]> SALOME platform Git repositories - tools/medcoupling.git/blob - src/MEDCoupling_Swig/MEDCouplingCommon.i
Salome HOME
Some missing tiny services for implementation of a general implementation of MEDCoupl...
[tools/medcoupling.git] / src / MEDCoupling_Swig / MEDCouplingCommon.i
1 // Copyright (C) 2007-2013  CEA/DEN, EDF R&D
2 //
3 // This library is free software; you can redistribute it and/or
4 // modify it under the terms of the GNU Lesser General Public
5 // License as published by the Free Software Foundation; either
6 // version 2.1 of the License.
7 //
8 // This library is distributed in the hope that it will be useful,
9 // but WITHOUT ANY WARRANTY; without even the implied warranty of
10 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11 // Lesser General Public License for more details.
12 //
13 // You should have received a copy of the GNU Lesser General Public
14 // License along with this library; if not, write to the Free Software
15 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
16 //
17 // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
18 //
19 // Author : Anthony Geay (CEA/DEN)
20
21 %module MEDCoupling
22
23 %include std_vector.i
24 %include std_string.i
25
26 %{
27 #include "MEDCouplingMemArray.hxx"
28 #include "MEDCouplingUMesh.hxx"
29 #include "MEDCouplingExtrudedMesh.hxx"
30 #include "MEDCouplingCMesh.hxx"
31 #include "MEDCouplingCurveLinearMesh.hxx"
32 #include "MEDCoupling1GTUMesh.hxx"
33 #include "MEDCouplingField.hxx"
34 #include "MEDCouplingFieldDouble.hxx"
35 #include "MEDCouplingFieldTemplate.hxx"
36 #include "MEDCouplingGaussLocalization.hxx"
37 #include "MEDCouplingAutoRefCountObjectPtr.hxx"
38 #include "MEDCouplingMultiFields.hxx"
39 #include "MEDCouplingFieldOverTime.hxx"
40 #include "MEDCouplingDefinitionTime.hxx"
41 #include "MEDCouplingFieldDiscretization.hxx"
42 #include "MEDCouplingTypemaps.i"
43
44 #include "InterpKernelAutoPtr.hxx"
45
46 using namespace ParaMEDMEM;
47 using namespace INTERP_KERNEL;
48
49 %}
50
51 %template(ivec) std::vector<int>;
52 %template(dvec) std::vector<double>;
53 %template(svec) std::vector<std::string>;
54
55 ////////////////////
56 %typemap(out) ParaMEDMEM::MEDCouplingMesh*
57 {
58   $result=convertMesh($1,$owner);
59 }
60
61 %typemap(out) MEDCouplingMesh*
62 {
63   $result=convertMesh($1,$owner);
64 }
65 //$$$$$$$$$$$$$$$$$$
66
67 ////////////////////
68 %typemap(out) ParaMEDMEM::MEDCouplingPointSet*
69 {
70   $result=convertMesh($1,$owner);
71 }
72
73 %typemap(out) MEDCouplingPointSet*
74 {
75   $result=convertMesh($1,$owner);
76 }
77 //$$$$$$$$$$$$$$$$$$
78
79
80 ////////////////////
81 %typemap(out) ParaMEDMEM::MEDCoupling1GTUMesh*
82 {
83   $result=convertMesh($1,$owner);
84 }
85
86 %typemap(out) MEDCoupling1GTUMesh*
87 {
88   $result=convertMesh($1,$owner);
89 }
90 //$$$$$$$$$$$$$$$$$$
91
92 ////////////////////
93 %typemap(out) ParaMEDMEM::MEDCouplingStructuredMesh*
94 {
95   $result=convertMesh($1,$owner);
96 }
97
98 %typemap(out) MEDCouplingStructuredMesh*
99 {
100   $result=convertMesh($1,$owner);
101 }
102 //$$$$$$$$$$$$$$$$$$
103
104 ////////////////////
105 %typemap(out) ParaMEDMEM::MEDCouplingFieldDiscretization*
106 {
107   $result=convertFieldDiscretization($1,$owner);
108 }
109
110 %typemap(out) MEDCouplingFieldDiscretization*
111 {
112   $result=convertFieldDiscretization($1,$owner);
113 }
114 //$$$$$$$$$$$$$$$$$$
115
116 ////////////////////
117 %typemap(out) ParaMEDMEM::MEDCouplingMultiFields*
118 {
119   $result=convertMultiFields($1,$owner);
120 }
121
122 %typemap(out) MEDCouplingMultiFields*
123 {
124   $result=convertMultiFields($1,$owner);
125 }
126 //$$$$$$$$$$$$$$$$$$
127
128 #ifdef WITH_NUMPY
129 %init %{ import_array(); %}
130 #endif
131
132 %feature("autodoc", "1");
133 %feature("docstring");
134
135 %newobject ParaMEDMEM::MEDCouplingField::buildMeasureField;
136 %newobject ParaMEDMEM::MEDCouplingField::getLocalizationOfDiscr;
137 %newobject ParaMEDMEM::MEDCouplingField::computeTupleIdsToSelectFromCellIds;
138 %newobject ParaMEDMEM::MEDCouplingFieldDouble::New;
139 %newobject ParaMEDMEM::MEDCouplingFieldDouble::getArray;
140 %newobject ParaMEDMEM::MEDCouplingFieldDouble::getEndArray;
141 %newobject ParaMEDMEM::MEDCouplingFieldDouble::MergeFields;
142 %newobject ParaMEDMEM::MEDCouplingFieldDouble::MeldFields;
143 %newobject ParaMEDMEM::MEDCouplingFieldDouble::doublyContractedProduct;
144 %newobject ParaMEDMEM::MEDCouplingFieldDouble::determinant;
145 %newobject ParaMEDMEM::MEDCouplingFieldDouble::eigenValues;
146 %newobject ParaMEDMEM::MEDCouplingFieldDouble::eigenVectors;
147 %newobject ParaMEDMEM::MEDCouplingFieldDouble::inverse;
148 %newobject ParaMEDMEM::MEDCouplingFieldDouble::trace;
149 %newobject ParaMEDMEM::MEDCouplingFieldDouble::deviator;
150 %newobject ParaMEDMEM::MEDCouplingFieldDouble::magnitude;
151 %newobject ParaMEDMEM::MEDCouplingFieldDouble::maxPerTuple;
152 %newobject ParaMEDMEM::MEDCouplingFieldDouble::keepSelectedComponents;
153 %newobject ParaMEDMEM::MEDCouplingFieldDouble::extractSlice3D;
154 %newobject ParaMEDMEM::MEDCouplingFieldDouble::DotFields;
155 %newobject ParaMEDMEM::MEDCouplingFieldDouble::dot;
156 %newobject ParaMEDMEM::MEDCouplingFieldDouble::CrossProductFields;
157 %newobject ParaMEDMEM::MEDCouplingFieldDouble::crossProduct;
158 %newobject ParaMEDMEM::MEDCouplingFieldDouble::MaxFields;
159 %newobject ParaMEDMEM::MEDCouplingFieldDouble::max;
160 %newobject ParaMEDMEM::MEDCouplingFieldDouble::MinFields;
161 %newobject ParaMEDMEM::MEDCouplingFieldDouble::AddFields;
162 %newobject ParaMEDMEM::MEDCouplingFieldDouble::SubstractFields;
163 %newobject ParaMEDMEM::MEDCouplingFieldDouble::MultiplyFields;
164 %newobject ParaMEDMEM::MEDCouplingFieldDouble::DivideFields;
165 %newobject ParaMEDMEM::MEDCouplingFieldDouble::min;
166 %newobject ParaMEDMEM::MEDCouplingFieldDouble::negate;
167 %newobject ParaMEDMEM::MEDCouplingFieldDouble::getIdsInRange;
168 %newobject ParaMEDMEM::MEDCouplingFieldDouble::buildSubPart;
169 %newobject ParaMEDMEM::MEDCouplingFieldDouble::buildSubPartRange;
170 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__getitem__;
171 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__neg__;
172 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__add__;
173 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__sub__;
174 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__mul__;
175 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__div__;
176 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__pow__;
177 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__radd__;
178 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__rsub__;
179 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__rmul__;
180 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__rdiv__;
181 %newobject ParaMEDMEM::MEDCouplingFieldDouble::clone;
182 %newobject ParaMEDMEM::MEDCouplingFieldDouble::cloneWithMesh;
183 %newobject ParaMEDMEM::MEDCouplingFieldDouble::deepCpy;
184 %newobject ParaMEDMEM::MEDCouplingFieldDouble::buildNewTimeReprFromThis;
185 %newobject ParaMEDMEM::MEDCouplingFieldDouble::nodeToCellDiscretization;
186 %newobject ParaMEDMEM::MEDCouplingFieldDouble::getValueOnMulti;
187 %newobject ParaMEDMEM::MEDCouplingFieldTemplate::New;
188 %newobject ParaMEDMEM::MEDCouplingMesh::deepCpy;
189 %newobject ParaMEDMEM::MEDCouplingMesh::checkDeepEquivalOnSameNodesWith;
190 %newobject ParaMEDMEM::MEDCouplingMesh::checkTypeConsistencyAndContig;
191 %newobject ParaMEDMEM::MEDCouplingMesh::computeNbOfNodesPerCell;
192 %newobject ParaMEDMEM::MEDCouplingMesh::computeNbOfFacesPerCell;
193 %newobject ParaMEDMEM::MEDCouplingMesh::computeEffectiveNbOfNodesPerCell;
194 %newobject ParaMEDMEM::MEDCouplingMesh::buildPartRange;
195 %newobject ParaMEDMEM::MEDCouplingMesh::giveCellsWithType;
196 %newobject ParaMEDMEM::MEDCouplingMesh::getCoordinatesAndOwner;
197 %newobject ParaMEDMEM::MEDCouplingMesh::getBarycenterAndOwner;
198 %newobject ParaMEDMEM::MEDCouplingMesh::computeIsoBarycenterOfNodesPerCell;
199 %newobject ParaMEDMEM::MEDCouplingMesh::buildOrthogonalField;
200 %newobject ParaMEDMEM::MEDCouplingMesh::getCellIdsFullyIncludedInNodeIds;
201 %newobject ParaMEDMEM::MEDCouplingMesh::mergeMyselfWith;
202 %newobject ParaMEDMEM::MEDCouplingMesh::fillFromAnalytic;
203 %newobject ParaMEDMEM::MEDCouplingMesh::fillFromAnalytic2;
204 %newobject ParaMEDMEM::MEDCouplingMesh::fillFromAnalytic3;
205 %newobject ParaMEDMEM::MEDCouplingMesh::getMeasureField;
206 %newobject ParaMEDMEM::MEDCouplingMesh::simplexize;
207 %newobject ParaMEDMEM::MEDCouplingMesh::buildUnstructured;
208 %newobject ParaMEDMEM::MEDCouplingMesh::MergeMeshes;
209 %newobject ParaMEDMEM::MEDCouplingPointSet::zipCoordsTraducer;
210 %newobject ParaMEDMEM::MEDCouplingPointSet::getCellsInBoundingBox;
211 %newobject ParaMEDMEM::MEDCouplingPointSet::findBoundaryNodes;
212 %newobject ParaMEDMEM::MEDCouplingPointSet::buildBoundaryMesh;
213 %newobject ParaMEDMEM::MEDCouplingPointSet::MergeNodesArray;
214 %newobject ParaMEDMEM::MEDCouplingPointSet::buildPartOfMySelf2;
215 %newobject ParaMEDMEM::MEDCouplingPointSet::BuildInstanceFromMeshType;
216 %newobject ParaMEDMEM::MEDCouplingPointSet::zipConnectivityTraducer;
217 %newobject ParaMEDMEM::MEDCouplingPointSet::mergeMyselfWithOnSameCoords;
218 %newobject ParaMEDMEM::MEDCouplingPointSet::fillCellIdsToKeepFromNodeIds;
219 %newobject ParaMEDMEM::MEDCouplingPointSet::getCellIdsLyingOnNodes;
220 %newobject ParaMEDMEM::MEDCouplingPointSet::deepCpyConnectivityOnly;
221 %newobject ParaMEDMEM::MEDCouplingPointSet::getBoundingBoxForBBTree;
222 %newobject ParaMEDMEM::MEDCouplingPointSet::ComputeNbOfInteractionsWithSrcCells;
223 %newobject ParaMEDMEM::MEDCouplingPointSet::__getitem__;
224 %newobject ParaMEDMEM::MEDCouplingUMesh::New;
225 %newobject ParaMEDMEM::MEDCouplingUMesh::getNodalConnectivity;
226 %newobject ParaMEDMEM::MEDCouplingUMesh::getNodalConnectivityIndex;
227 %newobject ParaMEDMEM::MEDCouplingUMesh::clone;
228 %newobject ParaMEDMEM::MEDCouplingUMesh::__iter__;
229 %newobject ParaMEDMEM::MEDCouplingUMesh::cellsByType;
230 %newobject ParaMEDMEM::MEDCouplingUMesh::buildDescendingConnectivity;
231 %newobject ParaMEDMEM::MEDCouplingUMesh::buildDescendingConnectivity2;
232 %newobject ParaMEDMEM::MEDCouplingUMesh::explode3DMeshTo1D;
233 %newobject ParaMEDMEM::MEDCouplingUMesh::buildExtrudedMesh;
234 %newobject ParaMEDMEM::MEDCouplingUMesh::buildSpreadZonesWithPoly;
235 %newobject ParaMEDMEM::MEDCouplingUMesh::MergeUMeshes;
236 %newobject ParaMEDMEM::MEDCouplingUMesh::MergeUMeshesOnSameCoords;
237 %newobject ParaMEDMEM::MEDCouplingUMesh::ComputeSpreadZoneGradually;
238 %newobject ParaMEDMEM::MEDCouplingUMesh::ComputeSpreadZoneGraduallyFromSeed;
239 %newobject ParaMEDMEM::MEDCouplingUMesh::buildNewNumberingFromCommNodesFrmt;
240 %newobject ParaMEDMEM::MEDCouplingUMesh::rearrange2ConsecutiveCellTypes;
241 %newobject ParaMEDMEM::MEDCouplingUMesh::sortCellsInMEDFileFrmt;
242 %newobject ParaMEDMEM::MEDCouplingUMesh::getRenumArrForMEDFileFrmt;
243 %newobject ParaMEDMEM::MEDCouplingUMesh::convertCellArrayPerGeoType;
244 %newobject ParaMEDMEM::MEDCouplingUMesh::computeFetchedNodeIds;
245 %newobject ParaMEDMEM::MEDCouplingUMesh::getRenumArrForConsecutiveCellTypesSpec;
246 %newobject ParaMEDMEM::MEDCouplingUMesh::buildDirectionVectorField;
247 %newobject ParaMEDMEM::MEDCouplingUMesh::convertLinearCellsToQuadratic;
248 %newobject ParaMEDMEM::MEDCouplingUMesh::getEdgeRatioField;
249 %newobject ParaMEDMEM::MEDCouplingUMesh::getAspectRatioField;
250 %newobject ParaMEDMEM::MEDCouplingUMesh::getWarpField;
251 %newobject ParaMEDMEM::MEDCouplingUMesh::getSkewField;
252 %newobject ParaMEDMEM::MEDCouplingUMesh::getPartBarycenterAndOwner;
253 %newobject ParaMEDMEM::MEDCouplingUMesh::computePlaneEquationOf3DFaces;
254 %newobject ParaMEDMEM::MEDCouplingUMesh::getPartMeasureField;
255 %newobject ParaMEDMEM::MEDCouplingUMesh::buildPartOrthogonalField;
256 %newobject ParaMEDMEM::MEDCouplingUMesh::keepCellIdsByType;
257 %newobject ParaMEDMEM::MEDCouplingUMesh::Build0DMeshFromCoords;
258 %newobject ParaMEDMEM::MEDCouplingUMesh::findAndCorrectBadOriented3DExtrudedCells;
259 %newobject ParaMEDMEM::MEDCouplingUMesh::findAndCorrectBadOriented3DCells;
260 %newobject ParaMEDMEM::MEDCouplingUMesh::convertIntoSingleGeoTypeMesh;
261 %newobject ParaMEDMEM::MEDCouplingUMesh::convertNodalConnectivityToStaticGeoTypeMesh;
262 %newobject ParaMEDMEM::MEDCouplingUMesh::findCellIdsOnBoundary;
263 %newobject ParaMEDMEM::MEDCouplingUMesh::computeSkin;
264 %newobject ParaMEDMEM::MEDCouplingUMesh::buildSetInstanceFromThis;
265 %newobject ParaMEDMEM::MEDCouplingUMesh::getCellIdsCrossingPlane;
266 %newobject ParaMEDMEM::MEDCouplingUMesh::convexEnvelop2D;
267 %newobject ParaMEDMEM::MEDCouplingUMesh::ComputeRangesFromTypeDistribution;
268 %newobject ParaMEDMEM::MEDCouplingUMesh::buildUnionOf2DMesh;
269 %newobject ParaMEDMEM::MEDCouplingUMesh::buildUnionOf3DMesh;
270 %newobject ParaMEDMEM::MEDCouplingUMeshCellByTypeEntry::__iter__;
271 %newobject ParaMEDMEM::MEDCouplingUMeshCellEntry::__iter__;
272 %newobject ParaMEDMEM::MEDCoupling1GTUMesh::New;
273 %newobject ParaMEDMEM::MEDCoupling1GTUMesh::getNodalConnectivity;
274 %newobject ParaMEDMEM::MEDCoupling1GTUMesh::AggregateOnSameCoordsToUMesh;
275 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::New;
276 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::buildSetInstanceFromThis;
277 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::computeDualMesh;
278 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::explodeEachHexa8To6Quad4;
279 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::sortHexa8EachOther;
280 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::Merge1SGTUMeshes;
281 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::Merge1SGTUMeshesOnSameCoords;
282 %newobject ParaMEDMEM::MEDCoupling1DGTUMesh::New;
283 %newobject ParaMEDMEM::MEDCoupling1DGTUMesh::getNodalConnectivityIndex;
284 %newobject ParaMEDMEM::MEDCoupling1DGTUMesh::buildSetInstanceFromThis;
285 %newobject ParaMEDMEM::MEDCoupling1DGTUMesh::Merge1DGTUMeshes;
286 %newobject ParaMEDMEM::MEDCoupling1DGTUMesh::Merge1DGTUMeshesOnSameCoords;
287 %newobject ParaMEDMEM::MEDCouplingExtrudedMesh::New;
288 %newobject ParaMEDMEM::MEDCouplingExtrudedMesh::build3DUnstructuredMesh;
289 %newobject ParaMEDMEM::MEDCouplingStructuredMesh::buildStructuredSubPart;
290 %newobject ParaMEDMEM::MEDCouplingStructuredMesh::build1SGTUnstructured;
291 %newobject ParaMEDMEM::MEDCouplingStructuredMesh::BuildExplicitIdsFrom;
292 %newobject ParaMEDMEM::MEDCouplingStructuredMesh::Build1GTNodalConnectivity;
293 %newobject ParaMEDMEM::MEDCouplingCMesh::New;
294 %newobject ParaMEDMEM::MEDCouplingCMesh::clone;
295 %newobject ParaMEDMEM::MEDCouplingCMesh::getCoordsAt;
296 %newobject ParaMEDMEM::MEDCouplingCurveLinearMesh::New;
297 %newobject ParaMEDMEM::MEDCouplingCurveLinearMesh::clone;
298 %newobject ParaMEDMEM::MEDCouplingCurveLinearMesh::getCoords;
299 %newobject ParaMEDMEM::MEDCouplingMultiFields::New;
300 %newobject ParaMEDMEM::MEDCouplingMultiFields::deepCpy;
301 %newobject ParaMEDMEM::MEDCouplingFieldOverTime::New;
302
303 %feature("unref") MEDCouplingPointSet "$this->decrRef();"
304 %feature("unref") MEDCouplingMesh "$this->decrRef();"
305 %feature("unref") MEDCouplingUMesh "$this->decrRef();"
306 %feature("unref") MEDCoupling1GTUMesh "$this->decrRef();"
307 %feature("unref") MEDCoupling1SGTUMesh "$this->decrRef();"
308 %feature("unref") MEDCoupling1DGTUMesh "$this->decrRef();"
309 %feature("unref") MEDCouplingExtrudedMesh "$this->decrRef();"
310 %feature("unref") MEDCouplingCMesh "$this->decrRef();"
311 %feature("unref") MEDCouplingField "$this->decrRef();"
312 %feature("unref") MEDCouplingFieldDiscretizationP0 "$this->decrRef();"
313 %feature("unref") MEDCouplingFieldDiscretizationP1 "$this->decrRef();"
314 %feature("unref") MEDCouplingFieldDiscretizationGauss "$this->decrRef();"
315 %feature("unref") MEDCouplingFieldDiscretizationGaussNE "$this->decrRef();"
316 %feature("unref") MEDCouplingFieldDiscretizationKriging "$this->decrRef();"
317 %feature("unref") MEDCouplingFieldDouble "$this->decrRef();"
318 %feature("unref") MEDCouplingMultiFields "$this->decrRef();"
319 %feature("unref") MEDCouplingFieldTemplate "$this->decrRef();"
320 %feature("unref") MEDCouplingMultiFields "$this->decrRef();"
321
322 %rename(assign) *::operator=;
323 %ignore ParaMEDMEM::MEDCouplingGaussLocalization::pushTinySerializationIntInfo;
324 %ignore ParaMEDMEM::MEDCouplingGaussLocalization::pushTinySerializationDblInfo;
325 %ignore ParaMEDMEM::MEDCouplingGaussLocalization::fillWithValues;
326 %ignore ParaMEDMEM::MEDCouplingGaussLocalization::buildNewInstanceFromTinyInfo;
327
328 %nodefaultctor;
329
330 %rename (InterpKernelException) INTERP_KERNEL::Exception;
331
332 %include "MEDCouplingRefCountObject.i"
333 %include "MEDCouplingMemArray.i"
334
335 namespace ParaMEDMEM
336 {
337   typedef enum
338     {
339       ON_CELLS = 0,
340       ON_NODES = 1,
341       ON_GAUSS_PT = 2,
342       ON_GAUSS_NE = 3,
343       ON_NODES_KR = 4
344     } TypeOfField;
345
346   typedef enum
347     {
348       NO_TIME = 4,
349       ONE_TIME = 5,
350       LINEAR_TIME = 6,
351       CONST_ON_TIME_INTERVAL = 7
352     } TypeOfTimeDiscretization;
353
354   typedef enum
355     {
356       UNSTRUCTURED = 5,
357       CARTESIAN = 7,
358       EXTRUDED = 8,
359       CURVE_LINEAR = 9,
360       SINGLE_STATIC_GEO_TYPE_UNSTRUCTURED = 10,
361       SINGLE_DYNAMIC_GEO_TYPE_UNSTRUCTURED = 11
362     } MEDCouplingMeshType;
363
364   class DataArrayInt;
365   class DataArrayDouble;
366   class MEDCouplingUMesh;
367   class MEDCouplingFieldDouble;
368
369   %extend RefCountObject
370   {
371     std::string getHiddenCppPointer() const
372     {
373       std::ostringstream oss; oss << "C++ Pointer address is : " << self;
374       return oss.str();
375     }
376   }
377
378   %extend MEDCouplingGaussLocalization
379   {
380     std::string __str__() const throw(INTERP_KERNEL::Exception)
381     {
382       return self->getStringRepr();
383     }
384
385     std::string __repr__() const throw(INTERP_KERNEL::Exception)
386     {
387       std::ostringstream oss; oss << "MEDCouplingGaussLocalization C++ instance at " << self << "." << std::endl;
388       oss << self->getStringRepr();
389       return oss.str();
390     }
391   }
392
393   //== MEDCouplingMesh
394   
395   class MEDCouplingMesh : public RefCountObject, public TimeLabel
396   {
397   public:
398     void setName(const char *name);
399     std::string getName() const;
400     void setDescription(const char *descr);
401     std::string getDescription() const;
402     void setTime(double val, int iteration, int order);
403     void setTimeUnit(const char *unit);
404     const char *getTimeUnit() const;
405     virtual MEDCouplingMeshType getType() const throw(INTERP_KERNEL::Exception);
406     bool isStructured() const throw(INTERP_KERNEL::Exception);
407     virtual MEDCouplingMesh *deepCpy() const;
408     virtual bool isEqual(const MEDCouplingMesh *other, double prec) const throw(INTERP_KERNEL::Exception);
409     virtual bool isEqualWithoutConsideringStr(const MEDCouplingMesh *other, double prec) const throw(INTERP_KERNEL::Exception);
410     virtual void checkFastEquivalWith(const MEDCouplingMesh *other, double prec) const throw(INTERP_KERNEL::Exception);
411     virtual void copyTinyStringsFrom(const MEDCouplingMesh *other) throw(INTERP_KERNEL::Exception);
412     virtual void copyTinyInfoFrom(const MEDCouplingMesh *other) throw(INTERP_KERNEL::Exception);
413     virtual void checkCoherency() const throw(INTERP_KERNEL::Exception);
414     virtual void checkCoherency1(double eps=1e-12) const throw(INTERP_KERNEL::Exception);
415     virtual void checkCoherency2(double eps=1e-12) const throw(INTERP_KERNEL::Exception);
416     virtual int getNumberOfCells() const throw(INTERP_KERNEL::Exception);
417     virtual int getNumberOfNodes() const throw(INTERP_KERNEL::Exception);
418     virtual int getSpaceDimension() const throw(INTERP_KERNEL::Exception);
419     virtual int getMeshDimension() const throw(INTERP_KERNEL::Exception);
420     virtual DataArrayDouble *getCoordinatesAndOwner() const throw(INTERP_KERNEL::Exception);
421     virtual DataArrayDouble *getBarycenterAndOwner() const throw(INTERP_KERNEL::Exception);
422     virtual DataArrayDouble *computeIsoBarycenterOfNodesPerCell() const throw(INTERP_KERNEL::Exception);
423     virtual DataArrayInt *giveCellsWithType(INTERP_KERNEL::NormalizedCellType type) const throw(INTERP_KERNEL::Exception);
424     virtual DataArrayInt *computeNbOfNodesPerCell() const throw(INTERP_KERNEL::Exception);
425     virtual DataArrayInt *computeNbOfFacesPerCell() const throw(INTERP_KERNEL::Exception);
426     virtual DataArrayInt *computeEffectiveNbOfNodesPerCell() const throw(INTERP_KERNEL::Exception);
427     virtual MEDCouplingMesh *buildPartRange(int beginCellIds, int endCellIds, int stepCellIds) const throw(INTERP_KERNEL::Exception);
428     virtual int getNumberOfCellsWithType(INTERP_KERNEL::NormalizedCellType type) const throw(INTERP_KERNEL::Exception);
429     virtual INTERP_KERNEL::NormalizedCellType getTypeOfCell(int cellId) const throw(INTERP_KERNEL::Exception);
430     virtual std::string simpleRepr() const throw(INTERP_KERNEL::Exception);
431     virtual std::string advancedRepr() const throw(INTERP_KERNEL::Exception);
432     void writeVTK(const char *fileName, bool isBinary=true) const throw(INTERP_KERNEL::Exception);
433     // tools
434     virtual MEDCouplingFieldDouble *getMeasureField(bool isAbs) const throw(INTERP_KERNEL::Exception);
435     virtual MEDCouplingFieldDouble *getMeasureFieldOnNode(bool isAbs) const throw(INTERP_KERNEL::Exception);
436     virtual MEDCouplingFieldDouble *fillFromAnalytic(TypeOfField t, int nbOfComp, const char *func) const throw(INTERP_KERNEL::Exception);
437     virtual MEDCouplingFieldDouble *fillFromAnalytic2(TypeOfField t, int nbOfComp, const char *func) const throw(INTERP_KERNEL::Exception);
438     virtual MEDCouplingFieldDouble *fillFromAnalytic3(TypeOfField t, int nbOfComp, const std::vector<std::string>& varsOrder, const char *func) const throw(INTERP_KERNEL::Exception);
439     virtual MEDCouplingFieldDouble *buildOrthogonalField() const throw(INTERP_KERNEL::Exception);
440     virtual MEDCouplingUMesh *buildUnstructured() const throw(INTERP_KERNEL::Exception);
441     virtual MEDCouplingMesh *mergeMyselfWith(const MEDCouplingMesh *other) const throw(INTERP_KERNEL::Exception);
442     virtual bool areCompatibleForMerge(const MEDCouplingMesh *other) const throw(INTERP_KERNEL::Exception);
443     virtual DataArrayInt *simplexize(int policy) throw(INTERP_KERNEL::Exception);
444     static MEDCouplingMesh *MergeMeshes(const MEDCouplingMesh *mesh1, const MEDCouplingMesh *mesh2) throw(INTERP_KERNEL::Exception);
445     static bool IsStaticGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
446     static bool IsLinearGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
447     static INTERP_KERNEL::NormalizedCellType GetCorrespondingPolyType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
448     static int GetNumberOfNodesOfGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
449     static int GetDimensionOfGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
450     static const char *GetReprOfGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
451     %extend
452        {
453          std::string __str__() const throw(INTERP_KERNEL::Exception)
454          {
455            return self->simpleRepr();
456          }
457
458          PyObject *getTime() throw(INTERP_KERNEL::Exception)
459          {
460            int tmp1,tmp2;
461            double tmp0=self->getTime(tmp1,tmp2);
462            PyObject *res = PyList_New(3);
463            PyList_SetItem(res,0,SWIG_From_double(tmp0));
464            PyList_SetItem(res,1,SWIG_From_int(tmp1));
465            PyList_SetItem(res,2,SWIG_From_int(tmp2));
466            return res;
467          }
468
469          int getCellContainingPoint(PyObject *p, double eps) const throw(INTERP_KERNEL::Exception)
470          {
471            double val;
472            DataArrayDouble *a;
473            DataArrayDoubleTuple *aa;
474            std::vector<double> bb;
475            int sw;
476            int spaceDim=self->getSpaceDimension();
477            const char msg[]="Python wrap of MEDCouplingMesh::getCellContainingPoint : ";
478            const double *pos=convertObjToPossibleCpp5_Safe(p,sw,val,a,aa,bb,msg,1,spaceDim,true);
479            return self->getCellContainingPoint(pos,eps);
480          }
481
482          PyObject *getCellsContainingPoints(PyObject *p, int nbOfPoints, double eps) const throw(INTERP_KERNEL::Exception)
483          {
484            double val;
485            DataArrayDouble *a;
486            DataArrayDoubleTuple *aa;
487            std::vector<double> bb;
488            int sw;
489            int spaceDim=self->getSpaceDimension();
490            const char msg[]="Python wrap of MEDCouplingMesh::getCellsContainingPoint : ";
491            const double *pos=convertObjToPossibleCpp5_Safe(p,sw,val,a,aa,bb,msg,nbOfPoints,spaceDim,true);
492            MEDCouplingAutoRefCountObjectPtr<DataArrayInt> elts,eltsIndex;
493            self->getCellsContainingPoints(pos,nbOfPoints,eps,elts,eltsIndex);
494            PyObject *ret=PyTuple_New(2);
495            PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(elts.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
496            PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(eltsIndex.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
497            return ret;
498          }
499
500          PyObject *getCellsContainingPoints(PyObject *p, double eps) const throw(INTERP_KERNEL::Exception)
501          {
502            MEDCouplingAutoRefCountObjectPtr<DataArrayInt> elts,eltsIndex;
503            int spaceDim=self->getSpaceDimension();
504            void *da=0;
505            int res1=SWIG_ConvertPtr(p,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, 0 |  0 );
506            if (!SWIG_IsOK(res1))
507              {
508                int size;
509                INTERP_KERNEL::AutoCPtr<double> tmp=convertPyToNewDblArr2(p,&size);
510                int nbOfPoints=size/spaceDim;
511                if(size%spaceDim!=0)
512                  {
513                    throw INTERP_KERNEL::Exception("MEDCouplingMesh::getCellsContainingPoints : Invalid list length ! Must be a multiple of self.getSpaceDimension() !");
514                  }
515                self->getCellsContainingPoints(tmp,nbOfPoints,eps,elts,eltsIndex);
516              }
517            else
518              {
519                DataArrayDouble *da2=reinterpret_cast< DataArrayDouble * >(da);
520                if(!da2)
521                  throw INTERP_KERNEL::Exception("MEDCouplingMesh::getCellsContainingPoints : Not null DataArrayDouble instance expected !");
522                da2->checkAllocated();
523                int size=da2->getNumberOfTuples();
524                int nbOfCompo=da2->getNumberOfComponents();
525                if(nbOfCompo!=spaceDim)
526                  {
527                    throw INTERP_KERNEL::Exception("MEDCouplingMesh::getCellsContainingPoints : Invalid DataArrayDouble nb of components ! Expected same as self.getSpaceDimension() !");
528                  }
529                self->getCellsContainingPoints(da2->getConstPointer(),size,eps,elts,eltsIndex);
530              }
531            PyObject *ret=PyTuple_New(2);
532            PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(elts.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
533            PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(eltsIndex.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
534            return ret;
535          }
536
537          PyObject *getCellsContainingPoint(PyObject *p, double eps) const throw(INTERP_KERNEL::Exception)
538          {
539            double val;
540            DataArrayDouble *a;
541            DataArrayDoubleTuple *aa;
542            std::vector<double> bb;
543            int sw;
544            int spaceDim=self->getSpaceDimension();
545            const char msg[]="Python wrap of MEDCouplingUMesh::getCellsContainingPoint : ";
546            const double *pos=convertObjToPossibleCpp5_Safe(p,sw,val,a,aa,bb,msg,1,spaceDim,true);
547            std::vector<int> elts;
548            self->getCellsContainingPoint(pos,eps,elts);
549            DataArrayInt *ret=DataArrayInt::New();
550            ret->alloc((int)elts.size(),1);
551            std::copy(elts.begin(),elts.end(),ret->getPointer());
552            return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
553          }
554          
555          void renumberCells(PyObject *li, bool check=true) throw(INTERP_KERNEL::Exception)
556          {
557            int sw,sz(-1);
558            int v0; std::vector<int> v1;
559            const int *ids(convertObjToPossibleCpp1_Safe(li,sw,sz,v0,v1));
560            self->renumberCells(ids,check);
561          }
562
563          PyObject *checkGeoEquivalWith(const MEDCouplingMesh *other, int levOfCheck, double prec) const throw(INTERP_KERNEL::Exception)
564          {
565            DataArrayInt *cellCor, *nodeCor;
566            self->checkGeoEquivalWith(other,levOfCheck,prec,cellCor,nodeCor);
567            PyObject *res = PyList_New(2);
568            PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(cellCor),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, cellCor?SWIG_POINTER_OWN | 0:0 ));
569            PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(nodeCor),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, nodeCor?SWIG_POINTER_OWN | 0:0 ));
570            return res;
571          }
572
573          PyObject *checkDeepEquivalWith(const MEDCouplingMesh *other, int cellCompPol, double prec) const throw(INTERP_KERNEL::Exception)
574          {
575            DataArrayInt *cellCor=0,*nodeCor=0;
576            self->checkDeepEquivalWith(other,cellCompPol,prec,cellCor,nodeCor);
577            PyObject *res = PyList_New(2);
578            PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(cellCor),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, cellCor?SWIG_POINTER_OWN | 0:0 ));
579            PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(nodeCor),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, nodeCor?SWIG_POINTER_OWN | 0:0 ));
580            return res;
581          }
582          
583          DataArrayInt *checkDeepEquivalOnSameNodesWith(const MEDCouplingMesh *other, int cellCompPol, double prec) const throw(INTERP_KERNEL::Exception)
584          {
585            DataArrayInt *cellCor=0;
586            self->checkDeepEquivalOnSameNodesWith(other,cellCompPol,prec,cellCor);
587            return cellCor;
588          }
589
590          DataArrayInt *getCellIdsFullyIncludedInNodeIds(PyObject *li) const throw(INTERP_KERNEL::Exception)
591          {
592            void *da=0;
593            int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayInt, 0 |  0 );
594            if (!SWIG_IsOK(res1))
595              {
596                int size;
597                INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
598                return self->getCellIdsFullyIncludedInNodeIds(tmp,((const int *)tmp)+size);
599              }
600            else
601              {
602                DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
603                if(!da2)
604                  throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
605                da2->checkAllocated();
606                return self->getCellIdsFullyIncludedInNodeIds(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems());
607              }
608          }
609          PyObject *getNodeIdsOfCell(int cellId) const throw(INTERP_KERNEL::Exception)
610          {
611            std::vector<int> conn;
612            self->getNodeIdsOfCell(cellId,conn);
613            return convertIntArrToPyList2(conn);
614          }
615
616          PyObject *getCoordinatesOfNode(int nodeId) const throw(INTERP_KERNEL::Exception)
617          {
618            std::vector<double> coo;
619            self->getCoordinatesOfNode(nodeId,coo);
620            return convertDblArrToPyList2(coo);
621          }
622
623          void scale(PyObject *point, double factor) throw(INTERP_KERNEL::Exception)
624          {
625            double val;
626            DataArrayDouble *a;
627            DataArrayDoubleTuple *aa;
628            std::vector<double> bb;
629            int sw;
630            int spaceDim=self->getSpaceDimension();
631            const char msg[]="Python wrap of MEDCouplingPointSet::scale : ";
632            const double *pointPtr=convertObjToPossibleCpp5_Safe(point,sw,val,a,aa,bb,msg,1,spaceDim,true);
633            self->scale(pointPtr,factor);
634          }
635
636          PyObject *getBoundingBox() const throw(INTERP_KERNEL::Exception)
637          {
638            int spaceDim=self->getSpaceDimension();
639            INTERP_KERNEL::AutoPtr<double> tmp=new double[2*spaceDim];
640            self->getBoundingBox(tmp);
641            PyObject *ret=convertDblArrToPyListOfTuple(tmp,2,spaceDim);
642            return ret;
643          }
644
645          PyObject *isEqualIfNotWhy(const MEDCouplingMesh *other, double prec) const throw(INTERP_KERNEL::Exception)
646          {
647            std::string ret1;
648            bool ret0=self->isEqualIfNotWhy(other,prec,ret1);
649            PyObject *ret=PyTuple_New(2);
650            PyObject *ret0Py=ret0?Py_True:Py_False;
651            Py_XINCREF(ret0Py);
652            PyTuple_SetItem(ret,0,ret0Py);
653            PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
654            return ret;
655          }
656
657          PyObject *buildPart(PyObject *li) const throw(INTERP_KERNEL::Exception)
658          {
659            int szArr,sw,iTypppArr;
660            std::vector<int> stdvecTyyppArr;
661            const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
662            MEDCouplingMesh *ret=self->buildPart(tmp,tmp+szArr);
663            if(sw==3)//DataArrayInt
664              { 
665                void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
666                DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
667                std::string name=argpt->getName();
668                if(!name.empty())
669                  ret->setName(name.c_str());
670              }
671            return convertMesh(ret, SWIG_POINTER_OWN | 0 );
672          }
673         
674          PyObject *buildPartAndReduceNodes(PyObject *li) const throw(INTERP_KERNEL::Exception)
675          {
676            int szArr,sw,iTypppArr;
677            std::vector<int> stdvecTyyppArr;
678            DataArrayInt *arr=0;
679            const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
680            MEDCouplingMesh *ret=self->buildPartAndReduceNodes(tmp,tmp+szArr,arr);
681            if(sw==3)//DataArrayInt
682              { 
683                void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
684                DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
685                std::string name=argpt->getName();
686                if(!name.empty())
687                  ret->setName(name.c_str());
688              }
689            //
690            PyObject *res = PyList_New(2);
691            PyObject *obj0=convertMesh(ret, SWIG_POINTER_OWN | 0 );
692            PyObject *obj1=SWIG_NewPointerObj(SWIG_as_voidptr(arr),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
693            PyList_SetItem(res,0,obj0);
694            PyList_SetItem(res,1,obj1);
695            return res;
696          }
697
698          PyObject *buildPartRangeAndReduceNodes(int beginCellIds, int endCellIds, int stepCellIds) const throw(INTERP_KERNEL::Exception)
699          {
700            int a,b,c;
701            DataArrayInt *arr=0;
702            MEDCouplingMesh *ret=self->buildPartRangeAndReduceNodes(beginCellIds,endCellIds,stepCellIds,a,b,c,arr);
703            PyObject *res = PyTuple_New(2);
704            PyObject *obj0=convertMesh(ret, SWIG_POINTER_OWN | 0 );
705            PyObject *obj1=0;
706            if(arr)
707              obj1=SWIG_NewPointerObj(SWIG_as_voidptr(arr),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
708            else
709              obj1=PySlice_New(PyInt_FromLong(a),PyInt_FromLong(b),PyInt_FromLong(b));
710            PyTuple_SetItem(res,0,obj0);
711            PyTuple_SetItem(res,1,obj1);
712            return res;
713          }
714
715         PyObject *getDistributionOfTypes() const throw(INTERP_KERNEL::Exception)
716         {
717           std::vector<int> vals=self->getDistributionOfTypes();
718           if(vals.size()%3!=0)
719             throw INTERP_KERNEL::Exception("Internal Error detected in wrap python ! code returned by MEDCouplingMesh::getDistributionOfTypes is not so that %3==0 !");
720           PyObject *ret=PyList_New((int)vals.size()/3);
721           for(int j=0;j<(int)vals.size()/3;j++)
722              {
723                PyObject *ret1=PyList_New(3);
724                PyList_SetItem(ret1,0,SWIG_From_int(vals[3*j]));
725                PyList_SetItem(ret1,1,SWIG_From_int(vals[3*j+1]));
726                PyList_SetItem(ret1,2,SWIG_From_int(vals[3*j+2]));
727                PyList_SetItem(ret,j,ret1);
728              }
729           return ret;
730         }
731
732         DataArrayInt *checkTypeConsistencyAndContig(PyObject *li, PyObject *li2) const throw(INTERP_KERNEL::Exception)
733         {
734           std::vector<int> code;
735           std::vector<const DataArrayInt *> idsPerType;
736           convertFromPyObjVectorOfObj<const ParaMEDMEM::DataArrayInt *>(li2,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,"DataArrayInt",idsPerType);
737           convertPyToNewIntArr4(li,1,3,code);
738           return self->checkTypeConsistencyAndContig(code,idsPerType);
739         }
740
741         PyObject *splitProfilePerType(const DataArrayInt *profile) const throw(INTERP_KERNEL::Exception)
742         {
743           std::vector<int> code;
744           std::vector<DataArrayInt *> idsInPflPerType;
745           std::vector<DataArrayInt *> idsPerType;
746           self->splitProfilePerType(profile,code,idsInPflPerType,idsPerType);
747           PyObject *ret=PyTuple_New(3);
748           //
749           if(code.size()%3!=0)
750             throw INTERP_KERNEL::Exception("Internal Error detected in wrap python ! code returned by MEDCouplingMesh::splitProfilePerType is not so that %3==0 !");
751           PyObject *ret0=PyList_New((int)code.size()/3);
752           for(int j=0;j<(int)code.size()/3;j++)
753              {
754                PyObject *ret00=PyList_New(3);
755                PyList_SetItem(ret00,0,SWIG_From_int(code[3*j]));
756                PyList_SetItem(ret00,1,SWIG_From_int(code[3*j+1]));
757                PyList_SetItem(ret00,2,SWIG_From_int(code[3*j+2]));
758                PyList_SetItem(ret0,j,ret00);
759              }
760           PyTuple_SetItem(ret,0,ret0);
761           //
762           PyObject *ret1=PyList_New(idsInPflPerType.size());
763           for(std::size_t j=0;j<idsInPflPerType.size();j++)
764             PyList_SetItem(ret1,j,SWIG_NewPointerObj(SWIG_as_voidptr(idsInPflPerType[j]),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
765           PyTuple_SetItem(ret,1,ret1);
766           int n=idsPerType.size();
767           PyObject *ret2=PyList_New(n);
768           for(int i=0;i<n;i++)
769             PyList_SetItem(ret2,i,SWIG_NewPointerObj(SWIG_as_voidptr(idsPerType[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
770           PyTuple_SetItem(ret,2,ret2);
771           return ret;
772         }
773
774         void translate(PyObject *vector) throw(INTERP_KERNEL::Exception)
775         {
776           double val;
777           DataArrayDouble *a;
778           DataArrayDoubleTuple *aa;
779           std::vector<double> bb;
780           int sw;
781           int spaceDim=self->getSpaceDimension();
782           const char msg[]="Python wrap of MEDCouplingPointSet::translate : ";
783           const double *vectorPtr=convertObjToPossibleCpp5_Safe(vector,sw,val,a,aa,bb,msg,1,spaceDim,true);
784           self->translate(vectorPtr);
785         }
786
787          void rotate(PyObject *center, double alpha) throw(INTERP_KERNEL::Exception)
788          {
789            const char msg[]="Python wrap of MEDCouplingPointSet::rotate : ";
790            double val;
791            DataArrayDouble *a;
792            DataArrayDoubleTuple *aa;
793            std::vector<double> bb;
794            int sw;
795            int spaceDim=self->getSpaceDimension();
796            const double *centerPtr=convertObjToPossibleCpp5_Safe(center,sw,val,a,aa,bb,msg,1,spaceDim,true);
797            self->rotate(centerPtr,0,alpha);
798          }
799
800          void rotate(PyObject *center, PyObject *vector, double alpha) throw(INTERP_KERNEL::Exception)
801          {
802            const char msg[]="Python wrap of MEDCouplingPointSet::rotate : ";
803            double val,val2;
804            DataArrayDouble *a,*a2;
805            DataArrayDoubleTuple *aa,*aa2;
806            std::vector<double> bb,bb2;
807            int sw;
808            int spaceDim=self->getSpaceDimension();
809            const double *centerPtr=convertObjToPossibleCpp5_Safe(center,sw,val,a,aa,bb,msg,1,spaceDim,true);
810            const double *vectorPtr=convertObjToPossibleCpp5_Safe(vector,sw,val2,a2,aa2,bb2,msg,1,spaceDim,false);//vectorPtr can be null in case of space dim 2
811            self->rotate(centerPtr,vectorPtr,alpha);
812          }
813
814          PyObject *getAllGeoTypes() const throw(INTERP_KERNEL::Exception)
815          {
816            std::set<INTERP_KERNEL::NormalizedCellType> result=self->getAllGeoTypes();
817            std::set<INTERP_KERNEL::NormalizedCellType>::const_iterator iL=result.begin();
818            PyObject *res=PyList_New(result.size());
819            for(int i=0;iL!=result.end(); i++, iL++)
820              PyList_SetItem(res,i,PyInt_FromLong(*iL));
821            return res;
822          }
823          
824          static MEDCouplingMesh *MergeMeshes(PyObject *li) throw(INTERP_KERNEL::Exception)
825          {
826             std::vector<const ParaMEDMEM::MEDCouplingMesh *> tmp;
827             convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingMesh,"MEDCouplingMesh",tmp);
828             return MEDCouplingMesh::MergeMeshes(tmp);
829          }
830        }
831   };
832 }
833
834 //== MEDCouplingMesh End
835
836 %include "NormalizedGeometricTypes"
837 %include "MEDCouplingNatureOfFieldEnum"
838 //
839 namespace ParaMEDMEM
840 {
841   class MEDCouplingNatureOfField
842   {
843   public:
844     static const char *GetRepr(NatureOfField nat) throw(INTERP_KERNEL::Exception);
845     static std::string GetReprNoThrow(NatureOfField nat);
846     static std::string GetAllPossibilitiesStr();
847   };
848 }
849
850 // the MEDCouplingTimeDiscretization classes are not swigged : in case the file can help
851 // include "MEDCouplingTimeDiscretization.i"
852
853 namespace ParaMEDMEM
854 {
855   class MEDCouplingGaussLocalization
856   {
857   public:
858     MEDCouplingGaussLocalization(INTERP_KERNEL::NormalizedCellType type, const std::vector<double>& refCoo,
859                                  const std::vector<double>& gsCoo, const std::vector<double>& w) throw(INTERP_KERNEL::Exception);
860     MEDCouplingGaussLocalization(INTERP_KERNEL::NormalizedCellType typ) throw(INTERP_KERNEL::Exception);
861     INTERP_KERNEL::NormalizedCellType getType() const throw(INTERP_KERNEL::Exception);
862     void setType(INTERP_KERNEL::NormalizedCellType typ) throw(INTERP_KERNEL::Exception);
863     int getNumberOfGaussPt() const throw(INTERP_KERNEL::Exception);
864     int getDimension() const throw(INTERP_KERNEL::Exception);
865     int getNumberOfPtsInRefCell() const throw(INTERP_KERNEL::Exception);
866     std::string getStringRepr() const throw(INTERP_KERNEL::Exception);
867     void checkCoherency() const throw(INTERP_KERNEL::Exception);
868     bool isEqual(const MEDCouplingGaussLocalization& other, double eps) const throw(INTERP_KERNEL::Exception);
869     //
870     const std::vector<double>& getRefCoords() const throw(INTERP_KERNEL::Exception);
871     double getRefCoord(int ptIdInCell, int comp) const throw(INTERP_KERNEL::Exception);
872     const std::vector<double>& getGaussCoords() const throw(INTERP_KERNEL::Exception);
873     double getGaussCoord(int gaussPtIdInCell, int comp) const throw(INTERP_KERNEL::Exception);
874     const std::vector<double>& getWeights() const throw(INTERP_KERNEL::Exception);
875     double getWeight(int gaussPtIdInCell, double newVal) const throw(INTERP_KERNEL::Exception);
876     void setRefCoord(int ptIdInCell, int comp, double newVal) throw(INTERP_KERNEL::Exception);
877     void setGaussCoord(int gaussPtIdInCell, int comp, double newVal) throw(INTERP_KERNEL::Exception);
878     void setWeight(int gaussPtIdInCell, double newVal) throw(INTERP_KERNEL::Exception);
879     void setRefCoords(const std::vector<double>& refCoo) throw(INTERP_KERNEL::Exception);
880     void setGaussCoords(const std::vector<double>& gsCoo) throw(INTERP_KERNEL::Exception);
881     void setWeights(const std::vector<double>& w) throw(INTERP_KERNEL::Exception);
882     //
883     static bool AreAlmostEqual(const std::vector<double>& v1, const std::vector<double>& v2, double eps);
884   };
885 }
886
887 %include "MEDCouplingFieldDiscretization.i"
888
889 //== MEDCouplingPointSet
890
891 namespace ParaMEDMEM
892 {
893   class MEDCouplingPointSet : public ParaMEDMEM::MEDCouplingMesh
894     {
895     public:
896       void setCoords(const DataArrayDouble *coords) throw(INTERP_KERNEL::Exception);
897       DataArrayDouble *getCoordinatesAndOwner() const throw(INTERP_KERNEL::Exception);
898       bool areCoordsEqual(const MEDCouplingPointSet& other, double prec) const throw(INTERP_KERNEL::Exception);
899       void zipCoords() throw(INTERP_KERNEL::Exception);
900       double getCaracteristicDimension() const throw(INTERP_KERNEL::Exception);
901       void recenterForMaxPrecision(double eps) throw(INTERP_KERNEL::Exception);
902       void changeSpaceDimension(int newSpaceDim, double dftVal=0.) throw(INTERP_KERNEL::Exception);
903       void tryToShareSameCoords(const MEDCouplingPointSet& other, double epsilon) throw(INTERP_KERNEL::Exception);
904       virtual void shallowCopyConnectivityFrom(const MEDCouplingPointSet *other) throw(INTERP_KERNEL::Exception);
905       virtual MEDCouplingPointSet *buildPartOfMySelf2(int start, int end, int step) const throw(INTERP_KERNEL::Exception);
906       virtual void tryToShareSameCoordsPermute(const MEDCouplingPointSet& other, double epsilon) throw(INTERP_KERNEL::Exception);
907       static DataArrayDouble *MergeNodesArray(const MEDCouplingPointSet *m1, const MEDCouplingPointSet *m2) throw(INTERP_KERNEL::Exception);
908       static MEDCouplingPointSet *BuildInstanceFromMeshType(MEDCouplingMeshType type) throw(INTERP_KERNEL::Exception);
909       static DataArrayInt *ComputeNbOfInteractionsWithSrcCells(const MEDCouplingPointSet *srcMesh, const MEDCouplingPointSet *trgMesh, double eps) throw(INTERP_KERNEL::Exception);
910       virtual int getNumberOfNodesInCell(int cellId) const throw(INTERP_KERNEL::Exception);
911       virtual MEDCouplingPointSet *buildBoundaryMesh(bool keepCoords) const throw(INTERP_KERNEL::Exception);
912       virtual DataArrayInt *getCellsInBoundingBox(const INTERP_KERNEL::DirectedBoundingBox& bbox, double eps) throw(INTERP_KERNEL::Exception);
913       virtual DataArrayInt *zipCoordsTraducer() throw(INTERP_KERNEL::Exception);
914       virtual DataArrayInt *findBoundaryNodes() const;
915       virtual DataArrayInt *zipConnectivityTraducer(int compType, int startCellId=0) throw(INTERP_KERNEL::Exception);
916       virtual MEDCouplingPointSet *mergeMyselfWithOnSameCoords(const MEDCouplingPointSet *other) const throw(INTERP_KERNEL::Exception);
917       virtual void checkFullyDefined() const throw(INTERP_KERNEL::Exception);
918       virtual bool isEmptyMesh(const std::vector<int>& tinyInfo) const throw(INTERP_KERNEL::Exception);
919       virtual MEDCouplingPointSet *deepCpyConnectivityOnly() const throw(INTERP_KERNEL::Exception);
920       virtual DataArrayDouble *getBoundingBoxForBBTree() const throw(INTERP_KERNEL::Exception);
921       %extend 
922          {
923            std::string __str__() const throw(INTERP_KERNEL::Exception)
924            {
925              return self->simpleRepr();
926            }
927            
928            PyObject *buildNewNumberingFromCommonNodesFormat(const DataArrayInt *comm, const DataArrayInt *commIndex) const throw(INTERP_KERNEL::Exception)
929            {
930              int newNbOfNodes;
931              DataArrayInt *ret0=self->buildNewNumberingFromCommonNodesFormat(comm,commIndex,newNbOfNodes);
932              PyObject *res = PyList_New(2);
933              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
934              PyList_SetItem(res,1,SWIG_From_int(newNbOfNodes));
935              return res;
936            }
937            
938            PyObject *findCommonNodes(double prec, int limitTupleId=-1) const throw(INTERP_KERNEL::Exception)
939            {
940              DataArrayInt *comm, *commIndex;
941              self->findCommonNodes(prec,limitTupleId,comm,commIndex);
942              PyObject *res = PyList_New(2);
943              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(comm),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
944              PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(commIndex),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
945              return res;
946            }
947            
948            PyObject *getCoords() throw(INTERP_KERNEL::Exception)
949            {
950              DataArrayDouble *ret1=self->getCoords();
951              if (ret1)
952                 ret1->incrRef();
953              return SWIG_NewPointerObj((void*)ret1,SWIGTYPE_p_ParaMEDMEM__DataArrayDouble,SWIG_POINTER_OWN | 0);
954            }
955            
956            PyObject *buildPartOfMySelf(PyObject *li, bool keepCoords=true) const throw(INTERP_KERNEL::Exception)
957            {
958              int szArr,sw,iTypppArr;
959              std::vector<int> stdvecTyyppArr;
960              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
961              MEDCouplingPointSet *ret=self->buildPartOfMySelf(tmp,tmp+szArr,keepCoords);
962              if(sw==3)//DataArrayInt
963                { 
964                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
965                  DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
966                  std::string name=argpt->getName();
967                  if(!name.empty())
968                    ret->setName(name.c_str());
969                }
970              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
971            }
972            
973            PyObject *buildPartOfMySelfNode(PyObject *li, bool fullyIn) const throw(INTERP_KERNEL::Exception)
974            {
975              int szArr,sw,iTypppArr;
976              std::vector<int> stdvecTyyppArr;
977              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
978              MEDCouplingPointSet *ret=self->buildPartOfMySelfNode(tmp,tmp+szArr,fullyIn);
979              if(sw==3)//DataArrayInt
980                { 
981                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
982                  DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
983                  std::string name=argpt->getName();
984                  if(!name.empty())
985                    ret->setName(name.c_str());
986                }
987              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
988            }
989
990            virtual PyObject *buildPartOfMySelfKeepCoords(PyObject *li) const throw(INTERP_KERNEL::Exception)
991            {
992              int szArr,sw,iTypppArr;
993              std::vector<int> stdvecTyyppArr;
994              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
995              MEDCouplingPointSet *ret=self->buildPartOfMySelfKeepCoords(tmp,tmp+szArr);
996              if(sw==3)//DataArrayInt
997                { 
998                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
999                  DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
1000                  std::string name=argpt->getName();
1001                  if(!name.empty())
1002                    ret->setName(name.c_str());
1003                }
1004              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1005            }
1006
1007            virtual PyObject *buildPartOfMySelfKeepCoords2(int start, int end, int step) const throw(INTERP_KERNEL::Exception)
1008            {
1009              MEDCouplingPointSet *ret=self->buildPartOfMySelfKeepCoords2(start,end,step);
1010              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1011            }
1012
1013            PyObject *buildFacePartOfMySelfNode(PyObject *li, bool fullyIn) const throw(INTERP_KERNEL::Exception)
1014            {
1015              int szArr,sw,iTypppArr;
1016              std::vector<int> stdvecTyyppArr;
1017              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1018              MEDCouplingPointSet *ret=self->buildFacePartOfMySelfNode(tmp,tmp+szArr,fullyIn);
1019              if(sw==3)//DataArrayInt
1020                { 
1021                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
1022                  DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
1023                  std::string name=argpt->getName();
1024                  if(!name.empty())
1025                    ret->setName(name.c_str());
1026                }
1027              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1028            }
1029
1030            void renumberNodes(PyObject *li, int newNbOfNodes) throw(INTERP_KERNEL::Exception)
1031            {
1032              int szArr,sw,iTypppArr;
1033              std::vector<int> stdvecTyyppArr;
1034              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1035              self->renumberNodes(tmp,newNbOfNodes);
1036            }
1037
1038            void renumberNodes2(PyObject *li, int newNbOfNodes) throw(INTERP_KERNEL::Exception)
1039            {
1040              int szArr,sw,iTypppArr;
1041              std::vector<int> stdvecTyyppArr;
1042              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1043              self->renumberNodes2(tmp,newNbOfNodes);
1044            }
1045
1046            PyObject *findNodesOnLine(PyObject *pt, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
1047              {
1048                int spaceDim=self->getSpaceDimension();
1049                double val,val2;
1050                DataArrayDouble *a,*a2;
1051                DataArrayDoubleTuple *aa,*aa2;
1052                std::vector<double> bb,bb2;
1053                int sw;
1054                const char msg[]="Python wrap of MEDCouplingPointSet::findNodesOnLine : 1st paramater for point.";
1055                const char msg2[]="Python wrap of MEDCouplingPointSet::findNodesOnLine : 2nd paramater for vector.";
1056                const double *p=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,1,spaceDim,true);
1057                const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
1058                std::vector<int> nodes;
1059                self->findNodesOnLine(p,v,eps,nodes);
1060                DataArrayInt *ret=DataArrayInt::New();
1061                ret->alloc((int)nodes.size(),1);
1062                std::copy(nodes.begin(),nodes.end(),ret->getPointer());
1063                return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
1064              }
1065            PyObject *findNodesOnPlane(PyObject *pt, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
1066              {
1067                int spaceDim=self->getSpaceDimension();
1068                double val,val2;
1069                DataArrayDouble *a,*a2;
1070                DataArrayDoubleTuple *aa,*aa2;
1071                std::vector<double> bb,bb2;
1072                int sw;
1073                const char msg[]="Python wrap of MEDCouplingPointSet::findNodesOnPlane : 1st paramater for point.";
1074                const char msg2[]="Python wrap of MEDCouplingPointSet::findNodesOnPlane : 2nd paramater for vector.";
1075                const double *p=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,1,spaceDim,true);
1076                const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
1077                std::vector<int> nodes;
1078                self->findNodesOnPlane(p,v,eps,nodes);
1079                DataArrayInt *ret=DataArrayInt::New();
1080                ret->alloc((int)nodes.size(),1);
1081                std::copy(nodes.begin(),nodes.end(),ret->getPointer());
1082                return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
1083              }
1084            
1085            PyObject *getNodeIdsNearPoint(PyObject *pt, double eps) const throw(INTERP_KERNEL::Exception)
1086            {
1087              double val;
1088              DataArrayDouble *a;
1089              DataArrayDoubleTuple *aa;
1090              std::vector<double> bb;
1091              int sw;
1092              int spaceDim=self->getSpaceDimension();
1093              const char msg[]="Python wrap of MEDCouplingPointSet::getNodeIdsNearPoint : ";
1094              const double *pos=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,1,spaceDim,true);
1095              DataArrayInt *ret=self->getNodeIdsNearPoint(pos,eps);
1096              return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
1097            }
1098
1099            PyObject *getNodeIdsNearPoints(PyObject *pt, int nbOfPoints, double eps) const throw(INTERP_KERNEL::Exception)
1100            {
1101              DataArrayInt *c=0,*cI=0;
1102              //
1103              double val;
1104              DataArrayDouble *a;
1105              DataArrayDoubleTuple *aa;
1106              std::vector<double> bb;
1107              int sw;
1108              int spaceDim=self->getSpaceDimension();
1109              const char msg[]="Python wrap of MEDCouplingPointSet::getNodeIdsNearPoints : ";
1110              const double *pos=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,nbOfPoints,spaceDim,true);
1111              self->getNodeIdsNearPoints(pos,nbOfPoints,eps,c,cI);
1112              PyObject *ret=PyTuple_New(2);
1113              PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(c),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1114              PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cI),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1115              return ret;
1116            }
1117
1118            PyObject *getNodeIdsNearPoints(PyObject *pt, double eps) const throw(INTERP_KERNEL::Exception)
1119            {
1120              DataArrayInt *c=0,*cI=0;
1121              int spaceDim=self->getSpaceDimension();
1122              double val;
1123              DataArrayDouble *a;
1124              DataArrayDoubleTuple *aa;
1125              std::vector<double> bb;
1126              int sw;
1127              int nbOfTuples=-1;
1128              const double *ptPtr=convertObjToPossibleCpp5_Safe2(pt,sw,val,a,aa,bb,"Python wrap of MEDCouplingUMesh::getNodeIdsNearPoints",spaceDim,true,nbOfTuples);
1129              self->getNodeIdsNearPoints(ptPtr,nbOfTuples,eps,c,cI);
1130              //
1131              PyObject *ret=PyTuple_New(2);
1132              PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(c),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1133              PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cI),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1134              return ret;
1135            }
1136
1137            PyObject *getCellsInBoundingBox(PyObject *bbox, double eps) const throw(INTERP_KERNEL::Exception)
1138            {
1139              double val;
1140              DataArrayDouble *a;
1141              DataArrayDoubleTuple *aa;
1142              std::vector<double> bb;
1143              int sw;
1144              int spaceDim=self->getSpaceDimension();
1145              const char msg[]="Python wrap of MEDCouplingPointSet::getCellsInBoundingBox : ";
1146              const double *tmp=convertObjToPossibleCpp5_Safe(bbox,sw,val,a,aa,bb,msg,spaceDim,2,true);
1147              //
1148              DataArrayInt *elems=self->getCellsInBoundingBox(tmp,eps);
1149              return SWIG_NewPointerObj(SWIG_as_voidptr(elems),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
1150            }
1151
1152            void duplicateNodesInCoords(PyObject *li) throw(INTERP_KERNEL::Exception)
1153            {
1154              int sw;
1155              int singleVal;
1156              std::vector<int> multiVal;
1157              std::pair<int, std::pair<int,int> > slic;
1158              ParaMEDMEM::DataArrayInt *daIntTyypp=0;
1159              convertObjToPossibleCpp2(li,self->getNumberOfNodes(),sw,singleVal,multiVal,slic,daIntTyypp);
1160              switch(sw)
1161                {
1162                case 1:
1163                  return self->duplicateNodesInCoords(&singleVal,&singleVal+1);
1164                case 2:
1165                  return self->duplicateNodesInCoords(&multiVal[0],&multiVal[0]+multiVal.size());
1166                case 4:
1167                  return self->duplicateNodesInCoords(daIntTyypp->begin(),daIntTyypp->end());
1168                default:
1169                  throw INTERP_KERNEL::Exception("MEDCouplingPointSet::duplicateNodesInCoords : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
1170                }
1171            }
1172
1173            virtual PyObject *getReverseNodalConnectivity() const throw(INTERP_KERNEL::Exception)
1174            {
1175              MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d0=DataArrayInt::New();
1176              MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d1=DataArrayInt::New();
1177              self->getReverseNodalConnectivity(d0,d1);
1178              PyObject *ret=PyTuple_New(2);
1179              PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1180              PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1181              return ret;
1182            }
1183
1184            virtual PyObject *findCommonCells(int compType, int startCellId=0) const throw(INTERP_KERNEL::Exception)
1185            {
1186              DataArrayInt *v0=0,*v1=0;
1187              self->findCommonCells(compType,startCellId,v0,v1);
1188              PyObject *res = PyList_New(2);
1189              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(v0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1190              PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(v1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1191              return res;
1192            }
1193
1194       
1195            virtual void renumberNodesInConn(PyObject *li) throw(INTERP_KERNEL::Exception)
1196            {
1197              void *da=0;
1198              int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayInt, 0 | 0 );
1199              if (!SWIG_IsOK(res1))
1200                {
1201                  int size;
1202                  INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
1203                  self->renumberNodesInConn(tmp);
1204                }
1205              else
1206                {
1207                  DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
1208                  if(!da2)
1209                    throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
1210                  da2->checkAllocated();
1211                  self->renumberNodesInConn(da2->getConstPointer());
1212                }
1213            }
1214
1215            virtual PyObject *getNodeIdsInUse() const throw(INTERP_KERNEL::Exception)
1216            {
1217              int ret1=-1;
1218              DataArrayInt *ret0=self->getNodeIdsInUse(ret1);
1219              PyObject *ret=PyTuple_New(2);
1220              PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1221              PyTuple_SetItem(ret,1,PyInt_FromLong(ret1));
1222              return ret;
1223            }
1224
1225            virtual DataArrayInt *fillCellIdsToKeepFromNodeIds(PyObject *li, bool fullyIn) const
1226            {
1227              DataArrayInt *ret=0;
1228              //
1229              int szArr,sw,iTypppArr;
1230              std::vector<int> stdvecTyyppArr;
1231              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1232              self->fillCellIdsToKeepFromNodeIds(tmp,tmp+szArr,fullyIn,ret);
1233              return ret;
1234            }
1235
1236            virtual PyObject *mergeNodes(double precision) throw(INTERP_KERNEL::Exception)
1237            {
1238              bool ret1;
1239              int ret2;
1240              DataArrayInt *ret0=self->mergeNodes(precision,ret1,ret2);
1241              PyObject *res = PyList_New(3);
1242              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1243              PyList_SetItem(res,1,SWIG_From_bool(ret1));
1244              PyList_SetItem(res,2,SWIG_From_int(ret2));
1245              return res;
1246            }
1247            
1248            virtual PyObject *mergeNodes2(double precision) throw(INTERP_KERNEL::Exception)
1249            {
1250              bool ret1;
1251              int ret2;
1252              DataArrayInt *ret0=self->mergeNodes2(precision,ret1,ret2);
1253              PyObject *res = PyList_New(3);
1254              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1255              PyList_SetItem(res,1,SWIG_From_bool(ret1));
1256              PyList_SetItem(res,2,SWIG_From_int(ret2));
1257              return res;
1258            }
1259            
1260            DataArrayInt *getCellIdsLyingOnNodes(PyObject *li, bool fullyIn) const throw(INTERP_KERNEL::Exception)
1261            {
1262              void *da=0;
1263              int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayInt, 0 |  0 );
1264              if (!SWIG_IsOK(res1))
1265                {
1266                  int size;
1267                  INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
1268                  return self->getCellIdsLyingOnNodes(tmp,((const int *)tmp)+size,fullyIn);
1269                }
1270              else
1271                {
1272                  DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
1273                  if(!da2)
1274                    throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
1275                  da2->checkAllocated();
1276                  return self->getCellIdsLyingOnNodes(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems(),fullyIn);
1277                }
1278            }
1279
1280            MEDCouplingPointSet *__getitem__(PyObject *listOrDataArrI) throw(INTERP_KERNEL::Exception)
1281            {
1282              int sw;
1283              int singleVal;
1284              std::vector<int> multiVal;
1285              std::pair<int, std::pair<int,int> > slic;
1286              ParaMEDMEM::DataArrayInt *daIntTyypp=0;
1287              int nbc=self->getNumberOfCells();
1288              convertObjToPossibleCpp2(listOrDataArrI,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
1289              switch(sw)
1290                {
1291                case 1:
1292                  {
1293                    if(singleVal>=nbc)
1294                      {
1295                        std::ostringstream oss;
1296                        oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1297                        throw INTERP_KERNEL::Exception(oss.str().c_str());
1298                      }
1299                    if(singleVal>=0)
1300                      return self->buildPartOfMySelf(&singleVal,&singleVal+1,true);
1301                    else
1302                      {
1303                        if(nbc+singleVal>0)
1304                          {
1305                            int tmp=nbc+singleVal;
1306                            return self->buildPartOfMySelf(&tmp,&tmp+1,true);
1307                          }
1308                        else
1309                          {
1310                            std::ostringstream oss;
1311                            oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1312                            throw INTERP_KERNEL::Exception(oss.str().c_str());
1313                          }
1314                      }
1315                  }
1316                case 2:
1317                  {
1318                    return static_cast<MEDCouplingPointSet *>(self->buildPartOfMySelf(&multiVal[0],&multiVal[0]+multiVal.size(),true));
1319                  }
1320                case 3:
1321                  {
1322                    return self->buildPartOfMySelf2(slic.first,slic.second.first,slic.second.second,true);
1323                  }
1324                case 4:
1325                  {
1326                    if(!daIntTyypp)
1327                      throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__getitem__ : null instance has been given in input !");
1328                    daIntTyypp->checkAllocated();
1329                    return self->buildPartOfMySelf(daIntTyypp->begin(),daIntTyypp->end(),true);
1330                  }
1331                default:
1332                  throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__getitem__ : unrecognized type in input ! Possibilities are : int, list or tuple of int DataArrayInt instance !");
1333                }
1334            }
1335            
1336            static void Rotate2DAlg(PyObject *center, double angle, int nbNodes, PyObject *coords) throw(INTERP_KERNEL::Exception)
1337            {
1338              int sz;
1339              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1340              INTERP_KERNEL::AutoCPtr<double> coo=convertPyToNewDblArr2(coords,&sz);
1341              ParaMEDMEM::MEDCouplingPointSet::Rotate2DAlg(c,angle,nbNodes,coo);
1342              for(int i=0;i<sz;i++)
1343                PyList_SetItem(coords,i,PyFloat_FromDouble(coo[i]));
1344            }
1345            
1346            static void Rotate2DAlg(PyObject *center, double angle, PyObject *coords) throw(INTERP_KERNEL::Exception)
1347            {
1348              int sz;
1349              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1350              int sw,nbNodes=0;
1351              double val0;  ParaMEDMEM::DataArrayDouble *val1=0; ParaMEDMEM::DataArrayDoubleTuple *val2=0;
1352              std::vector<double> val3;
1353              const double *coo=convertObjToPossibleCpp5_Safe2(coords,sw,val0,val1,val2,val3,
1354                                                             "Rotate2DAlg",2,true,nbNodes);
1355              if(sw!=2 && sw!=3)
1356                throw INTERP_KERNEL::Exception("Invalid call to MEDCouplingPointSet::Rotate2DAlg : try another overload method !");
1357              ParaMEDMEM::MEDCouplingPointSet::Rotate2DAlg(c,angle,nbNodes,const_cast<double *>(coo));
1358            }
1359            
1360            static void Rotate3DAlg(PyObject *center, PyObject *vect, double angle, int nbNodes, PyObject *coords) throw(INTERP_KERNEL::Exception)
1361            {
1362              int sz,sz2;
1363              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1364              INTERP_KERNEL::AutoCPtr<double> coo=convertPyToNewDblArr2(coords,&sz);
1365              INTERP_KERNEL::AutoCPtr<double> v=convertPyToNewDblArr2(vect,&sz2);
1366              ParaMEDMEM::MEDCouplingPointSet::Rotate3DAlg(c,v,angle,nbNodes,coo);
1367              for(int i=0;i<sz;i++)
1368                PyList_SetItem(coords,i,PyFloat_FromDouble(coo[i]));
1369            }
1370            
1371            static void Rotate3DAlg(PyObject *center, PyObject *vect, double angle, PyObject *coords) throw(INTERP_KERNEL::Exception)
1372            {
1373              int sz,sz2;
1374              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1375              int sw,nbNodes=0;
1376              double val0;  ParaMEDMEM::DataArrayDouble *val1=0; ParaMEDMEM::DataArrayDoubleTuple *val2=0;
1377              std::vector<double> val3;
1378              const double *coo=convertObjToPossibleCpp5_Safe2(coords,sw,val0,val1,val2,val3,
1379                                                             "Rotate3DAlg",3,true,nbNodes);
1380              if(sw!=2 && sw!=3)
1381                throw INTERP_KERNEL::Exception("Invalid call to MEDCouplingPointSet::Rotate3DAlg : try another overload method !");
1382              INTERP_KERNEL::AutoCPtr<double> v=convertPyToNewDblArr2(vect,&sz2);
1383              ParaMEDMEM::MEDCouplingPointSet::Rotate3DAlg(c,v,angle,nbNodes,const_cast<double *>(coo));
1384            }
1385          }
1386     };
1387
1388   //== MEDCouplingPointSet End
1389
1390   class MEDCouplingUMeshCell
1391   {
1392   public:
1393     INTERP_KERNEL::NormalizedCellType getType() const;
1394     %extend
1395       {
1396         std::string __str__() const throw(INTERP_KERNEL::Exception)
1397         {
1398           return self->repr();
1399         }
1400
1401         PyObject *getAllConn() const throw(INTERP_KERNEL::Exception)
1402         {
1403           int ret2;
1404           const int *r=self->getAllConn(ret2);
1405           PyObject *ret=PyTuple_New(ret2);
1406           for(int i=0;i<ret2;i++)
1407             PyTuple_SetItem(ret,i,PyInt_FromLong(r[i]));
1408           return ret;
1409         }
1410       }
1411   };
1412
1413   class MEDCouplingUMeshCellIterator
1414   {
1415   public:
1416     %extend
1417       {
1418         PyObject *next()
1419         {
1420           MEDCouplingUMeshCell *ret=self->nextt();
1421           if(ret)
1422             return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMeshCell,0|0);
1423           else
1424             {
1425               PyErr_SetString(PyExc_StopIteration,"No more data.");
1426               return 0;
1427             }
1428         }
1429       }
1430   };
1431
1432   class MEDCouplingUMeshCellByTypeIterator
1433   {
1434   public:
1435     ~MEDCouplingUMeshCellByTypeIterator();
1436     %extend
1437       {
1438         PyObject *next()
1439         {
1440           MEDCouplingUMeshCellEntry *ret=self->nextt();
1441           if(ret)
1442             return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMeshCellEntry,SWIG_POINTER_OWN | 0);
1443           else
1444             {
1445               PyErr_SetString(PyExc_StopIteration,"No more data.");
1446               return 0;
1447             }
1448         }
1449       }
1450   };
1451
1452   class MEDCouplingUMeshCellByTypeEntry
1453   {
1454   public:
1455     ~MEDCouplingUMeshCellByTypeEntry();
1456     %extend
1457       {
1458         MEDCouplingUMeshCellByTypeIterator *__iter__()
1459         {
1460           return self->iterator();
1461         }
1462       }
1463   };
1464
1465   class MEDCouplingUMeshCellEntry
1466   {
1467   public:
1468     INTERP_KERNEL::NormalizedCellType getType() const;
1469     int getNumberOfElems() const;
1470     %extend
1471       {
1472         MEDCouplingUMeshCellIterator *__iter__()
1473         {
1474           return self->iterator();
1475         }
1476       }
1477   };
1478   
1479   //== MEDCouplingUMesh
1480
1481   class MEDCouplingUMesh : public ParaMEDMEM::MEDCouplingPointSet
1482   {
1483   public:
1484     static MEDCouplingUMesh *New() throw(INTERP_KERNEL::Exception);
1485     static MEDCouplingUMesh *New(const char *meshName, int meshDim) throw(INTERP_KERNEL::Exception);
1486     MEDCouplingUMesh *clone(bool recDeepCpy) const;
1487     void checkCoherency() const throw(INTERP_KERNEL::Exception);
1488     void setMeshDimension(int meshDim) throw(INTERP_KERNEL::Exception);
1489     void allocateCells(int nbOfCells=0) throw(INTERP_KERNEL::Exception);
1490     void finishInsertingCells() throw(INTERP_KERNEL::Exception);
1491     MEDCouplingUMeshCellByTypeEntry *cellsByType() throw(INTERP_KERNEL::Exception);
1492     void setConnectivity(DataArrayInt *conn, DataArrayInt *connIndex, bool isComputingTypes=true) throw(INTERP_KERNEL::Exception);
1493     INTERP_KERNEL::NormalizedCellType getTypeOfCell(int cellId) const throw(INTERP_KERNEL::Exception);
1494     void setPartOfMySelf2(int start, int end, int step, const MEDCouplingUMesh& otherOnSameCoordsThanThis) throw(INTERP_KERNEL::Exception);
1495     int getMeshLength() const throw(INTERP_KERNEL::Exception);
1496     void computeTypes() throw(INTERP_KERNEL::Exception);
1497     std::string reprConnectivityOfThis() const throw(INTERP_KERNEL::Exception);
1498     MEDCouplingUMesh *buildSetInstanceFromThis(int spaceDim) const throw(INTERP_KERNEL::Exception);
1499     //tools
1500     void shiftNodeNumbersInConn(int delta) throw(INTERP_KERNEL::Exception);
1501     std::vector<bool> getQuadraticStatus() const throw(INTERP_KERNEL::Exception);
1502     DataArrayInt *findCellIdsOnBoundary() const throw(INTERP_KERNEL::Exception);
1503     MEDCouplingUMesh *computeSkin() const throw(INTERP_KERNEL::Exception);
1504     bool checkConsecutiveCellTypes() const throw(INTERP_KERNEL::Exception);
1505     bool checkConsecutiveCellTypesForMEDFileFrmt() const throw(INTERP_KERNEL::Exception);
1506     DataArrayInt *rearrange2ConsecutiveCellTypes() throw(INTERP_KERNEL::Exception);
1507     DataArrayInt *sortCellsInMEDFileFrmt() throw(INTERP_KERNEL::Exception);
1508     DataArrayInt *getRenumArrForMEDFileFrmt() const throw(INTERP_KERNEL::Exception);
1509     DataArrayInt *convertCellArrayPerGeoType(const DataArrayInt *da) const throw(INTERP_KERNEL::Exception);
1510     DataArrayInt *computeFetchedNodeIds() const throw(INTERP_KERNEL::Exception);
1511     MEDCouplingUMesh *buildDescendingConnectivity(DataArrayInt *desc, DataArrayInt *descIndx, DataArrayInt *revDesc, DataArrayInt *revDescIndx) const throw(INTERP_KERNEL::Exception);
1512     MEDCouplingUMesh *buildDescendingConnectivity2(DataArrayInt *desc, DataArrayInt *descIndx, DataArrayInt *revDesc, DataArrayInt *revDescIndx) const throw(INTERP_KERNEL::Exception);
1513     MEDCouplingUMesh *explode3DMeshTo1D(DataArrayInt *desc, DataArrayInt *descIndx, DataArrayInt *revDesc, DataArrayInt *revDescIndx) const throw(INTERP_KERNEL::Exception);
1514     void orientCorrectlyPolyhedrons() throw(INTERP_KERNEL::Exception);
1515     bool isPresenceOfQuadratic() const throw(INTERP_KERNEL::Exception);
1516     MEDCouplingFieldDouble *buildDirectionVectorField() const throw(INTERP_KERNEL::Exception);
1517     bool isContiguous1D() const throw(INTERP_KERNEL::Exception);
1518     void tessellate2D(double eps) throw(INTERP_KERNEL::Exception);
1519     void tessellate2DCurve(double eps) throw(INTERP_KERNEL::Exception);
1520     void convertQuadraticCellsToLinear() throw(INTERP_KERNEL::Exception);
1521     DataArrayInt *convertLinearCellsToQuadratic(int conversionType=0) throw(INTERP_KERNEL::Exception);
1522     void convertDegeneratedCells() throw(INTERP_KERNEL::Exception);
1523     bool areOnlySimplexCells() const throw(INTERP_KERNEL::Exception);
1524     MEDCouplingFieldDouble *getEdgeRatioField() const throw(INTERP_KERNEL::Exception);
1525     MEDCouplingFieldDouble *getAspectRatioField() const throw(INTERP_KERNEL::Exception);
1526     MEDCouplingFieldDouble *getWarpField() const throw(INTERP_KERNEL::Exception);
1527     MEDCouplingFieldDouble *getSkewField() const throw(INTERP_KERNEL::Exception);
1528     DataArrayDouble *computePlaneEquationOf3DFaces() const throw(INTERP_KERNEL::Exception);
1529     DataArrayInt *convexEnvelop2D() throw(INTERP_KERNEL::Exception);
1530     std::string cppRepr() const throw(INTERP_KERNEL::Exception);
1531     DataArrayInt *findAndCorrectBadOriented3DExtrudedCells() throw(INTERP_KERNEL::Exception);
1532     DataArrayInt *findAndCorrectBadOriented3DCells() throw(INTERP_KERNEL::Exception);
1533     ParaMEDMEM::MEDCoupling1GTUMesh *convertIntoSingleGeoTypeMesh() const throw(INTERP_KERNEL::Exception);
1534     DataArrayInt *convertNodalConnectivityToStaticGeoTypeMesh() const throw(INTERP_KERNEL::Exception);
1535     DataArrayInt *buildUnionOf2DMesh() const throw(INTERP_KERNEL::Exception);
1536     DataArrayInt *buildUnionOf3DMesh() const throw(INTERP_KERNEL::Exception);
1537     static MEDCouplingUMesh *Build0DMeshFromCoords(DataArrayDouble *da) throw(INTERP_KERNEL::Exception);
1538     static MEDCouplingUMesh *MergeUMeshes(const MEDCouplingUMesh *mesh1, const MEDCouplingUMesh *mesh2) throw(INTERP_KERNEL::Exception);
1539     static MEDCouplingUMesh *MergeUMeshesOnSameCoords(const MEDCouplingUMesh *mesh1, const MEDCouplingUMesh *mesh2) throw(INTERP_KERNEL::Exception);
1540     static DataArrayInt *ComputeSpreadZoneGradually(const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn) throw(INTERP_KERNEL::Exception);
1541     static DataArrayInt *ComputeRangesFromTypeDistribution(const std::vector<int>& code) throw(INTERP_KERNEL::Exception);
1542     %extend {
1543       MEDCouplingUMesh() throw(INTERP_KERNEL::Exception)
1544       {
1545         return MEDCouplingUMesh::New();
1546       }
1547       
1548       MEDCouplingUMesh(const char *meshName, int meshDim) throw(INTERP_KERNEL::Exception)
1549       {
1550         return MEDCouplingUMesh::New(meshName,meshDim);
1551       }
1552       
1553       std::string __str__() const throw(INTERP_KERNEL::Exception)
1554       {
1555         return self->simpleRepr();
1556       }
1557       
1558       std::string __repr__() const throw(INTERP_KERNEL::Exception)
1559       {
1560         std::ostringstream oss;
1561         self->reprQuickOverview(oss);
1562         return oss.str();
1563       }
1564       
1565       MEDCouplingUMeshCellIterator *__iter__() throw(INTERP_KERNEL::Exception)
1566       {
1567         return self->cellIterator();
1568       }
1569
1570       PyObject *getAllGeoTypesSorted() const throw(INTERP_KERNEL::Exception)
1571       {
1572         std::vector<INTERP_KERNEL::NormalizedCellType> result=self->getAllGeoTypesSorted();
1573         std::vector<INTERP_KERNEL::NormalizedCellType>::const_iterator iL=result.begin();
1574         PyObject *res=PyList_New(result.size());
1575         for(int i=0;iL!=result.end(); i++, iL++)
1576           PyList_SetItem(res,i,PyInt_FromLong(*iL));
1577         return res;
1578       }
1579       
1580       void setPartOfMySelf(PyObject *li, const MEDCouplingUMesh& otherOnSameCoordsThanThis) throw(INTERP_KERNEL::Exception)
1581       {
1582         int sw;
1583         int singleVal;
1584         std::vector<int> multiVal;
1585         std::pair<int, std::pair<int,int> > slic;
1586         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
1587         int nbc=self->getNumberOfCells();
1588         convertObjToPossibleCpp2(li,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
1589         switch(sw)
1590           {
1591           case 1:
1592             {
1593               if(singleVal>=nbc)
1594                 {
1595                   std::ostringstream oss;
1596                   oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1597                   throw INTERP_KERNEL::Exception(oss.str().c_str());
1598                 }
1599               if(singleVal>=0)
1600                 {
1601                   self->setPartOfMySelf(&singleVal,&singleVal+1,otherOnSameCoordsThanThis);
1602                   break;
1603                 }
1604               else
1605                 {
1606                   if(nbc+singleVal>0)
1607                     {
1608                       int tmp=nbc+singleVal;
1609                       self->setPartOfMySelf(&tmp,&tmp+1,otherOnSameCoordsThanThis);
1610                       break;
1611                     }
1612                   else
1613                     {
1614                       std::ostringstream oss;
1615                       oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1616                       throw INTERP_KERNEL::Exception(oss.str().c_str());
1617                     }
1618                 }
1619             }
1620           case 2:
1621             {
1622               self->setPartOfMySelf(&multiVal[0],&multiVal[0]+multiVal.size(),otherOnSameCoordsThanThis);
1623               break;
1624             }
1625           case 4:
1626             {
1627               if(!daIntTyypp)
1628                 throw INTERP_KERNEL::Exception("MEDCouplingUMesh::setPartOfMySelf : null instance has been given in input !");
1629               daIntTyypp->checkAllocated();
1630               self->setPartOfMySelf(daIntTyypp->begin(),daIntTyypp->end(),otherOnSameCoordsThanThis);
1631               break;
1632             }
1633           default:
1634             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::setPartOfMySelf : unrecognized type in input ! Possibilities are : int, list or tuple of int DataArrayInt instance !");
1635           }
1636       }
1637
1638       void __setitem__(PyObject *li, const MEDCouplingUMesh& otherOnSameCoordsThanThis) throw(INTERP_KERNEL::Exception)
1639       {
1640         int sw;
1641         int singleVal;
1642         std::vector<int> multiVal;
1643         std::pair<int, std::pair<int,int> > slic;
1644         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
1645         int nbc=self->getNumberOfCells();
1646         convertObjToPossibleCpp2(li,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
1647         switch(sw)
1648           {
1649           case 1:
1650             {
1651               if(singleVal>=nbc)
1652                 {
1653                   std::ostringstream oss;
1654                   oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1655                   throw INTERP_KERNEL::Exception(oss.str().c_str());
1656                 }
1657               if(singleVal>=0)
1658                 {
1659                   self->setPartOfMySelf(&singleVal,&singleVal+1,otherOnSameCoordsThanThis);
1660                   break;
1661                 }
1662               else
1663                 {
1664                   if(nbc+singleVal>0)
1665                     {
1666                       int tmp=nbc+singleVal;
1667                       self->setPartOfMySelf(&tmp,&tmp+1,otherOnSameCoordsThanThis);
1668                       break;
1669                     }
1670                   else
1671                     {
1672                       std::ostringstream oss;
1673                       oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1674                       throw INTERP_KERNEL::Exception(oss.str().c_str());
1675                     }
1676                 }
1677             }
1678           case 2:
1679             {
1680               self->setPartOfMySelf(&multiVal[0],&multiVal[0]+multiVal.size(),otherOnSameCoordsThanThis);
1681               break;
1682             }
1683           case 3:
1684             {
1685               self->setPartOfMySelf2(slic.first,slic.second.first,slic.second.second,otherOnSameCoordsThanThis);
1686               break;
1687             }
1688           case 4:
1689             {
1690               if(!daIntTyypp)
1691                 throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__setitem__ : null instance has been given in input !");
1692               daIntTyypp->checkAllocated();
1693               self->setPartOfMySelf(daIntTyypp->begin(),daIntTyypp->end(),otherOnSameCoordsThanThis);
1694               break;
1695             }
1696           default:
1697             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__setitem__ : unrecognized type in input ! Possibilities are : int, list or tuple of int, slice, DataArrayInt instance !");
1698           }
1699       }
1700
1701       void insertNextCell(INTERP_KERNEL::NormalizedCellType type, int size, PyObject *li) throw(INTERP_KERNEL::Exception)
1702       {
1703         int szArr,sw,iTypppArr;
1704         std::vector<int> stdvecTyyppArr;
1705         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1706         if(size>szArr)
1707           {
1708             std::ostringstream oss; oss << "Wrap of MEDCouplingUMesh::insertNextCell : request of connectivity with length " << size << " whereas the length of input is " << szArr << " !";
1709             throw INTERP_KERNEL::Exception(oss.str().c_str());
1710           }
1711         self->insertNextCell(type,size,tmp);
1712       }
1713
1714       void insertNextCell(INTERP_KERNEL::NormalizedCellType type, PyObject *li) throw(INTERP_KERNEL::Exception)
1715       {
1716         int szArr,sw,iTypppArr;
1717         std::vector<int> stdvecTyyppArr;
1718         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1719         self->insertNextCell(type,szArr,tmp);
1720       }
1721       
1722       DataArrayInt *getNodalConnectivity() throw(INTERP_KERNEL::Exception)
1723       {
1724         DataArrayInt *ret=self->getNodalConnectivity();
1725         if(ret)
1726           ret->incrRef();
1727         return ret;
1728       }
1729       DataArrayInt *getNodalConnectivityIndex() throw(INTERP_KERNEL::Exception)
1730       {
1731         DataArrayInt *ret=self->getNodalConnectivityIndex();
1732         if(ret)
1733           ret->incrRef();
1734         return ret;
1735       }
1736       
1737       static PyObject *ComputeSpreadZoneGraduallyFromSeed(PyObject *seed, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn, int nbOfDepthPeeling=-1) throw(INTERP_KERNEL::Exception)
1738       {
1739         int szArr,sw,iTypppArr;
1740         std::vector<int> stdvecTyyppArr;
1741         const int *seedPtr=convertObjToPossibleCpp1_Safe(seed,sw,szArr,iTypppArr,stdvecTyyppArr);
1742         int nbOfDepthPeelingPerformed=0;
1743         DataArrayInt *ret0=MEDCouplingUMesh::ComputeSpreadZoneGraduallyFromSeed(seedPtr,seedPtr+szArr,arrIn,arrIndxIn,nbOfDepthPeeling,nbOfDepthPeelingPerformed);
1744         PyObject *res=PyTuple_New(2);
1745         PyTuple_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1746         PyTuple_SetItem(res,1,PyInt_FromLong(nbOfDepthPeelingPerformed));
1747         return res;
1748       }
1749
1750       static PyObject *FindCommonCellsAlg(int compType, int startCellId, const DataArrayInt *nodal, const DataArrayInt *nodalI, const DataArrayInt *revNodal, const DataArrayInt *revNodalI) throw(INTERP_KERNEL::Exception)
1751       {
1752         DataArrayInt *v0=0,*v1=0;
1753         MEDCouplingUMesh::FindCommonCellsAlg(compType,startCellId,nodal,nodalI,revNodal,revNodalI,v0,v1);
1754         PyObject *res = PyList_New(2);
1755         PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(v0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1756         PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(v1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1757         return res;
1758       }
1759       
1760       PyObject *distanceToPoint(PyObject *point) const throw(INTERP_KERNEL::Exception)
1761       {
1762         double val;
1763         DataArrayDouble *a;
1764         DataArrayDoubleTuple *aa;
1765         std::vector<double> bb;
1766         int sw;
1767         int nbOfCompo=self->getSpaceDimension();
1768         const double *pt=convertObjToPossibleCpp5_Safe(point,sw,val,a,aa,bb,"Python wrap of MEDCouplingUMesh::distanceToPoint",1,nbOfCompo,true);
1769         //
1770         int cellId=-1;
1771         double ret0=self->distanceToPoint(pt,pt+nbOfCompo,cellId);
1772         PyObject *ret=PyTuple_New(2);
1773         PyTuple_SetItem(ret,0,PyFloat_FromDouble(ret0));
1774         PyTuple_SetItem(ret,1,PyInt_FromLong(cellId));
1775         return ret;
1776       }
1777
1778       PyObject *distanceToPoints(const DataArrayDouble *pts) const throw(INTERP_KERNEL::Exception)
1779       {
1780         DataArrayInt *ret1=0;
1781         DataArrayDouble *ret0=self->distanceToPoints(pts,ret1);
1782         PyObject *ret=PyTuple_New(2);
1783         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
1784         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1785         return ret;
1786       }
1787
1788       PyObject *tetrahedrize(int policy) throw(INTERP_KERNEL::Exception)
1789       {
1790         int ret2(-1);
1791         DataArrayInt *ret1(0);
1792         MEDCoupling1SGTUMesh *ret0(self->tetrahedrize(policy,ret1,ret2));
1793         PyObject *ret=PyTuple_New(3);
1794         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__MEDCoupling1SGTUMesh, SWIG_POINTER_OWN | 0 ));
1795         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1796         PyTuple_SetItem(ret,2,PyInt_FromLong(ret2));
1797         return ret;
1798       }
1799       
1800       PyObject *checkButterflyCells(double eps=1e-12) throw(INTERP_KERNEL::Exception)
1801       {
1802         std::vector<int> cells;
1803         self->checkButterflyCells(cells,eps);
1804         DataArrayInt *ret=DataArrayInt::New();
1805         ret->alloc((int)cells.size(),1);
1806         std::copy(cells.begin(),cells.end(),ret->getPointer());
1807         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
1808       }
1809
1810       PyObject *splitByType() const throw(INTERP_KERNEL::Exception)
1811       {
1812         std::vector<MEDCouplingUMesh *> ms=self->splitByType();
1813         int sz=ms.size();
1814         PyObject *ret = PyList_New(sz);
1815         for(int i=0;i<sz;i++)
1816           PyList_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(ms[i]),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
1817         return ret;
1818       }
1819
1820       PyObject *partitionBySpreadZone() const throw(INTERP_KERNEL::Exception)
1821       {
1822         std::vector<DataArrayInt *> retCpp=self->partitionBySpreadZone();
1823         int sz=retCpp.size();
1824         PyObject *ret=PyList_New(sz);
1825         for(int i=0;i<sz;i++)
1826           PyList_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(retCpp[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1827         return ret;
1828       }
1829
1830       PyObject *keepSpecifiedCells(INTERP_KERNEL::NormalizedCellType type, PyObject *ids) const throw(INTERP_KERNEL::Exception)
1831       {
1832         int size;
1833         INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(ids,&size);
1834         MEDCouplingUMesh *ret=self->keepSpecifiedCells(type,tmp,tmp+size);
1835         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 );
1836       }
1837
1838       bool checkConsecutiveCellTypesAndOrder(PyObject *li) const throw(INTERP_KERNEL::Exception)
1839       {
1840         int sz;
1841         INTERP_KERNEL::AutoPtr<INTERP_KERNEL::NormalizedCellType> order=(INTERP_KERNEL::NormalizedCellType *)convertPyToNewIntArr2(li,&sz);
1842         bool ret=self->checkConsecutiveCellTypesAndOrder(order,order+sz);
1843         return ret;
1844       }
1845
1846       DataArrayInt *getRenumArrForConsecutiveCellTypesSpec(PyObject *li) const throw(INTERP_KERNEL::Exception)
1847       {
1848         int sz;
1849         INTERP_KERNEL::AutoPtr<INTERP_KERNEL::NormalizedCellType> order=(INTERP_KERNEL::NormalizedCellType *)convertPyToNewIntArr2(li,&sz);
1850         DataArrayInt *ret=self->getRenumArrForConsecutiveCellTypesSpec(order,(INTERP_KERNEL::NormalizedCellType *)order+sz);
1851         return ret;
1852       }
1853
1854       PyObject *findNodesToDuplicate(const MEDCouplingUMesh& otherDimM1OnSameCoords) const throw(INTERP_KERNEL::Exception)
1855       {
1856         DataArrayInt *tmp0=0,*tmp1=0,*tmp2=0;
1857         self->findNodesToDuplicate(otherDimM1OnSameCoords,tmp0,tmp1,tmp2);
1858         PyObject *ret=PyTuple_New(3);
1859         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(tmp0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1860         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1861         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(tmp2),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1862         return ret;
1863       }
1864
1865       PyObject *findCellIdsLyingOn(const MEDCouplingUMesh& otherDimM1OnSameCoords) const throw(INTERP_KERNEL::Exception)
1866       {
1867         DataArrayInt *tmp0=0,*tmp1=0;
1868         self->findCellIdsLyingOn(otherDimM1OnSameCoords,tmp0,tmp1);
1869         PyObject *ret=PyTuple_New(2);
1870         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(tmp0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1871         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1872         return ret;
1873       }
1874
1875       void duplicateNodes(PyObject *li) throw(INTERP_KERNEL::Exception)
1876       {
1877         int sw;
1878         int singleVal;
1879         std::vector<int> multiVal;
1880         std::pair<int, std::pair<int,int> > slic;
1881         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
1882         convertObjToPossibleCpp2(li,self->getNumberOfNodes(),sw,singleVal,multiVal,slic,daIntTyypp);
1883         switch(sw)
1884           {
1885           case 1:
1886             return self->duplicateNodes(&singleVal,&singleVal+1);
1887           case 2:
1888             return self->duplicateNodes(&multiVal[0],&multiVal[0]+multiVal.size());
1889           case 4:
1890             return self->duplicateNodes(daIntTyypp->begin(),daIntTyypp->end());
1891           default:
1892             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::duplicateNodes : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
1893           }
1894       }
1895
1896       void duplicateNodesInConn(PyObject *li, int offset) throw(INTERP_KERNEL::Exception)
1897       {
1898         int sw;
1899         int singleVal;
1900         std::vector<int> multiVal;
1901         std::pair<int, std::pair<int,int> > slic;
1902         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
1903         convertObjToPossibleCpp2(li,self->getNumberOfNodes(),sw,singleVal,multiVal,slic,daIntTyypp);
1904         switch(sw)
1905           {
1906           case 1:
1907             return self->duplicateNodesInConn(&singleVal,&singleVal+1,offset);
1908           case 2:
1909             return self->duplicateNodesInConn(&multiVal[0],&multiVal[0]+multiVal.size(),offset);
1910           case 4:
1911             return self->duplicateNodesInConn(daIntTyypp->begin(),daIntTyypp->end(),offset);
1912           default:
1913             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::duplicateNodesInConn : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
1914           }
1915       }
1916
1917       PyObject *getLevArrPerCellTypes(PyObject *li) const throw(INTERP_KERNEL::Exception)
1918       {
1919         int sz;
1920         INTERP_KERNEL::AutoPtr<INTERP_KERNEL::NormalizedCellType> order=(INTERP_KERNEL::NormalizedCellType *)convertPyToNewIntArr2(li,&sz);
1921         DataArrayInt *tmp0,*tmp1=0;
1922         tmp0=self->getLevArrPerCellTypes(order,(INTERP_KERNEL::NormalizedCellType *)order+sz,tmp1);
1923         PyObject *ret=PyTuple_New(2);
1924         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(tmp0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1925         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1926         return ret;
1927       }
1928
1929       PyObject *convertNodalConnectivityToDynamicGeoTypeMesh() const throw(INTERP_KERNEL::Exception)
1930       {
1931         DataArrayInt *ret0=0,*ret1=0;
1932         self->convertNodalConnectivityToDynamicGeoTypeMesh(ret0,ret1);
1933         PyObject *ret=PyTuple_New(2);
1934         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1935         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1936         return ret;
1937       }
1938
1939       static PyObject *AggregateSortedByTypeMeshesOnSameCoords(PyObject *ms) throw(INTERP_KERNEL::Exception)
1940       {
1941         std::vector<const ParaMEDMEM::MEDCouplingUMesh *> meshes;
1942         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingUMesh *>(ms,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
1943         DataArrayInt *ret1=0,*ret2=0;
1944         MEDCouplingUMesh *ret0=MEDCouplingUMesh::AggregateSortedByTypeMeshesOnSameCoords(meshes,ret1,ret2);
1945         PyObject *ret=PyTuple_New(3);
1946         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
1947         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1948         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(ret2),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1949         return ret;
1950       }
1951
1952       static PyObject *MergeUMeshesOnSameCoords(PyObject *ms) throw(INTERP_KERNEL::Exception)
1953       {
1954         std::vector<const ParaMEDMEM::MEDCouplingUMesh *> meshes;
1955         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingUMesh *>(ms,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
1956         MEDCouplingUMesh *ret=MEDCouplingUMesh::MergeUMeshesOnSameCoords(meshes);
1957         return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1958       }
1959
1960       static PyObject *FuseUMeshesOnSameCoords(PyObject *ms, int compType) throw(INTERP_KERNEL::Exception)
1961       {
1962         int sz;
1963         std::vector<const MEDCouplingUMesh *> meshes;
1964         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingUMesh *>(ms,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
1965         std::vector<DataArrayInt *> corr;
1966         MEDCouplingUMesh *um=MEDCouplingUMesh::FuseUMeshesOnSameCoords(meshes,compType,corr);
1967         sz=corr.size();
1968         PyObject *ret1=PyList_New(sz);
1969         for(int i=0;i<sz;i++)
1970           PyList_SetItem(ret1,i,SWIG_NewPointerObj(SWIG_as_voidptr(corr[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1971         PyObject *ret=PyList_New(2);
1972         PyList_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(um),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
1973         PyList_SetItem(ret,1,ret1);
1974         return ret;
1975       }
1976
1977       static void PutUMeshesOnSameAggregatedCoords(PyObject *ms) throw(INTERP_KERNEL::Exception)
1978       {
1979         std::vector<MEDCouplingUMesh *> meshes;
1980         convertFromPyObjVectorOfObj<ParaMEDMEM::MEDCouplingUMesh *>(ms,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
1981         MEDCouplingUMesh::PutUMeshesOnSameAggregatedCoords(meshes);
1982       }
1983
1984       static void MergeNodesOnUMeshesSharingSameCoords(PyObject *ms, double eps) throw(INTERP_KERNEL::Exception)
1985       {
1986         std::vector<MEDCouplingUMesh *> meshes;
1987         convertFromPyObjVectorOfObj<ParaMEDMEM::MEDCouplingUMesh *>(ms,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
1988         MEDCouplingUMesh::MergeNodesOnUMeshesSharingSameCoords(meshes,eps);
1989       }
1990
1991       static bool RemoveIdsFromIndexedArrays(PyObject *li, DataArrayInt *arr, DataArrayInt *arrIndx, int offsetForRemoval=0) throw(INTERP_KERNEL::Exception)
1992       {
1993         int sw;
1994         int singleVal;
1995         std::vector<int> multiVal;
1996         std::pair<int, std::pair<int,int> > slic;
1997         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
1998         if(!arrIndx)
1999           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::RemoveIdsFromIndexedArrays : null pointer as arrIndex !");
2000         convertObjToPossibleCpp2(li,arrIndx->getNumberOfTuples()-1,sw,singleVal,multiVal,slic,daIntTyypp);
2001         switch(sw)
2002           {
2003           case 1:
2004             return MEDCouplingUMesh::RemoveIdsFromIndexedArrays(&singleVal,&singleVal+1,arr,arrIndx,offsetForRemoval);
2005           case 2:
2006             return MEDCouplingUMesh::RemoveIdsFromIndexedArrays(&multiVal[0],&multiVal[0]+multiVal.size(),arr,arrIndx,offsetForRemoval);
2007           case 4:
2008             return MEDCouplingUMesh::RemoveIdsFromIndexedArrays(daIntTyypp->begin(),daIntTyypp->end(),arr,arrIndx,offsetForRemoval);
2009           default:
2010             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::RemoveIdsFromIndexedArrays : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2011           }
2012       }
2013       
2014       static PyObject *ExtractFromIndexedArrays(PyObject *li, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn) throw(INTERP_KERNEL::Exception)
2015       {
2016         DataArrayInt *arrOut=0,*arrIndexOut=0;
2017         int sw;
2018         int singleVal;
2019         std::vector<int> multiVal;
2020         std::pair<int, std::pair<int,int> > slic;
2021         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
2022         if(!arrIndxIn)
2023           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::ExtractFromIndexedArrays : null pointer as arrIndxIn !");
2024         convertObjToPossibleCpp2(li,arrIndxIn->getNumberOfTuples()-1,sw,singleVal,multiVal,slic,daIntTyypp);
2025         switch(sw)
2026           {
2027           case 1:
2028             {
2029               MEDCouplingUMesh::ExtractFromIndexedArrays(&singleVal,&singleVal+1,arrIn,arrIndxIn,arrOut,arrIndexOut);
2030               break;
2031             }
2032           case 2:
2033             {
2034               MEDCouplingUMesh::ExtractFromIndexedArrays(&multiVal[0],&multiVal[0]+multiVal.size(),arrIn,arrIndxIn,arrOut,arrIndexOut);
2035               break;
2036             }
2037           case 4:
2038             {
2039               MEDCouplingUMesh::ExtractFromIndexedArrays(daIntTyypp->begin(),daIntTyypp->end(),arrIn,arrIndxIn,arrOut,arrIndexOut);
2040               break;
2041             }
2042           default:
2043             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::ExtractFromIndexedArrays : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2044           }
2045         PyObject *ret=PyTuple_New(2);
2046         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(arrOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2047         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(arrIndexOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2048         return ret;
2049       }
2050
2051       static PyObject *ExtractFromIndexedArrays2(int strt, int stp, int step, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn) throw(INTERP_KERNEL::Exception)
2052       {
2053         DataArrayInt *arrOut=0,*arrIndexOut=0;
2054         MEDCouplingUMesh::ExtractFromIndexedArrays2(strt,stp,step,arrIn,arrIndxIn,arrOut,arrIndexOut);
2055         PyObject *ret=PyTuple_New(2);
2056         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(arrOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2057         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(arrIndexOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2058         return ret;
2059       }
2060
2061       static PyObject *ExtractFromIndexedArrays2(PyObject *slic, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn) throw(INTERP_KERNEL::Exception)
2062       {
2063         if(!PySlice_Check(slic))
2064           throw INTERP_KERNEL::Exception("ExtractFromIndexedArrays2 (wrap) : the first param is not a pyslice !");
2065         Py_ssize_t strt=2,stp=2,step=2;
2066         PySliceObject *sliC=reinterpret_cast<PySliceObject *>(slic);
2067         if(!arrIndxIn)
2068           throw INTERP_KERNEL::Exception("ExtractFromIndexedArrays2 (wrap) : last array is null !");
2069         arrIndxIn->checkAllocated();
2070         if(arrIndxIn->getNumberOfComponents()!=1)
2071           throw INTERP_KERNEL::Exception("ExtractFromIndexedArrays2 (wrap) : number of components of last argument must be equal to one !");
2072         if(PySlice_GetIndices(sliC,arrIndxIn->getNumberOfTuples(),&strt,&stp,&step)!=0)
2073           throw INTERP_KERNEL::Exception("ExtractFromIndexedArrays2 (wrap) : Invalid slice regarding nb of elements !");
2074         DataArrayInt *arrOut=0,*arrIndexOut=0;
2075         MEDCouplingUMesh::ExtractFromIndexedArrays2(strt,stp,step,arrIn,arrIndxIn,arrOut,arrIndexOut);
2076         PyObject *ret=PyTuple_New(2);
2077         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(arrOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2078         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(arrIndexOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2079         return ret;
2080       }
2081
2082       static PyObject *SetPartOfIndexedArrays(PyObject *li,
2083                                               const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn,
2084                                               const DataArrayInt *srcArr, const DataArrayInt *srcArrIndex) throw(INTERP_KERNEL::Exception)
2085       {
2086         DataArrayInt *arrOut=0,*arrIndexOut=0;
2087         int sw;
2088         int singleVal;
2089         std::vector<int> multiVal;
2090         std::pair<int, std::pair<int,int> > slic;
2091         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
2092         if(!arrIndxIn)
2093           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArrays : null pointer as arrIndex !");
2094         convertObjToPossibleCpp2(li,arrIndxIn->getNumberOfTuples()-1,sw,singleVal,multiVal,slic,daIntTyypp);
2095         switch(sw)
2096           {
2097           case 1:
2098             {
2099               MEDCouplingUMesh::SetPartOfIndexedArrays(&singleVal,&singleVal+1,arrIn,arrIndxIn,srcArr,srcArrIndex,arrOut,arrIndexOut);
2100               break;
2101             }
2102           case 2:
2103             {
2104               MEDCouplingUMesh::SetPartOfIndexedArrays(&multiVal[0],&multiVal[0]+multiVal.size(),arrIn,arrIndxIn,srcArr,srcArrIndex,arrOut,arrIndexOut);
2105               break;
2106             }
2107           case 4:
2108             {
2109               MEDCouplingUMesh::SetPartOfIndexedArrays(daIntTyypp->begin(),daIntTyypp->end(),arrIn,arrIndxIn,srcArr,srcArrIndex,arrOut,arrIndexOut);
2110               break;
2111             }
2112           default:
2113             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArrays : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2114           }
2115         PyObject *ret=PyTuple_New(2);
2116         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(arrOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2117         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(arrIndexOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2118         return ret;
2119       }
2120
2121       static void SetPartOfIndexedArraysSameIdx(PyObject *li, DataArrayInt *arrIn, const DataArrayInt *arrIndxIn,
2122                                                 const DataArrayInt *srcArr, const DataArrayInt *srcArrIndex) throw(INTERP_KERNEL::Exception)
2123       {
2124         int sw;
2125         int singleVal;
2126         std::vector<int> multiVal;
2127         std::pair<int, std::pair<int,int> > slic;
2128         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
2129         if(!arrIndxIn)
2130           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx : null pointer as arrIndex !");
2131         convertObjToPossibleCpp2(li,arrIndxIn->getNumberOfTuples()-1,sw,singleVal,multiVal,slic,daIntTyypp);
2132         switch(sw)
2133           {
2134           case 1:
2135             {
2136               MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx(&singleVal,&singleVal+1,arrIn,arrIndxIn,srcArr,srcArrIndex);
2137               break;
2138             }
2139           case 2:
2140             {
2141               MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx(&multiVal[0],&multiVal[0]+multiVal.size(),arrIn,arrIndxIn,srcArr,srcArrIndex);
2142               break;
2143             }
2144           case 4:
2145             {
2146               MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx(daIntTyypp->begin(),daIntTyypp->end(),arrIn,arrIndxIn,srcArr,srcArrIndex);
2147               break;
2148             }
2149           default:
2150             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2151           }
2152       }
2153
2154       PyObject *are2DCellsNotCorrectlyOriented(PyObject *vec, bool polyOnly) const throw(INTERP_KERNEL::Exception)
2155       {
2156         double val;
2157         DataArrayDouble *a;
2158         DataArrayDoubleTuple *aa;
2159         std::vector<double> bb;
2160         int sw;
2161         int spaceDim=self->getSpaceDimension();
2162         const char msg[]="Python wrap of MEDCouplingUMesh::are2DCellsNotCorrectlyOriented : ";
2163         const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val,a,aa,bb,msg,1,spaceDim,true);
2164         //
2165         std::vector<int> cells;
2166         self->are2DCellsNotCorrectlyOriented(v,polyOnly,cells);
2167         DataArrayInt *ret=DataArrayInt::New();
2168         ret->alloc((int)cells.size(),1);
2169         std::copy(cells.begin(),cells.end(),ret->getPointer());
2170         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
2171       }
2172
2173       void orientCorrectly2DCells(PyObject *vec, bool polyOnly) throw(INTERP_KERNEL::Exception)
2174       {
2175         double val;
2176         DataArrayDouble *a;
2177         DataArrayDoubleTuple *aa;
2178         std::vector<double> bb;
2179         int sw;
2180         int spaceDim=self->getSpaceDimension();
2181         const char msg[]="Python wrap of MEDCouplingUMesh::orientCorrectly2DCells : ";
2182         const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val,a,aa,bb,msg,1,spaceDim,true);
2183         self->orientCorrectly2DCells(v,polyOnly);
2184       }
2185       
2186       PyObject *arePolyhedronsNotCorrectlyOriented() const throw(INTERP_KERNEL::Exception)
2187       {
2188         std::vector<int> cells;
2189         self->arePolyhedronsNotCorrectlyOriented(cells);
2190         DataArrayInt *ret=DataArrayInt::New();
2191         ret->alloc((int)cells.size(),1);
2192         std::copy(cells.begin(),cells.end(),ret->getPointer());
2193         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
2194       }
2195
2196       PyObject *getFastAveragePlaneOfThis() const throw(INTERP_KERNEL::Exception)
2197       {
2198         double vec[3];
2199         double pos[3];
2200         self->getFastAveragePlaneOfThis(vec,pos);
2201         double vals[6];
2202         std::copy(vec,vec+3,vals);
2203         std::copy(pos,pos+3,vals+3);
2204         return convertDblArrToPyListOfTuple(vals,3,2);
2205       }
2206       
2207       static MEDCouplingUMesh *MergeUMeshes(PyObject *li) throw(INTERP_KERNEL::Exception)
2208       {
2209         std::vector<const ParaMEDMEM::MEDCouplingUMesh *> tmp;
2210         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingUMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",tmp);
2211         return MEDCouplingUMesh::MergeUMeshes(tmp);
2212       }
2213
2214       PyObject *areCellsIncludedIn(const MEDCouplingUMesh *other, int compType) const throw(INTERP_KERNEL::Exception)
2215       {
2216         DataArrayInt *ret1;
2217         bool ret0=self->areCellsIncludedIn(other,compType,ret1);
2218         PyObject *ret=PyTuple_New(2);
2219         PyObject *ret0Py=ret0?Py_True:Py_False;
2220         Py_XINCREF(ret0Py);
2221         PyTuple_SetItem(ret,0,ret0Py);
2222         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2223         return ret;
2224       }
2225
2226       PyObject *areCellsIncludedIn2(const MEDCouplingUMesh *other) const throw(INTERP_KERNEL::Exception)
2227       {
2228         DataArrayInt *ret1;
2229         bool ret0=self->areCellsIncludedIn2(other,ret1);
2230         PyObject *ret=PyTuple_New(2);
2231         PyObject *ret0Py=ret0?Py_True:Py_False;
2232         Py_XINCREF(ret0Py);
2233         PyTuple_SetItem(ret,0,ret0Py);
2234         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2235         return ret;
2236       }
2237
2238       PyObject *explode3DMeshTo1D() const throw(INTERP_KERNEL::Exception)
2239       {
2240         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d0=DataArrayInt::New();
2241         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d1=DataArrayInt::New();
2242         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d2=DataArrayInt::New();
2243         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d3=DataArrayInt::New();
2244         MEDCouplingUMesh *m=self->explode3DMeshTo1D(d0,d1,d2,d3);
2245         PyObject *ret=PyTuple_New(5);
2246         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2247         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2248         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2249         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2250         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2251         return ret;
2252       }
2253
2254       PyObject *buildDescendingConnectivity() const throw(INTERP_KERNEL::Exception)
2255       {
2256         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d0=DataArrayInt::New();
2257         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d1=DataArrayInt::New();
2258         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d2=DataArrayInt::New();
2259         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d3=DataArrayInt::New();
2260         MEDCouplingUMesh *m=self->buildDescendingConnectivity(d0,d1,d2,d3);
2261         PyObject *ret=PyTuple_New(5);
2262         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2263         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2264         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2265         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2266         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2267         return ret;
2268       }
2269
2270       PyObject *buildDescendingConnectivity2() const throw(INTERP_KERNEL::Exception)
2271       {
2272         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d0=DataArrayInt::New();
2273         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d1=DataArrayInt::New();
2274         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d2=DataArrayInt::New();
2275         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d3=DataArrayInt::New();
2276         MEDCouplingUMesh *m=self->buildDescendingConnectivity2(d0,d1,d2,d3);
2277         PyObject *ret=PyTuple_New(5);
2278         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2279         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2280         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2281         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2282         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2283         return ret;
2284       }
2285       
2286       PyObject *computeNeighborsOfCells() const throw(INTERP_KERNEL::Exception)
2287       {
2288         DataArrayInt *neighbors=0,*neighborsIdx=0;
2289         self->computeNeighborsOfCells(neighbors,neighborsIdx);
2290         PyObject *ret=PyTuple_New(2);
2291         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(neighbors),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2292         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(neighborsIdx),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2293         return ret;
2294       }
2295
2296       static PyObject *ComputeNeighborsOfCellsAdv(const DataArrayInt *desc, const DataArrayInt *descI, const DataArrayInt *revDesc, const DataArrayInt *revDescI) throw(INTERP_KERNEL::Exception)
2297       {
2298         DataArrayInt *neighbors=0,*neighborsIdx=0;
2299         MEDCouplingUMesh::ComputeNeighborsOfCellsAdv(desc,descI,revDesc,revDescI,neighbors,neighborsIdx);
2300         PyObject *ret=PyTuple_New(2);
2301         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(neighbors),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2302         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(neighborsIdx),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2303         return ret;
2304       }
2305
2306       PyObject *emulateMEDMEMBDC(const MEDCouplingUMesh *nM1LevMesh)
2307       {
2308         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d0=DataArrayInt::New();
2309         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d1=DataArrayInt::New();
2310         DataArrayInt *d2,*d3,*d4,*dd5;
2311         MEDCouplingUMesh *mOut=self->emulateMEDMEMBDC(nM1LevMesh,d0,d1,d2,d3,d4,dd5);
2312         PyObject *ret=PyTuple_New(7);
2313         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(mOut),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2314         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2315         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2316         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2317         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2318         PyTuple_SetItem(ret,5,SWIG_NewPointerObj(SWIG_as_voidptr(d4),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2319         PyTuple_SetItem(ret,6,SWIG_NewPointerObj(SWIG_as_voidptr(dd5),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2320         return ret;
2321       }
2322
2323       DataArrayDouble *getPartBarycenterAndOwner(DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2324       {
2325         if(!da)
2326           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2327         da->checkAllocated();
2328         return self->getPartBarycenterAndOwner(da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2329       }
2330
2331       DataArrayDouble *getPartMeasureField(bool isAbs, DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2332       {
2333         if(!da)
2334           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2335         da->checkAllocated();
2336         return self->getPartMeasureField(isAbs,da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2337       }
2338
2339       MEDCouplingFieldDouble *buildPartOrthogonalField(DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2340       {
2341         if(!da)
2342           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2343         da->checkAllocated();
2344         return self->buildPartOrthogonalField(da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2345       }
2346
2347       PyObject *getTypesOfPart(DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2348       {
2349         if(!da)
2350           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2351         da->checkAllocated();
2352         std::set<INTERP_KERNEL::NormalizedCellType> result=self->getTypesOfPart(da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2353         std::set<INTERP_KERNEL::NormalizedCellType>::const_iterator iL=result.begin();
2354         PyObject *res = PyList_New(result.size());
2355         for (int i=0;iL!=result.end(); i++, iL++)
2356           PyList_SetItem(res,i,PyInt_FromLong(*iL));
2357         return res;
2358       }
2359
2360       DataArrayInt *keepCellIdsByType(INTERP_KERNEL::NormalizedCellType type, DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2361       {
2362         if(!da)
2363           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2364         da->checkAllocated();
2365         DataArrayInt *ret=self->keepCellIdsByType(type,da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2366         ret->setName(da->getName().c_str());
2367         return ret;
2368       }
2369
2370       static PyObject *Intersect2DMeshes(const MEDCouplingUMesh *m1, const MEDCouplingUMesh *m2, double eps) throw(INTERP_KERNEL::Exception)
2371       {
2372         DataArrayInt *cellNb1=0,*cellNb2=0;
2373         MEDCouplingUMesh *mret=MEDCouplingUMesh::Intersect2DMeshes(m1,m2,eps,cellNb1,cellNb2);
2374         PyObject *ret=PyTuple_New(3);
2375         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(mret),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2376         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellNb1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2377         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(cellNb2),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2378         return ret;
2379       }
2380
2381       PyObject *buildSlice3D(PyObject *origin, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
2382       {
2383         int spaceDim=self->getSpaceDimension();
2384         if(spaceDim!=3)
2385           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingUMesh::buildSlice3D : works only for spaceDim 3 !");
2386         double val,val2;
2387         DataArrayDouble *a,*a2;
2388         DataArrayDoubleTuple *aa,*aa2;
2389         std::vector<double> bb,bb2;
2390         int sw;
2391         const char msg[]="Python wrap of MEDCouplingUMesh::buildSlice3D : 1st paramater for origin.";
2392         const char msg2[]="Python wrap of MEDCouplingUMesh::buildSlice3D : 2nd paramater for vector.";
2393         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
2394         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
2395         //
2396         DataArrayInt *cellIds=0;
2397         MEDCouplingUMesh *ret0=self->buildSlice3D(orig,vect,eps,cellIds);
2398         PyObject *ret=PyTuple_New(2);
2399         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2400         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellIds),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2401         return ret;
2402       }
2403
2404       PyObject *buildSlice3DSurf(PyObject *origin, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
2405       {
2406         int spaceDim=self->getSpaceDimension();
2407         if(spaceDim!=3)
2408           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingUMesh::buildSlice3DSurf : works only for spaceDim 3 !");
2409         double val,val2;
2410         DataArrayDouble *a,*a2;
2411         DataArrayDoubleTuple *aa,*aa2;
2412         std::vector<double> bb,bb2;
2413         int sw;
2414         const char msg[]="Python wrap of MEDCouplingUMesh::buildSlice3DSurf : 1st paramater for origin.";
2415         const char msg2[]="Python wrap of MEDCouplingUMesh::buildSlice3DSurf : 2nd paramater for vector.";
2416         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
2417         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
2418         //
2419         DataArrayInt *cellIds=0;
2420         MEDCouplingUMesh *ret0=self->buildSlice3DSurf(orig,vect,eps,cellIds);
2421         PyObject *ret=PyTuple_New(2);
2422         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2423         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellIds),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2424         return ret;
2425       }
2426
2427       DataArrayInt *getCellIdsCrossingPlane(PyObject *origin, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
2428       {
2429         int spaceDim=self->getSpaceDimension();
2430         if(spaceDim!=3)
2431           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingUMesh::getCellIdsCrossingPlane : works only for spaceDim 3 !");
2432         double val,val2;
2433         DataArrayDouble *a,*a2;
2434         DataArrayDoubleTuple *aa,*aa2;
2435         std::vector<double> bb,bb2;
2436         int sw;
2437         const char msg[]="Python wrap of MEDCouplingUMesh::getCellIdsCrossingPlane : 1st paramater for origin.";
2438         const char msg2[]="Python wrap of MEDCouplingUMesh::getCellIdsCrossingPlane : 2nd paramater for vector.";
2439         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
2440         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
2441         return self->getCellIdsCrossingPlane(orig,vect,eps);
2442       }
2443
2444       void convertToPolyTypes(PyObject *li) throw(INTERP_KERNEL::Exception)
2445       {
2446         int sw;
2447         int pos1;
2448         std::vector<int> pos2;
2449         DataArrayInt *pos3=0;
2450         DataArrayIntTuple *pos4=0;
2451         convertObjToPossibleCpp1(li,sw,pos1,pos2,pos3,pos4);
2452         switch(sw)
2453           {
2454           case 1:
2455             {
2456               self->convertToPolyTypes(&pos1,&pos1+1);
2457               return;
2458             }
2459           case 2:
2460             {
2461               if(pos2.empty())
2462                 return;
2463               self->convertToPolyTypes(&pos2[0],&pos2[0]+pos2.size());
2464               return ;
2465             }
2466           case 3:
2467             {
2468               self->convertToPolyTypes(pos3->begin(),pos3->end());
2469               return ;
2470             }
2471           default:
2472             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::convertToPolyTypes : unexpected input array type recognized !");
2473           }
2474       }
2475     }
2476     void convertAllToPoly();
2477     void convertExtrudedPolyhedra() throw(INTERP_KERNEL::Exception);
2478     bool unPolyze() throw(INTERP_KERNEL::Exception);
2479     void simplifyPolyhedra(double eps) throw(INTERP_KERNEL::Exception);
2480     MEDCouplingUMesh *buildSpreadZonesWithPoly() const throw(INTERP_KERNEL::Exception);
2481     MEDCouplingUMesh *buildExtrudedMesh(const MEDCouplingUMesh *mesh1D, int policy) throw(INTERP_KERNEL::Exception);
2482   };
2483
2484   //== MEDCouplingUMesh End
2485
2486   //== MEDCouplingExtrudedMesh
2487
2488   class MEDCouplingExtrudedMesh : public ParaMEDMEM::MEDCouplingMesh
2489   {
2490   public:
2491     static MEDCouplingExtrudedMesh *New(const MEDCouplingUMesh *mesh3D, const MEDCouplingUMesh *mesh2D, int cell2DId) throw(INTERP_KERNEL::Exception);
2492     MEDCouplingUMesh *build3DUnstructuredMesh() const throw(INTERP_KERNEL::Exception);
2493     %extend {
2494       MEDCouplingExtrudedMesh(const MEDCouplingUMesh *mesh3D, const MEDCouplingUMesh *mesh2D, int cell2DId) throw(INTERP_KERNEL::Exception)
2495       {
2496         return MEDCouplingExtrudedMesh::New(mesh3D,mesh2D,cell2DId);
2497       }
2498       
2499       std::string __str__() const throw(INTERP_KERNEL::Exception)
2500       {
2501         return self->simpleRepr();
2502       }
2503
2504       std::string __repr__() const throw(INTERP_KERNEL::Exception)
2505       {
2506         std::ostringstream oss;
2507         self->reprQuickOverview(oss);
2508         return oss.str();
2509       }
2510       
2511       PyObject *getMesh2D() const throw(INTERP_KERNEL::Exception)
2512       {
2513         MEDCouplingUMesh *ret=self->getMesh2D();
2514         if(ret)
2515           ret->incrRef();
2516         return convertMesh(ret, SWIG_POINTER_OWN | 0 );
2517       }
2518       PyObject *getMesh1D() const throw(INTERP_KERNEL::Exception)
2519       {
2520         MEDCouplingUMesh *ret=self->getMesh1D();
2521         if(ret)
2522           ret->incrRef();
2523         return convertMesh(ret, SWIG_POINTER_OWN | 0 );
2524       }
2525       PyObject *getMesh3DIds() const throw(INTERP_KERNEL::Exception)
2526       {
2527         DataArrayInt *ret=self->getMesh3DIds();
2528         if(ret)
2529           ret->incrRef();
2530         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
2531       } 
2532     }
2533   };
2534
2535   //== MEDCouplingExtrudedMesh End
2536
2537   class MEDCoupling1GTUMesh : public ParaMEDMEM::MEDCouplingPointSet
2538   {
2539   public:
2540     static MEDCoupling1GTUMesh *New(const char *name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
2541     static MEDCoupling1GTUMesh *New(const MEDCouplingUMesh *m) throw(INTERP_KERNEL::Exception);
2542     INTERP_KERNEL::NormalizedCellType getCellModelEnum() const throw(INTERP_KERNEL::Exception);
2543     int getNodalConnectivityLength() const throw(INTERP_KERNEL::Exception);
2544     virtual void allocateCells(int nbOfCells=0) throw(INTERP_KERNEL::Exception);
2545     virtual void checkCoherencyOfConnectivity() const throw(INTERP_KERNEL::Exception);
2546     %extend
2547     {
2548       virtual void insertNextCell(PyObject *li) throw(INTERP_KERNEL::Exception)
2549       {
2550         int szArr,sw,iTypppArr;
2551         std::vector<int> stdvecTyyppArr;
2552         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
2553         self->insertNextCell(tmp,tmp+szArr);
2554       }
2555
2556       virtual DataArrayInt *getNodalConnectivity() const throw(INTERP_KERNEL::Exception)
2557       {
2558         DataArrayInt *ret=self->getNodalConnectivity();
2559         if(ret) ret->incrRef();
2560         return ret;
2561       }
2562       
2563       static MEDCouplingUMesh *AggregateOnSameCoordsToUMesh(PyObject *li) throw(INTERP_KERNEL::Exception)
2564       {
2565         std::vector< const MEDCoupling1GTUMesh *> parts;
2566         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCoupling1GTUMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCoupling1GTUMesh,"MEDCoupling1GTUMesh",parts);
2567         return MEDCoupling1GTUMesh::AggregateOnSameCoordsToUMesh(parts);
2568       }
2569     }
2570   };
2571
2572   //== MEDCoupling1SGTUMesh
2573
2574   class MEDCoupling1SGTUMesh : public ParaMEDMEM::MEDCoupling1GTUMesh
2575   {
2576   public:
2577     static MEDCoupling1SGTUMesh *New(const char *name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
2578     static MEDCoupling1SGTUMesh *New(const MEDCouplingUMesh *m) throw(INTERP_KERNEL::Exception);
2579     void setNodalConnectivity(DataArrayInt *nodalConn) throw(INTERP_KERNEL::Exception);
2580     int getNumberOfNodesPerCell() const throw(INTERP_KERNEL::Exception);
2581     static MEDCoupling1SGTUMesh *Merge1SGTUMeshes(const MEDCoupling1SGTUMesh *mesh1, const MEDCoupling1SGTUMesh *mesh2) throw(INTERP_KERNEL::Exception);
2582     MEDCoupling1SGTUMesh *buildSetInstanceFromThis(int spaceDim) const throw(INTERP_KERNEL::Exception);
2583     MEDCoupling1GTUMesh *computeDualMesh() const throw(INTERP_KERNEL::Exception);
2584     MEDCoupling1SGTUMesh *explodeEachHexa8To6Quad4() const throw(INTERP_KERNEL::Exception);
2585     DataArrayInt *sortHexa8EachOther() throw(INTERP_KERNEL::Exception);
2586     %extend
2587     {
2588       MEDCoupling1SGTUMesh(const char *name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception)
2589       {
2590         return MEDCoupling1SGTUMesh::New(name,type);
2591       }
2592
2593       MEDCoupling1SGTUMesh(const MEDCouplingUMesh *m) throw(INTERP_KERNEL::Exception)
2594       {
2595         return MEDCoupling1SGTUMesh::New(m);
2596       }
2597
2598       std::string __str__() const throw(INTERP_KERNEL::Exception)
2599       {
2600         return self->simpleRepr();
2601       }
2602       
2603       std::string __repr__() const throw(INTERP_KERNEL::Exception)
2604       {
2605         std::ostringstream oss;
2606         self->reprQuickOverview(oss);
2607         return oss.str();
2608       }
2609
2610       static MEDCoupling1SGTUMesh *Merge1SGTUMeshes(PyObject *li) throw(INTERP_KERNEL::Exception)
2611       {
2612         std::vector<const ParaMEDMEM::MEDCoupling1SGTUMesh *> tmp;
2613         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCoupling1SGTUMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCoupling1SGTUMesh,"MEDCoupling1SGTUMesh",tmp);
2614         return MEDCoupling1SGTUMesh::Merge1SGTUMeshes(tmp);
2615       }
2616       
2617       static MEDCoupling1SGTUMesh *Merge1SGTUMeshesOnSameCoords(PyObject *li) throw(INTERP_KERNEL::Exception)
2618       {
2619         std::vector<const ParaMEDMEM::MEDCoupling1SGTUMesh *> tmp;
2620         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCoupling1SGTUMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCoupling1SGTUMesh,"MEDCoupling1SGTUMesh",tmp);
2621         return MEDCoupling1SGTUMesh::Merge1SGTUMeshesOnSameCoords(tmp);
2622       }
2623     }
2624   };
2625   
2626   //== MEDCoupling1SGTUMesh End
2627
2628   //== MEDCoupling1DGTUMesh
2629
2630   class MEDCoupling1DGTUMesh : public ParaMEDMEM::MEDCoupling1GTUMesh
2631   {
2632   public:
2633     static MEDCoupling1DGTUMesh *New(const char *name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
2634     static MEDCoupling1DGTUMesh *New(const MEDCouplingUMesh *m) throw(INTERP_KERNEL::Exception);
2635     void setNodalConnectivity(DataArrayInt *nodalConn, DataArrayInt *nodalConnIndex) throw(INTERP_KERNEL::Exception);
2636     MEDCoupling1DGTUMesh *buildSetInstanceFromThis(int spaceDim) const throw(INTERP_KERNEL::Exception);
2637     bool isPacked() const throw(INTERP_KERNEL::Exception);
2638     %extend
2639     {
2640       MEDCoupling1DGTUMesh(const char *name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception)
2641       {
2642         return MEDCoupling1DGTUMesh::New(name,type);
2643       }
2644
2645       MEDCoupling1DGTUMesh(const MEDCouplingUMesh *m) throw(INTERP_KERNEL::Exception)
2646       {
2647         return MEDCoupling1DGTUMesh::New(m);
2648       }
2649
2650       std::string __str__() const throw(INTERP_KERNEL::Exception)
2651       {
2652         return self->simpleRepr();
2653       }
2654       
2655       std::string __repr__() const throw(INTERP_KERNEL::Exception)
2656       {
2657         std::ostringstream oss;
2658         self->reprQuickOverview(oss);
2659         return oss.str();
2660       }
2661
2662       DataArrayInt *getNodalConnectivityIndex() const throw(INTERP_KERNEL::Exception)
2663       {
2664         DataArrayInt *ret=self->getNodalConnectivityIndex();
2665         if(ret) ret->incrRef();
2666         return ret;
2667       }
2668
2669       PyObject *retrievePackedNodalConnectivity() const throw(INTERP_KERNEL::Exception)
2670       {
2671         DataArrayInt *ret1=0,*ret2=0;
2672         bool ret0=self->retrievePackedNodalConnectivity(ret1,ret2);
2673         PyObject *ret0Py=ret0?Py_True:Py_False;
2674         Py_XINCREF(ret0Py);
2675         PyObject *ret=PyTuple_New(3);
2676         PyTuple_SetItem(ret,0,ret0Py);
2677         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2678         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(ret2),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2679         return ret;
2680       }
2681       
2682       PyObject *copyWithNodalConnectivityPacked() const throw(INTERP_KERNEL::Exception)
2683       {
2684         bool ret1;
2685         MEDCoupling1DGTUMesh *ret0=self->copyWithNodalConnectivityPacked(ret1);
2686         PyObject *ret=PyTuple_New(2);
2687         PyObject *ret1Py=ret1?Py_True:Py_False; Py_XINCREF(ret1Py);
2688         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__MEDCoupling1DGTUMesh, SWIG_POINTER_OWN | 0 ));
2689         PyTuple_SetItem(ret,1,ret1Py);
2690         return ret;
2691       }
2692
2693       static MEDCoupling1DGTUMesh *Merge1DGTUMeshes(PyObject *li) throw(INTERP_KERNEL::Exception)
2694       {
2695         std::vector<const ParaMEDMEM::MEDCoupling1DGTUMesh *> tmp;
2696         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCoupling1DGTUMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCoupling1DGTUMesh,"MEDCoupling1DGTUMesh",tmp);
2697         return MEDCoupling1DGTUMesh::Merge1DGTUMeshes(tmp);
2698       }
2699       
2700       static MEDCoupling1DGTUMesh *Merge1DGTUMeshesOnSameCoords(PyObject *li) throw(INTERP_KERNEL::Exception)
2701       {
2702         std::vector<const ParaMEDMEM::MEDCoupling1DGTUMesh *> tmp;
2703         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCoupling1DGTUMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCoupling1DGTUMesh,"MEDCoupling1DGTUMesh",tmp);
2704         return MEDCoupling1DGTUMesh::Merge1DGTUMeshesOnSameCoords(tmp);
2705       }
2706       
2707       static DataArrayInt *AggregateNodalConnAndShiftNodeIds(PyObject *li, const std::vector<int>& offsetInNodeIdsPerElt) throw(INTERP_KERNEL::Exception)
2708       {
2709         std::vector<const ParaMEDMEM::DataArrayInt *> tmp;
2710         convertFromPyObjVectorOfObj<const ParaMEDMEM::DataArrayInt *>(li,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,"DataArrayInt",tmp);
2711         return MEDCoupling1DGTUMesh::AggregateNodalConnAndShiftNodeIds(tmp,offsetInNodeIdsPerElt);
2712       }
2713     }
2714   };
2715
2716   //== MEDCoupling1DGTUMeshEnd
2717
2718   class MEDCouplingStructuredMesh : public ParaMEDMEM::MEDCouplingMesh
2719   {
2720   public:
2721     int getCellIdFromPos(int i, int j, int k) const throw(INTERP_KERNEL::Exception);
2722     int getNodeIdFromPos(int i, int j, int k) const throw(INTERP_KERNEL::Exception);
2723     virtual std::vector<int> getNodeGridStructure() const throw(INTERP_KERNEL::Exception);
2724     std::vector<int> getCellGridStructure() const throw(INTERP_KERNEL::Exception);
2725     MEDCoupling1SGTUMesh *build1SGTUnstructured() const throw(INTERP_KERNEL::Exception);
2726     static INTERP_KERNEL::NormalizedCellType GetGeoTypeGivenMeshDimension(int meshDim) throw(INTERP_KERNEL::Exception);
2727     %extend
2728     {
2729       virtual MEDCouplingStructuredMesh *buildStructuredSubPart(PyObject *cellPart) const throw(INTERP_KERNEL::Exception)
2730       {
2731         int tmpp1=-1,tmpp2=-1;
2732         std::vector<int> tmp=fillArrayWithPyListInt2(cellPart,tmpp1,tmpp2);
2733         std::vector< std::pair<int,int> > inp;
2734         if(tmpp2==2)
2735           {
2736             inp.resize(tmpp1);
2737             for(int i=0;i<tmpp1;i++)
2738               { inp[i].first=tmp[2*i]; inp[i].second=tmp[2*i+1]; }
2739           }
2740         else if(tmpp2==1)
2741           {
2742             if(tmpp1%2!=0)
2743               throw INTERP_KERNEL::Exception("Wrap of MEDCouplingStructuredMesh.buildStructuredSubPart : invalid input size ! Must be even size !");
2744             inp.resize(tmpp1/2);
2745             for(int i=0;i<tmpp1/2;i++)
2746               { inp[i].first=tmp[2*i]; inp[i].second=tmp[2*i+1]; }
2747           }
2748         else
2749           throw INTERP_KERNEL::Exception("Wrap of MEDCouplingStructuredMesh.buildStructuredSubPart : invalid input size !");
2750         return self->buildStructuredSubPart(inp);
2751       }
2752
2753       static DataArrayInt *BuildExplicitIdsFrom(PyObject *st, PyObject *part) throw(INTERP_KERNEL::Exception)
2754       {
2755         int tmpp1=-1,tmpp2=-1;
2756         std::vector<int> tmp=fillArrayWithPyListInt2(part,tmpp1,tmpp2);
2757         std::vector< std::pair<int,int> > inp;
2758         if(tmpp2==2)
2759           {
2760             inp.resize(tmpp1);
2761             for(int i=0;i<tmpp1;i++)
2762               { inp[i].first=tmp[2*i]; inp[i].second=tmp[2*i+1]; }
2763           }
2764         else if(tmpp2==1)
2765           {
2766             if(tmpp1%2!=0)
2767               throw INTERP_KERNEL::Exception("Wrap of MEDCouplingStructuredMesh.BuildExplicitIdsFrom : invalid input size ! Must be even size !");
2768             inp.resize(tmpp1/2);
2769             for(int i=0;i<tmpp1/2;i++)
2770               { inp[i].first=tmp[2*i]; inp[i].second=tmp[2*i+1]; }
2771           }
2772         else
2773           throw INTERP_KERNEL::Exception("Wrap of MEDCouplingStructuredMesh.BuildExplicitIdsFrom : invalid input size !");
2774         //
2775         int szArr,sw,iTypppArr;
2776         std::vector<int> stdvecTyyppArr;
2777         const int *tmp4=convertObjToPossibleCpp1_Safe(st,sw,szArr,iTypppArr,stdvecTyyppArr);
2778         std::vector<int> tmp5(tmp4,tmp4+szArr);
2779         //
2780         return MEDCouplingStructuredMesh::BuildExplicitIdsFrom(tmp5,inp);
2781       }
2782
2783       static DataArrayInt *Build1GTNodalConnectivity(PyObject *li) throw(INTERP_KERNEL::Exception)
2784       {
2785         int szArr,sw,iTypppArr;
2786         std::vector<int> stdvecTyyppArr;
2787         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
2788         return MEDCouplingStructuredMesh::Build1GTNodalConnectivity(tmp,tmp+szArr);
2789       }
2790
2791       static PyObject *IsPartStructured(PyObject *li, PyObject *st) throw(INTERP_KERNEL::Exception)
2792       {
2793         int szArr,sw,iTypppArr;
2794         std::vector<int> stdvecTyyppArr;
2795         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
2796         int szArr2,sw2,iTypppArr2;
2797         std::vector<int> stdvecTyyppArr2;
2798         const int *tmp2=convertObjToPossibleCpp1_Safe(st,sw2,szArr2,iTypppArr2,stdvecTyyppArr2);
2799         std::vector<int> tmp3(tmp2,tmp2+szArr2);
2800         std::vector< std::pair<int,int> > partCompactFormat;
2801         bool ret0=MEDCouplingStructuredMesh::IsPartStructured(tmp,tmp+szArr,tmp3,partCompactFormat);
2802         PyObject *ret=PyTuple_New(2);
2803         PyObject *ret0Py=ret0?Py_True:Py_False; Py_XINCREF(ret0Py);
2804         PyTuple_SetItem(ret,0,ret0Py);
2805         PyObject *ret1Py=PyList_New(partCompactFormat.size());
2806         for(std::size_t i=0;i<partCompactFormat.size();i++)
2807           {
2808             PyObject *tmp4=PyTuple_New(2);
2809             PyTuple_SetItem(tmp4,0,PyInt_FromLong(partCompactFormat[i].first));
2810             PyTuple_SetItem(tmp4,1,PyInt_FromLong(partCompactFormat[i].second));
2811             PyList_SetItem(ret1Py,i,tmp4);
2812           }
2813         PyTuple_SetItem(ret,1,ret1Py);
2814         return ret;
2815       }
2816     }
2817   };
2818
2819   //== MEDCouplingCMesh
2820   
2821   class MEDCouplingCMesh : public ParaMEDMEM::MEDCouplingStructuredMesh
2822   {
2823   public:
2824     static MEDCouplingCMesh *New();
2825     static MEDCouplingCMesh *New(const char *meshName);
2826     MEDCouplingCMesh *clone(bool recDeepCpy) const;
2827     void setCoords(const DataArrayDouble *coordsX,
2828                    const DataArrayDouble *coordsY=0,
2829                    const DataArrayDouble *coordsZ=0) throw(INTERP_KERNEL::Exception);
2830     void setCoordsAt(int i, const DataArrayDouble *arr) throw(INTERP_KERNEL::Exception);
2831     %extend {
2832       MEDCouplingCMesh()
2833       {
2834         return MEDCouplingCMesh::New();
2835       }
2836       MEDCouplingCMesh(const char *meshName)
2837       {
2838         return MEDCouplingCMesh::New(meshName);
2839       }
2840       std::string __str__() const throw(INTERP_KERNEL::Exception)
2841       {
2842         return self->simpleRepr();
2843       }
2844       std::string __repr__() const throw(INTERP_KERNEL::Exception)
2845       {
2846         std::ostringstream oss;
2847         self->reprQuickOverview(oss);
2848         return oss.str();
2849       }
2850       DataArrayDouble *getCoordsAt(int i) throw(INTERP_KERNEL::Exception)
2851       {
2852         DataArrayDouble *ret=self->getCoordsAt(i);
2853         if(ret)
2854           ret->incrRef();
2855         return ret;
2856       }
2857     }
2858   };
2859
2860   //== MEDCouplingCMesh End
2861
2862   //== MEDCouplingCurveLinearMesh
2863
2864   class MEDCouplingCurveLinearMesh : public ParaMEDMEM::MEDCouplingStructuredMesh
2865   {
2866   public:
2867     static MEDCouplingCurveLinearMesh *New();
2868     static MEDCouplingCurveLinearMesh *New(const char *meshName);
2869     MEDCouplingCurveLinearMesh *clone(bool recDeepCpy) const;
2870     void setCoords(const DataArrayDouble *coords) throw(INTERP_KERNEL::Exception);
2871     %extend {
2872       MEDCouplingCurveLinearMesh()
2873       {
2874         return MEDCouplingCurveLinearMesh::New();
2875       }
2876       MEDCouplingCurveLinearMesh(const char *meshName)
2877       {
2878         return MEDCouplingCurveLinearMesh::New(meshName);
2879       }
2880       std::string __str__() const throw(INTERP_KERNEL::Exception) 
2881       {
2882         return self->simpleRepr();
2883       }
2884       std::string __repr__() const throw(INTERP_KERNEL::Exception)
2885       {
2886         std::ostringstream oss;
2887         self->reprQuickOverview(oss);
2888         return oss.str();
2889       }
2890       DataArrayDouble *getCoords() throw(INTERP_KERNEL::Exception)
2891       {
2892         DataArrayDouble *ret=self->getCoords();
2893         if(ret)
2894           ret->incrRef();
2895         return ret;
2896       }
2897       void setNodeGridStructure(PyObject *gridStruct) throw(INTERP_KERNEL::Exception)
2898       {
2899         int szArr,sw,iTypppArr;
2900         std::vector<int> stdvecTyyppArr;
2901         const int *tmp=convertObjToPossibleCpp1_Safe(gridStruct,sw,szArr,iTypppArr,stdvecTyyppArr);
2902         self->setNodeGridStructure(tmp,tmp+szArr);
2903       }
2904     }
2905   };
2906
2907   //== MEDCouplingCurveLinearMesh End
2908 }
2909
2910 namespace ParaMEDMEM
2911 {
2912   class MEDCouplingField : public ParaMEDMEM::RefCountObject, public ParaMEDMEM::TimeLabel
2913   {
2914   public:
2915     virtual void checkCoherency() const throw(INTERP_KERNEL::Exception);
2916     virtual bool areCompatibleForMerge(const MEDCouplingField *other) const throw(INTERP_KERNEL::Exception);
2917     virtual bool isEqual(const MEDCouplingField *other, double meshPrec, double valsPrec) const throw(INTERP_KERNEL::Exception);
2918     virtual bool isEqualWithoutConsideringStr(const MEDCouplingField *other, double meshPrec, double valsPrec) const throw(INTERP_KERNEL::Exception);
2919     virtual void copyTinyStringsFrom(const MEDCouplingField *other) throw(INTERP_KERNEL::Exception);
2920     void setMesh(const ParaMEDMEM::MEDCouplingMesh *mesh) throw(INTERP_KERNEL::Exception);
2921     void setName(const char *name) throw(INTERP_KERNEL::Exception);
2922     std::string getDescription() const throw(INTERP_KERNEL::Exception);
2923     void setDescription(const char *desc) throw(INTERP_KERNEL::Exception);
2924     std::string getName() const throw(INTERP_KERNEL::Exception);
2925     TypeOfField getTypeOfField() const throw(INTERP_KERNEL::Exception);
2926     NatureOfField getNature() const throw(INTERP_KERNEL::Exception);
2927     virtual void setNature(NatureOfField nat) throw(INTERP_KERNEL::Exception);
2928     DataArrayDouble *getLocalizationOfDiscr() const throw(INTERP_KERNEL::Exception);
2929     MEDCouplingFieldDouble *buildMeasureField(bool isAbs) const throw(INTERP_KERNEL::Exception);
2930     int getNumberOfTuplesExpected() const throw(INTERP_KERNEL::Exception);
2931     int getNumberOfMeshPlacesExpected() const throw(INTERP_KERNEL::Exception);
2932     void setGaussLocalizationOnType(INTERP_KERNEL::NormalizedCellType type, const std::vector<double>& refCoo,
2933                                     const std::vector<double>& gsCoo, const std::vector<double>& wg) throw(INTERP_KERNEL::Exception);
2934     void clearGaussLocalizations() throw(INTERP_KERNEL::Exception);
2935     MEDCouplingGaussLocalization& getGaussLocalization(int locId) throw(INTERP_KERNEL::Exception);
2936     int getNbOfGaussLocalization() const throw(INTERP_KERNEL::Exception);
2937     int getGaussLocalizationIdOfOneCell(int cellId) const throw(INTERP_KERNEL::Exception);
2938     const MEDCouplingGaussLocalization& getGaussLocalization(int locId) const throw(INTERP_KERNEL::Exception);
2939     int getGaussLocalizationIdOfOneType(INTERP_KERNEL::NormalizedCellType type) const throw(INTERP_KERNEL::Exception);
2940     void setDiscretization(MEDCouplingFieldDiscretization *newDisc);
2941     %extend {
2942       PyObject *getMesh() const throw(INTERP_KERNEL::Exception)
2943       {
2944         MEDCouplingMesh *ret1=const_cast<MEDCouplingMesh *>(self->getMesh());
2945         if(ret1)
2946           ret1->incrRef();
2947         return convertMesh(ret1,SWIG_POINTER_OWN | 0 );
2948       }
2949
2950       PyObject *getDiscretization() throw(INTERP_KERNEL::Exception)
2951       {
2952         MEDCouplingFieldDiscretization *ret=self->getDiscretization();
2953         if(ret)
2954           ret->incrRef();
2955         return convertFieldDiscretization(ret,SWIG_POINTER_OWN | 0 );
2956       }
2957
2958       PyObject *getGaussLocalizationIdsOfOneType(INTERP_KERNEL::NormalizedCellType type) const throw(INTERP_KERNEL::Exception)
2959       {
2960         std::set<int> ret=self->getGaussLocalizationIdsOfOneType(type);
2961         return convertIntArrToPyList3(ret);
2962       }
2963
2964       PyObject *isEqualIfNotWhy(const MEDCouplingField *other, double meshPrec, double valsPrec) const throw(INTERP_KERNEL::Exception)
2965       {
2966         std::string ret1;
2967         bool ret0=self->isEqualIfNotWhy(other,meshPrec,valsPrec,ret1);
2968         PyObject *ret=PyTuple_New(2);
2969         PyObject *ret0Py=ret0?Py_True:Py_False;
2970         Py_XINCREF(ret0Py);
2971         PyTuple_SetItem(ret,0,ret0Py);
2972         PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
2973         return ret;
2974       }
2975
2976       PyObject *buildSubMeshData(PyObject *li) const throw(INTERP_KERNEL::Exception)
2977       {
2978         DataArrayInt *ret1=0;
2979         MEDCouplingMesh *ret0=0;
2980         void *da=0;
2981         int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayInt, 0 |  0 );
2982         if (!SWIG_IsOK(res1))
2983           {
2984             int size;
2985             INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
2986             ret0=self->buildSubMeshData(tmp,tmp+size,ret1);
2987           }
2988         else
2989           {
2990             DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
2991             if(!da2)
2992               throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2993             da2->checkAllocated();
2994             ret0=self->buildSubMeshData(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems(),ret1);
2995           }
2996         PyObject *res = PyList_New(2);
2997         PyList_SetItem(res,0,convertMesh(ret0, SWIG_POINTER_OWN | 0 ));
2998         PyList_SetItem(res,1,SWIG_NewPointerObj((void*)ret1,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,SWIG_POINTER_OWN | 0));
2999         return res;
3000       }
3001
3002       PyObject *buildSubMeshDataRange(int begin, int end, int step) const throw(INTERP_KERNEL::Exception)
3003       {
3004         DataArrayInt *ret1=0;
3005         int bb,ee,ss;
3006         MEDCouplingMesh *ret0=self->buildSubMeshDataRange(begin,end,step,bb,ee,ss,ret1);
3007         PyObject *res=PyTuple_New(2);
3008         PyTuple_SetItem(res,0,convertMesh(ret0, SWIG_POINTER_OWN | 0 ));
3009         if(ret1)
3010           PyTuple_SetItem(res,1,SWIG_NewPointerObj((void*)ret1,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,SWIG_POINTER_OWN | 0));
3011         else
3012           {
3013             PyObject *res1=PySlice_New(PyInt_FromLong(bb),PyInt_FromLong(ee),PyInt_FromLong(ss));
3014             PyTuple_SetItem(res,1,res1);
3015           }
3016         return res;
3017       }
3018
3019       DataArrayInt *computeTupleIdsToSelectFromCellIds(PyObject *cellIds) const
3020       {
3021         int sw,sz(-1);
3022         int v0; std::vector<int> v1;
3023         const int *cellIdsBg(convertObjToPossibleCpp1_Safe(cellIds,sw,sz,v0,v1));
3024         return self->computeTupleIdsToSelectFromCellIds(cellIdsBg,cellIdsBg+sz);
3025       }
3026
3027       void setGaussLocalizationOnCells(PyObject *li, const std::vector<double>& refCoo,
3028                                        const std::vector<double>& gsCoo, const std::vector<double>& wg) throw(INTERP_KERNEL::Exception)
3029       {
3030         void *da=0;
3031         int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayInt, 0 |  0 );
3032         if (!SWIG_IsOK(res1))
3033           {
3034             int size;
3035             INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
3036             self->setGaussLocalizationOnCells(tmp,((int *)tmp)+size,refCoo,gsCoo,wg);
3037           }
3038         else
3039           {
3040             DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
3041             if(!da2)
3042               throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
3043             da2->checkAllocated();
3044             self->setGaussLocalizationOnCells(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems(),refCoo,gsCoo,wg);
3045           }
3046       }
3047
3048       PyObject *getCellIdsHavingGaussLocalization(int locId) const throw(INTERP_KERNEL::Exception)
3049       {
3050         std::vector<int> tmp;
3051         self->getCellIdsHavingGaussLocalization(locId,tmp);
3052         DataArrayInt *ret=DataArrayInt::New();
3053         ret->alloc((int)tmp.size(),1);
3054         std::copy(tmp.begin(),tmp.end(),ret->getPointer());
3055         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
3056       }
3057       
3058       int getNumberOfTuplesExpectedRegardingCode(PyObject *code, PyObject *idsPerType) const throw(INTERP_KERNEL::Exception)
3059       {
3060         std::vector<int> inp0;
3061         convertPyToNewIntArr4(code,1,3,inp0);
3062         std::vector<const DataArrayInt *> inp1;
3063         convertFromPyObjVectorOfObj<const ParaMEDMEM::DataArrayInt *>(idsPerType,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,"DataArrayInt",inp1);
3064         return self->getNumberOfTuplesExpectedRegardingCode(inp0,inp1);
3065       }
3066     }
3067   };
3068   
3069   class MEDCouplingFieldTemplate : public ParaMEDMEM::MEDCouplingField
3070   {
3071   public:
3072     static MEDCouplingFieldTemplate *New(const MEDCouplingFieldDouble& f) throw(INTERP_KERNEL::Exception);
3073     static MEDCouplingFieldTemplate *New(TypeOfField type);
3074     std::string simpleRepr() const throw(INTERP_KERNEL::Exception);
3075     std::string advancedRepr() const throw(INTERP_KERNEL::Exception);
3076     %extend
3077        {
3078          MEDCouplingFieldTemplate(const MEDCouplingFieldDouble& f) throw(INTERP_KERNEL::Exception)
3079          {
3080            return MEDCouplingFieldTemplate::New(f);
3081          }
3082          
3083          MEDCouplingFieldTemplate(TypeOfField type) throw(INTERP_KERNEL::Exception)
3084          {
3085            return MEDCouplingFieldTemplate::New(type);
3086          }
3087          
3088          std::string __str__() const throw(INTERP_KERNEL::Exception)
3089          {
3090            return self->simpleRepr();
3091          }
3092          
3093          std::string __repr__() const throw(INTERP_KERNEL::Exception)
3094          {
3095            std::ostringstream oss;
3096            self->reprQuickOverview(oss);
3097            return oss.str();
3098          }
3099        }
3100   };
3101   
3102   class MEDCouplingFieldDouble : public ParaMEDMEM::MEDCouplingField
3103   {
3104   public:
3105     static MEDCouplingFieldDouble *New(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME);
3106     static MEDCouplingFieldDouble *New(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME);
3107     void setTimeUnit(const char *unit);
3108     const char *getTimeUnit() const;
3109     void synchronizeTimeWithSupport() throw(INTERP_KERNEL::Exception);
3110     void copyTinyAttrFrom(const MEDCouplingFieldDouble *other) throw(INTERP_KERNEL::Exception);
3111     void copyAllTinyAttrFrom(const MEDCouplingFieldDouble *other) throw(INTERP_KERNEL::Exception);
3112     std::string simpleRepr() const throw(INTERP_KERNEL::Exception);
3113     std::string advancedRepr() const throw(INTERP_KERNEL::Exception);
3114     void writeVTK(const char *fileName, bool isBinary=true) const throw(INTERP_KERNEL::Exception);
3115     MEDCouplingFieldDouble *clone(bool recDeepCpy) const;
3116     MEDCouplingFieldDouble *cloneWithMesh(bool recDeepCpy) const;
3117     MEDCouplingFieldDouble *deepCpy() const;
3118     MEDCouplingFieldDouble *buildNewTimeReprFromThis(TypeOfTimeDiscretization td, bool deepCpy) const throw(INTERP_KERNEL::Exception);
3119     MEDCouplingFieldDouble *nodeToCellDiscretization() const throw(INTERP_KERNEL::Exception);
3120     TypeOfTimeDiscretization getTimeDiscretization() const throw(INTERP_KERNEL::Exception);
3121     double getIJ(int tupleId, int compoId) const throw(INTERP_KERNEL::Exception);
3122     double getIJK(int cellId, int nodeIdInCell, int compoId) const throw(INTERP_KERNEL::Exception);
3123     void synchronizeTimeWithMesh() throw(INTERP_KERNEL::Exception);
3124     void setArray(DataArrayDouble *array) throw(INTERP_KERNEL::Exception);
3125     void setEndArray(DataArrayDouble *array) throw(INTERP_KERNEL::Exception);
3126     void setTime(double val, int iteration, int order) throw(INTERP_KERNEL::Exception);
3127     void setStartTime(double val, int iteration, int order) throw(INTERP_KERNEL::Exception);
3128     void setEndTime(double val, int iteration, int order) throw(INTERP_KERNEL::Exception);
3129     void applyLin(double a, double b, int compoId) throw(INTERP_KERNEL::Exception);
3130     int getNumberOfComponents() const throw(INTERP_KERNEL::Exception);
3131     int getNumberOfTuples() const throw(INTERP_KERNEL::Exception);
3132     int getNumberOfValues() const throw(INTERP_KERNEL::Exception);
3133     void setTimeTolerance(double val) throw(INTERP_KERNEL::Exception);
3134     double getTimeTolerance() const throw(INTERP_KERNEL::Exception);
3135     void setIteration(int it) throw(INTERP_KERNEL::Exception);
3136     void setEndIteration(int it) throw(INTERP_KERNEL::Exception);
3137     void setOrder(int order) throw(INTERP_KERNEL::Exception);
3138     void setEndOrder(int order) throw(INTERP_KERNEL::Exception);
3139     void setTimeValue(double val) throw(INTERP_KERNEL::Exception);
3140     void setEndTimeValue(double val) throw(INTERP_KERNEL::Exception);
3141     void changeUnderlyingMesh(const MEDCouplingMesh *other, int levOfCheck, double precOnMesh, double eps=1e-15) throw(INTERP_KERNEL::Exception);
3142     void substractInPlaceDM(const MEDCouplingFieldDouble *f, int levOfCheck, double precOnMesh, double eps=1e-15) throw(INTERP_KERNEL::Exception);
3143     bool mergeNodes(double eps, double epsOnVals=1e-15) throw(INTERP_KERNEL::Exception);
3144     bool mergeNodes2(double eps, double epsOnVals=1e-15) throw(INTERP_KERNEL::Exception);
3145     bool zipCoords(double epsOnVals=1e-15) throw(INTERP_KERNEL::Exception);
3146     bool zipConnectivity(int compType,double epsOnVals=1e-15) throw(INTERP_KERNEL::Exception);
3147     bool simplexize(int policy) throw(INTERP_KERNEL::Exception);
3148     MEDCouplingFieldDouble *doublyContractedProduct() const throw(INTERP_KERNEL::Exception);
3149     MEDCouplingFieldDouble *determinant() const throw(INTERP_KERNEL::Exception);
3150     MEDCouplingFieldDouble *eigenValues() const throw(INTERP_KERNEL::Exception);
3151     MEDCouplingFieldDouble *eigenVectors() const throw(INTERP_KERNEL::Exception);
3152     MEDCouplingFieldDouble *inverse() const throw(INTERP_KERNEL::Exception);
3153     MEDCouplingFieldDouble *trace() const throw(INTERP_KERNEL::Exception);
3154     MEDCouplingFieldDouble *deviator() const throw(INTERP_KERNEL::Exception);
3155     MEDCouplingFieldDouble *magnitude() const throw(INTERP_KERNEL::Exception);
3156     MEDCouplingFieldDouble *maxPerTuple() const throw(INTERP_KERNEL::Exception);
3157     void changeNbOfComponents(int newNbOfComp, double dftValue=0.) throw(INTERP_KERNEL::Exception);
3158     void sortPerTuple(bool asc) throw(INTERP_KERNEL::Exception);
3159     MEDCouplingFieldDouble &operator=(double value) throw(INTERP_KERNEL::Exception);
3160     void fillFromAnalytic(int nbOfComp, const char *func) throw(INTERP_KERNEL::Exception);
3161     void fillFromAnalytic2(int nbOfComp, const char *func) throw(INTERP_KERNEL::Exception);
3162     void fillFromAnalytic3(int nbOfComp, const std::vector<std::string>& varsOrder, const char *func) throw(INTERP_KERNEL::Exception);
3163     void applyFunc(int nbOfComp, const char *func) throw(INTERP_KERNEL::Exception);
3164     void applyFunc2(int nbOfComp, const char *func) throw(INTERP_KERNEL::Exception);
3165     void applyFunc3(int nbOfComp, const std::vector<std::string>& varsOrder, const char *func) throw(INTERP_KERNEL::Exception);
3166     void applyFunc(int nbOfComp, double val) throw(INTERP_KERNEL::Exception);
3167     void applyFunc(const char *func) throw(INTERP_KERNEL::Exception);
3168     void applyFuncFast32(const char *func) throw(INTERP_KERNEL::Exception);
3169     void applyFuncFast64(const char *func) throw(INTERP_KERNEL::Exception);
3170     double accumulate(int compId) const throw(INTERP_KERNEL::Exception);
3171     double getMaxValue() const throw(INTERP_KERNEL::Exception);
3172     double getMinValue() const throw(INTERP_KERNEL::Exception);
3173     double getAverageValue() const throw(INTERP_KERNEL::Exception);
3174     double norm2() const throw(INTERP_KERNEL::Exception);
3175     double normMax() const throw(INTERP_KERNEL::Exception);
3176     //do not put a default value to isWAbs because confusion in python with overloaded getWeightedAverageValue method
3177     double getWeightedAverageValue(int compId, bool isWAbs) const throw(INTERP_KERNEL::Exception);
3178     double integral(int compId, bool isWAbs) const throw(INTERP_KERNEL::Exception);
3179     double normL1(int compId) const throw(INTERP_KERNEL::Exception);
3180     double normL2(int compId) const throw(INTERP_KERNEL::Exception);
3181     DataArrayInt *getIdsInRange(double vmin, double vmax) const throw(INTERP_KERNEL::Exception);
3182     MEDCouplingFieldDouble *buildSubPartRange(int begin, int end, int step) const throw(INTERP_KERNEL::Exception);
3183     static MEDCouplingFieldDouble *MergeFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3184     static MEDCouplingFieldDouble *MeldFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3185     static MEDCouplingFieldDouble *DotFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3186     MEDCouplingFieldDouble *dot(const MEDCouplingFieldDouble& other) const throw(INTERP_KERNEL::Exception);
3187     static MEDCouplingFieldDouble *CrossProductFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3188     MEDCouplingFieldDouble *crossProduct(const MEDCouplingFieldDouble& other) const throw(INTERP_KERNEL::Exception);
3189     static MEDCouplingFieldDouble *MaxFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3190     MEDCouplingFieldDouble *max(const MEDCouplingFieldDouble& other) const throw(INTERP_KERNEL::Exception);
3191     static MEDCouplingFieldDouble *MinFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3192     static MEDCouplingFieldDouble *AddFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3193     static MEDCouplingFieldDouble *SubstractFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3194     static MEDCouplingFieldDouble *MultiplyFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3195     static MEDCouplingFieldDouble *DivideFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3196     MEDCouplingFieldDouble *min(const MEDCouplingFieldDouble& other) const throw(INTERP_KERNEL::Exception);
3197     MEDCouplingFieldDouble *negate() const throw(INTERP_KERNEL::Exception);
3198     %extend {
3199       MEDCouplingFieldDouble(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME)
3200       {
3201         return MEDCouplingFieldDouble::New(type,td);
3202       }
3203
3204       MEDCouplingFieldDouble(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME)
3205       {
3206         return MEDCouplingFieldDouble::New(ft,td);
3207       }
3208
3209       std::string __str__() const throw(INTERP_KERNEL::Exception)
3210       {
3211         return self->simpleRepr();
3212       }
3213
3214       std::string __repr__() const throw(INTERP_KERNEL::Exception)
3215       {
3216         std::ostringstream oss;
3217         self->reprQuickOverview(oss);
3218         return oss.str();
3219       }
3220
3221       DataArrayDouble *getArray() throw(INTERP_KERNEL::Exception)
3222       {
3223         DataArrayDouble *ret=self->getArray();
3224         if(ret)
3225           ret->incrRef();
3226         return ret;
3227       }
3228
3229       PyObject *getArrays() const throw(INTERP_KERNEL::Exception)
3230       {
3231         std::vector<DataArrayDouble *> arrs=self->getArrays();
3232         for(std::vector<DataArrayDouble *>::iterator it=arrs.begin();it!=arrs.end();it++)
3233           if(*it)
3234             (*it)->incrRef();
3235         int sz=arrs.size();
3236         PyObject *ret=PyTuple_New(sz);
3237         for(int i=0;i<sz;i++)
3238           {
3239             if(arrs[i])
3240               PyTuple_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(arrs[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
3241             else
3242               PyTuple_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, 0 | 0 ));
3243           }
3244         return ret;
3245       }
3246
3247       void setArrays(PyObject *ls) throw(INTERP_KERNEL::Exception)
3248       {
3249         std::vector<const DataArrayDouble *> tmp;
3250         convertFromPyObjVectorOfObj<const DataArrayDouble *>(ls,SWIGTYPE_p_ParaMEDMEM__DataArrayDouble,"DataArrayDouble",tmp);
3251         int sz=tmp.size();
3252         std::vector<DataArrayDouble *> arrs(sz);
3253         for(int i=0;i<sz;i++)
3254           arrs[i]=const_cast<DataArrayDouble *>(tmp[i]);
3255         self->setArrays(arrs);
3256       }
3257
3258       DataArrayDouble *getEndArray() throw(INTERP_KERNEL::Exception)
3259       {
3260         DataArrayDouble *ret=self->getEndArray();
3261         if(ret)
3262           ret->incrRef();
3263         return ret;
3264       }
3265
3266       PyObject *getValueOn(PyObject *sl) const throw(INTERP_KERNEL::Exception)
3267       {
3268         double val;
3269         DataArrayDouble *a;
3270         DataArrayDoubleTuple *aa;
3271         std::vector<double> bb;
3272         int sw;
3273         const MEDCouplingMesh *mesh=self->getMesh();
3274         if(!mesh)
3275           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingFieldDouble::getValueOn : no underlying mesh !");
3276         int spaceDim=mesh->getSpaceDimension();
3277         const char msg[]="Python wrap of MEDCouplingFieldDouble::getValueOn : ";
3278         const double *spaceLoc=convertObjToPossibleCpp5_Safe(sl,sw,val,a,aa,bb,msg,1,spaceDim,true);
3279         //
3280         int sz=self->getNumberOfComponents();
3281         INTERP_KERNEL::AutoPtr<double> res=new double[sz];
3282         self->getValueOn(spaceLoc,res);
3283         return convertDblArrToPyList(res,sz);
3284       }
3285
3286        PyObject *getValueOnPos(int i, int j, int k) const throw(INTERP_KERNEL::Exception)
3287        {
3288          int sz=self->getNumberOfComponents();
3289          INTERP_KERNEL::AutoPtr<double> res=new double[sz];
3290          self->getValueOnPos(i,j,k,res);
3291          return convertDblArrToPyList(res,sz);
3292        }
3293
3294       DataArrayDouble *getValueOnMulti(PyObject *locs) const throw(INTERP_KERNEL::Exception)
3295       {
3296         const MEDCouplingMesh *mesh(self->getMesh());
3297         if(!mesh)
3298           throw INTERP_KERNEL::Exception("Python wrap MEDCouplingFieldDouble::getValueOnMulti : lying on a null mesh !");
3299         //
3300         int sw,nbPts;
3301         double v0; ParaMEDMEM::DataArrayDouble *v1(0); ParaMEDMEM::DataArrayDoubleTuple *v2(0); std::vector<double> v3;
3302         const double *inp=convertObjToPossibleCpp5_Safe2(locs,sw,v0,v1,v2,v3,"wrap of MEDCouplingFieldDouble::getValueOnMulti",
3303                                                          mesh->getSpaceDimension(),true,nbPts);
3304         return self->getValueOnMulti(inp,nbPts);
3305       }
3306
3307       PyObject *getValueOn(PyObject *sl, double time) const throw(INTERP_KERNEL::Exception)
3308       {
3309         double val;
3310         DataArrayDouble *a;
3311         DataArrayDoubleTuple *aa;
3312         std::vector<double> bb;
3313         int sw;
3314         const MEDCouplingMesh *mesh=self->getMesh();
3315         if(!mesh)
3316           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingFieldDouble::getValueOn : no underlying mesh !");
3317         int spaceDim=mesh->getSpaceDimension();
3318         const char msg[]="Python wrap of MEDCouplingFieldDouble::getValueOn : ";
3319         const double *spaceLoc=convertObjToPossibleCpp5_Safe(sl,sw,val,a,aa,bb,msg,1,spaceDim,true);
3320         //
3321         //
3322         int sz=self->getNumberOfComponents();
3323         INTERP_KERNEL::AutoPtr<double> res=new double[sz];
3324         self->getValueOn(spaceLoc,time,res);
3325         return convertDblArrToPyList(res,sz);
3326       }
3327
3328       void setValues(PyObject *li, PyObject *nbOfTuples=0, PyObject *nbOfComp=0) throw(INTERP_KERNEL::Exception)
3329       {
3330         if(self->getArray()!=0)
3331           ParaMEDMEM_DataArrayDouble_setValues__SWIG_0(self->getArray(),li,nbOfTuples,nbOfComp);
3332         else
3333           {
3334             MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> arr=DataArrayDouble::New();
3335             ParaMEDMEM_DataArrayDouble_setValues__SWIG_0(arr,li,nbOfTuples,nbOfComp);
3336             self->setArray(arr);
3337           }
3338       }
3339       
3340       PyObject *getTime() throw(INTERP_KERNEL::Exception)
3341       {
3342         int tmp1,tmp2;
3343         double tmp0=self->getTime(tmp1,tmp2);
3344         PyObject *res = PyList_New(3);
3345         PyList_SetItem(res,0,SWIG_From_double(tmp0));
3346         PyList_SetItem(res,1,SWIG_From_int(tmp1));
3347         PyList_SetItem(res,2,SWIG_From_int(tmp2));
3348         return res;
3349       }
3350
3351       PyObject *getStartTime() throw(INTERP_KERNEL::Exception)
3352       {
3353         int tmp1,tmp2;
3354         double tmp0=self->getStartTime(tmp1,tmp2);
3355         PyObject *res = PyList_New(3);
3356         PyList_SetItem(res,0,SWIG_From_double(tmp0));
3357         PyList_SetItem(res,1,SWIG_From_int(tmp1));
3358         PyList_SetItem(res,2,SWIG_From_int(tmp2));
3359         return res;
3360       }
3361
3362       PyObject *getEndTime() throw(INTERP_KERNEL::Exception)
3363       {
3364         int tmp1,tmp2;
3365         double tmp0=self->getEndTime(tmp1,tmp2);
3366         PyObject *res = PyList_New(3);
3367         PyList_SetItem(res,0,SWIG_From_double(tmp0));
3368         PyList_SetItem(res,1,SWIG_From_int(tmp1));
3369         PyList_SetItem(res,2,SWIG_From_int(tmp2));
3370         return res;
3371       }
3372       PyObject *accumulate() const throw(INTERP_KERNEL::Exception)
3373       {
3374         int sz=self->getNumberOfComponents();
3375         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
3376         self->accumulate(tmp);
3377         return convertDblArrToPyList(tmp,sz);
3378       }
3379       PyObject *integral(bool isWAbs) const throw(INTERP_KERNEL::Exception)
3380       {
3381         int sz=self->getNumberOfComponents();
3382         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
3383         self->integral(isWAbs,tmp);
3384         return convertDblArrToPyList(tmp,sz);
3385       }
3386       PyObject *getWeightedAverageValue(bool isWAbs=true) const throw(INTERP_KERNEL::Exception)
3387       {
3388         int sz=self->getNumberOfComponents();
3389         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
3390         self->getWeightedAverageValue(tmp,isWAbs);
3391         return convertDblArrToPyList(tmp,sz);
3392       }
3393       PyObject *normL1() const throw(INTERP_KERNEL::Exception)
3394       {
3395         int sz=self->getNumberOfComponents();
3396         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
3397         self->normL1(tmp);
3398         return convertDblArrToPyList(tmp,sz);
3399       }
3400       PyObject *normL2() const throw(INTERP_KERNEL::Exception)
3401       {
3402         int sz=self->getNumberOfComponents();
3403         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
3404         self->normL2(tmp);
3405         return convertDblArrToPyList(tmp,sz);
3406       }
3407       void renumberCells(PyObject *li, bool check=true) throw(INTERP_KERNEL::Exception)
3408       {
3409         int szArr,sw,iTypppArr;
3410         std::vector<int> stdvecTyyppArr;
3411         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3412         self->renumberCells(tmp,check);
3413       }
3414       
3415       void renumberCellsWithoutMesh(PyObject *li, bool check=true) throw(INTERP_KERNEL::Exception)
3416       {
3417         int szArr,sw,iTypppArr;
3418         std::vector<int> stdvecTyyppArr;
3419         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3420         self->renumberCellsWithoutMesh(tmp,check);
3421       }
3422       
3423       void renumberNodes(PyObject *li, double eps=1e-15) throw(INTERP_KERNEL::Exception)
3424       {
3425         int szArr,sw,iTypppArr;
3426         std::vector<int> stdvecTyyppArr;
3427         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3428         self->renumberNodes(tmp,eps);
3429       }
3430
3431       void renumberNodesWithoutMesh(PyObject *li, int newNbOfNodes, double eps=1e-15) throw(INTERP_KERNEL::Exception)
3432       {
3433         int szArr,sw,iTypppArr;
3434         std::vector<int> stdvecTyyppArr;
3435         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
3436         self->renumberNodesWithoutMesh(tmp,newNbOfNodes,eps);
3437       }
3438
3439       MEDCouplingFieldDouble *buildSubPart(PyObject *li) const throw(INTERP_KERNEL::Exception)
3440       {
3441         int sw;
3442         int singleVal;
3443         std::vector<int> multiVal;
3444         std::pair<int, std::pair<int,int> > slic;
3445         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
3446         const MEDCouplingMesh *mesh=self->getMesh();
3447         if(!mesh)
3448           throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::buildSubPart : field lies on a null mesh !");
3449         int nbc=mesh->getNumberOfCells();
3450         convertObjToPossibleCpp2(li,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
3451         switch(sw)
3452           {
3453           case 1:
3454             {
3455               if(singleVal>=nbc)
3456                 {
3457                   std::ostringstream oss;
3458                   oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
3459                   throw INTERP_KERNEL::Exception(oss.str().c_str());
3460                 }
3461               if(singleVal>=0)
3462                 return self->buildSubPart(&singleVal,&singleVal+1);
3463               else
3464                 {
3465                   if(nbc+singleVal>0)
3466                     {
3467                       int tmp=nbc+singleVal;
3468                       return self->buildSubPart(&tmp,&tmp+1);
3469                     }
3470                   else
3471                     {
3472                       std::ostringstream oss;
3473                       oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
3474                       throw INTERP_KERNEL::Exception(oss.str().c_str());
3475                     }
3476                 }
3477             }
3478           case 2:
3479             {
3480               return self->buildSubPart(&multiVal[0],&multiVal[0]+multiVal.size());
3481             }
3482           case 3:
3483             {
3484               return self->buildSubPartRange(slic.first,slic.second.first,slic.second.second);
3485             }
3486           case 4:
3487             {
3488               if(!daIntTyypp)
3489                 throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::buildSubPart : null instance has been given in input !");
3490               daIntTyypp->checkAllocated();
3491               return self->buildSubPart(daIntTyypp->begin(),daIntTyypp->end());
3492             }
3493           default:
3494             throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::buildSubPart : unrecognized type in input ! Possibilities are : int, list or tuple of int DataArrayInt instance !");
3495           }
3496       }
3497
3498       MEDCouplingFieldDouble *__getitem__(PyObject *li) const throw(INTERP_KERNEL::Exception)
3499       {
3500         const char msg[]="MEDCouplingFieldDouble::__getitem__ : invalid call  Available API are : \n-myField[dataArrayInt]\n-myField[slice]\n-myField[pythonListOfCellIds]\n-myField[integer]\n-myField[dataArrayInt,1]\n-myField[slice,1]\n-myField[pythonListOfCellIds,1]\n-myField[integer,1]\n";
3501         if(PyTuple_Check(li))
3502           {
3503             Py_ssize_t sz=PyTuple_Size(li);
3504             if(sz!=2)
3505               throw INTERP_KERNEL::Exception(msg);
3506             PyObject *elt0=PyTuple_GetItem(li,0),*elt1=PyTuple_GetItem(li,1);
3507             int sw;
3508             int singleVal;
3509             std::vector<int> multiVal;
3510             std::pair<int, std::pair<int,int> > slic;
3511             ParaMEDMEM::DataArrayInt *daIntTyypp=0;
3512             if(!self->getArray())
3513               throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::__getitem__ : no array set on field to deduce number of components !");
3514             try
3515               { convertObjToPossibleCpp2(elt1,self->getArray()->getNumberOfComponents(),sw,singleVal,multiVal,slic,daIntTyypp); }
3516             catch(INTERP_KERNEL::Exception& e)
3517               { std::ostringstream oss; oss << "MEDCouplingFieldDouble::__getitem__ : invalid type in 2nd parameter (compo) !" << e.what(); throw INTERP_KERNEL::Exception(oss.str().c_str()); }
3518             MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret0=ParaMEDMEM_MEDCouplingFieldDouble_buildSubPart(self,elt0);
3519             DataArrayDouble *ret0Arr=ret0->getArray();
3520             if(!ret0Arr)
3521               throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::__getitem__ : no array exists to apply restriction on component on it !");
3522             switch(sw)
3523               {
3524               case 1:
3525                 {
3526                   std::vector<int> v2(1,singleVal);
3527                   MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aarr=static_cast<DataArrayDouble *>(ret0Arr->keepSelectedComponents(v2));
3528                   ret0->setArray(aarr);
3529                   return ret0.retn();
3530                 }
3531               case 2:
3532                 {
3533                   MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aarr=static_cast<DataArrayDouble *>(ret0Arr->keepSelectedComponents(multiVal));
3534                   ret0->setArray(aarr);
3535                   return ret0.retn();
3536                 }
3537               case 3:
3538                 {
3539                   int nbOfComp=DataArray::GetNumberOfItemGivenBESRelative(slic.first,slic.second.first,slic.second.second,"MEDCouplingFieldDouble::__getitem__ : invalid range in 2nd parameter (components) !");
3540                   std::vector<int> v2(nbOfComp);
3541                   for(int i=0;i<nbOfComp;i++)
3542                     v2[i]=slic.first+i*slic.second.second;
3543                   MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aarr=static_cast<DataArrayDouble *>(ret0Arr->keepSelectedComponents(v2));
3544                   ret0->setArray(aarr);
3545                   return ret0.retn();
3546                 }
3547               default:
3548                 throw INTERP_KERNEL::Exception(msg);
3549               }
3550             
3551           }
3552         else
3553           return ParaMEDMEM_MEDCouplingFieldDouble_buildSubPart(self,li);
3554       }
3555
3556       PyObject *getMaxValue2() const throw(INTERP_KERNEL::Exception)
3557       {
3558         DataArrayInt *tmp;
3559         double r1=self->getMaxValue2(tmp);
3560         PyObject *ret=PyTuple_New(2);
3561         PyTuple_SetItem(ret,0,PyFloat_FromDouble(r1));
3562         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
3563         return ret;
3564       }
3565       
3566       PyObject *getMinValue2() const throw(INTERP_KERNEL::Exception)
3567       {
3568         DataArrayInt *tmp;
3569         double r1=self->getMinValue2(tmp);
3570         PyObject *ret=PyTuple_New(2);
3571         PyTuple_SetItem(ret,0,PyFloat_FromDouble(r1));
3572         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
3573         return ret;
3574       }
3575       
3576       MEDCouplingFieldDouble *keepSelectedComponents(PyObject *li) const throw(INTERP_KERNEL::Exception)
3577       {
3578         std::vector<int> tmp;
3579         convertPyToNewIntArr3(li,tmp);
3580         return self->keepSelectedComponents(tmp);
3581       }
3582
3583       void setSelectedComponents(const MEDCouplingFieldDouble *f, PyObject *li) throw(INTERP_KERNEL::Exception)
3584       {
3585         std::vector<int> tmp;
3586         convertPyToNewIntArr3(li,tmp);
3587         self->setSelectedComponents(f,tmp);
3588       }
3589
3590       MEDCouplingFieldDouble *extractSlice3D(PyObject *origin, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
3591       {
3592         double val,val2;
3593         DataArrayDouble *a,*a2;
3594         DataArrayDoubleTuple *aa,*aa2;
3595         std::vector<double> bb,bb2;
3596         int sw;
3597         int spaceDim=3;
3598         const char msg[]="Python wrap of MEDCouplingFieldDouble::extractSlice3D : 1st paramater for origin.";
3599         const char msg2[]="Python wrap of MEDCouplingFieldDouble::extractSlice3D : 2nd paramater for vector.";
3600         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
3601         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
3602         //
3603         return self->extractSlice3D(orig,vect,eps);
3604       }
3605
3606       MEDCouplingFieldDouble *__add__(PyObject *obj) throw(INTERP_KERNEL::Exception)
3607       {
3608         return ParaMEDMEM_MEDCouplingFieldDouble___add__Impl(self,obj);
3609       }
3610
3611       MEDCouplingFieldDouble *__radd__(PyObject *obj) throw(INTERP_KERNEL::Exception)
3612       {
3613         return ParaMEDMEM_MEDCouplingFieldDouble___radd__Impl(self,obj);
3614       }
3615
3616       MEDCouplingFieldDouble *__sub__(PyObject *obj) throw(INTERP_KERNEL::Exception)
3617       {
3618         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__sub__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
3619         const char msg2[]="in MEDCouplingFieldDouble.__sub__ : self field has no Array of values set !";
3620         void *argp;
3621         //
3622         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
3623           {
3624             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
3625             if(other)
3626               return (*self)-(*other);
3627             else
3628               throw INTERP_KERNEL::Exception(msg);
3629           }
3630         //
3631         double val;
3632         DataArrayDouble *a;
3633         DataArrayDoubleTuple *aa;
3634         std::vector<double> bb;
3635         int sw;
3636         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
3637         switch(sw)
3638           {
3639           case 1:
3640             {
3641               if(!self->getArray())
3642                 throw INTERP_KERNEL::Exception(msg2);
3643               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=self->getArray()->deepCpy();
3644               ret->applyLin(1.,-val);
3645               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3646               ret2->setArray(ret);
3647               return ret2.retn();
3648             }
3649           case 2:
3650             {
3651               if(!self->getArray())
3652                 throw INTERP_KERNEL::Exception(msg2);
3653               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Substract(self->getArray(),a);
3654               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3655               ret2->setArray(ret);
3656               return ret2.retn();
3657             }
3658           case 3:
3659             {
3660               if(!self->getArray())
3661                 throw INTERP_KERNEL::Exception(msg2);
3662               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
3663               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Substract(self->getArray(),aaa);
3664               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3665               ret2->setArray(ret);
3666               return ret2.retn();
3667             }
3668           case 4:
3669             {
3670               if(!self->getArray())
3671                 throw INTERP_KERNEL::Exception(msg2);
3672               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
3673               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Substract(self->getArray(),aaa);
3674               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3675               ret2->setArray(ret);
3676               return ret2.retn();
3677             }
3678           default:
3679             { throw INTERP_KERNEL::Exception(msg); }
3680           }
3681       }
3682
3683       MEDCouplingFieldDouble *__rsub__(PyObject *obj) throw(INTERP_KERNEL::Exception)
3684       {
3685         return ParaMEDMEM_MEDCouplingFieldDouble___rsub__Impl(self,obj);
3686       }
3687
3688       MEDCouplingFieldDouble *__mul__(PyObject *obj) throw(INTERP_KERNEL::Exception)
3689       {
3690         return ParaMEDMEM_MEDCouplingFieldDouble___mul__Impl(self,obj);
3691       }
3692
3693       MEDCouplingFieldDouble *__rmul__(PyObject *obj) throw(INTERP_KERNEL::Exception)
3694       {
3695         return ParaMEDMEM_MEDCouplingFieldDouble___rmul__Impl(self,obj);
3696       }
3697
3698       MEDCouplingFieldDouble *__div__(PyObject *obj) throw(INTERP_KERNEL::Exception)
3699       {
3700         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__div__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
3701         const char msg2[]="in MEDCouplingFieldDouble.__div__ : self field has no Array of values set !";
3702         void *argp;
3703         //
3704         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
3705           {
3706             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
3707             if(other)
3708               return (*self)/(*other);
3709             else
3710               throw INTERP_KERNEL::Exception(msg);
3711           }
3712         //
3713         double val;
3714         DataArrayDouble *a;
3715         DataArrayDoubleTuple *aa;
3716         std::vector<double> bb;
3717         int sw;
3718         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
3719         switch(sw)
3720           {
3721           case 1:
3722             {
3723               if(val==0.)
3724                 throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble.__div__ : trying to divide by zero !");
3725               if(!self->getArray())
3726                 throw INTERP_KERNEL::Exception(msg2);
3727               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=self->getArray()->deepCpy();
3728               ret->applyLin(1./val,0);
3729               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3730               ret2->setArray(ret);
3731               return ret2.retn();
3732             }
3733           case 2:
3734             {
3735               if(!self->getArray())
3736                 throw INTERP_KERNEL::Exception(msg2);
3737               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Divide(self->getArray(),a);
3738               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3739               ret2->setArray(ret);
3740               return ret2.retn();
3741             }
3742           case 3:
3743             {
3744               if(!self->getArray())
3745                 throw INTERP_KERNEL::Exception(msg2);
3746               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
3747               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Divide(self->getArray(),aaa);
3748               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3749               ret2->setArray(ret);
3750               return ret2.retn();
3751             }
3752           case 4:
3753             {
3754               if(!self->getArray())
3755                 throw INTERP_KERNEL::Exception(msg2);
3756               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
3757               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Divide(self->getArray(),aaa);
3758               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3759               ret2->setArray(ret);
3760               return ret2.retn();
3761             }
3762           default:
3763             { throw INTERP_KERNEL::Exception(msg); }
3764           }
3765       }
3766
3767       MEDCouplingFieldDouble *__rdiv__(PyObject *obj) throw(INTERP_KERNEL::Exception)
3768       {
3769         return ParaMEDMEM_MEDCouplingFieldDouble___rdiv__Impl(self,obj);
3770       }
3771
3772       MEDCouplingFieldDouble *__pow__(PyObject *obj) throw(INTERP_KERNEL::Exception)
3773       {
3774         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__pow__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
3775         const char msg2[]="in MEDCouplingFieldDouble.__pow__ : self field has no Array of values set !";
3776         void *argp;
3777         //
3778         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
3779           {
3780             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
3781             if(other)
3782               return (*self)^(*other);
3783             else
3784               throw INTERP_KERNEL::Exception(msg);
3785           }
3786         //
3787         double val;
3788         DataArrayDouble *a;
3789         DataArrayDoubleTuple *aa;
3790         std::vector<double> bb;
3791         int sw;
3792         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
3793         switch(sw)
3794           {
3795           case 1:
3796             {
3797               if(!self->getArray())
3798                 throw INTERP_KERNEL::Exception(msg2);
3799               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=self->getArray()->deepCpy();
3800               ret->applyPow(val);
3801               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3802               ret2->setArray(ret);
3803               return ret2.retn();
3804             }
3805           case 2:
3806             {
3807               if(!self->getArray())
3808                 throw INTERP_KERNEL::Exception(msg2);
3809               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Pow(self->getArray(),a);
3810               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3811               ret2->setArray(ret);
3812               return ret2.retn();
3813             }
3814           case 3:
3815             {
3816               if(!self->getArray())
3817                 throw INTERP_KERNEL::Exception(msg2);
3818               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
3819               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Pow(self->getArray(),aaa);
3820               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3821               ret2->setArray(ret);
3822               return ret2.retn();
3823             }
3824           case 4:
3825             {
3826               if(!self->getArray())
3827                 throw INTERP_KERNEL::Exception(msg2);
3828               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
3829               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Pow(self->getArray(),aaa);
3830               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3831               ret2->setArray(ret);
3832               return ret2.retn();
3833             }
3834           default:
3835             { throw INTERP_KERNEL::Exception(msg); }
3836           }
3837       }
3838
3839       MEDCouplingFieldDouble *__neg__() const throw(INTERP_KERNEL::Exception)
3840       {
3841         return self->negate();
3842       }
3843
3844       PyObject *___iadd___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
3845       {
3846         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__iadd__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
3847         const char msg2[]="in MEDCouplingFieldDouble.__iadd__ : self field has no Array of values set !";
3848         void *argp;
3849         //
3850         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
3851           {
3852             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
3853             if(other)
3854               {
3855                 *self+=*other;
3856                 Py_XINCREF(trueSelf);
3857                 return trueSelf;
3858               }
3859             else
3860               throw INTERP_KERNEL::Exception(msg);
3861           }
3862         //
3863         double val;
3864         DataArrayDouble *a;
3865         DataArrayDoubleTuple *aa;
3866         std::vector<double> bb;
3867         int sw;
3868         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
3869         switch(sw)
3870           {
3871           case 1:
3872             {
3873               if(!self->getArray())
3874                 throw INTERP_KERNEL::Exception(msg2);
3875               self->getArray()->applyLin(1.,val);
3876               Py_XINCREF(trueSelf);
3877               return trueSelf;
3878             }
3879           case 2:
3880             {
3881               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3882               ret2->setArray(a);
3883               *self+=*ret2;
3884               Py_XINCREF(trueSelf);
3885               return trueSelf;
3886             }
3887           case 3:
3888             {
3889               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
3890               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3891               ret2->setArray(aaa);
3892               *self+=*ret2;
3893               Py_XINCREF(trueSelf);
3894               return trueSelf;
3895             }
3896           case 4:
3897             {
3898               if(!self->getArray())
3899                 throw INTERP_KERNEL::Exception(msg2);
3900               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
3901               self->getArray()->addEqual(aaa);
3902               Py_XINCREF(trueSelf);
3903               return trueSelf;
3904             }
3905           default:
3906             { throw INTERP_KERNEL::Exception(msg); }
3907           }
3908       }
3909
3910       PyObject *___isub___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
3911       {
3912         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__isub__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
3913         const char msg2[]="in MEDCouplingFieldDouble.__isub__ : self field has no Array of values set !";
3914         void *argp;
3915         //
3916         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
3917           {
3918             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
3919             if(other)
3920               {
3921                 *self-=*other;
3922                 Py_XINCREF(trueSelf);
3923                 return trueSelf;
3924               }
3925             else
3926               throw INTERP_KERNEL::Exception(msg);
3927           }
3928         //
3929         double val;
3930         DataArrayDouble *a;
3931         DataArrayDoubleTuple *aa;
3932         std::vector<double> bb;
3933         int sw;
3934         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
3935         switch(sw)
3936           {
3937           case 1:
3938             {
3939               if(!self->getArray())
3940                 throw INTERP_KERNEL::Exception(msg2);
3941               self->getArray()->applyLin(1.,-val);
3942               Py_XINCREF(trueSelf);
3943               return trueSelf;
3944             }
3945           case 2:
3946             {
3947               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3948               ret2->setArray(a);
3949               *self-=*ret2;
3950               Py_XINCREF(trueSelf);
3951               return trueSelf;
3952             }
3953           case 3:
3954             {
3955               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
3956               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3957               ret2->setArray(aaa);
3958               *self-=*ret2;
3959               Py_XINCREF(trueSelf);
3960               return trueSelf;
3961             }
3962           case 4:
3963             {
3964               if(!self->getArray())
3965                 throw INTERP_KERNEL::Exception(msg2);
3966               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
3967               self->getArray()->substractEqual(aaa);
3968               Py_XINCREF(trueSelf);
3969               return trueSelf;
3970             }
3971           default:
3972             { throw INTERP_KERNEL::Exception(msg); }
3973           }
3974       }
3975
3976       PyObject *___imul___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
3977       {
3978         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__imul__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
3979         const char msg2[]="in MEDCouplingFieldDouble.__imul__ : self field has no Array of values set !";
3980         void *argp;
3981         //
3982         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
3983           {
3984             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
3985             if(other)
3986               {
3987                 *self*=*other;
3988                 Py_XINCREF(trueSelf);
3989                 return trueSelf;
3990               }
3991             else
3992               throw INTERP_KERNEL::Exception(msg);
3993           }
3994         //
3995         double val;
3996         DataArrayDouble *a;
3997         DataArrayDoubleTuple *aa;
3998         std::vector<double> bb;
3999         int sw;
4000         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
4001         switch(sw)
4002           {
4003           case 1:
4004             {
4005               if(!self->getArray())
4006                 throw INTERP_KERNEL::Exception(msg2);
4007               self->getArray()->applyLin(val,0);
4008               Py_XINCREF(trueSelf);
4009               return trueSelf;
4010             }
4011           case 2:
4012             {
4013               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4014               ret2->setArray(a);
4015               *self*=*ret2;
4016               Py_XINCREF(trueSelf);
4017               return trueSelf;
4018             }
4019           case 3:
4020             {
4021               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4022               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4023               ret2->setArray(aaa);
4024               *self*=*ret2;
4025               Py_XINCREF(trueSelf);
4026               return trueSelf;
4027             }
4028           case 4:
4029             {
4030               if(!self->getArray())
4031                 throw INTERP_KERNEL::Exception(msg2);
4032               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4033               self->getArray()->multiplyEqual(aaa);
4034               Py_XINCREF(trueSelf);
4035               return trueSelf;
4036             }
4037           default:
4038             { throw INTERP_KERNEL::Exception(msg); }
4039           }
4040       }
4041
4042       PyObject *___idiv___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
4043       {
4044         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__idiv__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4045         const char msg2[]="in MEDCouplingFieldDouble.__idiv__ : self field has no Array of values set !";
4046         void *argp;
4047         //
4048         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
4049           {
4050             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
4051             if(other)
4052               {
4053                 *self/=*other;
4054                 Py_XINCREF(trueSelf);
4055                 return trueSelf;
4056               }
4057             else
4058               throw INTERP_KERNEL::Exception(msg);
4059           }
4060         //
4061         double val;
4062         DataArrayDouble *a;
4063         DataArrayDoubleTuple *aa;
4064         std::vector<double> bb;
4065         int sw;
4066         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
4067         switch(sw)
4068           {
4069           case 1:
4070             {
4071               if(val==0.)
4072                 throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble.__idiv__ : trying to divide by zero !");
4073               if(!self->getArray())
4074                 throw INTERP_KERNEL::Exception(msg2);
4075               self->getArray()->applyLin(1./val,0);
4076               Py_XINCREF(trueSelf);
4077               return trueSelf;
4078             }
4079           case 2:
4080             {
4081               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4082               ret2->setArray(a);
4083               *self/=*ret2;
4084               Py_XINCREF(trueSelf);
4085               return trueSelf;
4086             }
4087           case 3:
4088             {
4089               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4090               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4091               ret2->setArray(aaa);
4092               *self/=*ret2;
4093               Py_XINCREF(trueSelf);
4094               return trueSelf;
4095             }
4096           case 4:
4097             {
4098               if(!self->getArray())
4099                 throw INTERP_KERNEL::Exception(msg2);
4100               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4101               self->getArray()->divideEqual(aaa);
4102               Py_XINCREF(trueSelf);
4103               return trueSelf;
4104             }
4105           default:
4106             { throw INTERP_KERNEL::Exception(msg); }
4107           }
4108       }
4109
4110       PyObject *___ipow___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
4111       {
4112         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__ipow__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4113         const char msg2[]="in MEDCouplingFieldDouble.__ipow__ : self field has no Array of values set !";
4114         void *argp;
4115         //
4116         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
4117           {
4118             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
4119             if(other)
4120               {
4121                 *self^=*other;
4122                 Py_XINCREF(trueSelf);
4123                 return trueSelf;
4124               }
4125             else
4126               throw INTERP_KERNEL::Exception(msg);
4127           }
4128         //
4129         double val;
4130         DataArrayDouble *a;
4131         DataArrayDoubleTuple *aa;
4132         std::vector<double> bb;
4133         int sw;
4134         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
4135         switch(sw)
4136           {
4137           case 1:
4138             {
4139               if(!self->getArray())
4140                 throw INTERP_KERNEL::Exception(msg2);
4141               self->getArray()->applyPow(val);
4142               Py_XINCREF(trueSelf);
4143               return trueSelf;
4144             }
4145           case 2:
4146             {
4147               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4148               ret2->setArray(a);
4149               *self^=*ret2;
4150               Py_XINCREF(trueSelf);
4151               return trueSelf;
4152             }
4153           case 3:
4154             {
4155               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4156               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4157               ret2->setArray(aaa);
4158               *self^=*ret2;
4159               Py_XINCREF(trueSelf);
4160               return trueSelf;
4161             }
4162           case 4:
4163             {
4164               if(!self->getArray())
4165                 throw INTERP_KERNEL::Exception(msg2);
4166               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4167               self->getArray()->powEqual(aaa);
4168               Py_XINCREF(trueSelf);
4169               return trueSelf;
4170             }
4171           default:
4172             { throw INTERP_KERNEL::Exception(msg); }
4173           }
4174       }
4175
4176       static MEDCouplingFieldDouble *MergeFields(PyObject *li) throw(INTERP_KERNEL::Exception)
4177       {
4178         std::vector<const MEDCouplingFieldDouble *> tmp;
4179         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4180         return MEDCouplingFieldDouble::MergeFields(tmp);
4181       }
4182
4183       static void WriteVTK(const char *fileName, PyObject *li, bool isBinary=true) throw(INTERP_KERNEL::Exception)
4184       {
4185         std::vector<const MEDCouplingFieldDouble *> tmp;
4186         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4187         MEDCouplingFieldDouble::WriteVTK(fileName,tmp,isBinary);
4188       }
4189     }
4190   };
4191
4192   class MEDCouplingMultiFields : public RefCountObject, public TimeLabel
4193   {
4194   public:
4195     int getNumberOfFields() const;
4196     MEDCouplingMultiFields *deepCpy() const;
4197     virtual std::string simpleRepr() const throw(INTERP_KERNEL::Exception);
4198     virtual std::string advancedRepr() const throw(INTERP_KERNEL::Exception);
4199     virtual bool isEqual(const MEDCouplingMultiFields *other, double meshPrec, double valsPrec) const;
4200     virtual bool isEqualWithoutConsideringStr(const MEDCouplingMultiFields *other, double meshPrec, double valsPrec) const;
4201     virtual void checkCoherency() const throw(INTERP_KERNEL::Exception);
4202     %extend
4203        {
4204          std::string __str__() const throw(INTERP_KERNEL::Exception)
4205          {
4206            return self->simpleRepr();
4207          }
4208          static MEDCouplingMultiFields *New(PyObject *li) throw(INTERP_KERNEL::Exception)
4209          {
4210            std::vector<const ParaMEDMEM::MEDCouplingFieldDouble *> tmp;
4211            convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4212            int sz=tmp.size();
4213            std::vector<MEDCouplingFieldDouble *> fs(sz);
4214            for(int i=0;i<sz;i++)
4215              fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
4216            return MEDCouplingMultiFields::New(fs);
4217          }
4218          MEDCouplingMultiFields(PyObject *li) throw(INTERP_KERNEL::Exception)
4219          {
4220            std::vector<const ParaMEDMEM::MEDCouplingFieldDouble *> tmp;
4221            convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4222            int sz=tmp.size();
4223            std::vector<MEDCouplingFieldDouble *> fs(sz);
4224            for(int i=0;i<sz;i++)
4225              fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
4226            return MEDCouplingMultiFields::New(fs);
4227          }
4228          PyObject *getFields() const
4229          {
4230            std::vector<const MEDCouplingFieldDouble *> fields=self->getFields();
4231            int sz=fields.size();
4232            PyObject *res = PyList_New(sz);
4233            for(int i=0;i<sz;i++)
4234              {
4235                if(fields[i])
4236                  {
4237                    fields[i]->incrRef();
4238                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(fields[i]),SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble, SWIG_POINTER_OWN | 0 ));
4239                  }
4240                else
4241                  {
4242                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble, 0 ));
4243                  }
4244              }
4245            return res;
4246          }
4247          PyObject *getFieldAtPos(int id) const throw(INTERP_KERNEL::Exception)
4248          {
4249            const MEDCouplingFieldDouble *ret=self->getFieldAtPos(id);
4250            if(ret)
4251              {
4252                ret->incrRef();
4253                return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble, SWIG_POINTER_OWN | 0 );
4254              }
4255            else
4256              return SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble, 0 );
4257          }
4258          PyObject *getMeshes() const throw(INTERP_KERNEL::Exception)
4259          {
4260            std::vector<MEDCouplingMesh *> ms=self->getMeshes();
4261            int sz=ms.size();
4262            PyObject *res = PyList_New(sz);
4263            for(int i=0;i<sz;i++)
4264              {
4265                if(ms[i])
4266                  {
4267                    ms[i]->incrRef();
4268                    PyList_SetItem(res,i,convertMesh(ms[i], SWIG_POINTER_OWN | 0 ));
4269                  }
4270                else
4271                  {
4272                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, 0 ));
4273                  }
4274              }
4275            return res;
4276          }
4277          PyObject *getDifferentMeshes() const throw(INTERP_KERNEL::Exception)
4278          {
4279            std::vector<int> refs;
4280            std::vector<MEDCouplingMesh *> ms=self->getDifferentMeshes(refs);
4281            int sz=ms.size();
4282            PyObject *res = PyList_New(sz);
4283            for(int i=0;i<sz;i++)
4284              {
4285                if(ms[i])
4286                  {
4287                    ms[i]->incrRef();
4288                    PyList_SetItem(res,i,convertMesh(ms[i], SWIG_POINTER_OWN | 0 ));
4289                  }
4290                else
4291                  {
4292                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, 0 ));
4293                  }
4294              }
4295            //
4296            PyObject *ret=PyTuple_New(2);
4297            PyTuple_SetItem(ret,0,res);
4298            PyTuple_SetItem(ret,1,convertIntArrToPyList2(refs));
4299            return ret;
4300          }
4301          PyObject *getArrays() const throw(INTERP_KERNEL::Exception)
4302          {
4303            std::vector<DataArrayDouble *> ms=self->getArrays();
4304            int sz=ms.size();
4305            PyObject *res = PyList_New(sz);
4306            for(int i=0;i<sz;i++)
4307              {
4308                if(ms[i])
4309                  {
4310                    ms[i]->incrRef();
4311                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(ms[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
4312                  }
4313                else
4314                  {
4315                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, 0 ));
4316                  }
4317              }
4318            return res;
4319          }
4320          PyObject *getDifferentArrays() const throw(INTERP_KERNEL::Exception)
4321          {
4322            std::vector< std::vector<int> > refs;
4323            std::vector<DataArrayDouble *> ms=self->getDifferentArrays(refs);
4324            int sz=ms.size();
4325            PyObject *res = PyList_New(sz);
4326            PyObject *res2 = PyList_New(sz);
4327            for(int i=0;i<sz;i++)
4328              {
4329                if(ms[i])
4330                  {
4331                    ms[i]->incrRef();
4332                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(ms[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
4333                  }
4334                else
4335                  {
4336                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, 0 ));
4337                  }
4338                PyList_SetItem(res2,i,convertIntArrToPyList2(refs[i]));
4339              }
4340            //
4341            PyObject *ret=PyTuple_New(2);
4342            PyTuple_SetItem(ret,0,res);
4343            PyTuple_SetItem(ret,1,res2);
4344            return ret;
4345          }
4346        }
4347   };
4348   
4349   class MEDCouplingDefinitionTime
4350   {
4351   public:
4352     MEDCouplingDefinitionTime();
4353     void assign(const MEDCouplingDefinitionTime& other);
4354     bool isEqual(const MEDCouplingDefinitionTime& other) const;
4355     double getTimeResolution() const;
4356     std::vector<double> getHotSpotsTime() const;
4357     %extend
4358       {
4359         std::string __str__() const throw(INTERP_KERNEL::Exception)
4360           {
4361             std::ostringstream oss;
4362             self->appendRepr(oss);
4363             return oss.str();
4364           }
4365
4366         PyObject *getIdsOnTimeRight(double tm) const throw(INTERP_KERNEL::Exception)
4367         {
4368           int meshId,arrId,arrIdInField,fieldId;
4369           self->getIdsOnTimeRight(tm,meshId,arrId,arrIdInField,fieldId);
4370           PyObject *res=PyList_New(4);
4371           PyList_SetItem(res,0,PyInt_FromLong(meshId));
4372           PyList_SetItem(res,1,PyInt_FromLong(arrId));
4373           PyList_SetItem(res,2,PyInt_FromLong(arrIdInField));
4374           PyList_SetItem(res,3,PyInt_FromLong(fieldId));
4375           return res;
4376         }
4377
4378         PyObject *getIdsOnTimeLeft(double tm) const throw(INTERP_KERNEL::Exception)
4379         {
4380           int meshId,arrId,arrIdInField,fieldId;
4381           self->getIdsOnTimeLeft(tm,meshId,arrId,arrIdInField,fieldId);
4382           PyObject *res=PyList_New(4);
4383           PyList_SetItem(res,0,PyInt_FromLong(meshId));
4384           PyList_SetItem(res,1,PyInt_FromLong(arrId));
4385           PyList_SetItem(res,2,PyInt_FromLong(arrIdInField));
4386           PyList_SetItem(res,3,PyInt_FromLong(fieldId));
4387           return res;
4388         }
4389       }
4390   };
4391
4392   class MEDCouplingFieldOverTime : public MEDCouplingMultiFields
4393   {
4394   public:
4395     double getTimeTolerance() const throw(INTERP_KERNEL::Exception);
4396     MEDCouplingDefinitionTime getDefinitionTimeZone() const;
4397     
4398     %extend
4399       {
4400         MEDCouplingFieldOverTime(PyObject *li) throw(INTERP_KERNEL::Exception)
4401           {
4402             std::vector<const ParaMEDMEM::MEDCouplingFieldDouble *> tmp;
4403             convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4404             int sz=tmp.size();
4405             std::vector<MEDCouplingFieldDouble *> fs(sz);
4406             for(int i=0;i<sz;i++)
4407               fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
4408             return MEDCouplingFieldOverTime::New(fs);
4409           }
4410         std::string __str__() const throw(INTERP_KERNEL::Exception)
4411           {
4412             return self->simpleRepr();
4413           }
4414         static MEDCouplingFieldOverTime *New(PyObject *li) throw(INTERP_KERNEL::Exception)
4415         {
4416           std::vector<const ParaMEDMEM::MEDCouplingFieldDouble *> tmp;
4417           convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4418            int sz=tmp.size();
4419            std::vector<MEDCouplingFieldDouble *> fs(sz);
4420            for(int i=0;i<sz;i++)
4421              fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
4422            return MEDCouplingFieldOverTime::New(fs);
4423          }
4424       }
4425   };
4426 }
4427
4428 %pythoncode %{
4429 import os
4430 __filename=os.environ.get('PYTHONSTARTUP')
4431 if __filename and os.path.isfile(__filename):
4432   execfile(__filename)
4433   pass
4434 %}