ??? let it in the extend section
5771       PyObject *deepCopy(MEDCouplingCartesianAMRMeshGen *father) const
5772       {
5773         return convertCartesianAMRMesh(self->deepCopy(father), SWIG_POINTER_OWN | 0 );
5774       }
5775
5776       MEDCouplingCartesianAMRPatch *getPatchAtPosition(const std::vector<mcIdType>& pos) const
5777       {
5778         const MEDCouplingCartesianAMRPatch *ret(self->getPatchAtPosition(pos));
5779         MEDCouplingCartesianAMRPatch *ret2(const_cast<MEDCouplingCartesianAMRPatch *>(ret));
5780         if(ret2)
5781           ret2->incrRef();
5782         return ret2;
5783       }
5784
5785       MEDCouplingCartesianAMRMeshGen *getMeshAtPosition(const std::vector<mcIdType>& pos) const
5786       {
5787         const MEDCouplingCartesianAMRMeshGen *ret(self->getMeshAtPosition(pos));
5788         MEDCouplingCartesianAMRMeshGen *ret2(const_cast<MEDCouplingCartesianAMRMeshGen *>(ret));
5789         if(ret2)
5790           ret2->incrRef();
5791         return ret2;
5792       }
5793
5794       virtual PyObject *positionRelativeToGodFather() const
5795       {
5796         std::vector<mcIdType> out1;
5797         std::vector< std::pair<mcIdType,mcIdType> > out0(self->positionRelativeToGodFather(out1));
5798         PyObject *ret(PyTuple_New(2));
5799         PyTuple_SetItem(ret,0,convertFromVectorPairInt(out0));
5800         PyTuple_SetItem(ret,1,convertIntArrToPyList2(out1));
5801         return ret;
5802       }
5803
5804       virtual PyObject *retrieveGridsAt(mcIdType absoluteLev) const
5805       {
5806         std::vector<MEDCouplingCartesianAMRPatchGen *> ps(self->retrieveGridsAt(absoluteLev));
5807         std::size_t sz(ps.size());
5808         PyObject *ret = PyList_New(sz);
5809         for(std::size_t i=0;i<sz;i++)
5810           PyList_SetItem(ret,i,convertCartesianAMRPatch(ps[i], SWIG_POINTER_OWN | 0 ));
5811         return ret;
5812       }
5813
5814       MEDCouplingFieldDouble *buildCellFieldOnRecurseWithoutOverlapWithoutGhost(mcIdType ghostSz, PyObject *recurseArrs) const
5815       {
5816         std::vector<const DataArrayDouble *> inp;
5817         convertFromPyObjVectorOfObj<const MEDCoupling::DataArrayDouble *>(recurseArrs,SWIGTYPE_p_MEDCoupling__DataArrayDouble,"DataArrayDouble",inp);
5818         return self->buildCellFieldOnRecurseWithoutOverlapWithoutGhost(ghostSz,inp);
5819       }
5820
5821       virtual MEDCouplingCartesianAMRMeshGen *getFather() const
5822       {
5823         MEDCouplingCartesianAMRMeshGen *ret(const_cast<MEDCouplingCartesianAMRMeshGen *>(self->getFather()));
5824         if(ret)
5825           ret->incrRef();
5826         return ret;
5827       }
5828       
5829       virtual MEDCouplingCartesianAMRMeshGen *getGodFather() const
5830       {
5831         MEDCouplingCartesianAMRMeshGen *ret(const_cast<MEDCouplingCartesianAMRMeshGen *>(self->getGodFather()));
5832         if(ret)
5833           ret->incrRef();
5834         return ret;
5835       }
5836
5837       MEDCouplingCartesianAMRPatch *getPatch(mcIdType patchId) const
5838       {
5839         MEDCouplingCartesianAMRPatch *ret(const_cast<MEDCouplingCartesianAMRPatch *>(self->getPatch(patchId)));
5840         if(ret)
5841           ret->incrRef();
5842         return ret;
5843       }
5844
5845       MEDCouplingIMesh *getImageMesh() const
5846       {
5847         const MEDCouplingIMesh *ret(self->getImageMesh());
5848         if(ret)
5849           ret->incrRef();
5850         return const_cast<MEDCouplingIMesh *>(ret);
5851       }
5852
5853       MEDCouplingCartesianAMRPatch *__getitem__(mcIdType patchId) const
5854       {
5855         if(patchId==self->getNumberOfPatches())
5856           {
5857             std::ostringstream oss;
5858             oss << "Requesting for patchId " << patchId << " having only " << self->getNumberOfPatches() << " patches !";
5859             PyErr_SetString(PyExc_StopIteration,oss.str().c_str());
5860             return 0;
5861           }
5862         MEDCouplingCartesianAMRPatch *ret(const_cast<MEDCouplingCartesianAMRPatch *>(self->getPatch(patchId)));
5863         if(ret)
5864           ret->incrRef();
5865         return ret;
5866       }
5867
5868       void fillCellFieldOnPatchGhostAdv(mcIdType patchId, const DataArrayDouble *cellFieldOnThis, mcIdType ghostLev, PyObject *arrsOnPatches, bool isConservative=true) const
5869       {
5870         std::vector<const MEDCoupling::DataArrayDouble *> arrsOnPatches2;
5871         convertFromPyObjVectorOfObj<const MEDCoupling::DataArrayDouble *>(arrsOnPatches,SWIGTYPE_p_MEDCoupling__DataArrayDouble,"DataArrayDouble",arrsOnPatches2);
5872         self->fillCellFieldOnPatchGhostAdv(patchId,cellFieldOnThis,ghostLev,arrsOnPatches2,isConservative);
5873       }
5874
5875       void fillCellFieldOnPatchOnlyGhostAdv(mcIdType patchId, mcIdType ghostLev, PyObject *arrsOnPatches) const
5876       {
5877         std::vector<const MEDCoupling::DataArrayDouble *> arrsOnPatches2;
5878         convertFromPyObjVectorOfObj<const MEDCoupling::DataArrayDouble *>(arrsOnPatches,SWIGTYPE_p_MEDCoupling__DataArrayDouble,"DataArrayDouble",arrsOnPatches2);
5879         self->fillCellFieldOnPatchOnlyGhostAdv(patchId,ghostLev,arrsOnPatches2);
5880       }
5881
5882       void __delitem__(mcIdType patchId)
5883       {
5884         self->removePatch(patchId);
5885       }
5886
5887       mcIdType __len__() const
5888       {
5889         return self->getNumberOfPatches();
5890       }
5891     }
5892   };
5893
5894   class MEDCouplingCartesianAMRMeshSub : public MEDCouplingCartesianAMRMeshGen
5895   {
5896   };
5897
5898   class MEDCouplingCartesianAMRMesh : public MEDCouplingCartesianAMRMeshGen
5899   {
5900   public:
5901     static MEDCouplingCartesianAMRMesh *New(MEDCouplingIMesh *mesh);
5902     %extend
5903     {
5904       static MEDCouplingCartesianAMRMesh *New(const std::string& meshName, int spaceDim, PyObject *nodeStrct, PyObject *origin, PyObject *dxyz)
5905       {
5906         static const char msg0[]="MEDCouplingCartesianAMRMesh::New : error on 'origin' parameter !";
5907         static const char msg1[]="MEDCouplingCartesianAMRMesh::New : error on 'dxyz' parameter !";
5908         const mcIdType *nodeStrctPtr(0);
5909         const double *originPtr(0),*dxyzPtr(0);
5910         mcIdType sw,sz,val0;
5911         std::vector<mcIdType> bb0;
5912         nodeStrctPtr=convertIntStarLikePyObjToCppIntStar(nodeStrct,sw,sz,val0,bb0);
5913         //
5914         double val,val2;
5915         std::vector<double> bb,bb2;
5916         mcIdType sz1,sz2;
5917         originPtr=convertObjToPossibleCpp5_SingleCompo(origin,sw,val,bb,msg0,false,sz1);
5918         dxyzPtr=convertObjToPossibleCpp5_SingleCompo(dxyz,sw,val2,bb2,msg1,false,sz2);
5919         //
5920         return MEDCouplingCartesianAMRMesh::New(meshName,spaceDim,nodeStrctPtr,nodeStrctPtr+sz,originPtr,originPtr+sz1,dxyzPtr,dxyzPtr+sz2);
5921       }
5922
5923       void createPatchesFromCriterionML(PyObject *bso, const DataArrayDouble *criterion, PyObject *factors, double eps)
5924       {
5925         std::vector<const INTERP_KERNEL::BoxSplittingOptions *> inp0;
5926         convertFromPyObjVectorOfObj<const INTERP_KERNEL::BoxSplittingOptions *>(bso,SWIGTYPE_p_INTERP_KERNEL__BoxSplittingOptions,"BoxSplittingOptions",inp0);
5927         std::vector< std::vector<mcIdType> > inp2;
5928         convertPyToVectorOfVectorOfInt(factors,inp2);
5929         self->createPatchesFromCriterionML(inp0,criterion,inp2,eps);
5930       }
5931
5932       MEDCouplingCartesianAMRMesh(const std::string& meshName, int spaceDim, PyObject *nodeStrct, PyObject *origin, PyObject *dxyz)
5933       {
5934         return MEDCoupling_MEDCouplingCartesianAMRMesh_New__SWIG_1(meshName,spaceDim,nodeStrct,origin,dxyz);
5935       }
5936
5937       MEDCouplingCartesianAMRMesh(MEDCouplingIMesh *mesh)
5938       {
5939         return MEDCouplingCartesianAMRMesh::New(mesh);
5940       }
5941     }
5942   };
5943
5944   class MEDCouplingDataForGodFather : public RefCountObject
5945   {
5946   public:
5947     virtual void synchronizeFineToCoarse();
5948     virtual void synchronizeFineToCoarseBetween(mcIdType fromLev, mcIdType toLev);
5949     virtual void synchronizeCoarseToFine();
5950     virtual void synchronizeCoarseToFineBetween(mcIdType fromLev, mcIdType toLev);
5951     virtual void synchronizeAllGhostZones();
5952     virtual void synchronizeAllGhostZonesOfDirectChidrenOf(const MEDCouplingCartesianAMRMeshGen *mesh);
5953     virtual void synchronizeAllGhostZonesAtASpecifiedLevel(mcIdType level);
5954     virtual void synchronizeAllGhostZonesAtASpecifiedLevelUsingOnlyFather(mcIdType level);
5955     virtual void alloc();
5956     virtual void dealloc();
5957     %extend
5958     {
5959       MEDCouplingCartesianAMRMesh *getMyGodFather()
5960       {
5961         MEDCouplingCartesianAMRMesh *ret(self->getMyGodFather());
5962         if(ret)
5963           ret->incrRef();
5964         return ret;
5965       }
5966     }
5967   };
5968   
5969   class MEDCouplingAMRAttribute : public MEDCouplingDataForGodFather, public TimeLabel
5970   {
5971   public:
5972     mcIdType getNumberOfLevels() const;
5973     MEDCouplingAMRAttribute *deepCopy() const;
5974     MEDCouplingAMRAttribute *deepCpyWithoutGodFather() const;
5975     MEDCouplingFieldDouble *buildCellFieldOnRecurseWithoutOverlapWithoutGhost(MEDCouplingCartesianAMRMeshGen *mesh, const std::string& fieldName) const;
5976     MEDCouplingFieldDouble *buildCellFieldOnWithGhost(MEDCouplingCartesianAMRMeshGen *mesh, const std::string& fieldName) const;
5977     MEDCouplingFieldDouble *buildCellFieldOnWithoutGhost(MEDCouplingCartesianAMRMeshGen *mesh, const std::string& fieldName) const;
5978     bool changeGodFather(MEDCouplingCartesianAMRMesh *gf);
5979     MEDCouplingAMRAttribute *projectTo(MEDCouplingCartesianAMRMesh *targetGF) const;
5980     std::string writeVTHB(const std::string& fileName) const;
5981     %extend
5982     {
5983       static MEDCouplingAMRAttribute *New(MEDCouplingCartesianAMRMesh *gf, PyObject *fieldNames, mcIdType ghostLev)
5984       {
5985         std::vector< std::pair<std::string,int> > fieldNamesCpp0;
5986         std::vector< std::pair<std::string, std::vector<std::string> > > fieldNamesCpp1;
5987         MEDCouplingAMRAttribute *ret(0);
5988         try
5989           {
5990             convertPyToVectorPairStringInt(fieldNames,fieldNamesCpp0);
5991             ret=MEDCouplingAMRAttribute::New(gf,fieldNamesCpp0,ghostLev);
5992           }
5993         catch(INTERP_KERNEL::Exception&)
5994           {
5995             convertPyToVectorPairStringVecString(fieldNames,fieldNamesCpp1);
5996             ret=MEDCouplingAMRAttribute::New(gf,fieldNamesCpp1,ghostLev);
5997           }
5998         return ret;
5999       }
6000
6001       MEDCouplingAMRAttribute(MEDCouplingCartesianAMRMesh *gf, PyObject *fieldNames, mcIdType ghostLev)
6002       {
6003         return MEDCoupling_MEDCouplingAMRAttribute_New(gf,fieldNames,ghostLev);
6004       }
6005
6006       DataArrayDouble *getFieldOn(MEDCouplingCartesianAMRMeshGen *mesh, const std::string& fieldName) const
6007       {
6008         const DataArrayDouble *ret(self->getFieldOn(mesh,fieldName));
6009         DataArrayDouble *ret2(const_cast<DataArrayDouble *>(ret));
6010         if(ret2)
6011           ret2->incrRef();
6012         return ret2;
6013       }
6014
6015       void spillInfoOnComponents(PyObject *compNames)
6016       {
6017         std::vector< std::vector<std::string> > compNamesCpp;
6018         convertPyToVectorOfVectorOfString(compNames,compNamesCpp);
6019         self->spillInfoOnComponents(compNamesCpp);
6020       }
6021
6022       void spillNatures(PyObject *nfs)
6023       {
6024         std::vector<mcIdType> inp0;
6025         if(!fillIntVector(nfs,inp0))
6026           throw INTERP_KERNEL::Exception("wrap of MEDCouplingAMRAttribute::spillNatures : vector of NatureOfField enum expected !");
6027         std::size_t sz(inp0.size());
6028         std::vector<NatureOfField> inp00(sz);
6029         for(std::size_t i=0;i<sz;i++)
6030           inp00[i]=(NatureOfField)inp0[i];
6031         self->spillNatures(inp00);
6032       }
6033       
6034       PyObject *retrieveFieldsOn(MEDCouplingCartesianAMRMeshGen *mesh) const
6035       {
6036         std::vector<DataArrayDouble *> ret(self->retrieveFieldsOn(mesh));
6037         std::size_t sz(ret.size());
6038         PyObject *retPy(PyList_New(sz));
6039         for(std::size_t i=0;i<sz;i++)
6040           PyList_SetItem(retPy,i,SWIG_NewPointerObj(SWIG_as_voidptr(ret[i]),SWIGTYPE_p_MEDCoupling__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
6041         return retPy;
6042       }
6043     }
6044   };
6045
6046   class DenseMatrix : public RefCountObject, public TimeLabel
6047   {
6048   public:
6049     static DenseMatrix *New(mcIdType nbRows, mcIdType nbCols);
6050     static DenseMatrix *New(DataArrayDouble *array, mcIdType nbRows, mcIdType nbCols);
6051     DenseMatrix *deepCopy() const;
6052     DenseMatrix *shallowCpy() const;
6053     //
6054     mcIdType getNumberOfRows() const;
6055     mcIdType getNumberOfCols() const;
6056     mcIdType getNbOfElems() const;
6057     void reBuild(DataArrayDouble *array, mcIdType nbRows=-1, mcIdType nbCols=-1);
6058     void reShape(mcIdType nbRows, mcIdType nbCols);
6059     void transpose();
6060     //
6061     bool isEqual(const DenseMatrix& other, double eps) const;
6062     DataArrayDouble *matVecMult(const DataArrayDouble *vec) const;
6063     static DataArrayDouble *MatVecMult(const DenseMatrix *mat, const DataArrayDouble *vec);
6064     %extend
6065     {
6066       DenseMatrix(mcIdType nbRows, mcIdType nbCols)
6067       {
6068         return DenseMatrix::New(nbRows,nbCols);
6069       }
6070
6071       DenseMatrix(DataArrayDouble *array, mcIdType nbRows, mcIdType nbCols)
6072       {
6073         return DenseMatrix::New(array,nbRows,nbCols);
6074       }
6075
6076       PyObject *isEqualIfNotWhy(const DenseMatrix& other, double eps) const
6077       {
6078         std::string ret1;
6079         bool ret0=self->isEqualIfNotWhy(other,eps,ret1);
6080         PyObject *ret=PyTuple_New(2);
6081         PyObject *ret0Py=ret0?Py_True:Py_False;
6082         Py_XINCREF(ret0Py);
6083         PyTuple_SetItem(ret,0,ret0Py);
6084         PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
6085         return ret;
6086       }
6087
6088       DataArrayDouble *getData()
6089       {
6090         DataArrayDouble *ret(self->getData());
6091         if(ret)
6092           ret->incrRef();
6093         return ret;
6094       }
6095
6096       DenseMatrix *__add__(const DenseMatrix *other)
6097       {
6098         return MEDCoupling::DenseMatrix::Add(self,other);
6099       }
6100
6101       DenseMatrix *__sub__(const DenseMatrix *other)
6102       {
6103         return MEDCoupling::DenseMatrix::Substract(self,other);
6104       }
6105
6106       DenseMatrix *__mul__(const DenseMatrix *other)
6107       {
6108         return MEDCoupling::DenseMatrix::Multiply(self,other);
6109       }
6110
6111       DenseMatrix *__mul__(const DataArrayDouble *other)
6112       {
6113         return MEDCoupling::DenseMatrix::Multiply(self,other);
6114       }
6115
6116       PyObject *___iadd___(PyObject *trueSelf, const DenseMatrix *other)
6117       {
6118         self->addEqual(other);
6119         Py_XINCREF(trueSelf);
6120         return trueSelf;
6121       }
6122
6123       PyObject *___isub___(PyObject *trueSelf, const DenseMatrix *other)
6124       {
6125         self->substractEqual(other);
6126         Py_XINCREF(trueSelf);
6127         return trueSelf;
6128       }
6129 #ifdef WITH_NUMPY
6130       PyObject *toNumPyMatrix() // not const. It is not a bug !
6131       {
6132         PyObject *obj(ToNumPyArrayUnderground<DataArrayDouble,double>(self->getData(),NPY_DOUBLE,"DataArrayDouble",self->getNumberOfRows(),self->getNumberOfCols()));
6133         return obj;
6134       }
6135 #endif
6136     }
6137   };
6138 }
6139
6140 %pythoncode %{
6141 def MEDCouplingUMeshReduce(self):
6142     return MEDCouplingStdReduceFunct,(MEDCouplingUMesh,((),(self.__getstate__()),))
6143 def MEDCouplingCMeshReduce(self):
6144     return MEDCouplingStdReduceFunct,(MEDCouplingCMesh,((),(self.__getstate__()),))
6145 def MEDCouplingIMeshReduce(self):
6146     return MEDCouplingStdReduceFunct,(MEDCouplingIMesh,((),(self.__getstate__()),))
6147 def MEDCouplingMappedExtrudedMeshReduce(self):
6148     return MEDCouplingStdReduceFunct,(MEDCouplingMappedExtrudedMesh,((),(self.__getstate__()),))
6149 def MEDCouplingCurveLinearMeshReduce(self):
6150     return MEDCouplingStdReduceFunct,(MEDCouplingCurveLinearMesh,((),(self.__getstate__()),))
6151 def MEDCoupling1SGTUMeshReduce(self):
6152     return MEDCouplingStdReduceFunct,(MEDCoupling1SGTUMesh,((),(self.__getstate__()),))
6153 def MEDCoupling1DGTUMeshReduce(self):
6154     return MEDCouplingStdReduceFunct,(MEDCoupling1DGTUMesh,((),(self.__getstate__()),))
6155 def MEDCouplingFieldDoubleReduce(self):
6156     self.checkConsistencyLight()
6157     d=(self.getTypeOfField(),self.getTimeDiscretization())
6158     return MEDCouplingStdReduceFunct,(MEDCouplingFieldDouble,(d,(self.__getstate__()),))
6159 def MEDCouplingFieldInt32Reduce(self):
6160     self.checkConsistencyLight()
6161     d=(self.getTypeOfField(),self.getTimeDiscretization())
6162     return MEDCouplingStdReduceFunct,(MEDCouplingFieldInt32,(d,(self.__getstate__()),))
6163 def MEDCouplingFieldInt64Reduce(self):
6164     self.checkConsistencyLight()
6165     d=(self.getTypeOfField(),self.getTimeDiscretization())
6166     return MEDCouplingStdReduceFunct,(MEDCouplingFieldInt64,(d,(self.__getstate__()),))
6167 def MEDCouplingFieldFloatReduce(self):
6168     self.checkConsistencyLight()
6169     d=(self.getTypeOfField(),self.getTimeDiscretization())
6170     return MEDCouplingStdReduceFunct,(MEDCouplingFieldFloat,(d,(self.__getstate__()),))
6171 def MEDCouplingFTReduceFunct(cls,params):
6172     a,b=params
6173     ret=object.__new__(cls)
6174     ret.__init__(*a)
6175     return ret
6176     
6177 def MEDCouplingFieldTemplateReduce(self):
6178     ret = MEDCouplingFieldDouble(self)
6179     nbTuples = self.getNumberOfTuplesExpected()
6180     arr = DataArrayDouble(nbTuples) ; arr[:] = 0.
6181     ret.setArray(arr)
6182     return MEDCouplingFTReduceFunct,(MEDCouplingFieldTemplate,((ret,),()))
6183 #
6184 # Forwarding DataArrayInt functions to MEDCouplingUMesh:
6185 #
6186 MEDCouplingUMesh.ExtractFromIndexedArrays           = DataArrayInt.ExtractFromIndexedArrays
6187 MEDCouplingUMesh.ExtractFromIndexedArraysSlice      = DataArrayInt.ExtractFromIndexedArraysSlice
6188 MEDCouplingUMesh.SetPartOfIndexedArrays             = DataArrayInt.SetPartOfIndexedArrays
6189 MEDCouplingUMesh.SetPartOfIndexedArraysSameIdx      = DataArrayInt.SetPartOfIndexedArraysSameIdx
6190 MEDCouplingUMesh.RemoveIdsFromIndexedArrays         = DataArrayInt.RemoveIdsFromIndexedArrays
6191 MEDCouplingFieldInt = MEDCouplingFieldInt32
6192
6193 if MEDCouplingUse64BitIDs():
6194   MEDCouplingFieldID = MEDCouplingFieldInt64
6195 else:
6196   MEDCouplingFieldID = MEDCouplingFieldInt32
6197
6198 %}
6199
6200 %pythoncode %{
6201 import os
6202 __filename=os.environ.get('PYTHONSTARTUP')
6203 if __filename and os.path.isfile(__filename):
6204     with open(__filename) as __fp:
6205         exec(__fp.read())
6206 %}