Salome HOME
1854d889d588e96381a347d3bfeb21c81d59104f
[tools/medcoupling.git] / src / MEDCoupling_Swig / MEDCouplingCommon.i
1 // Copyright (C) 2007-2013  CEA/DEN, EDF R&D
2 //
3 // This library is free software; you can redistribute it and/or
4 // modify it under the terms of the GNU Lesser General Public
5 // License as published by the Free Software Foundation; either
6 // version 2.1 of the License.
7 //
8 // This library is distributed in the hope that it will be useful,
9 // but WITHOUT ANY WARRANTY; without even the implied warranty of
10 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11 // Lesser General Public License for more details.
12 //
13 // You should have received a copy of the GNU Lesser General Public
14 // License along with this library; if not, write to the Free Software
15 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
16 //
17 // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
18 //
19
20 %module MEDCoupling
21
22 #define MEDCOUPLING_EXPORT
23
24 %include std_vector.i
25 %include std_string.i
26
27 %{
28 #include "MEDCouplingMemArray.hxx"
29 #include "MEDCouplingUMesh.hxx"
30 #include "MEDCouplingExtrudedMesh.hxx"
31 #include "MEDCouplingCMesh.hxx"
32 #include "MEDCouplingCurveLinearMesh.hxx"
33 #include "MEDCoupling1GTUMesh.hxx"
34 #include "MEDCouplingField.hxx"
35 #include "MEDCouplingFieldDouble.hxx"
36 #include "MEDCouplingFieldTemplate.hxx"
37 #include "MEDCouplingGaussLocalization.hxx"
38 #include "MEDCouplingAutoRefCountObjectPtr.hxx"
39 #include "MEDCouplingMultiFields.hxx"
40 #include "MEDCouplingFieldOverTime.hxx"
41 #include "MEDCouplingDefinitionTime.hxx"
42 #include "MEDCouplingFieldDiscretization.hxx"
43 #include "MEDCouplingTypemaps.i"
44
45 #include "InterpKernelAutoPtr.hxx"
46
47 using namespace ParaMEDMEM;
48 using namespace INTERP_KERNEL;
49
50 %}
51
52 %template(ivec) std::vector<int>;
53 %template(dvec) std::vector<double>;
54 %template(svec) std::vector<std::string>;
55
56 ////////////////////
57 %typemap(out) ParaMEDMEM::MEDCouplingMesh*
58 {
59   $result=convertMesh($1,$owner);
60 }
61
62 %typemap(out) MEDCouplingMesh*
63 {
64   $result=convertMesh($1,$owner);
65 }
66 //$$$$$$$$$$$$$$$$$$
67
68 ////////////////////
69 %typemap(out) ParaMEDMEM::MEDCouplingPointSet*
70 {
71   $result=convertMesh($1,$owner);
72 }
73
74 %typemap(out) MEDCouplingPointSet*
75 {
76   $result=convertMesh($1,$owner);
77 }
78 //$$$$$$$$$$$$$$$$$$
79
80
81 ////////////////////
82 %typemap(out) ParaMEDMEM::MEDCoupling1GTUMesh*
83 {
84   $result=convertMesh($1,$owner);
85 }
86
87 %typemap(out) MEDCoupling1GTUMesh*
88 {
89   $result=convertMesh($1,$owner);
90 }
91 //$$$$$$$$$$$$$$$$$$
92
93 ////////////////////
94 %typemap(out) ParaMEDMEM::MEDCouplingStructuredMesh*
95 {
96   $result=convertMesh($1,$owner);
97 }
98
99 %typemap(out) MEDCouplingStructuredMesh*
100 {
101   $result=convertMesh($1,$owner);
102 }
103 //$$$$$$$$$$$$$$$$$$
104
105 ////////////////////
106 %typemap(out) ParaMEDMEM::MEDCouplingFieldDiscretization*
107 {
108   $result=convertFieldDiscretization($1,$owner);
109 }
110
111 %typemap(out) MEDCouplingFieldDiscretization*
112 {
113   $result=convertFieldDiscretization($1,$owner);
114 }
115 //$$$$$$$$$$$$$$$$$$
116
117 ////////////////////
118 %typemap(out) ParaMEDMEM::MEDCouplingMultiFields*
119 {
120   $result=convertMultiFields($1,$owner);
121 }
122
123 %typemap(out) MEDCouplingMultiFields*
124 {
125   $result=convertMultiFields($1,$owner);
126 }
127 //$$$$$$$$$$$$$$$$$$
128
129 ////////////////////
130 %typemap(out) ParaMEDMEM::DataArray*
131 {
132   $result=convertDataArray($1,$owner);
133 }
134
135 %typemap(out) DataArray*
136 {
137   $result=convertDataArray($1,$owner);
138 }
139 //$$$$$$$$$$$$$$$$$$
140
141 ////////////////////
142 %typemap(out) ParaMEDMEM::DataArrayChar*
143 {
144   $result=convertDataArrayChar($1,$owner);
145 }
146
147 %typemap(out) DataArrayChar*
148 {
149   $result=convertDataArrayChar($1,$owner);
150 }
151 //$$$$$$$$$$$$$$$$$$
152
153 #ifdef WITH_NUMPY
154 %init %{ import_array(); %}
155 #endif
156
157 %feature("autodoc", "1");
158 %feature("docstring");
159
160 %newobject ParaMEDMEM::MEDCouplingFieldDiscretization::New;
161 %newobject ParaMEDMEM::MEDCouplingFieldDiscretization::getOffsetArr;
162 %newobject ParaMEDMEM::MEDCouplingFieldDiscretization::deepCpy;
163 %newobject ParaMEDMEM::MEDCouplingFieldDiscretization::clone;
164 %newobject ParaMEDMEM::MEDCouplingFieldDiscretization::clonePart;
165 %newobject ParaMEDMEM::MEDCouplingFieldDiscretization::clonePartRange;
166 %newobject ParaMEDMEM::MEDCouplingFieldDiscretization::getMeasureField;
167 %newobject ParaMEDMEM::MEDCouplingFieldDiscretization::getOffsetArr;
168 %newobject ParaMEDMEM::MEDCouplingFieldDiscretization::getLocalizationOfDiscValues;
169 %newobject ParaMEDMEM::MEDCouplingFieldDiscretization::getValueOnMulti;
170 %newobject ParaMEDMEM::MEDCouplingFieldDiscretization::computeTupleIdsToSelectFromCellIds;
171 %newobject ParaMEDMEM::MEDCouplingFieldDiscretization::buildSubMeshData;
172 %newobject ParaMEDMEM::MEDCouplingField::buildMeasureField;
173 %newobject ParaMEDMEM::MEDCouplingField::getLocalizationOfDiscr;
174 %newobject ParaMEDMEM::MEDCouplingField::computeTupleIdsToSelectFromCellIds;
175 %newobject ParaMEDMEM::MEDCouplingFieldDouble::New;
176 %newobject ParaMEDMEM::MEDCouplingFieldDouble::getArray;
177 %newobject ParaMEDMEM::MEDCouplingFieldDouble::getEndArray;
178 %newobject ParaMEDMEM::MEDCouplingFieldDouble::MergeFields;
179 %newobject ParaMEDMEM::MEDCouplingFieldDouble::MeldFields;
180 %newobject ParaMEDMEM::MEDCouplingFieldDouble::doublyContractedProduct;
181 %newobject ParaMEDMEM::MEDCouplingFieldDouble::determinant;
182 %newobject ParaMEDMEM::MEDCouplingFieldDouble::eigenValues;
183 %newobject ParaMEDMEM::MEDCouplingFieldDouble::eigenVectors;
184 %newobject ParaMEDMEM::MEDCouplingFieldDouble::inverse;
185 %newobject ParaMEDMEM::MEDCouplingFieldDouble::trace;
186 %newobject ParaMEDMEM::MEDCouplingFieldDouble::deviator;
187 %newobject ParaMEDMEM::MEDCouplingFieldDouble::magnitude;
188 %newobject ParaMEDMEM::MEDCouplingFieldDouble::maxPerTuple;
189 %newobject ParaMEDMEM::MEDCouplingFieldDouble::keepSelectedComponents;
190 %newobject ParaMEDMEM::MEDCouplingFieldDouble::extractSlice3D;
191 %newobject ParaMEDMEM::MEDCouplingFieldDouble::DotFields;
192 %newobject ParaMEDMEM::MEDCouplingFieldDouble::dot;
193 %newobject ParaMEDMEM::MEDCouplingFieldDouble::CrossProductFields;
194 %newobject ParaMEDMEM::MEDCouplingFieldDouble::crossProduct;
195 %newobject ParaMEDMEM::MEDCouplingFieldDouble::MaxFields;
196 %newobject ParaMEDMEM::MEDCouplingFieldDouble::max;
197 %newobject ParaMEDMEM::MEDCouplingFieldDouble::MinFields;
198 %newobject ParaMEDMEM::MEDCouplingFieldDouble::AddFields;
199 %newobject ParaMEDMEM::MEDCouplingFieldDouble::SubstractFields;
200 %newobject ParaMEDMEM::MEDCouplingFieldDouble::MultiplyFields;
201 %newobject ParaMEDMEM::MEDCouplingFieldDouble::DivideFields;
202 %newobject ParaMEDMEM::MEDCouplingFieldDouble::min;
203 %newobject ParaMEDMEM::MEDCouplingFieldDouble::negate;
204 %newobject ParaMEDMEM::MEDCouplingFieldDouble::getIdsInRange;
205 %newobject ParaMEDMEM::MEDCouplingFieldDouble::buildSubPart;
206 %newobject ParaMEDMEM::MEDCouplingFieldDouble::buildSubPartRange;
207 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__getitem__;
208 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__neg__;
209 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__add__;
210 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__sub__;
211 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__mul__;
212 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__div__;
213 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__pow__;
214 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__radd__;
215 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__rsub__;
216 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__rmul__;
217 %newobject ParaMEDMEM::MEDCouplingFieldDouble::__rdiv__;
218 %newobject ParaMEDMEM::MEDCouplingFieldDouble::clone;
219 %newobject ParaMEDMEM::MEDCouplingFieldDouble::cloneWithMesh;
220 %newobject ParaMEDMEM::MEDCouplingFieldDouble::deepCpy;
221 %newobject ParaMEDMEM::MEDCouplingFieldDouble::buildNewTimeReprFromThis;
222 %newobject ParaMEDMEM::MEDCouplingFieldDouble::getValueOnMulti;
223 %newobject ParaMEDMEM::MEDCouplingFieldTemplate::New;
224 %newobject ParaMEDMEM::DataArray::selectByTupleRanges;
225 %newobject ParaMEDMEM::DataArrayInt::New;
226 %newobject ParaMEDMEM::DataArrayInt::__iter__;
227 %newobject ParaMEDMEM::DataArrayInt::convertToDblArr;
228 %newobject ParaMEDMEM::DataArrayInt::deepCpy;
229 %newobject ParaMEDMEM::DataArrayInt::performCpy;
230 %newobject ParaMEDMEM::DataArrayInt::substr;
231 %newobject ParaMEDMEM::DataArrayInt::changeNbOfComponents;
232 %newobject ParaMEDMEM::DataArrayInt::accumulatePerChunck;
233 %newobject ParaMEDMEM::DataArrayInt::selectByTupleId;
234 %newobject ParaMEDMEM::DataArrayInt::selectByTupleIdSafe;
235 %newobject ParaMEDMEM::DataArrayInt::selectByTupleId2;
236 %newobject ParaMEDMEM::DataArrayInt::checkAndPreparePermutation;
237 %newobject ParaMEDMEM::DataArrayInt::transformWithIndArrR;
238 %newobject ParaMEDMEM::DataArrayInt::renumber;
239 %newobject ParaMEDMEM::DataArrayInt::renumberR;
240 %newobject ParaMEDMEM::DataArrayInt::renumberAndReduce;
241 %newobject ParaMEDMEM::DataArrayInt::invertArrayO2N2N2O;
242 %newobject ParaMEDMEM::DataArrayInt::invertArrayN2O2O2N;
243 %newobject ParaMEDMEM::DataArrayInt::invertArrayO2N2N2OBis;
244 %newobject ParaMEDMEM::DataArrayInt::getIdsEqual;
245 %newobject ParaMEDMEM::DataArrayInt::getIdsNotEqual;
246 %newobject ParaMEDMEM::DataArrayInt::getIdsEqualList;
247 %newobject ParaMEDMEM::DataArrayInt::getIdsNotEqualList;
248 %newobject ParaMEDMEM::DataArrayInt::negate;
249 %newobject ParaMEDMEM::DataArrayInt::getIdsInRange;
250 %newobject ParaMEDMEM::DataArrayInt::Aggregate;
251 %newobject ParaMEDMEM::DataArrayInt::AggregateIndexes;
252 %newobject ParaMEDMEM::DataArrayInt::Meld;
253 %newobject ParaMEDMEM::DataArrayInt::Add;
254 %newobject ParaMEDMEM::DataArrayInt::Substract;
255 %newobject ParaMEDMEM::DataArrayInt::Multiply;
256 %newobject ParaMEDMEM::DataArrayInt::Divide;
257 %newobject ParaMEDMEM::DataArrayInt::Pow;
258 %newobject ParaMEDMEM::DataArrayInt::BuildUnion;
259 %newobject ParaMEDMEM::DataArrayInt::BuildIntersection;
260 %newobject ParaMEDMEM::DataArrayInt::Range;
261 %newobject ParaMEDMEM::DataArrayInt::fromNoInterlace;
262 %newobject ParaMEDMEM::DataArrayInt::toNoInterlace;
263 %newobject ParaMEDMEM::DataArrayInt::buildComplement;
264 %newobject ParaMEDMEM::DataArrayInt::buildUnion;
265 %newobject ParaMEDMEM::DataArrayInt::buildSubstraction;
266 %newobject ParaMEDMEM::DataArrayInt::buildSubstractionOptimized;
267 %newobject ParaMEDMEM::DataArrayInt::buildIntersection;
268 %newobject ParaMEDMEM::DataArrayInt::buildUnique;
269 %newobject ParaMEDMEM::DataArrayInt::deltaShiftIndex;
270 %newobject ParaMEDMEM::DataArrayInt::buildExplicitArrByRanges;
271 %newobject ParaMEDMEM::DataArrayInt::findRangeIdForEachTuple;
272 %newobject ParaMEDMEM::DataArrayInt::findIdInRangeForEachTuple;
273 %newobject ParaMEDMEM::DataArrayInt::duplicateEachTupleNTimes;
274 %newobject ParaMEDMEM::DataArrayInt::buildPermutationArr;
275 %newobject ParaMEDMEM::DataArrayInt::buildPermArrPerLevel;
276 %newobject ParaMEDMEM::DataArrayInt::getDifferentValues;
277 %newobject ParaMEDMEM::DataArrayInt::__neg__;
278 %newobject ParaMEDMEM::DataArrayInt::__add__;
279 %newobject ParaMEDMEM::DataArrayInt::__radd__;
280 %newobject ParaMEDMEM::DataArrayInt::__sub__;
281 %newobject ParaMEDMEM::DataArrayInt::__rsub__;
282 %newobject ParaMEDMEM::DataArrayInt::__mul__;
283 %newobject ParaMEDMEM::DataArrayInt::__rmul__;
284 %newobject ParaMEDMEM::DataArrayInt::__div__;
285 %newobject ParaMEDMEM::DataArrayInt::__rdiv__;
286 %newobject ParaMEDMEM::DataArrayInt::__mod__;
287 %newobject ParaMEDMEM::DataArrayInt::__rmod__;
288 %newobject ParaMEDMEM::DataArrayInt::__pow__;
289 %newobject ParaMEDMEM::DataArrayInt::__rpow__;
290 %newobject ParaMEDMEM::DataArrayIntTuple::buildDAInt;
291 %newobject ParaMEDMEM::DataArrayChar::deepCpy;
292 %newobject ParaMEDMEM::DataArrayChar::convertToIntArr;
293 %newobject ParaMEDMEM::DataArrayChar::renumber;
294 %newobject ParaMEDMEM::DataArrayChar::renumberR;
295 %newobject ParaMEDMEM::DataArrayChar::renumberAndReduce;
296 %newobject ParaMEDMEM::DataArrayChar::selectByTupleIdSafe;
297 %newobject ParaMEDMEM::DataArrayChar::selectByTupleId2;
298 %newobject ParaMEDMEM::DataArrayChar::changeNbOfComponents;
299 %newobject ParaMEDMEM::DataArrayChar::getIdsEqual;
300 %newobject ParaMEDMEM::DataArrayChar::getIdsNotEqual;
301 %newobject ParaMEDMEM::DataArrayChar::Aggregate;
302 %newobject ParaMEDMEM::DataArrayChar::Meld;
303 %newobject ParaMEDMEM::DataArrayByte::New;
304 %newobject ParaMEDMEM::DataArrayByte::__iter__;
305 %newobject ParaMEDMEM::DataArrayByte::performCpy;
306 %newobject ParaMEDMEM::DataArrayByteTuple::buildDAByte;
307 %newobject ParaMEDMEM::DataArrayChar::substr;
308 %newobject ParaMEDMEM::DataArrayAsciiChar::New;
309 %newobject ParaMEDMEM::DataArrayAsciiChar::__iter__;
310 %newobject ParaMEDMEM::DataArrayAsciiChar::performCpy;
311 %newobject ParaMEDMEM::DataArrayAsciiCharTuple::buildDAAsciiChar;
312 %newobject ParaMEDMEM::DataArrayDouble::New;
313 %newobject ParaMEDMEM::DataArrayDouble::__iter__;
314 %newobject ParaMEDMEM::DataArrayDouble::convertToIntArr;
315 %newobject ParaMEDMEM::DataArrayDouble::deepCpy;
316 %newobject ParaMEDMEM::DataArrayDouble::performCpy;
317 %newobject ParaMEDMEM::DataArrayDouble::Aggregate;
318 %newobject ParaMEDMEM::DataArrayDouble::Meld;
319 %newobject ParaMEDMEM::DataArrayDouble::Dot;
320 %newobject ParaMEDMEM::DataArrayDouble::CrossProduct;
321 %newobject ParaMEDMEM::DataArrayDouble::Add;
322 %newobject ParaMEDMEM::DataArrayDouble::Substract;
323 %newobject ParaMEDMEM::DataArrayDouble::Multiply;
324 %newobject ParaMEDMEM::DataArrayDouble::Divide;
325 %newobject ParaMEDMEM::DataArrayDouble::Pow;
326 %newobject ParaMEDMEM::DataArrayDouble::substr;
327 %newobject ParaMEDMEM::DataArrayDouble::changeNbOfComponents;
328 %newobject ParaMEDMEM::DataArrayDouble::accumulatePerChunck;
329 %newobject ParaMEDMEM::DataArrayDouble::getIdsInRange;
330 %newobject ParaMEDMEM::DataArrayDouble::selectByTupleId;
331 %newobject ParaMEDMEM::DataArrayDouble::selectByTupleIdSafe;
332 %newobject ParaMEDMEM::DataArrayDouble::selectByTupleId2;
333 %newobject ParaMEDMEM::DataArrayDouble::negate;
334 %newobject ParaMEDMEM::DataArrayDouble::applyFunc;
335 %newobject ParaMEDMEM::DataArrayDouble::applyFunc2;
336 %newobject ParaMEDMEM::DataArrayDouble::applyFunc3;
337 %newobject ParaMEDMEM::DataArrayDouble::doublyContractedProduct;
338 %newobject ParaMEDMEM::DataArrayDouble::determinant;
339 %newobject ParaMEDMEM::DataArrayDouble::eigenValues;
340 %newobject ParaMEDMEM::DataArrayDouble::eigenVectors;
341 %newobject ParaMEDMEM::DataArrayDouble::inverse;
342 %newobject ParaMEDMEM::DataArrayDouble::trace;
343 %newobject ParaMEDMEM::DataArrayDouble::deviator;
344 %newobject ParaMEDMEM::DataArrayDouble::magnitude;
345 %newobject ParaMEDMEM::DataArrayDouble::maxPerTuple;
346 %newobject ParaMEDMEM::DataArrayDouble::computeBBoxPerTuple;
347 %newobject ParaMEDMEM::DataArrayDouble::buildEuclidianDistanceDenseMatrix;
348 %newobject ParaMEDMEM::DataArrayDouble::buildEuclidianDistanceDenseMatrixWith;
349 %newobject ParaMEDMEM::DataArrayDouble::renumber;
350 %newobject ParaMEDMEM::DataArrayDouble::renumberR;
351 %newobject ParaMEDMEM::DataArrayDouble::renumberAndReduce;
352 %newobject ParaMEDMEM::DataArrayDouble::fromNoInterlace;
353 %newobject ParaMEDMEM::DataArrayDouble::toNoInterlace;
354 %newobject ParaMEDMEM::DataArrayDouble::fromPolarToCart;
355 %newobject ParaMEDMEM::DataArrayDouble::fromCylToCart;
356 %newobject ParaMEDMEM::DataArrayDouble::fromSpherToCart;
357 %newobject ParaMEDMEM::DataArrayDouble::getDifferentValues;
358 %newobject ParaMEDMEM::DataArrayDouble::findClosestTupleId;
359 %newobject ParaMEDMEM::DataArrayDouble::duplicateEachTupleNTimes;
360 %newobject ParaMEDMEM::DataArrayDouble::__neg__;
361 %newobject ParaMEDMEM::DataArrayDouble::__radd__;
362 %newobject ParaMEDMEM::DataArrayDouble::__rsub__;
363 %newobject ParaMEDMEM::DataArrayDouble::__rmul__;
364 %newobject ParaMEDMEM::DataArrayDouble::__rdiv__;
365 %newobject ParaMEDMEM::DataArrayDouble::__pow__;
366 %newobject ParaMEDMEM::DataArrayDouble::__rpow__;
367 %newobject ParaMEDMEM::DataArrayDoubleTuple::buildDADouble;
368 %newobject ParaMEDMEM::MEDCouplingMesh::deepCpy;
369 %newobject ParaMEDMEM::MEDCouplingMesh::checkDeepEquivalOnSameNodesWith;
370 %newobject ParaMEDMEM::MEDCouplingMesh::checkTypeConsistencyAndContig;
371 %newobject ParaMEDMEM::MEDCouplingMesh::computeNbOfNodesPerCell;
372 %newobject ParaMEDMEM::MEDCouplingMesh::computeNbOfFacesPerCell;
373 %newobject ParaMEDMEM::MEDCouplingMesh::buildPartRange;
374 %newobject ParaMEDMEM::MEDCouplingMesh::giveCellsWithType;
375 %newobject ParaMEDMEM::MEDCouplingMesh::getCoordinatesAndOwner;
376 %newobject ParaMEDMEM::MEDCouplingMesh::getBarycenterAndOwner;
377 %newobject ParaMEDMEM::MEDCouplingMesh::computeIsoBarycenterOfNodesPerCell;
378 %newobject ParaMEDMEM::MEDCouplingMesh::buildOrthogonalField;
379 %newobject ParaMEDMEM::MEDCouplingMesh::getCellIdsFullyIncludedInNodeIds;
380 %newobject ParaMEDMEM::MEDCouplingMesh::mergeMyselfWith;
381 %newobject ParaMEDMEM::MEDCouplingMesh::fillFromAnalytic;
382 %newobject ParaMEDMEM::MEDCouplingMesh::fillFromAnalytic2;
383 %newobject ParaMEDMEM::MEDCouplingMesh::fillFromAnalytic3;
384 %newobject ParaMEDMEM::MEDCouplingMesh::getMeasureField;
385 %newobject ParaMEDMEM::MEDCouplingMesh::simplexize;
386 %newobject ParaMEDMEM::MEDCouplingMesh::buildUnstructured;
387 %newobject ParaMEDMEM::MEDCouplingMesh::MergeMeshes;
388 %newobject ParaMEDMEM::MEDCouplingPointSet::zipCoordsTraducer;
389 %newobject ParaMEDMEM::MEDCouplingPointSet::getCellsInBoundingBox;
390 %newobject ParaMEDMEM::MEDCouplingPointSet::findBoundaryNodes;
391 %newobject ParaMEDMEM::MEDCouplingPointSet::buildBoundaryMesh;
392 %newobject ParaMEDMEM::MEDCouplingPointSet::MergeNodesArray;
393 %newobject ParaMEDMEM::MEDCouplingPointSet::buildPartOfMySelf2;
394 %newobject ParaMEDMEM::MEDCouplingPointSet::BuildInstanceFromMeshType;
395 %newobject ParaMEDMEM::MEDCouplingPointSet::zipConnectivityTraducer;
396 %newobject ParaMEDMEM::MEDCouplingPointSet::mergeMyselfWithOnSameCoords;
397 %newobject ParaMEDMEM::MEDCouplingPointSet::fillCellIdsToKeepFromNodeIds;
398 %newobject ParaMEDMEM::MEDCouplingPointSet::getCellIdsLyingOnNodes;
399 %newobject ParaMEDMEM::MEDCouplingPointSet::__getitem__;
400 %newobject ParaMEDMEM::MEDCouplingUMesh::New;
401 %newobject ParaMEDMEM::MEDCouplingUMesh::getNodalConnectivity;
402 %newobject ParaMEDMEM::MEDCouplingUMesh::getNodalConnectivityIndex;
403 %newobject ParaMEDMEM::MEDCouplingUMesh::clone;
404 %newobject ParaMEDMEM::MEDCouplingUMesh::__iter__;
405 %newobject ParaMEDMEM::MEDCouplingUMesh::cellsByType;
406 %newobject ParaMEDMEM::MEDCouplingUMesh::buildDescendingConnectivity;
407 %newobject ParaMEDMEM::MEDCouplingUMesh::buildDescendingConnectivity2;
408 %newobject ParaMEDMEM::MEDCouplingUMesh::explode3DMeshTo1D;
409 %newobject ParaMEDMEM::MEDCouplingUMesh::buildExtrudedMesh;
410 %newobject ParaMEDMEM::MEDCouplingUMesh::buildSpreadZonesWithPoly;
411 %newobject ParaMEDMEM::MEDCouplingUMesh::MergeUMeshes;
412 %newobject ParaMEDMEM::MEDCouplingUMesh::MergeUMeshesOnSameCoords;
413 %newobject ParaMEDMEM::MEDCouplingUMesh::ComputeSpreadZoneGradually;
414 %newobject ParaMEDMEM::MEDCouplingUMesh::ComputeSpreadZoneGraduallyFromSeed;
415 %newobject ParaMEDMEM::MEDCouplingUMesh::buildNewNumberingFromCommNodesFrmt;
416 %newobject ParaMEDMEM::MEDCouplingUMesh::rearrange2ConsecutiveCellTypes;
417 %newobject ParaMEDMEM::MEDCouplingUMesh::sortCellsInMEDFileFrmt;
418 %newobject ParaMEDMEM::MEDCouplingUMesh::getRenumArrForMEDFileFrmt;
419 %newobject ParaMEDMEM::MEDCouplingUMesh::convertCellArrayPerGeoType;
420 %newobject ParaMEDMEM::MEDCouplingUMesh::computeFetchedNodeIds;
421 %newobject ParaMEDMEM::MEDCouplingUMesh::getRenumArrForConsecutiveCellTypesSpec;
422 %newobject ParaMEDMEM::MEDCouplingUMesh::buildDirectionVectorField;
423 %newobject ParaMEDMEM::MEDCouplingUMesh::convertLinearCellsToQuadratic;
424 %newobject ParaMEDMEM::MEDCouplingUMesh::getEdgeRatioField;
425 %newobject ParaMEDMEM::MEDCouplingUMesh::getAspectRatioField;
426 %newobject ParaMEDMEM::MEDCouplingUMesh::getWarpField;
427 %newobject ParaMEDMEM::MEDCouplingUMesh::getSkewField;
428 %newobject ParaMEDMEM::MEDCouplingUMesh::getPartBarycenterAndOwner;
429 %newobject ParaMEDMEM::MEDCouplingUMesh::getPartMeasureField;
430 %newobject ParaMEDMEM::MEDCouplingUMesh::buildPartOrthogonalField;
431 %newobject ParaMEDMEM::MEDCouplingUMesh::keepCellIdsByType;
432 %newobject ParaMEDMEM::MEDCouplingUMesh::Build0DMeshFromCoords;
433 %newobject ParaMEDMEM::MEDCouplingUMesh::findAndCorrectBadOriented3DExtrudedCells;
434 %newobject ParaMEDMEM::MEDCouplingUMesh::findAndCorrectBadOriented3DCells;
435 %newobject ParaMEDMEM::MEDCouplingUMesh::convertIntoSingleGeoTypeMesh;
436 %newobject ParaMEDMEM::MEDCouplingUMesh::convertNodalConnectivityToStaticGeoTypeMesh;
437 %newobject ParaMEDMEM::MEDCouplingUMesh::findCellIdsOnBoundary;
438 %newobject ParaMEDMEM::MEDCouplingUMesh::computeSkin;
439 %newobject ParaMEDMEM::MEDCouplingUMesh::buildSetInstanceFromThis;
440 %newobject ParaMEDMEM::MEDCouplingUMesh::getCellIdsCrossingPlane;
441 %newobject ParaMEDMEM::MEDCouplingUMesh::convexEnvelop2D;
442 %newobject ParaMEDMEM::MEDCouplingUMesh::ComputeRangesFromTypeDistribution;
443 %newobject ParaMEDMEM::MEDCouplingUMeshCellByTypeEntry::__iter__;
444 %newobject ParaMEDMEM::MEDCouplingUMeshCellEntry::__iter__;
445 %newobject ParaMEDMEM::MEDCoupling1GTUMesh::New;
446 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::New;
447 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::getNodalConnectivity;
448 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::buildSetInstanceFromThis;
449 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::Merge1SGTUMeshes;
450 %newobject ParaMEDMEM::MEDCoupling1SGTUMesh::Merge1SGTUMeshesOnSameCoords;
451 %newobject ParaMEDMEM::MEDCoupling1DGTUMesh::New;
452 %newobject ParaMEDMEM::MEDCoupling1DGTUMesh::getNodalConnectivity;
453 %newobject ParaMEDMEM::MEDCoupling1DGTUMesh::getNodalConnectivityIndex;
454 %newobject ParaMEDMEM::MEDCoupling1DGTUMesh::buildSetInstanceFromThis;
455 %newobject ParaMEDMEM::MEDCoupling1DGTUMesh::Merge1DGTUMeshes;
456 %newobject ParaMEDMEM::MEDCoupling1DGTUMesh::Merge1DGTUMeshesOnSameCoords;
457 %newobject ParaMEDMEM::MEDCouplingExtrudedMesh::New;
458 %newobject ParaMEDMEM::MEDCouplingExtrudedMesh::build3DUnstructuredMesh;
459 %newobject ParaMEDMEM::MEDCouplingCMesh::New;
460 %newobject ParaMEDMEM::MEDCouplingCMesh::clone;
461 %newobject ParaMEDMEM::MEDCouplingCMesh::getCoordsAt;
462 %newobject ParaMEDMEM::MEDCouplingCurveLinearMesh::New;
463 %newobject ParaMEDMEM::MEDCouplingCurveLinearMesh::clone;
464 %newobject ParaMEDMEM::MEDCouplingCurveLinearMesh::getCoords;
465 %newobject ParaMEDMEM::MEDCouplingMultiFields::New;
466 %newobject ParaMEDMEM::MEDCouplingMultiFields::deepCpy;
467 %newobject ParaMEDMEM::MEDCouplingFieldOverTime::New;
468
469 %feature("unref") DataArray "$this->decrRef();"
470 %feature("unref") DataArrayDouble "$this->decrRef();"
471 %feature("unref") MEDCouplingPointSet "$this->decrRef();"
472 %feature("unref") MEDCouplingMesh "$this->decrRef();"
473 %feature("unref") MEDCouplingUMesh "$this->decrRef();"
474 %feature("unref") MEDCoupling1GTUMesh "$this->decrRef();"
475 %feature("unref") MEDCoupling1SGTUMesh "$this->decrRef();"
476 %feature("unref") MEDCoupling1DGTUMesh "$this->decrRef();"
477 %feature("unref") MEDCouplingExtrudedMesh "$this->decrRef();"
478 %feature("unref") MEDCouplingCMesh "$this->decrRef();"
479 %feature("unref") DataArrayInt "$this->decrRef();"
480 %feature("unref") DataArrayChar "$this->decrRef();"
481 %feature("unref") DataArrayAsciiChar "$this->decrRef();"
482 %feature("unref") DataArrayByte "$this->decrRef();"
483 %feature("unref") MEDCouplingField "$this->decrRef();"
484 %feature("unref") MEDCouplingFieldDiscretizationP0 "$this->decrRef();"
485 %feature("unref") MEDCouplingFieldDiscretizationP1 "$this->decrRef();"
486 %feature("unref") MEDCouplingFieldDiscretizationGauss "$this->decrRef();"
487 %feature("unref") MEDCouplingFieldDiscretizationGaussNE "$this->decrRef();"
488 %feature("unref") MEDCouplingFieldDiscretizationKriging "$this->decrRef();"
489 %feature("unref") MEDCouplingFieldDouble "$this->decrRef();"
490 %feature("unref") MEDCouplingMultiFields "$this->decrRef();"
491 %feature("unref") MEDCouplingFieldTemplate "$this->decrRef();"
492 %feature("unref") MEDCouplingMultiFields "$this->decrRef();"
493
494 %rename(assign) *::operator=;
495 %ignore ParaMEDMEM::RefCountObject::decrRef;
496 %ignore ParaMEDMEM::MEDCouplingGaussLocalization::pushTinySerializationIntInfo;
497 %ignore ParaMEDMEM::MEDCouplingGaussLocalization::pushTinySerializationDblInfo;
498 %ignore ParaMEDMEM::MEDCouplingGaussLocalization::fillWithValues;
499 %ignore ParaMEDMEM::MEDCouplingGaussLocalization::buildNewInstanceFromTinyInfo;
500
501 %nodefaultctor;
502
503 %rename (InterpKernelException) INTERP_KERNEL::Exception;
504
505 namespace INTERP_KERNEL
506 {
507   class Exception
508   {
509   public:
510     Exception(const char* what);
511     ~Exception() throw ();
512     const char *what() const throw ();
513     %extend
514     {
515       std::string __str__() const
516         {
517           return std::string(self->what());
518         }
519     }
520   };
521 }
522
523 namespace ParaMEDMEM
524 {
525   class TimeLabel
526   {
527   public:
528     void declareAsNew() const;
529     virtual void updateTime() const;
530     unsigned int getTimeOfThis() const;
531   protected:
532     ~TimeLabel();
533   };
534 }
535
536 namespace ParaMEDMEM
537 {
538   typedef enum
539     {
540       C_DEALLOC = 2,
541       CPP_DEALLOC = 3
542     } DeallocType;
543
544   typedef enum
545     {
546       ON_CELLS = 0,
547       ON_NODES = 1,
548       ON_GAUSS_PT = 2,
549       ON_GAUSS_NE = 3,
550       ON_NODES_KR = 4
551     } TypeOfField;
552
553   typedef enum
554     {
555       NO_TIME = 4,
556       ONE_TIME = 5,
557       LINEAR_TIME = 6,
558       CONST_ON_TIME_INTERVAL = 7
559     } TypeOfTimeDiscretization;
560
561   const char *MEDCouplingVersionStr();
562   int MEDCouplingVersion();
563   int MEDCouplingSizeOfVoidStar();
564
565   class RefCountObject
566   {
567   protected:
568     RefCountObject();
569     RefCountObject(const RefCountObject& other);
570     ~RefCountObject();
571   public:
572     bool decrRef() const;
573     void incrRef() const;
574     int getRCValue() const;
575     virtual std::size_t getHeapMemorySize() const;
576   };
577 }
578
579 %inline
580 {
581   PyObject *MEDCouplingVersionMajMinRel()
582   {
583     int tmp0=0,tmp1=0,tmp2=0;
584     MEDCouplingVersionMajMinRel(tmp0,tmp1,tmp2);
585     PyObject *res = PyList_New(3);
586     PyList_SetItem(res,0,SWIG_From_int(tmp0));
587     PyList_SetItem(res,1,SWIG_From_int(tmp1));
588     PyList_SetItem(res,2,SWIG_From_int(tmp2));
589     return res;
590   }
591
592   bool MEDCouplingHasNumPyBindings()
593   {
594 #ifdef WITH_NUMPY
595     return true;
596 #else
597     return false;
598 #endif
599   }
600
601   std::string MEDCouplingCompletionScript() throw(INTERP_KERNEL::Exception)
602   {
603     static const char script[]="import rlcompleter,readline\nreadline.parse_and_bind('tab:complete')";
604     std::ostringstream oss; oss << "MEDCouplingCompletionScript : error when trying to activate completion ! readline not present ?\nScript is :\n" << script;
605     if(PyRun_SimpleString(script)!=0)
606       throw INTERP_KERNEL::Exception(oss.str().c_str());
607     return std::string(script);
608   }
609 }
610
611 %include "MEDCouplingMemArray.i"
612
613 namespace ParaMEDMEM
614 {
615   typedef enum
616     {
617       UNSTRUCTURED = 5,
618       UNSTRUCTURED_DESC = 6,
619       CARTESIAN = 7,
620       EXTRUDED = 8,
621       CURVE_LINEAR = 9
622     } MEDCouplingMeshType;
623
624   class DataArrayInt;
625   class DataArrayDouble;
626   class MEDCouplingUMesh;
627   class MEDCouplingFieldDouble;
628
629   %extend RefCountObject
630   {
631     std::string getHiddenCppPointer() const
632     {
633       std::ostringstream oss; oss << "C++ Pointer address is : " << self;
634       return oss.str();
635     }
636   }
637
638   %extend MEDCouplingGaussLocalization
639   {
640     std::string __str__() const throw(INTERP_KERNEL::Exception)
641     {
642       return self->getStringRepr();
643     }
644
645     std::string __repr__() const throw(INTERP_KERNEL::Exception)
646     {
647       std::ostringstream oss; oss << "MEDCouplingGaussLocalization C++ instance at " << self << "." << std::endl;
648       oss << self->getStringRepr();
649       return oss.str();
650     }
651   }
652
653   //== MEDCouplingMesh
654   
655   class MEDCouplingMesh : public RefCountObject, public TimeLabel
656   {
657   public:
658     void setName(const char *name);
659     const char *getName() const;
660     void setDescription(const char *descr);
661     const char *getDescription() const;
662     void setTime(double val, int iteration, int order);
663     void setTimeUnit(const char *unit);
664     const char *getTimeUnit() const;
665     virtual MEDCouplingMeshType getType() const throw(INTERP_KERNEL::Exception);
666     bool isStructured() const throw(INTERP_KERNEL::Exception);
667     virtual MEDCouplingMesh *deepCpy() const;
668     virtual bool isEqual(const MEDCouplingMesh *other, double prec) const throw(INTERP_KERNEL::Exception);
669     virtual bool isEqualWithoutConsideringStr(const MEDCouplingMesh *other, double prec) const throw(INTERP_KERNEL::Exception);
670     virtual void checkFastEquivalWith(const MEDCouplingMesh *other, double prec) const throw(INTERP_KERNEL::Exception);
671     virtual void copyTinyStringsFrom(const MEDCouplingMesh *other) throw(INTERP_KERNEL::Exception);
672     virtual void copyTinyInfoFrom(const MEDCouplingMesh *other) throw(INTERP_KERNEL::Exception);
673     virtual void checkCoherency() const throw(INTERP_KERNEL::Exception);
674     virtual void checkCoherency1(double eps=1e-12) const throw(INTERP_KERNEL::Exception);
675     virtual void checkCoherency2(double eps=1e-12) const throw(INTERP_KERNEL::Exception);
676     virtual int getNumberOfCells() const throw(INTERP_KERNEL::Exception);
677     virtual int getNumberOfNodes() const throw(INTERP_KERNEL::Exception);
678     virtual int getSpaceDimension() const throw(INTERP_KERNEL::Exception);
679     virtual int getMeshDimension() const throw(INTERP_KERNEL::Exception);
680     virtual DataArrayDouble *getCoordinatesAndOwner() const throw(INTERP_KERNEL::Exception);
681     virtual DataArrayDouble *getBarycenterAndOwner() const throw(INTERP_KERNEL::Exception);
682     virtual DataArrayDouble *computeIsoBarycenterOfNodesPerCell() const throw(INTERP_KERNEL::Exception);
683     virtual DataArrayInt *giveCellsWithType(INTERP_KERNEL::NormalizedCellType type) const throw(INTERP_KERNEL::Exception);
684     virtual DataArrayInt *computeNbOfNodesPerCell() const throw(INTERP_KERNEL::Exception);
685     virtual DataArrayInt *computeNbOfFacesPerCell() const throw(INTERP_KERNEL::Exception);
686     virtual MEDCouplingMesh *buildPartRange(int beginCellIds, int endCellIds, int stepCellIds) const throw(INTERP_KERNEL::Exception);
687     virtual int getNumberOfCellsWithType(INTERP_KERNEL::NormalizedCellType type) const throw(INTERP_KERNEL::Exception);
688     virtual INTERP_KERNEL::NormalizedCellType getTypeOfCell(int cellId) const throw(INTERP_KERNEL::Exception);
689     virtual std::string simpleRepr() const throw(INTERP_KERNEL::Exception);
690     virtual std::string advancedRepr() const throw(INTERP_KERNEL::Exception);
691     void writeVTK(const char *fileName) const throw(INTERP_KERNEL::Exception);
692     // tools
693     virtual MEDCouplingFieldDouble *getMeasureField(bool isAbs) const throw(INTERP_KERNEL::Exception);
694     virtual MEDCouplingFieldDouble *getMeasureFieldOnNode(bool isAbs) const throw(INTERP_KERNEL::Exception);
695     virtual MEDCouplingFieldDouble *fillFromAnalytic(TypeOfField t, int nbOfComp, const char *func) const throw(INTERP_KERNEL::Exception);
696     virtual MEDCouplingFieldDouble *fillFromAnalytic2(TypeOfField t, int nbOfComp, const char *func) const throw(INTERP_KERNEL::Exception);
697     virtual MEDCouplingFieldDouble *fillFromAnalytic3(TypeOfField t, int nbOfComp, const std::vector<std::string>& varsOrder, const char *func) const throw(INTERP_KERNEL::Exception);
698     virtual MEDCouplingFieldDouble *buildOrthogonalField() const throw(INTERP_KERNEL::Exception);
699     virtual MEDCouplingUMesh *buildUnstructured() const throw(INTERP_KERNEL::Exception);
700     virtual MEDCouplingMesh *mergeMyselfWith(const MEDCouplingMesh *other) const throw(INTERP_KERNEL::Exception);
701     virtual bool areCompatibleForMerge(const MEDCouplingMesh *other) const throw(INTERP_KERNEL::Exception);
702     virtual DataArrayInt *simplexize(int policy) throw(INTERP_KERNEL::Exception);
703     static MEDCouplingMesh *MergeMeshes(const MEDCouplingMesh *mesh1, const MEDCouplingMesh *mesh2) throw(INTERP_KERNEL::Exception);
704     static bool IsStaticGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
705     static bool IsLinearGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
706     static INTERP_KERNEL::NormalizedCellType GetCorrespondingPolyType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
707     static int GetNumberOfNodesOfGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
708     static int GetDimensionOfGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
709     static const char *GetReprOfGeometricType(INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
710     %extend
711        {
712          std::string __str__() const throw(INTERP_KERNEL::Exception)
713          {
714            return self->simpleRepr();
715          }
716
717          PyObject *getTime() throw(INTERP_KERNEL::Exception)
718          {
719            int tmp1,tmp2;
720            double tmp0=self->getTime(tmp1,tmp2);
721            PyObject *res = PyList_New(3);
722            PyList_SetItem(res,0,SWIG_From_double(tmp0));
723            PyList_SetItem(res,1,SWIG_From_int(tmp1));
724            PyList_SetItem(res,2,SWIG_From_int(tmp2));
725            return res;
726          }
727
728          int getCellContainingPoint(PyObject *p, double eps) const throw(INTERP_KERNEL::Exception)
729          {
730            double val;
731            DataArrayDouble *a;
732            DataArrayDoubleTuple *aa;
733            std::vector<double> bb;
734            int sw;
735            int spaceDim=self->getSpaceDimension();
736            const char msg[]="Python wrap of MEDCouplingMesh::getCellContainingPoint : ";
737            const double *pos=convertObjToPossibleCpp5_Safe(p,sw,val,a,aa,bb,msg,1,spaceDim,true);
738            return self->getCellContainingPoint(pos,eps);
739          }
740
741          PyObject *getCellsContainingPoints(PyObject *p, int nbOfPoints, double eps) const throw(INTERP_KERNEL::Exception)
742          {
743            double val;
744            DataArrayDouble *a;
745            DataArrayDoubleTuple *aa;
746            std::vector<double> bb;
747            int sw;
748            int spaceDim=self->getSpaceDimension();
749            const char msg[]="Python wrap of MEDCouplingMesh::getCellsContainingPoint : ";
750            const double *pos=convertObjToPossibleCpp5_Safe(p,sw,val,a,aa,bb,msg,nbOfPoints,spaceDim,true);
751            std::vector<int> elts,eltsIndex;
752            self->getCellsContainingPoints(pos,nbOfPoints,eps,elts,eltsIndex);
753            MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d0=DataArrayInt::New();
754            MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d1=DataArrayInt::New();
755            d0->alloc(elts.size(),1);
756            d1->alloc(eltsIndex.size(),1);
757            std::copy(elts.begin(),elts.end(),d0->getPointer());
758            std::copy(eltsIndex.begin(),eltsIndex.end(),d1->getPointer());
759            PyObject *ret=PyTuple_New(2);
760            PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
761            PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
762            return ret;
763          }
764
765          PyObject *getCellsContainingPoints(PyObject *p, double eps) const throw(INTERP_KERNEL::Exception)
766          {
767            std::vector<int> elts,eltsIndex;
768            int spaceDim=self->getSpaceDimension();
769            void *da=0;
770            int res1=SWIG_ConvertPtr(p,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, 0 |  0 );
771            if (!SWIG_IsOK(res1))
772              {
773                int size;
774                INTERP_KERNEL::AutoCPtr<double> tmp=convertPyToNewDblArr2(p,&size);
775                int nbOfPoints=size/spaceDim;
776                if(size%spaceDim!=0)
777                  {
778                    throw INTERP_KERNEL::Exception("MEDCouplingMesh::getCellsContainingPoints : Invalid list length ! Must be a multiple of self.getSpaceDimension() !");
779                  }
780                self->getCellsContainingPoints(tmp,nbOfPoints,eps,elts,eltsIndex);
781              }
782            else
783              {
784                DataArrayDouble *da2=reinterpret_cast< DataArrayDouble * >(da);
785                if(!da2)
786                  throw INTERP_KERNEL::Exception("MEDCouplingMesh::getCellsContainingPoints : Not null DataArrayDouble instance expected !");
787                da2->checkAllocated();
788                int size=da2->getNumberOfTuples();
789                int nbOfCompo=da2->getNumberOfComponents();
790                if(nbOfCompo!=spaceDim)
791                  {
792                    throw INTERP_KERNEL::Exception("MEDCouplingMesh::getCellsContainingPoints : Invalid DataArrayDouble nb of components ! Expected same as self.getSpaceDimension() !");
793                  }
794                self->getCellsContainingPoints(da2->getConstPointer(),size,eps,elts,eltsIndex);
795              }
796            MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d0=DataArrayInt::New();
797            MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d1=DataArrayInt::New();
798            d0->alloc(elts.size(),1);
799            d1->alloc(eltsIndex.size(),1);
800            std::copy(elts.begin(),elts.end(),d0->getPointer());
801            std::copy(eltsIndex.begin(),eltsIndex.end(),d1->getPointer());
802            PyObject *ret=PyTuple_New(2);
803            PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
804            PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
805            return ret;
806          }
807
808          PyObject *getCellsContainingPoint(PyObject *p, double eps) const throw(INTERP_KERNEL::Exception)
809          {
810            double val;
811            DataArrayDouble *a;
812            DataArrayDoubleTuple *aa;
813            std::vector<double> bb;
814            int sw;
815            int spaceDim=self->getSpaceDimension();
816            const char msg[]="Python wrap of MEDCouplingUMesh::getCellsContainingPoint : ";
817            const double *pos=convertObjToPossibleCpp5_Safe(p,sw,val,a,aa,bb,msg,1,spaceDim,true);
818            std::vector<int> elts;
819            self->getCellsContainingPoint(pos,eps,elts);
820            DataArrayInt *ret=DataArrayInt::New();
821            ret->alloc((int)elts.size(),1);
822            std::copy(elts.begin(),elts.end(),ret->getPointer());
823            return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
824          }
825          
826          void renumberCells(PyObject *li, bool check=true) throw(INTERP_KERNEL::Exception)
827          {
828            void *da=0;
829            int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayInt, 0 |  0 );
830            if (!SWIG_IsOK(res1))
831              {
832                int size;
833                INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
834                self->renumberCells(tmp,check);
835              }
836            else
837              {
838                DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
839                if(!da2)
840                    throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
841                da2->checkAllocated();
842                self->renumberCells(da2->getConstPointer(),check);
843              }
844          }
845
846          PyObject *checkGeoEquivalWith(const MEDCouplingMesh *other, int levOfCheck, double prec) const throw(INTERP_KERNEL::Exception)
847          {
848            DataArrayInt *cellCor, *nodeCor;
849            self->checkGeoEquivalWith(other,levOfCheck,prec,cellCor,nodeCor);
850            PyObject *res = PyList_New(2);
851            PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(cellCor),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, cellCor?SWIG_POINTER_OWN | 0:0 ));
852            PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(nodeCor),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, nodeCor?SWIG_POINTER_OWN | 0:0 ));
853            return res;
854          }
855
856          PyObject *checkDeepEquivalWith(const MEDCouplingMesh *other, int cellCompPol, double prec) const throw(INTERP_KERNEL::Exception)
857          {
858            DataArrayInt *cellCor=0,*nodeCor=0;
859            self->checkDeepEquivalWith(other,cellCompPol,prec,cellCor,nodeCor);
860            PyObject *res = PyList_New(2);
861            PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(cellCor),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, cellCor?SWIG_POINTER_OWN | 0:0 ));
862            PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(nodeCor),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, nodeCor?SWIG_POINTER_OWN | 0:0 ));
863            return res;
864          }
865          
866          DataArrayInt *checkDeepEquivalOnSameNodesWith(const MEDCouplingMesh *other, int cellCompPol, double prec) const throw(INTERP_KERNEL::Exception)
867          {
868            DataArrayInt *cellCor=0;
869            self->checkDeepEquivalOnSameNodesWith(other,cellCompPol,prec,cellCor);
870            return cellCor;
871          }
872
873          DataArrayInt *getCellIdsFullyIncludedInNodeIds(PyObject *li) const throw(INTERP_KERNEL::Exception)
874          {
875            void *da=0;
876            int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayInt, 0 |  0 );
877            if (!SWIG_IsOK(res1))
878              {
879                int size;
880                INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
881                return self->getCellIdsFullyIncludedInNodeIds(tmp,((const int *)tmp)+size);
882              }
883            else
884              {
885                DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
886                if(!da2)
887                  throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
888                da2->checkAllocated();
889                return self->getCellIdsFullyIncludedInNodeIds(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems());
890              }
891          }
892          PyObject *getNodeIdsOfCell(int cellId) const throw(INTERP_KERNEL::Exception)
893          {
894            std::vector<int> conn;
895            self->getNodeIdsOfCell(cellId,conn);
896            return convertIntArrToPyList2(conn);
897          }
898
899          PyObject *getCoordinatesOfNode(int nodeId) const throw(INTERP_KERNEL::Exception)
900          {
901            std::vector<double> coo;
902            self->getCoordinatesOfNode(nodeId,coo);
903            return convertDblArrToPyList2(coo);
904          }
905
906          void scale(PyObject *point, double factor) throw(INTERP_KERNEL::Exception)
907          {
908            double val;
909            DataArrayDouble *a;
910            DataArrayDoubleTuple *aa;
911            std::vector<double> bb;
912            int sw;
913            int spaceDim=self->getSpaceDimension();
914            const char msg[]="Python wrap of MEDCouplingPointSet::scale : ";
915            const double *pointPtr=convertObjToPossibleCpp5_Safe(point,sw,val,a,aa,bb,msg,1,spaceDim,true);
916            self->scale(pointPtr,factor);
917          }
918
919          PyObject *getBoundingBox() const throw(INTERP_KERNEL::Exception)
920          {
921            int spaceDim=self->getSpaceDimension();
922            INTERP_KERNEL::AutoPtr<double> tmp=new double[2*spaceDim];
923            self->getBoundingBox(tmp);
924            PyObject *ret=convertDblArrToPyListOfTuple(tmp,2,spaceDim);
925            return ret;
926          }
927
928          PyObject *isEqualIfNotWhy(const MEDCouplingMesh *other, double prec) const throw(INTERP_KERNEL::Exception)
929          {
930            std::string ret1;
931            bool ret0=self->isEqualIfNotWhy(other,prec,ret1);
932            PyObject *ret=PyTuple_New(2);
933            PyObject *ret0Py=ret0?Py_True:Py_False;
934            Py_XINCREF(ret0Py);
935            PyTuple_SetItem(ret,0,ret0Py);
936            PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
937            return ret;
938          }
939
940          PyObject *buildPart(PyObject *li) const throw(INTERP_KERNEL::Exception)
941          {
942            int szArr,sw,iTypppArr;
943            std::vector<int> stdvecTyyppArr;
944            const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
945            MEDCouplingMesh *ret=self->buildPart(tmp,tmp+szArr);
946            if(sw==3)//DataArrayInt
947              { 
948                void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
949                DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
950                std::string name=argpt->getName();
951                if(!name.empty())
952                  ret->setName(name.c_str());
953              }
954            return convertMesh(ret, SWIG_POINTER_OWN | 0 );
955          }
956         
957          PyObject *buildPartAndReduceNodes(PyObject *li) const throw(INTERP_KERNEL::Exception)
958          {
959            int szArr,sw,iTypppArr;
960            std::vector<int> stdvecTyyppArr;
961            DataArrayInt *arr=0;
962            const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
963            MEDCouplingMesh *ret=self->buildPartAndReduceNodes(tmp,tmp+szArr,arr);
964            if(sw==3)//DataArrayInt
965              { 
966                void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
967                DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
968                std::string name=argpt->getName();
969                if(!name.empty())
970                  ret->setName(name.c_str());
971              }
972            //
973            PyObject *res = PyList_New(2);
974            PyObject *obj0=convertMesh(ret, SWIG_POINTER_OWN | 0 );
975            PyObject *obj1=SWIG_NewPointerObj(SWIG_as_voidptr(arr),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
976            PyList_SetItem(res,0,obj0);
977            PyList_SetItem(res,1,obj1);
978            return res;
979          }
980
981          PyObject *buildPartRangeAndReduceNodes(int beginCellIds, int endCellIds, int stepCellIds) const throw(INTERP_KERNEL::Exception)
982          {
983            int a,b,c;
984            DataArrayInt *arr=0;
985            MEDCouplingMesh *ret=self->buildPartRangeAndReduceNodes(beginCellIds,endCellIds,stepCellIds,a,b,c,arr);
986            PyObject *res = PyTuple_New(2);
987            PyObject *obj0=convertMesh(ret, SWIG_POINTER_OWN | 0 );
988            PyObject *obj1=0;
989            if(arr)
990              obj1=SWIG_NewPointerObj(SWIG_as_voidptr(arr),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
991            else
992              obj1=PySlice_New(PyInt_FromLong(a),PyInt_FromLong(b),PyInt_FromLong(b));
993            PyTuple_SetItem(res,0,obj0);
994            PyTuple_SetItem(res,1,obj1);
995            return res;
996          }
997
998         PyObject *getDistributionOfTypes() const throw(INTERP_KERNEL::Exception)
999         {
1000           std::vector<int> vals=self->getDistributionOfTypes();
1001           if(vals.size()%3!=0)
1002             throw INTERP_KERNEL::Exception("Internal Error detected in wrap python ! code returned by MEDCouplingMesh::getDistributionOfTypes is not so that %3==0 !");
1003           PyObject *ret=PyList_New((int)vals.size()/3);
1004           for(int j=0;j<(int)vals.size()/3;j++)
1005              {
1006                PyObject *ret1=PyList_New(3);
1007                PyList_SetItem(ret1,0,SWIG_From_int(vals[3*j]));
1008                PyList_SetItem(ret1,1,SWIG_From_int(vals[3*j+1]));
1009                PyList_SetItem(ret1,2,SWIG_From_int(vals[3*j+2]));
1010                PyList_SetItem(ret,j,ret1);
1011              }
1012           return ret;
1013         }
1014
1015         DataArrayInt *checkTypeConsistencyAndContig(PyObject *li, PyObject *li2) const throw(INTERP_KERNEL::Exception)
1016         {
1017           std::vector<int> code;
1018           std::vector<const DataArrayInt *> idsPerType;
1019           convertFromPyObjVectorOfObj<const ParaMEDMEM::DataArrayInt *>(li2,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,"DataArrayInt",idsPerType);
1020           convertPyToNewIntArr4(li,1,3,code);
1021           return self->checkTypeConsistencyAndContig(code,idsPerType);
1022         }
1023
1024         PyObject *splitProfilePerType(const DataArrayInt *profile) const throw(INTERP_KERNEL::Exception)
1025         {
1026           std::vector<int> code;
1027           std::vector<DataArrayInt *> idsInPflPerType;
1028           std::vector<DataArrayInt *> idsPerType;
1029           self->splitProfilePerType(profile,code,idsInPflPerType,idsPerType);
1030           PyObject *ret=PyTuple_New(3);
1031           //
1032           if(code.size()%3!=0)
1033             throw INTERP_KERNEL::Exception("Internal Error detected in wrap python ! code returned by MEDCouplingMesh::splitProfilePerType is not so that %3==0 !");
1034           PyObject *ret0=PyList_New((int)code.size()/3);
1035           for(int j=0;j<(int)code.size()/3;j++)
1036              {
1037                PyObject *ret00=PyList_New(3);
1038                PyList_SetItem(ret00,0,SWIG_From_int(code[3*j]));
1039                PyList_SetItem(ret00,1,SWIG_From_int(code[3*j+1]));
1040                PyList_SetItem(ret00,2,SWIG_From_int(code[3*j+2]));
1041                PyList_SetItem(ret0,j,ret00);
1042              }
1043           PyTuple_SetItem(ret,0,ret0);
1044           //
1045           PyObject *ret1=PyList_New(idsInPflPerType.size());
1046           for(std::size_t j=0;j<idsInPflPerType.size();j++)
1047             PyList_SetItem(ret1,j,SWIG_NewPointerObj(SWIG_as_voidptr(idsInPflPerType[j]),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1048           PyTuple_SetItem(ret,1,ret1);
1049           int n=idsPerType.size();
1050           PyObject *ret2=PyList_New(n);
1051           for(int i=0;i<n;i++)
1052             PyList_SetItem(ret2,i,SWIG_NewPointerObj(SWIG_as_voidptr(idsPerType[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1053           PyTuple_SetItem(ret,2,ret2);
1054           return ret;
1055         }
1056
1057         void translate(PyObject *vector) throw(INTERP_KERNEL::Exception)
1058         {
1059           double val;
1060           DataArrayDouble *a;
1061           DataArrayDoubleTuple *aa;
1062           std::vector<double> bb;
1063           int sw;
1064           int spaceDim=self->getSpaceDimension();
1065           const char msg[]="Python wrap of MEDCouplingPointSet::translate : ";
1066           const double *vectorPtr=convertObjToPossibleCpp5_Safe(vector,sw,val,a,aa,bb,msg,1,spaceDim,true);
1067           self->translate(vectorPtr);
1068         }
1069
1070          void rotate(PyObject *center, double alpha) throw(INTERP_KERNEL::Exception)
1071          {
1072            const char msg[]="Python wrap of MEDCouplingPointSet::rotate : ";
1073            double val;
1074            DataArrayDouble *a;
1075            DataArrayDoubleTuple *aa;
1076            std::vector<double> bb;
1077            int sw;
1078            int spaceDim=self->getSpaceDimension();
1079            const double *centerPtr=convertObjToPossibleCpp5_Safe(center,sw,val,a,aa,bb,msg,1,spaceDim,true);
1080            self->rotate(centerPtr,0,alpha);
1081          }
1082
1083          void rotate(PyObject *center, PyObject *vector, double alpha) throw(INTERP_KERNEL::Exception)
1084          {
1085            const char msg[]="Python wrap of MEDCouplingPointSet::rotate : ";
1086            double val,val2;
1087            DataArrayDouble *a,*a2;
1088            DataArrayDoubleTuple *aa,*aa2;
1089            std::vector<double> bb,bb2;
1090            int sw;
1091            int spaceDim=self->getSpaceDimension();
1092            const double *centerPtr=convertObjToPossibleCpp5_Safe(center,sw,val,a,aa,bb,msg,1,spaceDim,true);
1093            const double *vectorPtr=convertObjToPossibleCpp5_Safe(vector,sw,val2,a2,aa2,bb2,msg,1,spaceDim,false);//vectorPtr can be null in case of space dim 2
1094            self->rotate(centerPtr,vectorPtr,alpha);
1095          }
1096
1097          PyObject *getAllGeoTypes() const throw(INTERP_KERNEL::Exception)
1098          {
1099            std::set<INTERP_KERNEL::NormalizedCellType> result=self->getAllGeoTypes();
1100            std::set<INTERP_KERNEL::NormalizedCellType>::const_iterator iL=result.begin();
1101            PyObject *res=PyList_New(result.size());
1102            for(int i=0;iL!=result.end(); i++, iL++)
1103              PyList_SetItem(res,i,PyInt_FromLong(*iL));
1104            return res;
1105          }
1106          
1107          static MEDCouplingMesh *MergeMeshes(PyObject *li) throw(INTERP_KERNEL::Exception)
1108          {
1109             std::vector<const ParaMEDMEM::MEDCouplingMesh *> tmp;
1110             convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingMesh,"MEDCouplingMesh",tmp);
1111             return MEDCouplingMesh::MergeMeshes(tmp);
1112          }
1113        }
1114   };
1115 }
1116
1117 //== MEDCouplingMesh End
1118
1119 %include "NormalizedUnstructuredMesh.hxx"
1120 %include "MEDCouplingNatureOfField.hxx"
1121 %include "MEDCouplingTimeDiscretization.hxx"
1122 %include "MEDCouplingGaussLocalization.hxx"
1123 %include "MEDCouplingFieldDiscretization.hxx"
1124
1125 %ignore ParaMEDMEM::MEDCouplingFieldDiscretization::clonePart;
1126 %ignore ParaMEDMEM::MEDCouplingFieldDiscretization::buildSubMeshDataRange;
1127 %ignore ParaMEDMEM::MEDCouplingFieldDiscretizationPerCell::getArrayOfDiscIds;
1128
1129 //== MEDCouplingPointSet
1130
1131 namespace ParaMEDMEM
1132 {
1133   class MEDCouplingPointSet : public ParaMEDMEM::MEDCouplingMesh
1134     {
1135     public:
1136       void setCoords(const DataArrayDouble *coords) throw(INTERP_KERNEL::Exception);
1137       DataArrayDouble *getCoordinatesAndOwner() const throw(INTERP_KERNEL::Exception);
1138       bool areCoordsEqual(const MEDCouplingPointSet& other, double prec) const throw(INTERP_KERNEL::Exception);
1139       void zipCoords() throw(INTERP_KERNEL::Exception);
1140       double getCaracteristicDimension() const throw(INTERP_KERNEL::Exception);
1141       void recenterForMaxPrecision(double eps) throw(INTERP_KERNEL::Exception);
1142       void changeSpaceDimension(int newSpaceDim, double dftVal=0.) throw(INTERP_KERNEL::Exception);
1143       void tryToShareSameCoords(const MEDCouplingPointSet& other, double epsilon) throw(INTERP_KERNEL::Exception);
1144       virtual void shallowCopyConnectivityFrom(const MEDCouplingPointSet *other) throw(INTERP_KERNEL::Exception);
1145       virtual MEDCouplingPointSet *buildPartOfMySelf2(int start, int end, int step) const throw(INTERP_KERNEL::Exception);
1146       virtual void tryToShareSameCoordsPermute(const MEDCouplingPointSet& other, double epsilon) throw(INTERP_KERNEL::Exception);
1147       static DataArrayDouble *MergeNodesArray(const MEDCouplingPointSet *m1, const MEDCouplingPointSet *m2) throw(INTERP_KERNEL::Exception);
1148       static MEDCouplingPointSet *BuildInstanceFromMeshType(MEDCouplingMeshType type) throw(INTERP_KERNEL::Exception);
1149       virtual MEDCouplingPointSet *buildBoundaryMesh(bool keepCoords) const throw(INTERP_KERNEL::Exception);
1150       virtual DataArrayInt *getCellsInBoundingBox(const INTERP_KERNEL::DirectedBoundingBox& bbox, double eps) throw(INTERP_KERNEL::Exception);
1151       virtual DataArrayInt *zipCoordsTraducer() throw(INTERP_KERNEL::Exception);
1152       virtual DataArrayInt *findBoundaryNodes() const;
1153       virtual DataArrayInt *zipConnectivityTraducer(int compType, int startCellId=0) throw(INTERP_KERNEL::Exception);
1154       virtual MEDCouplingPointSet *mergeMyselfWithOnSameCoords(const MEDCouplingPointSet *other) const throw(INTERP_KERNEL::Exception);
1155       virtual void checkFullyDefined() const throw(INTERP_KERNEL::Exception);
1156       virtual bool isEmptyMesh(const std::vector<int>& tinyInfo) const throw(INTERP_KERNEL::Exception);
1157       %extend 
1158          {
1159            std::string __str__() const throw(INTERP_KERNEL::Exception)
1160            {
1161              return self->simpleRepr();
1162            }
1163            
1164            PyObject *buildNewNumberingFromCommonNodesFormat(const DataArrayInt *comm, const DataArrayInt *commIndex) const throw(INTERP_KERNEL::Exception)
1165            {
1166              int newNbOfNodes;
1167              DataArrayInt *ret0=self->buildNewNumberingFromCommonNodesFormat(comm,commIndex,newNbOfNodes);
1168              PyObject *res = PyList_New(2);
1169              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1170              PyList_SetItem(res,1,SWIG_From_int(newNbOfNodes));
1171              return res;
1172            }
1173            
1174            PyObject *findCommonNodes(double prec, int limitTupleId=-1) const throw(INTERP_KERNEL::Exception)
1175            {
1176              DataArrayInt *comm, *commIndex;
1177              self->findCommonNodes(prec,limitTupleId,comm,commIndex);
1178              PyObject *res = PyList_New(2);
1179              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(comm),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1180              PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(commIndex),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1181              return res;
1182            }
1183            
1184            PyObject *getCoords() throw(INTERP_KERNEL::Exception)
1185            {
1186              DataArrayDouble *ret1=self->getCoords();
1187              if (ret1)
1188                 ret1->incrRef();
1189              return SWIG_NewPointerObj((void*)ret1,SWIGTYPE_p_ParaMEDMEM__DataArrayDouble,SWIG_POINTER_OWN | 0);
1190            }
1191            
1192            PyObject *buildPartOfMySelf(PyObject *li, bool keepCoords=true) const throw(INTERP_KERNEL::Exception)
1193            {
1194              int szArr,sw,iTypppArr;
1195              std::vector<int> stdvecTyyppArr;
1196              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1197              MEDCouplingPointSet *ret=self->buildPartOfMySelf(tmp,tmp+szArr,keepCoords);
1198              if(sw==3)//DataArrayInt
1199                { 
1200                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
1201                  DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
1202                  std::string name=argpt->getName();
1203                  if(!name.empty())
1204                    ret->setName(name.c_str());
1205                }
1206              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1207            }
1208            
1209            PyObject *buildPartOfMySelfNode(PyObject *li, bool fullyIn) const throw(INTERP_KERNEL::Exception)
1210            {
1211              int szArr,sw,iTypppArr;
1212              std::vector<int> stdvecTyyppArr;
1213              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1214              MEDCouplingPointSet *ret=self->buildPartOfMySelfNode(tmp,tmp+szArr,fullyIn);
1215              if(sw==3)//DataArrayInt
1216                { 
1217                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
1218                  DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
1219                  std::string name=argpt->getName();
1220                  if(!name.empty())
1221                    ret->setName(name.c_str());
1222                }
1223              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1224            }
1225
1226            virtual PyObject *buildPartOfMySelfKeepCoords(PyObject *li) const throw(INTERP_KERNEL::Exception)
1227            {
1228              int szArr,sw,iTypppArr;
1229              std::vector<int> stdvecTyyppArr;
1230              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1231              MEDCouplingPointSet *ret=self->buildPartOfMySelfKeepCoords(tmp,tmp+szArr);
1232              if(sw==3)//DataArrayInt
1233                { 
1234                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
1235                  DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
1236                  std::string name=argpt->getName();
1237                  if(!name.empty())
1238                    ret->setName(name.c_str());
1239                }
1240              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1241            }
1242
1243            virtual PyObject *buildPartOfMySelfKeepCoords2(int start, int end, int step) const throw(INTERP_KERNEL::Exception)
1244            {
1245              MEDCouplingPointSet *ret=self->buildPartOfMySelfKeepCoords2(start,end,step);
1246              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1247            }
1248
1249            PyObject *buildFacePartOfMySelfNode(PyObject *li, bool fullyIn) const throw(INTERP_KERNEL::Exception)
1250            {
1251              int szArr,sw,iTypppArr;
1252              std::vector<int> stdvecTyyppArr;
1253              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1254              MEDCouplingPointSet *ret=self->buildFacePartOfMySelfNode(tmp,tmp+szArr,fullyIn);
1255              if(sw==3)//DataArrayInt
1256                { 
1257                  void *argp; SWIG_ConvertPtr(li,&argp,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,0|0);
1258                  DataArrayInt *argpt=reinterpret_cast< ParaMEDMEM::DataArrayInt * >(argp);
1259                  std::string name=argpt->getName();
1260                  if(!name.empty())
1261                    ret->setName(name.c_str());
1262                }
1263              return convertMesh(ret, SWIG_POINTER_OWN | 0 );
1264            }
1265
1266            void renumberNodes(PyObject *li, int newNbOfNodes) throw(INTERP_KERNEL::Exception)
1267            {
1268              int szArr,sw,iTypppArr;
1269              std::vector<int> stdvecTyyppArr;
1270              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1271              self->renumberNodes(tmp,newNbOfNodes);
1272            }
1273
1274            void renumberNodes2(PyObject *li, int newNbOfNodes) throw(INTERP_KERNEL::Exception)
1275            {
1276              int szArr,sw,iTypppArr;
1277              std::vector<int> stdvecTyyppArr;
1278              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1279              self->renumberNodes2(tmp,newNbOfNodes);
1280            }
1281
1282            PyObject *findNodesOnLine(PyObject *pt, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
1283              {
1284                int spaceDim=self->getSpaceDimension();
1285                double val,val2;
1286                DataArrayDouble *a,*a2;
1287                DataArrayDoubleTuple *aa,*aa2;
1288                std::vector<double> bb,bb2;
1289                int sw;
1290                const char msg[]="Python wrap of MEDCouplingPointSet::findNodesOnLine : 1st paramater for point.";
1291                const char msg2[]="Python wrap of MEDCouplingPointSet::findNodesOnLine : 2nd paramater for vector.";
1292                const double *p=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,1,spaceDim,true);
1293                const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
1294                std::vector<int> nodes;
1295                self->findNodesOnLine(p,v,eps,nodes);
1296                DataArrayInt *ret=DataArrayInt::New();
1297                ret->alloc((int)nodes.size(),1);
1298                std::copy(nodes.begin(),nodes.end(),ret->getPointer());
1299                return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
1300              }
1301            PyObject *findNodesOnPlane(PyObject *pt, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
1302              {
1303                int spaceDim=self->getSpaceDimension();
1304                double val,val2;
1305                DataArrayDouble *a,*a2;
1306                DataArrayDoubleTuple *aa,*aa2;
1307                std::vector<double> bb,bb2;
1308                int sw;
1309                const char msg[]="Python wrap of MEDCouplingPointSet::findNodesOnPlane : 1st paramater for point.";
1310                const char msg2[]="Python wrap of MEDCouplingPointSet::findNodesOnPlane : 2nd paramater for vector.";
1311                const double *p=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,1,spaceDim,true);
1312                const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
1313                std::vector<int> nodes;
1314                self->findNodesOnPlane(p,v,eps,nodes);
1315                DataArrayInt *ret=DataArrayInt::New();
1316                ret->alloc((int)nodes.size(),1);
1317                std::copy(nodes.begin(),nodes.end(),ret->getPointer());
1318                return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
1319              }
1320            
1321            PyObject *getNodeIdsNearPoint(PyObject *pt, double eps) const throw(INTERP_KERNEL::Exception)
1322            {
1323              double val;
1324              DataArrayDouble *a;
1325              DataArrayDoubleTuple *aa;
1326              std::vector<double> bb;
1327              int sw;
1328              int spaceDim=self->getSpaceDimension();
1329              const char msg[]="Python wrap of MEDCouplingPointSet::getNodeIdsNearPoint : ";
1330              const double *pos=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,1,spaceDim,true);
1331              DataArrayInt *ret=self->getNodeIdsNearPoint(pos,eps);
1332              return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
1333            }
1334
1335            PyObject *getNodeIdsNearPoints(PyObject *pt, int nbOfPoints, double eps) const throw(INTERP_KERNEL::Exception)
1336            {
1337              DataArrayInt *c=0,*cI=0;
1338              //
1339              double val;
1340              DataArrayDouble *a;
1341              DataArrayDoubleTuple *aa;
1342              std::vector<double> bb;
1343              int sw;
1344              int spaceDim=self->getSpaceDimension();
1345              const char msg[]="Python wrap of MEDCouplingPointSet::getNodeIdsNearPoints : ";
1346              const double *pos=convertObjToPossibleCpp5_Safe(pt,sw,val,a,aa,bb,msg,nbOfPoints,spaceDim,true);
1347              self->getNodeIdsNearPoints(pos,nbOfPoints,eps,c,cI);
1348              PyObject *ret=PyTuple_New(2);
1349              PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(c),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1350              PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cI),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1351              return ret;
1352            }
1353
1354            PyObject *getNodeIdsNearPoints(PyObject *pt, double eps) const throw(INTERP_KERNEL::Exception)
1355            {
1356              DataArrayInt *c=0,*cI=0;
1357              int spaceDim=self->getSpaceDimension();
1358              double val;
1359              DataArrayDouble *a;
1360              DataArrayDoubleTuple *aa;
1361              std::vector<double> bb;
1362              int sw;
1363              int nbOfTuples=-1;
1364              const double *ptPtr=convertObjToPossibleCpp5_Safe2(pt,sw,val,a,aa,bb,"Python wrap of MEDCouplingUMesh::getNodeIdsNearPoints",spaceDim,true,nbOfTuples);
1365              self->getNodeIdsNearPoints(ptPtr,nbOfTuples,eps,c,cI);
1366              //
1367              PyObject *ret=PyTuple_New(2);
1368              PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(c),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1369              PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cI),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1370              return ret;
1371            }
1372
1373            PyObject *getCellsInBoundingBox(PyObject *bbox, double eps) const throw(INTERP_KERNEL::Exception)
1374            {
1375              double val;
1376              DataArrayDouble *a;
1377              DataArrayDoubleTuple *aa;
1378              std::vector<double> bb;
1379              int sw;
1380              int spaceDim=self->getSpaceDimension();
1381              const char msg[]="Python wrap of MEDCouplingPointSet::getCellsInBoundingBox : ";
1382              const double *tmp=convertObjToPossibleCpp5_Safe(bbox,sw,val,a,aa,bb,msg,spaceDim,2,true);
1383              //
1384              DataArrayInt *elems=self->getCellsInBoundingBox(tmp,eps);
1385              return SWIG_NewPointerObj(SWIG_as_voidptr(elems),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
1386            }
1387
1388            void duplicateNodesInCoords(PyObject *li) throw(INTERP_KERNEL::Exception)
1389            {
1390              int sw;
1391              int singleVal;
1392              std::vector<int> multiVal;
1393              std::pair<int, std::pair<int,int> > slic;
1394              ParaMEDMEM::DataArrayInt *daIntTyypp=0;
1395              convertObjToPossibleCpp2(li,self->getNumberOfNodes(),sw,singleVal,multiVal,slic,daIntTyypp);
1396              switch(sw)
1397                {
1398                case 1:
1399                  return self->duplicateNodesInCoords(&singleVal,&singleVal+1);
1400                case 2:
1401                  return self->duplicateNodesInCoords(&multiVal[0],&multiVal[0]+multiVal.size());
1402                case 4:
1403                  return self->duplicateNodesInCoords(daIntTyypp->begin(),daIntTyypp->end());
1404                default:
1405                  throw INTERP_KERNEL::Exception("MEDCouplingPointSet::duplicateNodesInCoords : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
1406                }
1407            }
1408
1409            virtual PyObject *getReverseNodalConnectivity() const throw(INTERP_KERNEL::Exception)
1410            {
1411              MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d0=DataArrayInt::New();
1412              MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d1=DataArrayInt::New();
1413              self->getReverseNodalConnectivity(d0,d1);
1414              PyObject *ret=PyTuple_New(2);
1415              PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1416              PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1417              return ret;
1418            }
1419
1420            virtual PyObject *findCommonCells(int compType, int startCellId=0) const throw(INTERP_KERNEL::Exception)
1421            {
1422              DataArrayInt *v0=0,*v1=0;
1423              self->findCommonCells(compType,startCellId,v0,v1);
1424              PyObject *res = PyList_New(2);
1425              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(v0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1426              PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(v1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1427              return res;
1428            }
1429
1430       
1431            virtual void renumberNodesInConn(PyObject *li) throw(INTERP_KERNEL::Exception)
1432            {
1433              void *da=0;
1434              int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayInt, 0 | 0 );
1435              if (!SWIG_IsOK(res1))
1436                {
1437                  int size;
1438                  INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
1439                  self->renumberNodesInConn(tmp);
1440                }
1441              else
1442                {
1443                  DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
1444                  if(!da2)
1445                    throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
1446                  da2->checkAllocated();
1447                  self->renumberNodesInConn(da2->getConstPointer());
1448                }
1449            }
1450
1451            virtual PyObject *getNodeIdsInUse() const throw(INTERP_KERNEL::Exception)
1452            {
1453              int ret1=-1;
1454              DataArrayInt *ret0=self->getNodeIdsInUse(ret1);
1455              PyObject *ret=PyTuple_New(2);
1456              PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1457              PyTuple_SetItem(ret,1,PyInt_FromLong(ret1));
1458              return ret;
1459            }
1460
1461            virtual DataArrayInt *fillCellIdsToKeepFromNodeIds(PyObject *li, bool fullyIn) const
1462            {
1463              DataArrayInt *ret=0;
1464              //
1465              int szArr,sw,iTypppArr;
1466              std::vector<int> stdvecTyyppArr;
1467              const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1468              self->fillCellIdsToKeepFromNodeIds(tmp,tmp+szArr,fullyIn,ret);
1469              return ret;
1470            }
1471
1472            virtual PyObject *mergeNodes(double precision) throw(INTERP_KERNEL::Exception)
1473            {
1474              bool ret1;
1475              int ret2;
1476              DataArrayInt *ret0=self->mergeNodes(precision,ret1,ret2);
1477              PyObject *res = PyList_New(3);
1478              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1479              PyList_SetItem(res,1,SWIG_From_bool(ret1));
1480              PyList_SetItem(res,2,SWIG_From_int(ret2));
1481              return res;
1482            }
1483            
1484            virtual PyObject *mergeNodes2(double precision) throw(INTERP_KERNEL::Exception)
1485            {
1486              bool ret1;
1487              int ret2;
1488              DataArrayInt *ret0=self->mergeNodes2(precision,ret1,ret2);
1489              PyObject *res = PyList_New(3);
1490              PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1491              PyList_SetItem(res,1,SWIG_From_bool(ret1));
1492              PyList_SetItem(res,2,SWIG_From_int(ret2));
1493              return res;
1494            }
1495            
1496            DataArrayInt *getCellIdsLyingOnNodes(PyObject *li, bool fullyIn) const throw(INTERP_KERNEL::Exception)
1497            {
1498              void *da=0;
1499              int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayInt, 0 |  0 );
1500              if (!SWIG_IsOK(res1))
1501                {
1502                  int size;
1503                  INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
1504                  return self->getCellIdsLyingOnNodes(tmp,((const int *)tmp)+size,fullyIn);
1505                }
1506              else
1507                {
1508                  DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
1509                  if(!da2)
1510                    throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
1511                  da2->checkAllocated();
1512                  return self->getCellIdsLyingOnNodes(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems(),fullyIn);
1513                }
1514            }
1515
1516            MEDCouplingPointSet *__getitem__(PyObject *listOrDataArrI) throw(INTERP_KERNEL::Exception)
1517            {
1518              int sw;
1519              int singleVal;
1520              std::vector<int> multiVal;
1521              std::pair<int, std::pair<int,int> > slic;
1522              ParaMEDMEM::DataArrayInt *daIntTyypp=0;
1523              int nbc=self->getNumberOfCells();
1524              convertObjToPossibleCpp2(listOrDataArrI,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
1525              switch(sw)
1526                {
1527                case 1:
1528                  {
1529                    if(singleVal>=nbc)
1530                      {
1531                        std::ostringstream oss;
1532                        oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1533                        throw INTERP_KERNEL::Exception(oss.str().c_str());
1534                      }
1535                    if(singleVal>=0)
1536                      return self->buildPartOfMySelf(&singleVal,&singleVal+1,true);
1537                    else
1538                      {
1539                        if(nbc+singleVal>0)
1540                          {
1541                            int tmp=nbc+singleVal;
1542                            return self->buildPartOfMySelf(&tmp,&tmp+1,true);
1543                          }
1544                        else
1545                          {
1546                            std::ostringstream oss;
1547                            oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1548                            throw INTERP_KERNEL::Exception(oss.str().c_str());
1549                          }
1550                      }
1551                  }
1552                case 2:
1553                  {
1554                    return static_cast<MEDCouplingPointSet *>(self->buildPartOfMySelf(&multiVal[0],&multiVal[0]+multiVal.size(),true));
1555                  }
1556                case 3:
1557                  {
1558                    return self->buildPartOfMySelf2(slic.first,slic.second.first,slic.second.second,true);
1559                  }
1560                case 4:
1561                  {
1562                    if(!daIntTyypp)
1563                      throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__getitem__ : null instance has been given in input !");
1564                    daIntTyypp->checkAllocated();
1565                    return self->buildPartOfMySelf(daIntTyypp->begin(),daIntTyypp->end(),true);
1566                  }
1567                default:
1568                  throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__getitem__ : unrecognized type in input ! Possibilities are : int, list or tuple of int DataArrayInt instance !");
1569                }
1570            }
1571            
1572            static void Rotate2DAlg(PyObject *center, double angle, int nbNodes, PyObject *coords) throw(INTERP_KERNEL::Exception)
1573            {
1574              int sz;
1575              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1576              INTERP_KERNEL::AutoCPtr<double> coo=convertPyToNewDblArr2(coords,&sz);
1577              ParaMEDMEM::MEDCouplingPointSet::Rotate2DAlg(c,angle,nbNodes,coo);
1578              for(int i=0;i<sz;i++)
1579                PyList_SetItem(coords,i,PyFloat_FromDouble(coo[i]));
1580            }
1581            
1582            static void Rotate2DAlg(PyObject *center, double angle, PyObject *coords) throw(INTERP_KERNEL::Exception)
1583            {
1584              int sz;
1585              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1586              int sw,nbNodes=0;
1587              double val0;  ParaMEDMEM::DataArrayDouble *val1=0; ParaMEDMEM::DataArrayDoubleTuple *val2=0;
1588              std::vector<double> val3;
1589              const double *coo=convertObjToPossibleCpp5_Safe2(coords,sw,val0,val1,val2,val3,
1590                                                             "Rotate2DAlg",2,true,nbNodes);
1591              if(sw!=2 && sw!=3)
1592                throw INTERP_KERNEL::Exception("Invalid call to MEDCouplingPointSet::Rotate2DAlg : try another overload method !");
1593              ParaMEDMEM::MEDCouplingPointSet::Rotate2DAlg(c,angle,nbNodes,const_cast<double *>(coo));
1594            }
1595            
1596            static void Rotate3DAlg(PyObject *center, PyObject *vect, double angle, int nbNodes, PyObject *coords) throw(INTERP_KERNEL::Exception)
1597            {
1598              int sz,sz2;
1599              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1600              INTERP_KERNEL::AutoCPtr<double> coo=convertPyToNewDblArr2(coords,&sz);
1601              INTERP_KERNEL::AutoCPtr<double> v=convertPyToNewDblArr2(vect,&sz2);
1602              ParaMEDMEM::MEDCouplingPointSet::Rotate3DAlg(c,v,angle,nbNodes,coo);
1603              for(int i=0;i<sz;i++)
1604                PyList_SetItem(coords,i,PyFloat_FromDouble(coo[i]));
1605            }
1606            
1607            static void Rotate3DAlg(PyObject *center, PyObject *vect, double angle, PyObject *coords) throw(INTERP_KERNEL::Exception)
1608            {
1609              int sz,sz2;
1610              INTERP_KERNEL::AutoCPtr<double> c=convertPyToNewDblArr2(center,&sz);
1611              int sw,nbNodes=0;
1612              double val0;  ParaMEDMEM::DataArrayDouble *val1=0; ParaMEDMEM::DataArrayDoubleTuple *val2=0;
1613              std::vector<double> val3;
1614              const double *coo=convertObjToPossibleCpp5_Safe2(coords,sw,val0,val1,val2,val3,
1615                                                             "Rotate3DAlg",3,true,nbNodes);
1616              if(sw!=2 && sw!=3)
1617                throw INTERP_KERNEL::Exception("Invalid call to MEDCouplingPointSet::Rotate3DAlg : try another overload method !");
1618              INTERP_KERNEL::AutoCPtr<double> v=convertPyToNewDblArr2(vect,&sz2);
1619              ParaMEDMEM::MEDCouplingPointSet::Rotate3DAlg(c,v,angle,nbNodes,const_cast<double *>(coo));
1620            }
1621          }
1622     };
1623
1624   //== MEDCouplingPointSet End
1625
1626   class MEDCouplingUMeshCell
1627   {
1628   public:
1629     INTERP_KERNEL::NormalizedCellType getType() const;
1630     %extend
1631       {
1632         std::string __str__() const throw(INTERP_KERNEL::Exception)
1633         {
1634           return self->repr();
1635         }
1636
1637         PyObject *getAllConn() const throw(INTERP_KERNEL::Exception)
1638         {
1639           int ret2;
1640           const int *r=self->getAllConn(ret2);
1641           PyObject *ret=PyTuple_New(ret2);
1642           for(int i=0;i<ret2;i++)
1643             PyTuple_SetItem(ret,i,PyInt_FromLong(r[i]));
1644           return ret;
1645         }
1646       }
1647   };
1648
1649   class MEDCouplingUMeshCellIterator
1650   {
1651   public:
1652     %extend
1653       {
1654         PyObject *next()
1655         {
1656           MEDCouplingUMeshCell *ret=self->nextt();
1657           if(ret)
1658             return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMeshCell,0|0);
1659           else
1660             {
1661               PyErr_SetString(PyExc_StopIteration,"No more data.");
1662               return 0;
1663             }
1664         }
1665       }
1666   };
1667
1668   class MEDCouplingUMeshCellByTypeIterator
1669   {
1670   public:
1671     ~MEDCouplingUMeshCellByTypeIterator();
1672     %extend
1673       {
1674         PyObject *next()
1675         {
1676           MEDCouplingUMeshCellEntry *ret=self->nextt();
1677           if(ret)
1678             return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMeshCellEntry,SWIG_POINTER_OWN | 0);
1679           else
1680             {
1681               PyErr_SetString(PyExc_StopIteration,"No more data.");
1682               return 0;
1683             }
1684         }
1685       }
1686   };
1687
1688   class MEDCouplingUMeshCellByTypeEntry
1689   {
1690   public:
1691     ~MEDCouplingUMeshCellByTypeEntry();
1692     %extend
1693       {
1694         MEDCouplingUMeshCellByTypeIterator *__iter__()
1695         {
1696           return self->iterator();
1697         }
1698       }
1699   };
1700
1701   class MEDCouplingUMeshCellEntry
1702   {
1703   public:
1704     INTERP_KERNEL::NormalizedCellType getType() const;
1705     int getNumberOfElems() const;
1706     %extend
1707       {
1708         MEDCouplingUMeshCellIterator *__iter__()
1709         {
1710           return self->iterator();
1711         }
1712       }
1713   };
1714   
1715   //== MEDCouplingUMesh
1716
1717   class MEDCouplingUMesh : public ParaMEDMEM::MEDCouplingPointSet
1718   {
1719   public:
1720     static MEDCouplingUMesh *New() throw(INTERP_KERNEL::Exception);
1721     static MEDCouplingUMesh *New(const char *meshName, int meshDim) throw(INTERP_KERNEL::Exception);
1722     MEDCouplingUMesh *clone(bool recDeepCpy) const;
1723     void checkCoherency() const throw(INTERP_KERNEL::Exception);
1724     void setMeshDimension(int meshDim) throw(INTERP_KERNEL::Exception);
1725     void allocateCells(int nbOfCells=0) throw(INTERP_KERNEL::Exception);
1726     void finishInsertingCells() throw(INTERP_KERNEL::Exception);
1727     MEDCouplingUMeshCellByTypeEntry *cellsByType() throw(INTERP_KERNEL::Exception);
1728     void setConnectivity(DataArrayInt *conn, DataArrayInt *connIndex, bool isComputingTypes=true) throw(INTERP_KERNEL::Exception);
1729     INTERP_KERNEL::NormalizedCellType getTypeOfCell(int cellId) const throw(INTERP_KERNEL::Exception);
1730     void setPartOfMySelf2(int start, int end, int step, const MEDCouplingUMesh& otherOnSameCoordsThanThis) throw(INTERP_KERNEL::Exception);
1731     int getNumberOfNodesInCell(int cellId) const throw(INTERP_KERNEL::Exception);
1732     int getMeshLength() const throw(INTERP_KERNEL::Exception);
1733     void computeTypes() throw(INTERP_KERNEL::Exception);
1734     std::string reprConnectivityOfThis() const throw(INTERP_KERNEL::Exception);
1735     MEDCouplingUMesh *buildSetInstanceFromThis(int spaceDim) const throw(INTERP_KERNEL::Exception);
1736     //tools
1737     void shiftNodeNumbersInConn(int delta) throw(INTERP_KERNEL::Exception);
1738     std::vector<bool> getQuadraticStatus() const throw(INTERP_KERNEL::Exception);
1739     DataArrayInt *findCellIdsOnBoundary() const throw(INTERP_KERNEL::Exception);
1740     MEDCouplingUMesh *computeSkin() const throw(INTERP_KERNEL::Exception);
1741     bool checkConsecutiveCellTypes() const throw(INTERP_KERNEL::Exception);
1742     bool checkConsecutiveCellTypesForMEDFileFrmt() const throw(INTERP_KERNEL::Exception);
1743     DataArrayInt *rearrange2ConsecutiveCellTypes() throw(INTERP_KERNEL::Exception);
1744     DataArrayInt *sortCellsInMEDFileFrmt() throw(INTERP_KERNEL::Exception);
1745     DataArrayInt *getRenumArrForMEDFileFrmt() const throw(INTERP_KERNEL::Exception);
1746     DataArrayInt *convertCellArrayPerGeoType(const DataArrayInt *da) const throw(INTERP_KERNEL::Exception);
1747     DataArrayInt *computeFetchedNodeIds() const throw(INTERP_KERNEL::Exception);
1748     MEDCouplingUMesh *buildDescendingConnectivity(DataArrayInt *desc, DataArrayInt *descIndx, DataArrayInt *revDesc, DataArrayInt *revDescIndx) const throw(INTERP_KERNEL::Exception);
1749     MEDCouplingUMesh *buildDescendingConnectivity2(DataArrayInt *desc, DataArrayInt *descIndx, DataArrayInt *revDesc, DataArrayInt *revDescIndx) const throw(INTERP_KERNEL::Exception);
1750     MEDCouplingUMesh *explode3DMeshTo1D(DataArrayInt *desc, DataArrayInt *descIndx, DataArrayInt *revDesc, DataArrayInt *revDescIndx) const throw(INTERP_KERNEL::Exception);
1751     void orientCorrectlyPolyhedrons() throw(INTERP_KERNEL::Exception);
1752     bool isPresenceOfQuadratic() const throw(INTERP_KERNEL::Exception);
1753     MEDCouplingFieldDouble *buildDirectionVectorField() const throw(INTERP_KERNEL::Exception);
1754     bool isContiguous1D() const throw(INTERP_KERNEL::Exception);
1755     void tessellate2D(double eps) throw(INTERP_KERNEL::Exception);
1756     void tessellate2DCurve(double eps) throw(INTERP_KERNEL::Exception);
1757     void convertQuadraticCellsToLinear() throw(INTERP_KERNEL::Exception);
1758     DataArrayInt *convertLinearCellsToQuadratic(int conversionType=0) throw(INTERP_KERNEL::Exception);
1759     void convertDegeneratedCells() throw(INTERP_KERNEL::Exception);
1760     bool areOnlySimplexCells() const throw(INTERP_KERNEL::Exception);
1761     MEDCouplingFieldDouble *getEdgeRatioField() const throw(INTERP_KERNEL::Exception);
1762     MEDCouplingFieldDouble *getAspectRatioField() const throw(INTERP_KERNEL::Exception);
1763     MEDCouplingFieldDouble *getWarpField() const throw(INTERP_KERNEL::Exception);
1764     MEDCouplingFieldDouble *getSkewField() const throw(INTERP_KERNEL::Exception);
1765     DataArrayInt *convexEnvelop2D() throw(INTERP_KERNEL::Exception);
1766     std::string cppRepr() const throw(INTERP_KERNEL::Exception);
1767     DataArrayInt *findAndCorrectBadOriented3DExtrudedCells() throw(INTERP_KERNEL::Exception);
1768     DataArrayInt *findAndCorrectBadOriented3DCells() throw(INTERP_KERNEL::Exception);
1769     ParaMEDMEM::MEDCoupling1GTUMesh *convertIntoSingleGeoTypeMesh() const throw(INTERP_KERNEL::Exception);
1770     DataArrayInt *convertNodalConnectivityToStaticGeoTypeMesh() const throw(INTERP_KERNEL::Exception);
1771     static MEDCouplingUMesh *Build0DMeshFromCoords(DataArrayDouble *da) throw(INTERP_KERNEL::Exception);
1772     static MEDCouplingUMesh *MergeUMeshes(const MEDCouplingUMesh *mesh1, const MEDCouplingUMesh *mesh2) throw(INTERP_KERNEL::Exception);
1773     static MEDCouplingUMesh *MergeUMeshesOnSameCoords(const MEDCouplingUMesh *mesh1, const MEDCouplingUMesh *mesh2) throw(INTERP_KERNEL::Exception);
1774     static DataArrayInt *ComputeSpreadZoneGradually(const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn) throw(INTERP_KERNEL::Exception);
1775     static DataArrayInt *ComputeRangesFromTypeDistribution(const std::vector<int>& code) throw(INTERP_KERNEL::Exception);
1776     %extend {
1777       MEDCouplingUMesh() throw(INTERP_KERNEL::Exception)
1778       {
1779         return MEDCouplingUMesh::New();
1780       }
1781       
1782       MEDCouplingUMesh(const char *meshName, int meshDim) throw(INTERP_KERNEL::Exception)
1783       {
1784         return MEDCouplingUMesh::New(meshName,meshDim);
1785       }
1786       
1787       std::string __str__() const throw(INTERP_KERNEL::Exception)
1788       {
1789         return self->simpleRepr();
1790       }
1791       
1792       std::string __repr__() const throw(INTERP_KERNEL::Exception)
1793       {
1794         std::ostringstream oss;
1795         self->reprQuickOverview(oss);
1796         return oss.str();
1797       }
1798       
1799       MEDCouplingUMeshCellIterator *__iter__() throw(INTERP_KERNEL::Exception)
1800       {
1801         return self->cellIterator();
1802       }
1803       
1804       void setPartOfMySelf(PyObject *li, const MEDCouplingUMesh& otherOnSameCoordsThanThis) throw(INTERP_KERNEL::Exception)
1805       {
1806         int sw;
1807         int singleVal;
1808         std::vector<int> multiVal;
1809         std::pair<int, std::pair<int,int> > slic;
1810         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
1811         int nbc=self->getNumberOfCells();
1812         convertObjToPossibleCpp2(li,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
1813         switch(sw)
1814           {
1815           case 1:
1816             {
1817               if(singleVal>=nbc)
1818                 {
1819                   std::ostringstream oss;
1820                   oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1821                   throw INTERP_KERNEL::Exception(oss.str().c_str());
1822                 }
1823               if(singleVal>=0)
1824                 {
1825                   self->setPartOfMySelf(&singleVal,&singleVal+1,otherOnSameCoordsThanThis);
1826                   break;
1827                 }
1828               else
1829                 {
1830                   if(nbc+singleVal>0)
1831                     {
1832                       int tmp=nbc+singleVal;
1833                       self->setPartOfMySelf(&tmp,&tmp+1,otherOnSameCoordsThanThis);
1834                       break;
1835                     }
1836                   else
1837                     {
1838                       std::ostringstream oss;
1839                       oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1840                       throw INTERP_KERNEL::Exception(oss.str().c_str());
1841                     }
1842                 }
1843             }
1844           case 2:
1845             {
1846               self->setPartOfMySelf(&multiVal[0],&multiVal[0]+multiVal.size(),otherOnSameCoordsThanThis);
1847               break;
1848             }
1849           case 4:
1850             {
1851               if(!daIntTyypp)
1852                 throw INTERP_KERNEL::Exception("MEDCouplingUMesh::setPartOfMySelf : null instance has been given in input !");
1853               daIntTyypp->checkAllocated();
1854               self->setPartOfMySelf(daIntTyypp->begin(),daIntTyypp->end(),otherOnSameCoordsThanThis);
1855               break;
1856             }
1857           default:
1858             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::setPartOfMySelf : unrecognized type in input ! Possibilities are : int, list or tuple of int DataArrayInt instance !");
1859           }
1860       }
1861
1862       void __setitem__(PyObject *li, const MEDCouplingUMesh& otherOnSameCoordsThanThis) throw(INTERP_KERNEL::Exception)
1863       {
1864         int sw;
1865         int singleVal;
1866         std::vector<int> multiVal;
1867         std::pair<int, std::pair<int,int> > slic;
1868         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
1869         int nbc=self->getNumberOfCells();
1870         convertObjToPossibleCpp2(li,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
1871         switch(sw)
1872           {
1873           case 1:
1874             {
1875               if(singleVal>=nbc)
1876                 {
1877                   std::ostringstream oss;
1878                   oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1879                   throw INTERP_KERNEL::Exception(oss.str().c_str());
1880                 }
1881               if(singleVal>=0)
1882                 {
1883                   self->setPartOfMySelf(&singleVal,&singleVal+1,otherOnSameCoordsThanThis);
1884                   break;
1885                 }
1886               else
1887                 {
1888                   if(nbc+singleVal>0)
1889                     {
1890                       int tmp=nbc+singleVal;
1891                       self->setPartOfMySelf(&tmp,&tmp+1,otherOnSameCoordsThanThis);
1892                       break;
1893                     }
1894                   else
1895                     {
1896                       std::ostringstream oss;
1897                       oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
1898                       throw INTERP_KERNEL::Exception(oss.str().c_str());
1899                     }
1900                 }
1901             }
1902           case 2:
1903             {
1904               self->setPartOfMySelf(&multiVal[0],&multiVal[0]+multiVal.size(),otherOnSameCoordsThanThis);
1905               break;
1906             }
1907           case 3:
1908             {
1909               self->setPartOfMySelf2(slic.first,slic.second.first,slic.second.second,otherOnSameCoordsThanThis);
1910               break;
1911             }
1912           case 4:
1913             {
1914               if(!daIntTyypp)
1915                 throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__setitem__ : null instance has been given in input !");
1916               daIntTyypp->checkAllocated();
1917               self->setPartOfMySelf(daIntTyypp->begin(),daIntTyypp->end(),otherOnSameCoordsThanThis);
1918               break;
1919             }
1920           default:
1921             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::__setitem__ : unrecognized type in input ! Possibilities are : int, list or tuple of int, slice, DataArrayInt instance !");
1922           }
1923       }
1924
1925       void insertNextCell(INTERP_KERNEL::NormalizedCellType type, int size, PyObject *li) throw(INTERP_KERNEL::Exception)
1926       {
1927         int szArr,sw,iTypppArr;
1928         std::vector<int> stdvecTyyppArr;
1929         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1930         if(size>szArr)
1931           {
1932             std::ostringstream oss; oss << "Wrap of MEDCouplingUMesh::insertNextCell : request of connectivity with length " << size << " whereas the length of input is " << szArr << " !";
1933             throw INTERP_KERNEL::Exception(oss.str().c_str());
1934           }
1935         self->insertNextCell(type,size,tmp);
1936       }
1937
1938       void insertNextCell(INTERP_KERNEL::NormalizedCellType type, PyObject *li) throw(INTERP_KERNEL::Exception)
1939       {
1940         int szArr,sw,iTypppArr;
1941         std::vector<int> stdvecTyyppArr;
1942         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
1943         self->insertNextCell(type,szArr,tmp);
1944       }
1945       
1946       DataArrayInt *getNodalConnectivity() throw(INTERP_KERNEL::Exception)
1947       {
1948         DataArrayInt *ret=self->getNodalConnectivity();
1949         if(ret)
1950           ret->incrRef();
1951         return ret;
1952       }
1953       DataArrayInt *getNodalConnectivityIndex() throw(INTERP_KERNEL::Exception)
1954       {
1955         DataArrayInt *ret=self->getNodalConnectivityIndex();
1956         if(ret)
1957           ret->incrRef();
1958         return ret;
1959       }
1960       PyObject *getAllTypes() const throw(INTERP_KERNEL::Exception)
1961       {
1962         std::set<INTERP_KERNEL::NormalizedCellType> result=self->getAllTypes();
1963         std::set<INTERP_KERNEL::NormalizedCellType>::const_iterator iL=result.begin();
1964         PyObject *res = PyList_New(result.size());
1965         for (int i=0;iL!=result.end(); i++, iL++)
1966           PyList_SetItem(res,i,PyInt_FromLong(*iL));
1967         return res;
1968       }
1969       
1970       static PyObject *ComputeSpreadZoneGraduallyFromSeed(PyObject *seed, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn, int nbOfDepthPeeling=-1) throw(INTERP_KERNEL::Exception)
1971       {
1972         int szArr,sw,iTypppArr;
1973         std::vector<int> stdvecTyyppArr;
1974         const int *seedPtr=convertObjToPossibleCpp1_Safe(seed,sw,szArr,iTypppArr,stdvecTyyppArr);
1975         int nbOfDepthPeelingPerformed=0;
1976         DataArrayInt *ret0=MEDCouplingUMesh::ComputeSpreadZoneGraduallyFromSeed(seedPtr,seedPtr+szArr,arrIn,arrIndxIn,nbOfDepthPeeling,nbOfDepthPeelingPerformed);
1977         PyObject *res=PyTuple_New(2);
1978         PyTuple_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1979         PyTuple_SetItem(res,1,PyInt_FromLong(nbOfDepthPeelingPerformed));
1980         return res;
1981       }
1982
1983       static PyObject *FindCommonCellsAlg(int compType, int startCellId, const DataArrayInt *nodal, const DataArrayInt *nodalI, const DataArrayInt *revNodal, const DataArrayInt *revNodalI) throw(INTERP_KERNEL::Exception)
1984       {
1985         DataArrayInt *v0=0,*v1=0;
1986         MEDCouplingUMesh::FindCommonCellsAlg(compType,startCellId,nodal,nodalI,revNodal,revNodalI,v0,v1);
1987         PyObject *res = PyList_New(2);
1988         PyList_SetItem(res,0,SWIG_NewPointerObj(SWIG_as_voidptr(v0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1989         PyList_SetItem(res,1,SWIG_NewPointerObj(SWIG_as_voidptr(v1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
1990         return res;
1991       }
1992       
1993       PyObject *distanceToPoint(PyObject *point) const throw(INTERP_KERNEL::Exception)
1994       {
1995         double val;
1996         DataArrayDouble *a;
1997         DataArrayDoubleTuple *aa;
1998         std::vector<double> bb;
1999         int sw;
2000         int nbOfCompo=self->getSpaceDimension();
2001         const double *pt=convertObjToPossibleCpp5_Safe(point,sw,val,a,aa,bb,"Python wrap of MEDCouplingUMesh::distanceToPoint",1,nbOfCompo,true);
2002         //
2003         int cellId=-1;
2004         double ret0=self->distanceToPoint(pt,pt+nbOfCompo,cellId);
2005         PyObject *ret=PyTuple_New(2);
2006         PyTuple_SetItem(ret,0,PyFloat_FromDouble(ret0));
2007         PyTuple_SetItem(ret,1,PyInt_FromLong(cellId));
2008         return ret;
2009       }
2010
2011       PyObject *distanceToPoints(const DataArrayDouble *pts) const throw(INTERP_KERNEL::Exception)
2012       {
2013         DataArrayInt *ret1=0;
2014         DataArrayDouble *ret0=self->distanceToPoints(pts,ret1);
2015         PyObject *ret=PyTuple_New(2);
2016         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
2017         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2018         return ret;
2019       }
2020       
2021       PyObject *checkButterflyCells(double eps=1e-12) throw(INTERP_KERNEL::Exception)
2022       {
2023         std::vector<int> cells;
2024         self->checkButterflyCells(cells,eps);
2025         DataArrayInt *ret=DataArrayInt::New();
2026         ret->alloc((int)cells.size(),1);
2027         std::copy(cells.begin(),cells.end(),ret->getPointer());
2028         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
2029       }
2030
2031       PyObject *splitByType() const throw(INTERP_KERNEL::Exception)
2032       {
2033         std::vector<MEDCouplingUMesh *> ms=self->splitByType();
2034         int sz=ms.size();
2035         PyObject *ret = PyList_New(sz);
2036         for(int i=0;i<sz;i++)
2037           PyList_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(ms[i]),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2038         return ret;
2039       }
2040
2041       PyObject *partitionBySpreadZone() const throw(INTERP_KERNEL::Exception)
2042       {
2043         std::vector<DataArrayInt *> retCpp=self->partitionBySpreadZone();
2044         int sz=retCpp.size();
2045         PyObject *ret=PyList_New(sz);
2046         for(int i=0;i<sz;i++)
2047           PyList_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(retCpp[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2048         return ret;
2049       }
2050
2051       PyObject *keepSpecifiedCells(INTERP_KERNEL::NormalizedCellType type, PyObject *ids) const throw(INTERP_KERNEL::Exception)
2052       {
2053         int size;
2054         INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(ids,&size);
2055         MEDCouplingUMesh *ret=self->keepSpecifiedCells(type,tmp,tmp+size);
2056         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 );
2057       }
2058
2059       bool checkConsecutiveCellTypesAndOrder(PyObject *li) const throw(INTERP_KERNEL::Exception)
2060       {
2061         int sz;
2062         INTERP_KERNEL::AutoPtr<INTERP_KERNEL::NormalizedCellType> order=(INTERP_KERNEL::NormalizedCellType *)convertPyToNewIntArr2(li,&sz);
2063         bool ret=self->checkConsecutiveCellTypesAndOrder(order,order+sz);
2064         return ret;
2065       }
2066
2067       DataArrayInt *getRenumArrForConsecutiveCellTypesSpec(PyObject *li) const throw(INTERP_KERNEL::Exception)
2068       {
2069         int sz;
2070         INTERP_KERNEL::AutoPtr<INTERP_KERNEL::NormalizedCellType> order=(INTERP_KERNEL::NormalizedCellType *)convertPyToNewIntArr2(li,&sz);
2071         DataArrayInt *ret=self->getRenumArrForConsecutiveCellTypesSpec(order,(INTERP_KERNEL::NormalizedCellType *)order+sz);
2072         return ret;
2073       }
2074
2075       PyObject *findNodesToDuplicate(const MEDCouplingUMesh& otherDimM1OnSameCoords) const throw(INTERP_KERNEL::Exception)
2076       {
2077         DataArrayInt *tmp0=0,*tmp1=0,*tmp2=0;
2078         self->findNodesToDuplicate(otherDimM1OnSameCoords,tmp0,tmp1,tmp2);
2079         PyObject *ret=PyTuple_New(3);
2080         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(tmp0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2081         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2082         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(tmp2),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2083         return ret;
2084       }
2085
2086       PyObject *findCellIdsLyingOn(const MEDCouplingUMesh& otherDimM1OnSameCoords) const throw(INTERP_KERNEL::Exception)
2087       {
2088         DataArrayInt *tmp0=0,*tmp1=0;
2089         self->findCellIdsLyingOn(otherDimM1OnSameCoords,tmp0,tmp1);
2090         PyObject *ret=PyTuple_New(2);
2091         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(tmp0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2092         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2093         return ret;
2094       }
2095
2096       void duplicateNodes(PyObject *li) throw(INTERP_KERNEL::Exception)
2097       {
2098         int sw;
2099         int singleVal;
2100         std::vector<int> multiVal;
2101         std::pair<int, std::pair<int,int> > slic;
2102         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
2103         convertObjToPossibleCpp2(li,self->getNumberOfNodes(),sw,singleVal,multiVal,slic,daIntTyypp);
2104         switch(sw)
2105           {
2106           case 1:
2107             return self->duplicateNodes(&singleVal,&singleVal+1);
2108           case 2:
2109             return self->duplicateNodes(&multiVal[0],&multiVal[0]+multiVal.size());
2110           case 4:
2111             return self->duplicateNodes(daIntTyypp->begin(),daIntTyypp->end());
2112           default:
2113             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::duplicateNodes : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2114           }
2115       }
2116
2117       void duplicateNodesInConn(PyObject *li, int offset) throw(INTERP_KERNEL::Exception)
2118       {
2119         int sw;
2120         int singleVal;
2121         std::vector<int> multiVal;
2122         std::pair<int, std::pair<int,int> > slic;
2123         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
2124         convertObjToPossibleCpp2(li,self->getNumberOfNodes(),sw,singleVal,multiVal,slic,daIntTyypp);
2125         switch(sw)
2126           {
2127           case 1:
2128             return self->duplicateNodesInConn(&singleVal,&singleVal+1,offset);
2129           case 2:
2130             return self->duplicateNodesInConn(&multiVal[0],&multiVal[0]+multiVal.size(),offset);
2131           case 4:
2132             return self->duplicateNodesInConn(daIntTyypp->begin(),daIntTyypp->end(),offset);
2133           default:
2134             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::duplicateNodesInConn : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2135           }
2136       }
2137
2138       PyObject *getLevArrPerCellTypes(PyObject *li) const throw(INTERP_KERNEL::Exception)
2139       {
2140         int sz;
2141         INTERP_KERNEL::AutoPtr<INTERP_KERNEL::NormalizedCellType> order=(INTERP_KERNEL::NormalizedCellType *)convertPyToNewIntArr2(li,&sz);
2142         DataArrayInt *tmp0,*tmp1=0;
2143         tmp0=self->getLevArrPerCellTypes(order,(INTERP_KERNEL::NormalizedCellType *)order+sz,tmp1);
2144         PyObject *ret=PyTuple_New(2);
2145         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(tmp0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2146         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2147         return ret;
2148       }
2149
2150       PyObject *convertNodalConnectivityToDynamicGeoTypeMesh() const throw(INTERP_KERNEL::Exception)
2151       {
2152         DataArrayInt *ret0=0,*ret1=0;
2153         self->convertNodalConnectivityToDynamicGeoTypeMesh(ret0,ret1);
2154         PyObject *ret=PyTuple_New(2);
2155         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2156         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2157         return ret;
2158       }
2159
2160       static PyObject *AggregateSortedByTypeMeshesOnSameCoords(PyObject *ms) throw(INTERP_KERNEL::Exception)
2161       {
2162         std::vector<const ParaMEDMEM::MEDCouplingUMesh *> meshes;
2163         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingUMesh *>(ms,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2164         DataArrayInt *ret1=0,*ret2=0;
2165         MEDCouplingUMesh *ret0=MEDCouplingUMesh::AggregateSortedByTypeMeshesOnSameCoords(meshes,ret1,ret2);
2166         PyObject *ret=PyTuple_New(3);
2167         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2168         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2169         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(ret2),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2170         return ret;
2171       }
2172
2173       static PyObject *MergeUMeshesOnSameCoords(PyObject *ms) throw(INTERP_KERNEL::Exception)
2174       {
2175         std::vector<const ParaMEDMEM::MEDCouplingUMesh *> meshes;
2176         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingUMesh *>(ms,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2177         MEDCouplingUMesh *ret=MEDCouplingUMesh::MergeUMeshesOnSameCoords(meshes);
2178         return convertMesh(ret, SWIG_POINTER_OWN | 0 );
2179       }
2180
2181       static PyObject *FuseUMeshesOnSameCoords(PyObject *ms, int compType) throw(INTERP_KERNEL::Exception)
2182       {
2183         int sz;
2184         std::vector<const MEDCouplingUMesh *> meshes;
2185         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingUMesh *>(ms,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2186         std::vector<DataArrayInt *> corr;
2187         MEDCouplingUMesh *um=MEDCouplingUMesh::FuseUMeshesOnSameCoords(meshes,compType,corr);
2188         sz=corr.size();
2189         PyObject *ret1=PyList_New(sz);
2190         for(int i=0;i<sz;i++)
2191           PyList_SetItem(ret1,i,SWIG_NewPointerObj(SWIG_as_voidptr(corr[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2192         PyObject *ret=PyList_New(2);
2193         PyList_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(um),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2194         PyList_SetItem(ret,1,ret1);
2195         return ret;
2196       }
2197
2198       static void PutUMeshesOnSameAggregatedCoords(PyObject *ms) throw(INTERP_KERNEL::Exception)
2199       {
2200         std::vector<MEDCouplingUMesh *> meshes;
2201         convertFromPyObjVectorOfObj<ParaMEDMEM::MEDCouplingUMesh *>(ms,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2202         MEDCouplingUMesh::PutUMeshesOnSameAggregatedCoords(meshes);
2203       }
2204
2205       static void MergeNodesOnUMeshesSharingSameCoords(PyObject *ms, double eps) throw(INTERP_KERNEL::Exception)
2206       {
2207         std::vector<MEDCouplingUMesh *> meshes;
2208         convertFromPyObjVectorOfObj<ParaMEDMEM::MEDCouplingUMesh *>(ms,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",meshes);
2209         MEDCouplingUMesh::MergeNodesOnUMeshesSharingSameCoords(meshes,eps);
2210       }
2211
2212       static bool RemoveIdsFromIndexedArrays(PyObject *li, DataArrayInt *arr, DataArrayInt *arrIndx, int offsetForRemoval=0) throw(INTERP_KERNEL::Exception)
2213       {
2214         int sw;
2215         int singleVal;
2216         std::vector<int> multiVal;
2217         std::pair<int, std::pair<int,int> > slic;
2218         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
2219         if(!arrIndx)
2220           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::RemoveIdsFromIndexedArrays : null pointer as arrIndex !");
2221         convertObjToPossibleCpp2(li,arrIndx->getNumberOfTuples()-1,sw,singleVal,multiVal,slic,daIntTyypp);
2222         switch(sw)
2223           {
2224           case 1:
2225             return MEDCouplingUMesh::RemoveIdsFromIndexedArrays(&singleVal,&singleVal+1,arr,arrIndx,offsetForRemoval);
2226           case 2:
2227             return MEDCouplingUMesh::RemoveIdsFromIndexedArrays(&multiVal[0],&multiVal[0]+multiVal.size(),arr,arrIndx,offsetForRemoval);
2228           case 4:
2229             return MEDCouplingUMesh::RemoveIdsFromIndexedArrays(daIntTyypp->begin(),daIntTyypp->end(),arr,arrIndx,offsetForRemoval);
2230           default:
2231             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::RemoveIdsFromIndexedArrays : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2232           }
2233       }
2234       
2235       static PyObject *ExtractFromIndexedArrays(PyObject *li, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn) throw(INTERP_KERNEL::Exception)
2236       {
2237         DataArrayInt *arrOut=0,*arrIndexOut=0;
2238         int sw;
2239         int singleVal;
2240         std::vector<int> multiVal;
2241         std::pair<int, std::pair<int,int> > slic;
2242         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
2243         if(!arrIndxIn)
2244           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::ExtractFromIndexedArrays : null pointer as arrIndxIn !");
2245         convertObjToPossibleCpp2(li,arrIndxIn->getNumberOfTuples()-1,sw,singleVal,multiVal,slic,daIntTyypp);
2246         switch(sw)
2247           {
2248           case 1:
2249             {
2250               MEDCouplingUMesh::ExtractFromIndexedArrays(&singleVal,&singleVal+1,arrIn,arrIndxIn,arrOut,arrIndexOut);
2251               break;
2252             }
2253           case 2:
2254             {
2255               MEDCouplingUMesh::ExtractFromIndexedArrays(&multiVal[0],&multiVal[0]+multiVal.size(),arrIn,arrIndxIn,arrOut,arrIndexOut);
2256               break;
2257             }
2258           case 4:
2259             {
2260               MEDCouplingUMesh::ExtractFromIndexedArrays(daIntTyypp->begin(),daIntTyypp->end(),arrIn,arrIndxIn,arrOut,arrIndexOut);
2261               break;
2262             }
2263           default:
2264             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::ExtractFromIndexedArrays : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2265           }
2266         PyObject *ret=PyTuple_New(2);
2267         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(arrOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2268         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(arrIndexOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2269         return ret;
2270       }
2271
2272       static PyObject *ExtractFromIndexedArrays2(int strt, int stp, int step, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn) throw(INTERP_KERNEL::Exception)
2273       {
2274         DataArrayInt *arrOut=0,*arrIndexOut=0;
2275         MEDCouplingUMesh::ExtractFromIndexedArrays2(strt,stp,step,arrIn,arrIndxIn,arrOut,arrIndexOut);
2276         PyObject *ret=PyTuple_New(2);
2277         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(arrOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2278         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(arrIndexOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2279         return ret;
2280       }
2281
2282       static PyObject *ExtractFromIndexedArrays2(PyObject *slic, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn) throw(INTERP_KERNEL::Exception)
2283       {
2284         if(!PySlice_Check(slic))
2285           throw INTERP_KERNEL::Exception("ExtractFromIndexedArrays2 (wrap) : the first param is not a pyslice !");
2286         Py_ssize_t strt=2,stp=2,step=2;
2287         PySliceObject *sliC=reinterpret_cast<PySliceObject *>(slic);
2288         if(!arrIndxIn)
2289           throw INTERP_KERNEL::Exception("ExtractFromIndexedArrays2 (wrap) : last array is null !");
2290         arrIndxIn->checkAllocated();
2291         if(arrIndxIn->getNumberOfComponents()!=1)
2292           throw INTERP_KERNEL::Exception("ExtractFromIndexedArrays2 (wrap) : number of components of last argument must be equal to one !");
2293         if(PySlice_GetIndices(sliC,arrIndxIn->getNumberOfTuples(),&strt,&stp,&step)!=0)
2294           throw INTERP_KERNEL::Exception("ExtractFromIndexedArrays2 (wrap) : Invalid slice regarding nb of elements !");
2295         DataArrayInt *arrOut=0,*arrIndexOut=0;
2296         MEDCouplingUMesh::ExtractFromIndexedArrays2(strt,stp,step,arrIn,arrIndxIn,arrOut,arrIndexOut);
2297         PyObject *ret=PyTuple_New(2);
2298         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(arrOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2299         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(arrIndexOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2300         return ret;
2301       }
2302
2303       static PyObject *SetPartOfIndexedArrays(PyObject *li,
2304                                               const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn,
2305                                               const DataArrayInt *srcArr, const DataArrayInt *srcArrIndex) throw(INTERP_KERNEL::Exception)
2306       {
2307         DataArrayInt *arrOut=0,*arrIndexOut=0;
2308         int sw;
2309         int singleVal;
2310         std::vector<int> multiVal;
2311         std::pair<int, std::pair<int,int> > slic;
2312         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
2313         if(!arrIndxIn)
2314           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArrays : null pointer as arrIndex !");
2315         convertObjToPossibleCpp2(li,arrIndxIn->getNumberOfTuples()-1,sw,singleVal,multiVal,slic,daIntTyypp);
2316         switch(sw)
2317           {
2318           case 1:
2319             {
2320               MEDCouplingUMesh::SetPartOfIndexedArrays(&singleVal,&singleVal+1,arrIn,arrIndxIn,srcArr,srcArrIndex,arrOut,arrIndexOut);
2321               break;
2322             }
2323           case 2:
2324             {
2325               MEDCouplingUMesh::SetPartOfIndexedArrays(&multiVal[0],&multiVal[0]+multiVal.size(),arrIn,arrIndxIn,srcArr,srcArrIndex,arrOut,arrIndexOut);
2326               break;
2327             }
2328           case 4:
2329             {
2330               MEDCouplingUMesh::SetPartOfIndexedArrays(daIntTyypp->begin(),daIntTyypp->end(),arrIn,arrIndxIn,srcArr,srcArrIndex,arrOut,arrIndexOut);
2331               break;
2332             }
2333           default:
2334             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArrays : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2335           }
2336         PyObject *ret=PyTuple_New(2);
2337         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(arrOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2338         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(arrIndexOut),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2339         return ret;
2340       }
2341
2342       static void SetPartOfIndexedArraysSameIdx(PyObject *li, DataArrayInt *arrIn, const DataArrayInt *arrIndxIn,
2343                                                 const DataArrayInt *srcArr, const DataArrayInt *srcArrIndex) throw(INTERP_KERNEL::Exception)
2344       {
2345         int sw;
2346         int singleVal;
2347         std::vector<int> multiVal;
2348         std::pair<int, std::pair<int,int> > slic;
2349         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
2350         if(!arrIndxIn)
2351           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx : null pointer as arrIndex !");
2352         convertObjToPossibleCpp2(li,arrIndxIn->getNumberOfTuples()-1,sw,singleVal,multiVal,slic,daIntTyypp);
2353         switch(sw)
2354           {
2355           case 1:
2356             {
2357               MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx(&singleVal,&singleVal+1,arrIn,arrIndxIn,srcArr,srcArrIndex);
2358               break;
2359             }
2360           case 2:
2361             {
2362               MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx(&multiVal[0],&multiVal[0]+multiVal.size(),arrIn,arrIndxIn,srcArr,srcArrIndex);
2363               break;
2364             }
2365           case 4:
2366             {
2367               MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx(daIntTyypp->begin(),daIntTyypp->end(),arrIn,arrIndxIn,srcArr,srcArrIndex);
2368               break;
2369             }
2370           default:
2371             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx : unrecognized type entered, expected list of int, tuple of int or DataArrayInt !");
2372           }
2373       }
2374
2375       PyObject *are2DCellsNotCorrectlyOriented(PyObject *vec, bool polyOnly) const throw(INTERP_KERNEL::Exception)
2376       {
2377         double val;
2378         DataArrayDouble *a;
2379         DataArrayDoubleTuple *aa;
2380         std::vector<double> bb;
2381         int sw;
2382         int spaceDim=self->getSpaceDimension();
2383         const char msg[]="Python wrap of MEDCouplingUMesh::are2DCellsNotCorrectlyOriented : ";
2384         const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val,a,aa,bb,msg,1,spaceDim,true);
2385         //
2386         std::vector<int> cells;
2387         self->are2DCellsNotCorrectlyOriented(v,polyOnly,cells);
2388         DataArrayInt *ret=DataArrayInt::New();
2389         ret->alloc((int)cells.size(),1);
2390         std::copy(cells.begin(),cells.end(),ret->getPointer());
2391         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
2392       }
2393
2394       void orientCorrectly2DCells(PyObject *vec, bool polyOnly) throw(INTERP_KERNEL::Exception)
2395       {
2396         double val;
2397         DataArrayDouble *a;
2398         DataArrayDoubleTuple *aa;
2399         std::vector<double> bb;
2400         int sw;
2401         int spaceDim=self->getSpaceDimension();
2402         const char msg[]="Python wrap of MEDCouplingUMesh::orientCorrectly2DCells : ";
2403         const double *v=convertObjToPossibleCpp5_Safe(vec,sw,val,a,aa,bb,msg,1,spaceDim,true);
2404         self->orientCorrectly2DCells(v,polyOnly);
2405       }
2406       
2407       PyObject *arePolyhedronsNotCorrectlyOriented() const throw(INTERP_KERNEL::Exception)
2408       {
2409         std::vector<int> cells;
2410         self->arePolyhedronsNotCorrectlyOriented(cells);
2411         DataArrayInt *ret=DataArrayInt::New();
2412         ret->alloc((int)cells.size(),1);
2413         std::copy(cells.begin(),cells.end(),ret->getPointer());
2414         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
2415       }
2416
2417       PyObject *getFastAveragePlaneOfThis() const throw(INTERP_KERNEL::Exception)
2418       {
2419         double vec[3];
2420         double pos[3];
2421         self->getFastAveragePlaneOfThis(vec,pos);
2422         double vals[6];
2423         std::copy(vec,vec+3,vals);
2424         std::copy(pos,pos+3,vals+3);
2425         return convertDblArrToPyListOfTuple(vals,3,2);
2426       }
2427       
2428       static MEDCouplingUMesh *MergeUMeshes(PyObject *li) throw(INTERP_KERNEL::Exception)
2429       {
2430         std::vector<const ParaMEDMEM::MEDCouplingUMesh *> tmp;
2431         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingUMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh,"MEDCouplingUMesh",tmp);
2432         return MEDCouplingUMesh::MergeUMeshes(tmp);
2433       }
2434
2435       PyObject *areCellsIncludedIn(const MEDCouplingUMesh *other, int compType) const throw(INTERP_KERNEL::Exception)
2436       {
2437         DataArrayInt *ret1;
2438         bool ret0=self->areCellsIncludedIn(other,compType,ret1);
2439         PyObject *ret=PyTuple_New(2);
2440         PyObject *ret0Py=ret0?Py_True:Py_False;
2441         Py_XINCREF(ret0Py);
2442         PyTuple_SetItem(ret,0,ret0Py);
2443         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2444         return ret;
2445       }
2446
2447       PyObject *areCellsIncludedIn2(const MEDCouplingUMesh *other) const throw(INTERP_KERNEL::Exception)
2448       {
2449         DataArrayInt *ret1;
2450         bool ret0=self->areCellsIncludedIn2(other,ret1);
2451         PyObject *ret=PyTuple_New(2);
2452         PyObject *ret0Py=ret0?Py_True:Py_False;
2453         Py_XINCREF(ret0Py);
2454         PyTuple_SetItem(ret,0,ret0Py);
2455         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2456         return ret;
2457       }
2458
2459       PyObject *explode3DMeshTo1D() const throw(INTERP_KERNEL::Exception)
2460       {
2461         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d0=DataArrayInt::New();
2462         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d1=DataArrayInt::New();
2463         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d2=DataArrayInt::New();
2464         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d3=DataArrayInt::New();
2465         MEDCouplingUMesh *m=self->explode3DMeshTo1D(d0,d1,d2,d3);
2466         PyObject *ret=PyTuple_New(5);
2467         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2468         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2469         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2470         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2471         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2472         return ret;
2473       }
2474
2475       PyObject *buildDescendingConnectivity() const throw(INTERP_KERNEL::Exception)
2476       {
2477         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d0=DataArrayInt::New();
2478         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d1=DataArrayInt::New();
2479         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d2=DataArrayInt::New();
2480         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d3=DataArrayInt::New();
2481         MEDCouplingUMesh *m=self->buildDescendingConnectivity(d0,d1,d2,d3);
2482         PyObject *ret=PyTuple_New(5);
2483         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2484         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2485         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2486         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2487         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2488         return ret;
2489       }
2490
2491       PyObject *buildDescendingConnectivity2() const throw(INTERP_KERNEL::Exception)
2492       {
2493         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d0=DataArrayInt::New();
2494         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d1=DataArrayInt::New();
2495         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d2=DataArrayInt::New();
2496         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d3=DataArrayInt::New();
2497         MEDCouplingUMesh *m=self->buildDescendingConnectivity2(d0,d1,d2,d3);
2498         PyObject *ret=PyTuple_New(5);
2499         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(m),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2500         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2501         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2502         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2503         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2504         return ret;
2505       }
2506       
2507       PyObject *computeNeighborsOfCells() const throw(INTERP_KERNEL::Exception)
2508       {
2509         DataArrayInt *neighbors=0,*neighborsIdx=0;
2510         self->computeNeighborsOfCells(neighbors,neighborsIdx);
2511         PyObject *ret=PyTuple_New(2);
2512         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(neighbors),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2513         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(neighborsIdx),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2514         return ret;
2515       }
2516
2517       static PyObject *ComputeNeighborsOfCellsAdv(const DataArrayInt *desc, const DataArrayInt *descI, const DataArrayInt *revDesc, const DataArrayInt *revDescI) throw(INTERP_KERNEL::Exception)
2518       {
2519         DataArrayInt *neighbors=0,*neighborsIdx=0;
2520         MEDCouplingUMesh::ComputeNeighborsOfCellsAdv(desc,descI,revDesc,revDescI,neighbors,neighborsIdx);
2521         PyObject *ret=PyTuple_New(2);
2522         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(neighbors),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2523         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(neighborsIdx),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2524         return ret;
2525       }
2526
2527       PyObject *emulateMEDMEMBDC(const MEDCouplingUMesh *nM1LevMesh)
2528       {
2529         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d0=DataArrayInt::New();
2530         MEDCouplingAutoRefCountObjectPtr<DataArrayInt> d1=DataArrayInt::New();
2531         DataArrayInt *d2,*d3,*d4,*dd5;
2532         MEDCouplingUMesh *mOut=self->emulateMEDMEMBDC(nM1LevMesh,d0,d1,d2,d3,d4,dd5);
2533         PyObject *ret=PyTuple_New(7);
2534         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(mOut),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2535         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(d0.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2536         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(d1.retn()),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2537         PyTuple_SetItem(ret,3,SWIG_NewPointerObj(SWIG_as_voidptr(d2),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2538         PyTuple_SetItem(ret,4,SWIG_NewPointerObj(SWIG_as_voidptr(d3),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2539         PyTuple_SetItem(ret,5,SWIG_NewPointerObj(SWIG_as_voidptr(d4),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2540         PyTuple_SetItem(ret,6,SWIG_NewPointerObj(SWIG_as_voidptr(dd5),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2541         return ret;
2542       }
2543
2544       DataArrayDouble *getPartBarycenterAndOwner(DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2545       {
2546         if(!da)
2547           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2548         da->checkAllocated();
2549         return self->getPartBarycenterAndOwner(da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2550       }
2551
2552       DataArrayDouble *getPartMeasureField(bool isAbs, DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2553       {
2554         if(!da)
2555           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2556         da->checkAllocated();
2557         return self->getPartMeasureField(isAbs,da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2558       }
2559
2560       MEDCouplingFieldDouble *buildPartOrthogonalField(DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2561       {
2562         if(!da)
2563           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2564         da->checkAllocated();
2565         return self->buildPartOrthogonalField(da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2566       }
2567
2568       PyObject *getTypesOfPart(DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2569       {
2570         if(!da)
2571           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2572         da->checkAllocated();
2573         std::set<INTERP_KERNEL::NormalizedCellType> result=self->getTypesOfPart(da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2574         std::set<INTERP_KERNEL::NormalizedCellType>::const_iterator iL=result.begin();
2575         PyObject *res = PyList_New(result.size());
2576         for (int i=0;iL!=result.end(); i++, iL++)
2577           PyList_SetItem(res,i,PyInt_FromLong(*iL));
2578         return res;
2579       }
2580
2581       DataArrayInt *keepCellIdsByType(INTERP_KERNEL::NormalizedCellType type, DataArrayInt *da) const throw(INTERP_KERNEL::Exception)
2582       {
2583         if(!da)
2584           throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
2585         da->checkAllocated();
2586         DataArrayInt *ret=self->keepCellIdsByType(type,da->getConstPointer(),da->getConstPointer()+da->getNbOfElems());
2587         ret->setName(da->getName().c_str());
2588         return ret;
2589       }
2590
2591       static PyObject *Intersect2DMeshes(const MEDCouplingUMesh *m1, const MEDCouplingUMesh *m2, double eps) throw(INTERP_KERNEL::Exception)
2592       {
2593         DataArrayInt *cellNb1=0,*cellNb2=0;
2594         MEDCouplingUMesh *mret=MEDCouplingUMesh::Intersect2DMeshes(m1,m2,eps,cellNb1,cellNb2);
2595         PyObject *ret=PyTuple_New(3);
2596         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(mret),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2597         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellNb1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2598         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(cellNb2),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2599         return ret;
2600       }
2601
2602       PyObject *buildSlice3D(PyObject *origin, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
2603       {
2604         int spaceDim=self->getSpaceDimension();
2605         if(spaceDim!=3)
2606           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingUMesh::buildSlice3D : works only for spaceDim 3 !");
2607         double val,val2;
2608         DataArrayDouble *a,*a2;
2609         DataArrayDoubleTuple *aa,*aa2;
2610         std::vector<double> bb,bb2;
2611         int sw;
2612         const char msg[]="Python wrap of MEDCouplingUMesh::buildSlice3D : 1st paramater for origin.";
2613         const char msg2[]="Python wrap of MEDCouplingUMesh::buildSlice3D : 2nd paramater for vector.";
2614         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
2615         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
2616         //
2617         DataArrayInt *cellIds=0;
2618         MEDCouplingUMesh *ret0=self->buildSlice3D(orig,vect,eps,cellIds);
2619         PyObject *ret=PyTuple_New(2);
2620         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2621         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellIds),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2622         return ret;
2623       }
2624
2625       PyObject *buildSlice3DSurf(PyObject *origin, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
2626       {
2627         int spaceDim=self->getSpaceDimension();
2628         if(spaceDim!=3)
2629           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingUMesh::buildSlice3DSurf : works only for spaceDim 3 !");
2630         double val,val2;
2631         DataArrayDouble *a,*a2;
2632         DataArrayDoubleTuple *aa,*aa2;
2633         std::vector<double> bb,bb2;
2634         int sw;
2635         const char msg[]="Python wrap of MEDCouplingUMesh::buildSlice3DSurf : 1st paramater for origin.";
2636         const char msg2[]="Python wrap of MEDCouplingUMesh::buildSlice3DSurf : 2nd paramater for vector.";
2637         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
2638         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
2639         //
2640         DataArrayInt *cellIds=0;
2641         MEDCouplingUMesh *ret0=self->buildSlice3DSurf(orig,vect,eps,cellIds);
2642         PyObject *ret=PyTuple_New(2);
2643         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, SWIG_POINTER_OWN | 0 ));
2644         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(cellIds),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2645         return ret;
2646       }
2647
2648       DataArrayInt *getCellIdsCrossingPlane(PyObject *origin, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
2649       {
2650         int spaceDim=self->getSpaceDimension();
2651         if(spaceDim!=3)
2652           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingUMesh::getCellIdsCrossingPlane : works only for spaceDim 3 !");
2653         double val,val2;
2654         DataArrayDouble *a,*a2;
2655         DataArrayDoubleTuple *aa,*aa2;
2656         std::vector<double> bb,bb2;
2657         int sw;
2658         const char msg[]="Python wrap of MEDCouplingUMesh::getCellIdsCrossingPlane : 1st paramater for origin.";
2659         const char msg2[]="Python wrap of MEDCouplingUMesh::getCellIdsCrossingPlane : 2nd paramater for vector.";
2660         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
2661         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
2662         return self->getCellIdsCrossingPlane(orig,vect,eps);
2663       }
2664
2665       void convertToPolyTypes(PyObject *li) throw(INTERP_KERNEL::Exception)
2666       {
2667         int sw;
2668         int pos1;
2669         std::vector<int> pos2;
2670         DataArrayInt *pos3=0;
2671         DataArrayIntTuple *pos4=0;
2672         convertObjToPossibleCpp1(li,sw,pos1,pos2,pos3,pos4);
2673         switch(sw)
2674           {
2675           case 1:
2676             {
2677               self->convertToPolyTypes(&pos1,&pos1+1);
2678               return;
2679             }
2680           case 2:
2681             {
2682               if(pos2.empty())
2683                 return;
2684               self->convertToPolyTypes(&pos2[0],&pos2[0]+pos2.size());
2685               return ;
2686             }
2687           case 3:
2688             {
2689               self->convertToPolyTypes(pos3->begin(),pos3->end());
2690               return ;
2691             }
2692           default:
2693             throw INTERP_KERNEL::Exception("MEDCouplingUMesh::convertToPolyTypes : unexpected input array type recognized !");
2694           }
2695       }
2696     }
2697     void convertAllToPoly();
2698     void convertExtrudedPolyhedra() throw(INTERP_KERNEL::Exception);
2699     bool unPolyze() throw(INTERP_KERNEL::Exception);
2700     void simplifyPolyhedra(double eps) throw(INTERP_KERNEL::Exception);
2701     MEDCouplingUMesh *buildSpreadZonesWithPoly() const throw(INTERP_KERNEL::Exception);
2702     MEDCouplingUMesh *buildExtrudedMesh(const MEDCouplingUMesh *mesh1D, int policy) throw(INTERP_KERNEL::Exception);
2703   };
2704
2705   //== MEDCouplingUMesh End
2706
2707   //== MEDCouplingExtrudedMesh
2708
2709   class MEDCouplingExtrudedMesh : public ParaMEDMEM::MEDCouplingMesh
2710   {
2711   public:
2712     static MEDCouplingExtrudedMesh *New(const MEDCouplingUMesh *mesh3D, const MEDCouplingUMesh *mesh2D, int cell2DId) throw(INTERP_KERNEL::Exception);
2713     MEDCouplingUMesh *build3DUnstructuredMesh() const throw(INTERP_KERNEL::Exception);
2714     %extend {
2715       MEDCouplingExtrudedMesh(const MEDCouplingUMesh *mesh3D, const MEDCouplingUMesh *mesh2D, int cell2DId) throw(INTERP_KERNEL::Exception)
2716       {
2717         return MEDCouplingExtrudedMesh::New(mesh3D,mesh2D,cell2DId);
2718       }
2719       
2720       std::string __str__() const throw(INTERP_KERNEL::Exception)
2721       {
2722         return self->simpleRepr();
2723       }
2724
2725       std::string __repr__() const throw(INTERP_KERNEL::Exception)
2726       {
2727         std::ostringstream oss;
2728         self->reprQuickOverview(oss);
2729         return oss.str();
2730       }
2731       
2732       PyObject *getMesh2D() const throw(INTERP_KERNEL::Exception)
2733       {
2734         MEDCouplingUMesh *ret=self->getMesh2D();
2735         if(ret)
2736           ret->incrRef();
2737         return convertMesh(ret, SWIG_POINTER_OWN | 0 );
2738       }
2739       PyObject *getMesh1D() const throw(INTERP_KERNEL::Exception)
2740       {
2741         MEDCouplingUMesh *ret=self->getMesh1D();
2742         if(ret)
2743           ret->incrRef();
2744         return convertMesh(ret, SWIG_POINTER_OWN | 0 );
2745       }
2746       PyObject *getMesh3DIds() const throw(INTERP_KERNEL::Exception)
2747       {
2748         DataArrayInt *ret=self->getMesh3DIds();
2749         if(ret)
2750           ret->incrRef();
2751         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
2752       } 
2753     }
2754   };
2755
2756   //== MEDCouplingExtrudedMesh End
2757
2758   class MEDCoupling1GTUMesh : public ParaMEDMEM::MEDCouplingPointSet
2759   {
2760   public:
2761     static MEDCoupling1GTUMesh *New(const char *name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
2762     INTERP_KERNEL::NormalizedCellType getCellModelEnum() const throw(INTERP_KERNEL::Exception);
2763     virtual void allocateCells(int nbOfCells=0) throw(INTERP_KERNEL::Exception);
2764     %extend
2765     {
2766       virtual void insertNextCell(PyObject *li) throw(INTERP_KERNEL::Exception)
2767       {
2768         int szArr,sw,iTypppArr;
2769         std::vector<int> stdvecTyyppArr;
2770         const int *tmp=convertObjToPossibleCpp1_Safe(li,sw,szArr,iTypppArr,stdvecTyyppArr);
2771         self->insertNextCell(tmp,tmp+szArr);
2772       }
2773     }
2774   };
2775
2776   //== MEDCoupling1SGTUMesh
2777
2778   class MEDCoupling1SGTUMesh : public ParaMEDMEM::MEDCoupling1GTUMesh
2779   {
2780   public:
2781     static MEDCoupling1GTUMesh *New(const char *name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
2782     void setNodalConnectivity(DataArrayInt *nodalConn) throw(INTERP_KERNEL::Exception);
2783     int getNodalConnectivityLength() const throw(INTERP_KERNEL::Exception);
2784     int getNumberOfNodesPerCell() const throw(INTERP_KERNEL::Exception);
2785     static MEDCoupling1SGTUMesh *Merge1SGTUMeshes(const MEDCoupling1SGTUMesh *mesh1, const MEDCoupling1SGTUMesh *mesh2) throw(INTERP_KERNEL::Exception);
2786     MEDCoupling1SGTUMesh *buildSetInstanceFromThis(int spaceDim) const throw(INTERP_KERNEL::Exception);
2787     %extend
2788     {
2789       MEDCoupling1SGTUMesh(const char *name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception)
2790       {
2791         return MEDCoupling1SGTUMesh::New(name,type);
2792       }
2793
2794       std::string __str__() const throw(INTERP_KERNEL::Exception)
2795       {
2796         return self->simpleRepr();
2797       }
2798       
2799       std::string __repr__() const throw(INTERP_KERNEL::Exception)
2800       {
2801         std::ostringstream oss;
2802         self->reprQuickOverview(oss);
2803         return oss.str();
2804       }
2805
2806       DataArrayInt *getNodalConnectivity() const throw(INTERP_KERNEL::Exception)
2807       {
2808         DataArrayInt *ret=self->getNodalConnectivity();
2809         if(ret) ret->incrRef();
2810         return ret;
2811       }
2812
2813       static MEDCoupling1SGTUMesh *Merge1SGTUMeshes(PyObject *li) throw(INTERP_KERNEL::Exception)
2814       {
2815         std::vector<const ParaMEDMEM::MEDCoupling1SGTUMesh *> tmp;
2816         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCoupling1SGTUMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCoupling1SGTUMesh,"MEDCoupling1SGTUMesh",tmp);
2817         return MEDCoupling1SGTUMesh::Merge1SGTUMeshes(tmp);
2818       }
2819       
2820       static MEDCoupling1SGTUMesh *Merge1SGTUMeshesOnSameCoords(PyObject *li) throw(INTERP_KERNEL::Exception)
2821       {
2822         std::vector<const ParaMEDMEM::MEDCoupling1SGTUMesh *> tmp;
2823         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCoupling1SGTUMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCoupling1SGTUMesh,"MEDCoupling1SGTUMesh",tmp);
2824         return MEDCoupling1SGTUMesh::Merge1SGTUMeshesOnSameCoords(tmp);
2825       }
2826     }
2827   };
2828   
2829   //== MEDCoupling1SGTUMesh End
2830
2831   //== MEDCoupling1DGTUMesh
2832
2833   class MEDCoupling1DGTUMesh : public ParaMEDMEM::MEDCoupling1GTUMesh
2834   {
2835   public:
2836     static MEDCoupling1DGTUMesh *New(const char *name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception);
2837     void setNodalConnectivity(DataArrayInt *nodalConn, DataArrayInt *nodalConnIndex) throw(INTERP_KERNEL::Exception);
2838     MEDCoupling1DGTUMesh *buildSetInstanceFromThis(int spaceDim) const throw(INTERP_KERNEL::Exception);
2839     bool isPacked() const throw(INTERP_KERNEL::Exception);
2840     %extend
2841     {
2842       MEDCoupling1DGTUMesh(const char *name, INTERP_KERNEL::NormalizedCellType type) throw(INTERP_KERNEL::Exception)
2843       {
2844         return MEDCoupling1DGTUMesh::New(name,type);
2845       }
2846
2847       std::string __str__() const throw(INTERP_KERNEL::Exception)
2848       {
2849         return self->simpleRepr();
2850       }
2851       
2852       std::string __repr__() const throw(INTERP_KERNEL::Exception)
2853       {
2854         std::ostringstream oss;
2855         self->reprQuickOverview(oss);
2856         return oss.str();
2857       }
2858
2859       DataArrayInt *getNodalConnectivity() const throw(INTERP_KERNEL::Exception)
2860       {
2861         DataArrayInt *ret=self->getNodalConnectivity();
2862         if(ret) ret->incrRef();
2863         return ret;
2864       }
2865
2866       DataArrayInt *getNodalConnectivityIndex() const throw(INTERP_KERNEL::Exception)
2867       {
2868         DataArrayInt *ret=self->getNodalConnectivityIndex();
2869         if(ret) ret->incrRef();
2870         return ret;
2871       }
2872
2873       PyObject *retrievePackedNodalConnectivity() const throw(INTERP_KERNEL::Exception)
2874       {
2875         DataArrayInt *ret1=0,*ret2=0;
2876         bool ret0=self->retrievePackedNodalConnectivity(ret1,ret2);
2877         PyObject *ret0Py=ret0?Py_True:Py_False;
2878         Py_XINCREF(ret0Py);
2879         PyObject *ret=PyTuple_New(3);
2880         PyTuple_SetItem(ret,0,ret0Py);
2881         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2882         PyTuple_SetItem(ret,2,SWIG_NewPointerObj(SWIG_as_voidptr(ret2),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
2883         return ret;
2884       }
2885       
2886       PyObject *copyWithNodalConnectivityPacked() const throw(INTERP_KERNEL::Exception)
2887       {
2888         bool ret1;
2889         MEDCoupling1DGTUMesh *ret0=self->copyWithNodalConnectivityPacked(ret1);
2890         PyObject *ret=PyTuple_New(2);
2891         PyObject *ret1Py=ret1?Py_True:Py_False; Py_XINCREF(ret1Py);
2892         PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__MEDCoupling1DGTUMesh, SWIG_POINTER_OWN | 0 ));
2893         PyTuple_SetItem(ret,1,ret1Py);
2894         return ret;
2895       }
2896
2897       static MEDCoupling1DGTUMesh *Merge1DGTUMeshes(PyObject *li) throw(INTERP_KERNEL::Exception)
2898       {
2899         std::vector<const ParaMEDMEM::MEDCoupling1DGTUMesh *> tmp;
2900         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCoupling1DGTUMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCoupling1DGTUMesh,"MEDCoupling1DGTUMesh",tmp);
2901         return MEDCoupling1DGTUMesh::Merge1DGTUMeshes(tmp);
2902       }
2903       
2904       static MEDCoupling1DGTUMesh *Merge1DGTUMeshesOnSameCoords(PyObject *li) throw(INTERP_KERNEL::Exception)
2905       {
2906         std::vector<const ParaMEDMEM::MEDCoupling1DGTUMesh *> tmp;
2907         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCoupling1DGTUMesh *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCoupling1DGTUMesh,"MEDCoupling1DGTUMesh",tmp);
2908         return MEDCoupling1DGTUMesh::Merge1DGTUMeshesOnSameCoords(tmp);
2909       }
2910       
2911       static DataArrayInt *AggregateNodalConnAndShiftNodeIds(PyObject *li, const std::vector<int>& offsetInNodeIdsPerElt) throw(INTERP_KERNEL::Exception)
2912       {
2913         std::vector<const ParaMEDMEM::DataArrayInt *> tmp;
2914         convertFromPyObjVectorOfObj<const ParaMEDMEM::DataArrayInt *>(li,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,"DataArrayInt",tmp);
2915         return MEDCoupling1DGTUMesh::AggregateNodalConnAndShiftNodeIds(tmp,offsetInNodeIdsPerElt);
2916       }
2917     }
2918   };
2919
2920   //== MEDCoupling1DGTUMeshEnd
2921
2922   class MEDCouplingStructuredMesh : public ParaMEDMEM::MEDCouplingMesh
2923   {
2924   public:
2925     int getCellIdFromPos(int i, int j, int k) const throw(INTERP_KERNEL::Exception);
2926     int getNodeIdFromPos(int i, int j, int k) const throw(INTERP_KERNEL::Exception);
2927   };
2928
2929   //== MEDCouplingCMesh
2930   
2931   class MEDCouplingCMesh : public ParaMEDMEM::MEDCouplingStructuredMesh
2932   {
2933   public:
2934     static MEDCouplingCMesh *New();
2935     static MEDCouplingCMesh *New(const char *meshName);
2936     MEDCouplingCMesh *clone(bool recDeepCpy) const;
2937     void setCoords(const DataArrayDouble *coordsX,
2938                    const DataArrayDouble *coordsY=0,
2939                    const DataArrayDouble *coordsZ=0) throw(INTERP_KERNEL::Exception);
2940     void setCoordsAt(int i, const DataArrayDouble *arr) throw(INTERP_KERNEL::Exception);
2941     %extend {
2942       MEDCouplingCMesh()
2943       {
2944         return MEDCouplingCMesh::New();
2945       }
2946       MEDCouplingCMesh(const char *meshName)
2947       {
2948         return MEDCouplingCMesh::New(meshName);
2949       }
2950       std::string __str__() const throw(INTERP_KERNEL::Exception)
2951       {
2952         return self->simpleRepr();
2953       }
2954       std::string __repr__() const throw(INTERP_KERNEL::Exception)
2955       {
2956         std::ostringstream oss;
2957         self->reprQuickOverview(oss);
2958         return oss.str();
2959       }
2960       DataArrayDouble *getCoordsAt(int i) throw(INTERP_KERNEL::Exception)
2961       {
2962         DataArrayDouble *ret=self->getCoordsAt(i);
2963         if(ret)
2964           ret->incrRef();
2965         return ret;
2966       }
2967     }
2968   };
2969
2970   //== MEDCouplingCMesh End
2971
2972   //== MEDCouplingCurveLinearMesh
2973
2974   class MEDCouplingCurveLinearMesh : public ParaMEDMEM::MEDCouplingStructuredMesh
2975   {
2976   public:
2977     static MEDCouplingCurveLinearMesh *New();
2978     static MEDCouplingCurveLinearMesh *New(const char *meshName);
2979     MEDCouplingCurveLinearMesh *clone(bool recDeepCpy) const;
2980     void setCoords(const DataArrayDouble *coords) throw(INTERP_KERNEL::Exception);
2981     std::vector<int> getNodeGridStructure() const throw(INTERP_KERNEL::Exception);
2982     %extend {
2983       MEDCouplingCurveLinearMesh()
2984       {
2985         return MEDCouplingCurveLinearMesh::New();
2986       }
2987       MEDCouplingCurveLinearMesh(const char *meshName)
2988       {
2989         return MEDCouplingCurveLinearMesh::New(meshName);
2990       }
2991       std::string __str__() const throw(INTERP_KERNEL::Exception) 
2992       {
2993         return self->simpleRepr();
2994       }
2995       std::string __repr__() const throw(INTERP_KERNEL::Exception)
2996       {
2997         std::ostringstream oss;
2998         self->reprQuickOverview(oss);
2999         return oss.str();
3000       }
3001       DataArrayDouble *getCoords() throw(INTERP_KERNEL::Exception)
3002       {
3003         DataArrayDouble *ret=self->getCoords();
3004         if(ret)
3005           ret->incrRef();
3006         return ret;
3007       }
3008       void setNodeGridStructure(PyObject *gridStruct) throw(INTERP_KERNEL::Exception)
3009       {
3010         int szArr,sw,iTypppArr;
3011         std::vector<int> stdvecTyyppArr;
3012         const int *tmp=convertObjToPossibleCpp1_Safe(gridStruct,sw,szArr,iTypppArr,stdvecTyyppArr);
3013         self->setNodeGridStructure(tmp,tmp+szArr);
3014       }
3015     }
3016   };
3017
3018   //== MEDCouplingCurveLinearMesh End
3019 }
3020
3021 %extend ParaMEDMEM::MEDCouplingFieldDiscretization
3022 {
3023   MEDCouplingFieldDiscretization *clonePart(PyObject *li)
3024   {
3025     int sz=0,sw=-1,val1=-1;
3026     std::vector<int> val2;
3027     const int *inp=convertObjToPossibleCpp1_Safe(li,sw,sz,val1,val2);
3028     return self->clonePart(inp,inp+sz);
3029   }
3030
3031   PyObject *buildSubMeshDataRange(const MEDCouplingMesh *mesh, int beginCellIds, int endCellIds, int stepCellIds, int& beginOut, int& endOut, int& stepOut, DataArrayInt *&di) const throw(INTERP_KERNEL::Exception)
3032   {
3033     DataArrayInt *ret1=0;
3034     int bb,ee,ss;
3035     MEDCouplingMesh *ret0=self->buildSubMeshDataRange(mesh,begin,end,step,bb,ee,ss,ret1);
3036     PyObject *res=PyTuple_New(2);
3037     PyTuple_SetItem(res,0,convertMesh(ret0, SWIG_POINTER_OWN | 0 ));
3038     if(ret1)
3039       PyTuple_SetItem(res,1,SWIG_NewPointerObj((void*)ret1,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,SWIG_POINTER_OWN | 0));
3040     else
3041       {
3042         PyObject *res1=PySlice_New(PyInt_FromLong(bb),PyInt_FromLong(ee),PyInt_FromLong(ss));
3043         PyTuple_SetItem(res,1,res1);
3044       }
3045     return res;
3046   }
3047   
3048   PyObject *computeMeshRestrictionFromTupleIds(const MEDCouplingMesh *mesh, PyObject *tupleIds) const throw(INTERP_KERNEL::Exception)
3049   {
3050     std::vector<int> vVal; int iVal=-1;
3051     int sz=-1,sw=0;
3052     const int *tupleIdsBg=convertObjToPossibleCpp1_Safe(tupleIds,sw,sz,iVal,vVal);
3053     if(sw==0)
3054       throw INTERP_KERNEL::Exception("MEDCouplingFieldDiscretization::computeMeshRestrictionFromTupleIds : none parameter in input !");
3055     DataArrayInt *ret0=0,*ret1=0;
3056     self->computeMeshRestrictionFromTupleIds(mesh,tupleIdsBg,tupleIdsBg+sz,ret0,ret1);
3057     PyObject *pyRet=PyTuple_New(2);
3058     PyTuple_SetItem(pyRet,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
3059     PyTuple_SetItem(pyRet,1,SWIG_NewPointerObj(SWIG_as_voidptr(ret1),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
3060     return pyRet;
3061   }
3062 }
3063
3064 %extend ParaMEDMEM::MEDCouplingFieldDiscretizationP0
3065 {
3066   PyObject *computeMeshRestrictionFromTupleIds(const MEDCouplingMesh *mesh, PyObject *tupleIds) const throw(INTERP_KERNEL::Exception)
3067   { return ParaMEDMEM_MEDCouplingFieldDiscretization_computeMeshRestrictionFromTupleIds__SWIG_1(self,mesh,tupleIds); }
3068 }
3069
3070 %extend ParaMEDMEM::MEDCouplingFieldDiscretizationOnNodes
3071 {
3072   PyObject *computeMeshRestrictionFromTupleIds(const MEDCouplingMesh *mesh, PyObject *tupleIds) const throw(INTERP_KERNEL::Exception)
3073   { return ParaMEDMEM_MEDCouplingFieldDiscretization_computeMeshRestrictionFromTupleIds__SWIG_1(self,mesh,tupleIds); }
3074 }
3075
3076 %extend ParaMEDMEM::MEDCouplingFieldDiscretizationGauss
3077 {
3078   PyObject *computeMeshRestrictionFromTupleIds(const MEDCouplingMesh *mesh, PyObject *tupleIds) const throw(INTERP_KERNEL::Exception)
3079   { return ParaMEDMEM_MEDCouplingFieldDiscretization_computeMeshRestrictionFromTupleIds__SWIG_1(self,mesh,tupleIds); }
3080 }
3081
3082 %extend ParaMEDMEM::MEDCouplingFieldDiscretizationGaussNE
3083 {
3084   PyObject *computeMeshRestrictionFromTupleIds(const MEDCouplingMesh *mesh, PyObject *tupleIds) const throw(INTERP_KERNEL::Exception)
3085   { return ParaMEDMEM_MEDCouplingFieldDiscretization_computeMeshRestrictionFromTupleIds__SWIG_1(self,mesh,tupleIds); }
3086 }
3087
3088 %extend ParaMEDMEM::MEDCouplingFieldDiscretizationPerCell
3089 {
3090   PyObject *getArrayOfDiscIds() const
3091   {
3092     DataArrayInt *ret=const_cast<DataArrayInt *>(self->getArrayOfDiscIds());
3093     if(ret)
3094       ret->incrRef();
3095     return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
3096   }
3097
3098   PyObject *splitIntoSingleGaussDicrPerCellType() const throw(INTERP_KERNEL::Exception)
3099   {
3100     std::vector<int> ret1;
3101     std::vector<DataArrayInt *> ret0=self->splitIntoSingleGaussDicrPerCellType(ret1);
3102     std::size_t sz=ret0.size();
3103     PyObject *pyRet=PyTuple_New(2);
3104     PyObject *pyRet0=PyList_New((int)sz);
3105     PyObject *pyRet1=PyList_New((int)sz);
3106     for(std::size_t i=0;i<sz;i++)
3107       {
3108         PyList_SetItem(pyRet0,i,SWIG_NewPointerObj(SWIG_as_voidptr(ret0[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
3109         PyList_SetItem(pyRet1,i,PyInt_FromLong(ret1[i]));
3110       }
3111     PyTuple_SetItem(pyRet,0,pyRet0);
3112     PyTuple_SetItem(pyRet,1,pyRet1);
3113     return pyRet;
3114   }
3115 }
3116
3117 %extend ParaMEDMEM::MEDCouplingFieldDiscretizationKriging
3118 {
3119   PyObject *computeVectorOfCoefficients(const MEDCouplingMesh *mesh, const DataArrayDouble *arr) const
3120   {
3121     int ret1;
3122     DataArrayDouble *ret0=self->computeVectorOfCoefficients(mesh,arr,ret1);
3123     PyObject *ret=PyTuple_New(2);
3124     PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
3125     PyTuple_SetItem(ret,1,PyInt_FromLong(ret1));
3126     return ret;
3127   }
3128 }
3129
3130 namespace ParaMEDMEM
3131 {
3132   class MEDCouplingField : public ParaMEDMEM::RefCountObject, public ParaMEDMEM::TimeLabel
3133   {
3134   public:
3135     virtual void checkCoherency() const throw(INTERP_KERNEL::Exception);
3136     virtual bool areCompatibleForMerge(const MEDCouplingField *other) const throw(INTERP_KERNEL::Exception);
3137     virtual bool isEqual(const MEDCouplingField *other, double meshPrec, double valsPrec) const throw(INTERP_KERNEL::Exception);
3138     virtual bool isEqualWithoutConsideringStr(const MEDCouplingField *other, double meshPrec, double valsPrec) const throw(INTERP_KERNEL::Exception);
3139     virtual void copyTinyStringsFrom(const MEDCouplingField *other) throw(INTERP_KERNEL::Exception);
3140     void setMesh(const ParaMEDMEM::MEDCouplingMesh *mesh) throw(INTERP_KERNEL::Exception);
3141     void setName(const char *name) throw(INTERP_KERNEL::Exception);
3142     const char *getDescription() const throw(INTERP_KERNEL::Exception);
3143     void setDescription(const char *desc) throw(INTERP_KERNEL::Exception);
3144     const char *getName() const throw(INTERP_KERNEL::Exception);
3145     TypeOfField getTypeOfField() const throw(INTERP_KERNEL::Exception);
3146     NatureOfField getNature() const throw(INTERP_KERNEL::Exception);
3147     virtual void setNature(NatureOfField nat) throw(INTERP_KERNEL::Exception);
3148     DataArrayDouble *getLocalizationOfDiscr() const throw(INTERP_KERNEL::Exception);
3149     MEDCouplingFieldDouble *buildMeasureField(bool isAbs) const throw(INTERP_KERNEL::Exception);
3150     int getNumberOfTuplesExpected() const throw(INTERP_KERNEL::Exception);
3151     int getNumberOfMeshPlacesExpected() const throw(INTERP_KERNEL::Exception);
3152     void setGaussLocalizationOnType(INTERP_KERNEL::NormalizedCellType type, const std::vector<double>& refCoo,
3153                                     const std::vector<double>& gsCoo, const std::vector<double>& wg) throw(INTERP_KERNEL::Exception);
3154     void clearGaussLocalizations() throw(INTERP_KERNEL::Exception);
3155     MEDCouplingGaussLocalization& getGaussLocalization(int locId) throw(INTERP_KERNEL::Exception);
3156     int getNbOfGaussLocalization() const throw(INTERP_KERNEL::Exception);
3157     int getGaussLocalizationIdOfOneCell(int cellId) const throw(INTERP_KERNEL::Exception);
3158     const MEDCouplingGaussLocalization& getGaussLocalization(int locId) const throw(INTERP_KERNEL::Exception);
3159     int getGaussLocalizationIdOfOneType(INTERP_KERNEL::NormalizedCellType type) const throw(INTERP_KERNEL::Exception);
3160     void setDiscretization(MEDCouplingFieldDiscretization *newDisc);
3161     %extend {
3162       PyObject *getMesh() const throw(INTERP_KERNEL::Exception)
3163       {
3164         MEDCouplingMesh *ret1=const_cast<MEDCouplingMesh *>(self->getMesh());
3165         if(ret1)
3166           ret1->incrRef();
3167         return convertMesh(ret1,SWIG_POINTER_OWN | 0 );
3168       }
3169
3170       PyObject *getDiscretization() throw(INTERP_KERNEL::Exception)
3171       {
3172         MEDCouplingFieldDiscretization *ret=self->getDiscretization();
3173         if(ret)
3174           ret->incrRef();
3175         return convertFieldDiscretization(ret,SWIG_POINTER_OWN | 0 );
3176       }
3177
3178       PyObject *getGaussLocalizationIdsOfOneType(INTERP_KERNEL::NormalizedCellType type) const throw(INTERP_KERNEL::Exception)
3179       {
3180         std::set<int> ret=self->getGaussLocalizationIdsOfOneType(type);
3181         return convertIntArrToPyList3(ret);
3182       }
3183
3184       PyObject *isEqualIfNotWhy(const MEDCouplingField *other, double meshPrec, double valsPrec) const throw(INTERP_KERNEL::Exception)
3185       {
3186         std::string ret1;
3187         bool ret0=self->isEqualIfNotWhy(other,meshPrec,valsPrec,ret1);
3188         PyObject *ret=PyTuple_New(2);
3189         PyObject *ret0Py=ret0?Py_True:Py_False;
3190         Py_XINCREF(ret0Py);
3191         PyTuple_SetItem(ret,0,ret0Py);
3192         PyTuple_SetItem(ret,1,PyString_FromString(ret1.c_str()));
3193         return ret;
3194       }
3195
3196       PyObject *buildSubMeshData(PyObject *li) const throw(INTERP_KERNEL::Exception)
3197       {
3198         DataArrayInt *ret1=0;
3199         MEDCouplingMesh *ret0=0;
3200         void *da=0;
3201         int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayInt, 0 |  0 );
3202         if (!SWIG_IsOK(res1))
3203           {
3204             int size;
3205             INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
3206             ret0=self->buildSubMeshData(tmp,tmp+size,ret1);
3207           }
3208         else
3209           {
3210             DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
3211             if(!da2)
3212               throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
3213             da2->checkAllocated();
3214             ret0=self->buildSubMeshData(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems(),ret1);
3215           }
3216         PyObject *res = PyList_New(2);
3217         PyList_SetItem(res,0,convertMesh(ret0, SWIG_POINTER_OWN | 0 ));
3218         PyList_SetItem(res,1,SWIG_NewPointerObj((void*)ret1,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,SWIG_POINTER_OWN | 0));
3219         return res;
3220       }
3221
3222       PyObject *buildSubMeshDataRange(int begin, int end, int step) const throw(INTERP_KERNEL::Exception)
3223       {
3224         DataArrayInt *ret1=0;
3225         int bb,ee,ss;
3226         MEDCouplingMesh *ret0=self->buildSubMeshDataRange(begin,end,step,bb,ee,ss,ret1);
3227         PyObject *res=PyTuple_New(2);
3228         PyTuple_SetItem(res,0,convertMesh(ret0, SWIG_POINTER_OWN | 0 ));
3229         if(ret1)
3230           PyTuple_SetItem(res,1,SWIG_NewPointerObj((void*)ret1,SWIGTYPE_p_ParaMEDMEM__DataArrayInt,SWIG_POINTER_OWN | 0));
3231         else
3232           {
3233             PyObject *res1=PySlice_New(PyInt_FromLong(bb),PyInt_FromLong(ee),PyInt_FromLong(ss));
3234             PyTuple_SetItem(res,1,res1);
3235           }
3236         return res;
3237       }
3238
3239       DataArrayInt *computeTupleIdsToSelectFromCellIds(PyObject *li) const
3240       {
3241         int sw;
3242         int pos1;
3243         std::vector<int> pos2;
3244         DataArrayInt *pos3=0;
3245         DataArrayIntTuple *pos4=0;
3246         convertObjToPossibleCpp1(li,sw,pos1,pos2,pos3,pos4);
3247         switch(sw)
3248           {
3249           case 1:
3250             {
3251               return self->computeTupleIdsToSelectFromCellIds(&pos1,&pos1+1);
3252             }
3253           case 2:
3254             {
3255               return self->computeTupleIdsToSelectFromCellIds(&pos2[0],&pos2[0]+pos2.size());
3256             }
3257           case 3:
3258             {
3259               return self->computeTupleIdsToSelectFromCellIds(pos3->begin(),pos3->end());
3260             }
3261           default:
3262             throw INTERP_KERNEL::Exception("MEDCouplingField::computeTupleIdsToSelectFromCellIds : unexpected input array type recognized !");
3263           }
3264       }
3265
3266       void setGaussLocalizationOnCells(PyObject *li, const std::vector<double>& refCoo,
3267                                        const std::vector<double>& gsCoo, const std::vector<double>& wg) throw(INTERP_KERNEL::Exception)
3268       {
3269         void *da=0;
3270         int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayInt, 0 |  0 );
3271         if (!SWIG_IsOK(res1))
3272           {
3273             int size;
3274             INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
3275             self->setGaussLocalizationOnCells(tmp,((int *)tmp)+size,refCoo,gsCoo,wg);
3276           }
3277         else
3278           {
3279             DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
3280             if(!da2)
3281               throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
3282             da2->checkAllocated();
3283             self->setGaussLocalizationOnCells(da2->getConstPointer(),da2->getConstPointer()+da2->getNbOfElems(),refCoo,gsCoo,wg);
3284           }
3285       }
3286
3287       PyObject *getCellIdsHavingGaussLocalization(int locId) const throw(INTERP_KERNEL::Exception)
3288       {
3289         std::vector<int> tmp;
3290         self->getCellIdsHavingGaussLocalization(locId,tmp);
3291         DataArrayInt *ret=DataArrayInt::New();
3292         ret->alloc((int)tmp.size(),1);
3293         std::copy(tmp.begin(),tmp.end(),ret->getPointer());
3294         return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 );
3295       }
3296     }
3297   };
3298   
3299   class MEDCouplingFieldTemplate : public ParaMEDMEM::MEDCouplingField
3300   {
3301   public:
3302     static MEDCouplingFieldTemplate *New(const MEDCouplingFieldDouble& f) throw(INTERP_KERNEL::Exception);
3303     static MEDCouplingFieldTemplate *New(TypeOfField type);
3304     std::string simpleRepr() const throw(INTERP_KERNEL::Exception);
3305     std::string advancedRepr() const throw(INTERP_KERNEL::Exception);
3306     %extend
3307        {
3308          MEDCouplingFieldTemplate(const MEDCouplingFieldDouble& f) throw(INTERP_KERNEL::Exception)
3309          {
3310            return MEDCouplingFieldTemplate::New(f);
3311          }
3312          
3313          MEDCouplingFieldTemplate(TypeOfField type) throw(INTERP_KERNEL::Exception)
3314          {
3315            return MEDCouplingFieldTemplate::New(type);
3316          }
3317          
3318          std::string __str__() const throw(INTERP_KERNEL::Exception)
3319          {
3320            return self->simpleRepr();
3321          }
3322          
3323          std::string __repr__() const throw(INTERP_KERNEL::Exception)
3324          {
3325            std::ostringstream oss;
3326            self->reprQuickOverview(oss);
3327            return oss.str();
3328          }
3329        }
3330   };
3331   
3332   class MEDCouplingFieldDouble : public ParaMEDMEM::MEDCouplingField
3333   {
3334   public:
3335     static MEDCouplingFieldDouble *New(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME);
3336     static MEDCouplingFieldDouble *New(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME);
3337     void setTimeUnit(const char *unit);
3338     const char *getTimeUnit() const;
3339     void synchronizeTimeWithSupport() throw(INTERP_KERNEL::Exception);
3340     void copyTinyAttrFrom(const MEDCouplingFieldDouble *other) throw(INTERP_KERNEL::Exception);
3341     void copyAllTinyAttrFrom(const MEDCouplingFieldDouble *other) throw(INTERP_KERNEL::Exception);
3342     std::string simpleRepr() const throw(INTERP_KERNEL::Exception);
3343     std::string advancedRepr() const throw(INTERP_KERNEL::Exception);
3344     void writeVTK(const char *fileName) const throw(INTERP_KERNEL::Exception);
3345     MEDCouplingFieldDouble *clone(bool recDeepCpy) const;
3346     MEDCouplingFieldDouble *cloneWithMesh(bool recDeepCpy) const;
3347     MEDCouplingFieldDouble *deepCpy() const;
3348     MEDCouplingFieldDouble *buildNewTimeReprFromThis(TypeOfTimeDiscretization td, bool deepCpy) const throw(INTERP_KERNEL::Exception);
3349     TypeOfTimeDiscretization getTimeDiscretization() const throw(INTERP_KERNEL::Exception);
3350     double getIJ(int tupleId, int compoId) const throw(INTERP_KERNEL::Exception);
3351     double getIJK(int cellId, int nodeIdInCell, int compoId) const throw(INTERP_KERNEL::Exception);
3352     void synchronizeTimeWithMesh() throw(INTERP_KERNEL::Exception);
3353     void setArray(DataArrayDouble *array) throw(INTERP_KERNEL::Exception);
3354     void setEndArray(DataArrayDouble *array) throw(INTERP_KERNEL::Exception);
3355     void setTime(double val, int iteration, int order) throw(INTERP_KERNEL::Exception);
3356     void setStartTime(double val, int iteration, int order) throw(INTERP_KERNEL::Exception);
3357     void setEndTime(double val, int iteration, int order) throw(INTERP_KERNEL::Exception);
3358     void applyLin(double a, double b, int compoId) throw(INTERP_KERNEL::Exception);
3359     int getNumberOfComponents() const throw(INTERP_KERNEL::Exception);
3360     int getNumberOfTuples() const throw(INTERP_KERNEL::Exception);
3361     int getNumberOfValues() const throw(INTERP_KERNEL::Exception);
3362     void setTimeTolerance(double val) throw(INTERP_KERNEL::Exception);
3363     double getTimeTolerance() const throw(INTERP_KERNEL::Exception);
3364     void setIteration(int it) throw(INTERP_KERNEL::Exception);
3365     void setEndIteration(int it) throw(INTERP_KERNEL::Exception);
3366     void setOrder(int order) throw(INTERP_KERNEL::Exception);
3367     void setEndOrder(int order) throw(INTERP_KERNEL::Exception);
3368     void setTimeValue(double val) throw(INTERP_KERNEL::Exception);
3369     void setEndTimeValue(double val) throw(INTERP_KERNEL::Exception);
3370     void changeUnderlyingMesh(const MEDCouplingMesh *other, int levOfCheck, double precOnMesh, double eps=1e-15) throw(INTERP_KERNEL::Exception);
3371     void substractInPlaceDM(const MEDCouplingFieldDouble *f, int levOfCheck, double precOnMesh, double eps=1e-15) throw(INTERP_KERNEL::Exception);
3372     bool mergeNodes(double eps, double epsOnVals=1e-15) throw(INTERP_KERNEL::Exception);
3373     bool mergeNodes2(double eps, double epsOnVals=1e-15) throw(INTERP_KERNEL::Exception);
3374     bool zipCoords(double epsOnVals=1e-15) throw(INTERP_KERNEL::Exception);
3375     bool zipConnectivity(int compType,double epsOnVals=1e-15) throw(INTERP_KERNEL::Exception);
3376     bool simplexize(int policy) throw(INTERP_KERNEL::Exception);
3377     MEDCouplingFieldDouble *doublyContractedProduct() const throw(INTERP_KERNEL::Exception);
3378     MEDCouplingFieldDouble *determinant() const throw(INTERP_KERNEL::Exception);
3379     MEDCouplingFieldDouble *eigenValues() const throw(INTERP_KERNEL::Exception);
3380     MEDCouplingFieldDouble *eigenVectors() const throw(INTERP_KERNEL::Exception);
3381     MEDCouplingFieldDouble *inverse() const throw(INTERP_KERNEL::Exception);
3382     MEDCouplingFieldDouble *trace() const throw(INTERP_KERNEL::Exception);
3383     MEDCouplingFieldDouble *deviator() const throw(INTERP_KERNEL::Exception);
3384     MEDCouplingFieldDouble *magnitude() const throw(INTERP_KERNEL::Exception);
3385     MEDCouplingFieldDouble *maxPerTuple() const throw(INTERP_KERNEL::Exception);
3386     void changeNbOfComponents(int newNbOfComp, double dftValue=0.) throw(INTERP_KERNEL::Exception);
3387     void sortPerTuple(bool asc) throw(INTERP_KERNEL::Exception);
3388     MEDCouplingFieldDouble &operator=(double value) throw(INTERP_KERNEL::Exception);
3389     void fillFromAnalytic(int nbOfComp, const char *func) throw(INTERP_KERNEL::Exception);
3390     void fillFromAnalytic2(int nbOfComp, const char *func) throw(INTERP_KERNEL::Exception);
3391     void fillFromAnalytic3(int nbOfComp, const std::vector<std::string>& varsOrder, const char *func) throw(INTERP_KERNEL::Exception);
3392     void applyFunc(int nbOfComp, const char *func) throw(INTERP_KERNEL::Exception);
3393     void applyFunc2(int nbOfComp, const char *func) throw(INTERP_KERNEL::Exception);
3394     void applyFunc3(int nbOfComp, const std::vector<std::string>& varsOrder, const char *func) throw(INTERP_KERNEL::Exception);
3395     void applyFunc(int nbOfComp, double val) throw(INTERP_KERNEL::Exception);
3396     void applyFunc(const char *func) throw(INTERP_KERNEL::Exception);
3397     void applyFuncFast32(const char *func) throw(INTERP_KERNEL::Exception);
3398     void applyFuncFast64(const char *func) throw(INTERP_KERNEL::Exception);
3399     double accumulate(int compId) const throw(INTERP_KERNEL::Exception);
3400     double getMaxValue() const throw(INTERP_KERNEL::Exception);
3401     double getMinValue() const throw(INTERP_KERNEL::Exception);
3402     double getAverageValue() const throw(INTERP_KERNEL::Exception);
3403     double norm2() const throw(INTERP_KERNEL::Exception);
3404     double normMax() const throw(INTERP_KERNEL::Exception);
3405     //do not put a default value to isWAbs because confusion in python with overloaded getWeightedAverageValue method
3406     double getWeightedAverageValue(int compId, bool isWAbs) const throw(INTERP_KERNEL::Exception);
3407     double integral(int compId, bool isWAbs) const throw(INTERP_KERNEL::Exception);
3408     double normL1(int compId) const throw(INTERP_KERNEL::Exception);
3409     double normL2(int compId) const throw(INTERP_KERNEL::Exception);
3410     DataArrayInt *getIdsInRange(double vmin, double vmax) const throw(INTERP_KERNEL::Exception);
3411     MEDCouplingFieldDouble *buildSubPartRange(int begin, int end, int step) const throw(INTERP_KERNEL::Exception);
3412     static MEDCouplingFieldDouble *MergeFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3413     static MEDCouplingFieldDouble *MeldFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3414     static MEDCouplingFieldDouble *DotFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3415     MEDCouplingFieldDouble *dot(const MEDCouplingFieldDouble& other) const throw(INTERP_KERNEL::Exception);
3416     static MEDCouplingFieldDouble *CrossProductFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3417     MEDCouplingFieldDouble *crossProduct(const MEDCouplingFieldDouble& other) const throw(INTERP_KERNEL::Exception);
3418     static MEDCouplingFieldDouble *MaxFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3419     MEDCouplingFieldDouble *max(const MEDCouplingFieldDouble& other) const throw(INTERP_KERNEL::Exception);
3420     static MEDCouplingFieldDouble *MinFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3421     static MEDCouplingFieldDouble *AddFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3422     static MEDCouplingFieldDouble *SubstractFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3423     static MEDCouplingFieldDouble *MultiplyFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3424     static MEDCouplingFieldDouble *DivideFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) throw(INTERP_KERNEL::Exception);
3425     MEDCouplingFieldDouble *min(const MEDCouplingFieldDouble& other) const throw(INTERP_KERNEL::Exception);
3426     MEDCouplingFieldDouble *negate() const throw(INTERP_KERNEL::Exception);
3427     %extend {
3428       MEDCouplingFieldDouble(TypeOfField type, TypeOfTimeDiscretization td=ONE_TIME)
3429       {
3430         return MEDCouplingFieldDouble::New(type,td);
3431       }
3432
3433       MEDCouplingFieldDouble(const MEDCouplingFieldTemplate& ft, TypeOfTimeDiscretization td=ONE_TIME)
3434       {
3435         return MEDCouplingFieldDouble::New(ft,td);
3436       }
3437
3438       std::string __str__() const throw(INTERP_KERNEL::Exception)
3439       {
3440         return self->simpleRepr();
3441       }
3442
3443       std::string __repr__() const throw(INTERP_KERNEL::Exception)
3444       {
3445         std::ostringstream oss;
3446         self->reprQuickOverview(oss);
3447         return oss.str();
3448       }
3449
3450       DataArrayDouble *getArray() throw(INTERP_KERNEL::Exception)
3451       {
3452         DataArrayDouble *ret=self->getArray();
3453         if(ret)
3454           ret->incrRef();
3455         return ret;
3456       }
3457
3458       PyObject *getArrays() const throw(INTERP_KERNEL::Exception)
3459       {
3460         std::vector<DataArrayDouble *> arrs=self->getArrays();
3461         for(std::vector<DataArrayDouble *>::iterator it=arrs.begin();it!=arrs.end();it++)
3462           if(*it)
3463             (*it)->incrRef();
3464         int sz=arrs.size();
3465         PyObject *ret=PyTuple_New(sz);
3466         for(int i=0;i<sz;i++)
3467           {
3468             if(arrs[i])
3469               PyTuple_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(arrs[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
3470             else
3471               PyTuple_SetItem(ret,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, 0 | 0 ));
3472           }
3473         return ret;
3474       }
3475
3476       void setArrays(PyObject *ls) throw(INTERP_KERNEL::Exception)
3477       {
3478         std::vector<const DataArrayDouble *> tmp;
3479         convertFromPyObjVectorOfObj<const DataArrayDouble *>(ls,SWIGTYPE_p_ParaMEDMEM__DataArrayDouble,"DataArrayDouble",tmp);
3480         int sz=tmp.size();
3481         std::vector<DataArrayDouble *> arrs(sz);
3482         for(int i=0;i<sz;i++)
3483           arrs[i]=const_cast<DataArrayDouble *>(tmp[i]);
3484         self->setArrays(arrs);
3485       }
3486
3487       DataArrayDouble *getEndArray() throw(INTERP_KERNEL::Exception)
3488       {
3489         DataArrayDouble *ret=self->getEndArray();
3490         if(ret)
3491           ret->incrRef();
3492         return ret;
3493       }
3494
3495       PyObject *getValueOn(PyObject *sl) const throw(INTERP_KERNEL::Exception)
3496       {
3497         double val;
3498         DataArrayDouble *a;
3499         DataArrayDoubleTuple *aa;
3500         std::vector<double> bb;
3501         int sw;
3502         const MEDCouplingMesh *mesh=self->getMesh();
3503         if(!mesh)
3504           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingFieldDouble::getValueOn : no underlying mesh !");
3505         int spaceDim=mesh->getSpaceDimension();
3506         const char msg[]="Python wrap of MEDCouplingFieldDouble::getValueOn : ";
3507         const double *spaceLoc=convertObjToPossibleCpp5_Safe(sl,sw,val,a,aa,bb,msg,1,spaceDim,true);
3508         //
3509         int sz=self->getNumberOfComponents();
3510         INTERP_KERNEL::AutoPtr<double> res=new double[sz];
3511         self->getValueOn(spaceLoc,res);
3512         return convertDblArrToPyList(res,sz);
3513       }
3514
3515        PyObject *getValueOnPos(int i, int j, int k) const throw(INTERP_KERNEL::Exception)
3516        {
3517          int sz=self->getNumberOfComponents();
3518          INTERP_KERNEL::AutoPtr<double> res=new double[sz];
3519          self->getValueOnPos(i,j,k,res);
3520          return convertDblArrToPyList(res,sz);
3521        }
3522
3523       DataArrayDouble *getValueOnMulti(PyObject *li) const throw(INTERP_KERNEL::Exception)
3524       {
3525         void *da=0;
3526         int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, 0 |  0 );
3527         if (!SWIG_IsOK(res1))
3528           {
3529             int size;
3530             INTERP_KERNEL::AutoCPtr<double> tmp=convertPyToNewDblArr2(li,&size);
3531             const MEDCouplingMesh *mesh=self->getMesh();
3532             if(!mesh)
3533               throw INTERP_KERNEL::Exception("Python wrap MEDCouplingFieldDouble::getValueOnMulti : lying on a null mesh !");
3534             int spaceDim=mesh->getSpaceDimension();
3535             int nbOfPoints=size/spaceDim;
3536             if(size%spaceDim!=0)
3537               {
3538                 throw INTERP_KERNEL::Exception("Invalid list length ! Must be a multiple of self.getMesh().getSpaceDimension() !");
3539               }
3540             return self->getValueOnMulti(tmp,nbOfPoints);
3541           }
3542         else
3543           {
3544             DataArrayDouble *da2=reinterpret_cast< DataArrayDouble * >(da);
3545             if(!da2)
3546               throw INTERP_KERNEL::Exception("Not null DataArrayDouble instance expected !");
3547             da2->checkAllocated();
3548             int size=da2->getNumberOfTuples();
3549             int nbOfCompo=da2->getNumberOfComponents();
3550             const MEDCouplingMesh *mesh=self->getMesh();
3551             if(!mesh)
3552               throw INTERP_KERNEL::Exception("Python wrap MEDCouplingFieldDouble::getValueOnMulti : lying on a null mesh !");
3553             if(nbOfCompo!=mesh->getSpaceDimension())
3554               {
3555                 throw INTERP_KERNEL::Exception("Invalid DataArrayDouble nb of components ! Expected same as self.getMesh().getSpaceDimension() !");
3556               }
3557             return self->getValueOnMulti(da2->getConstPointer(),size);
3558           }
3559       }
3560
3561       PyObject *getValueOn(PyObject *sl, double time) const throw(INTERP_KERNEL::Exception)
3562       {
3563         double val;
3564         DataArrayDouble *a;
3565         DataArrayDoubleTuple *aa;
3566         std::vector<double> bb;
3567         int sw;
3568         const MEDCouplingMesh *mesh=self->getMesh();
3569         if(!mesh)
3570           throw INTERP_KERNEL::Exception("Python wrap of MEDCouplingFieldDouble::getValueOn : no underlying mesh !");
3571         int spaceDim=mesh->getSpaceDimension();
3572         const char msg[]="Python wrap of MEDCouplingFieldDouble::getValueOn : ";
3573         const double *spaceLoc=convertObjToPossibleCpp5_Safe(sl,sw,val,a,aa,bb,msg,1,spaceDim,true);
3574         //
3575         //
3576         int sz=self->getNumberOfComponents();
3577         INTERP_KERNEL::AutoPtr<double> res=new double[sz];
3578         self->getValueOn(spaceLoc,time,res);
3579         return convertDblArrToPyList(res,sz);
3580       }
3581
3582       void setValues(PyObject *li, PyObject *nbOfTuples=0, PyObject *nbOfComp=0) throw(INTERP_KERNEL::Exception)
3583       {
3584         if(self->getArray()!=0)
3585           ParaMEDMEM_DataArrayDouble_setValues__SWIG_0(self->getArray(),li,nbOfTuples,nbOfComp);
3586         else
3587           {
3588             MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> arr=DataArrayDouble::New();
3589             ParaMEDMEM_DataArrayDouble_setValues__SWIG_0(arr,li,nbOfTuples,nbOfComp);
3590             self->setArray(arr);
3591           }
3592       }
3593       
3594       PyObject *getTime() throw(INTERP_KERNEL::Exception)
3595       {
3596         int tmp1,tmp2;
3597         double tmp0=self->getTime(tmp1,tmp2);
3598         PyObject *res = PyList_New(3);
3599         PyList_SetItem(res,0,SWIG_From_double(tmp0));
3600         PyList_SetItem(res,1,SWIG_From_int(tmp1));
3601         PyList_SetItem(res,2,SWIG_From_int(tmp2));
3602         return res;
3603       }
3604
3605       PyObject *getStartTime() throw(INTERP_KERNEL::Exception)
3606       {
3607         int tmp1,tmp2;
3608         double tmp0=self->getStartTime(tmp1,tmp2);
3609         PyObject *res = PyList_New(3);
3610         PyList_SetItem(res,0,SWIG_From_double(tmp0));
3611         PyList_SetItem(res,1,SWIG_From_int(tmp1));
3612         PyList_SetItem(res,2,SWIG_From_int(tmp2));
3613         return res;
3614       }
3615
3616       PyObject *getEndTime() throw(INTERP_KERNEL::Exception)
3617       {
3618         int tmp1,tmp2;
3619         double tmp0=self->getEndTime(tmp1,tmp2);
3620         PyObject *res = PyList_New(3);
3621         PyList_SetItem(res,0,SWIG_From_double(tmp0));
3622         PyList_SetItem(res,1,SWIG_From_int(tmp1));
3623         PyList_SetItem(res,2,SWIG_From_int(tmp2));
3624         return res;
3625       }
3626       PyObject *accumulate() const throw(INTERP_KERNEL::Exception)
3627       {
3628         int sz=self->getNumberOfComponents();
3629         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
3630         self->accumulate(tmp);
3631         return convertDblArrToPyList(tmp,sz);
3632       }
3633       PyObject *integral(bool isWAbs) const throw(INTERP_KERNEL::Exception)
3634       {
3635         int sz=self->getNumberOfComponents();
3636         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
3637         self->integral(isWAbs,tmp);
3638         return convertDblArrToPyList(tmp,sz);
3639       }
3640       PyObject *getWeightedAverageValue(bool isWAbs=true) const throw(INTERP_KERNEL::Exception)
3641       {
3642         int sz=self->getNumberOfComponents();
3643         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
3644         self->getWeightedAverageValue(tmp,isWAbs);
3645         return convertDblArrToPyList(tmp,sz);
3646       }
3647       PyObject *normL1() const throw(INTERP_KERNEL::Exception)
3648       {
3649         int sz=self->getNumberOfComponents();
3650         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
3651         self->normL1(tmp);
3652         return convertDblArrToPyList(tmp,sz);
3653       }
3654       PyObject *normL2() const throw(INTERP_KERNEL::Exception)
3655       {
3656         int sz=self->getNumberOfComponents();
3657         INTERP_KERNEL::AutoPtr<double> tmp=new double[sz];
3658         self->normL2(tmp);
3659         return convertDblArrToPyList(tmp,sz);
3660       }
3661       void renumberCells(PyObject *li, bool check=true) throw(INTERP_KERNEL::Exception)
3662       {
3663         void *da=0;
3664         int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayInt, 0 |  0 );
3665         if (!SWIG_IsOK(res1))
3666           {
3667             int size;
3668             INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
3669             self->renumberCells(tmp,check);
3670           }
3671         else
3672           {
3673             DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
3674             if(!da2)
3675               throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
3676             da2->checkAllocated();
3677             self->renumberCells(da2->getConstPointer(),check);
3678           }
3679       }
3680       void renumberNodes(PyObject *li, double eps=1e-15) throw(INTERP_KERNEL::Exception)
3681       {
3682         void *da=0;
3683         int res1=SWIG_ConvertPtr(li,&da,SWIGTYPE_p_ParaMEDMEM__DataArrayInt, 0 |  0 );
3684         if (!SWIG_IsOK(res1))
3685           {
3686             int size;
3687             INTERP_KERNEL::AutoPtr<int> tmp=convertPyToNewIntArr2(li,&size);
3688             self->renumberNodes(tmp,eps);
3689           }
3690         else
3691           {
3692             DataArrayInt *da2=reinterpret_cast< DataArrayInt * >(da);
3693             if(!da2)
3694               throw INTERP_KERNEL::Exception("Not null DataArrayInt instance expected !");
3695             da2->checkAllocated();
3696             self->renumberNodes(da2->getConstPointer(),eps);
3697           }
3698       }
3699
3700       MEDCouplingFieldDouble *buildSubPart(PyObject *li) const throw(INTERP_KERNEL::Exception)
3701       {
3702         int sw;
3703         int singleVal;
3704         std::vector<int> multiVal;
3705         std::pair<int, std::pair<int,int> > slic;
3706         ParaMEDMEM::DataArrayInt *daIntTyypp=0;
3707         const MEDCouplingMesh *mesh=self->getMesh();
3708         if(!mesh)
3709           throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::buildSubPart : field lies on a null mesh !");
3710         int nbc=mesh->getNumberOfCells();
3711         convertObjToPossibleCpp2(li,nbc,sw,singleVal,multiVal,slic,daIntTyypp);
3712         switch(sw)
3713           {
3714           case 1:
3715             {
3716               if(singleVal>=nbc)
3717                 {
3718                   std::ostringstream oss;
3719                   oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
3720                   throw INTERP_KERNEL::Exception(oss.str().c_str());
3721                 }
3722               if(singleVal>=0)
3723                 return self->buildSubPart(&singleVal,&singleVal+1);
3724               else
3725                 {
3726                   if(nbc+singleVal>0)
3727                     {
3728                       int tmp=nbc+singleVal;
3729                       return self->buildSubPart(&tmp,&tmp+1);
3730                     }
3731                   else
3732                     {
3733                       std::ostringstream oss;
3734                       oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !";
3735                       throw INTERP_KERNEL::Exception(oss.str().c_str());
3736                     }
3737                 }
3738             }
3739           case 2:
3740             {
3741               return self->buildSubPart(&multiVal[0],&multiVal[0]+multiVal.size());
3742             }
3743           case 3:
3744             {
3745               return self->buildSubPartRange(slic.first,slic.second.first,slic.second.second);
3746             }
3747           case 4:
3748             {
3749               if(!daIntTyypp)
3750                 throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::buildSubPart : null instance has been given in input !");
3751               daIntTyypp->checkAllocated();
3752               return self->buildSubPart(daIntTyypp->begin(),daIntTyypp->end());
3753             }
3754           default:
3755             throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::buildSubPart : unrecognized type in input ! Possibilities are : int, list or tuple of int DataArrayInt instance !");
3756           }
3757       }
3758
3759       MEDCouplingFieldDouble *__getitem__(PyObject *li) const throw(INTERP_KERNEL::Exception)
3760       {
3761         const char msg[]="MEDCouplingFieldDouble::__getitem__ : invalid call  Available API are : \n-myField[dataArrayInt]\n-myField[slice]\n-myField[pythonListOfCellIds]\n-myField[integer]\n-myField[dataArrayInt,1]\n-myField[slice,1]\n-myField[pythonListOfCellIds,1]\n-myField[integer,1]\n";
3762         if(PyTuple_Check(li))
3763           {
3764             Py_ssize_t sz=PyTuple_Size(li);
3765             if(sz!=2)
3766               throw INTERP_KERNEL::Exception(msg);
3767             PyObject *elt0=PyTuple_GetItem(li,0),*elt1=PyTuple_GetItem(li,1);
3768             int sw;
3769             int singleVal;
3770             std::vector<int> multiVal;
3771             std::pair<int, std::pair<int,int> > slic;
3772             ParaMEDMEM::DataArrayInt *daIntTyypp=0;
3773             if(!self->getArray())
3774               throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::__getitem__ : no array set on field to deduce number of components !");
3775             try
3776               { convertObjToPossibleCpp2(elt1,self->getArray()->getNumberOfComponents(),sw,singleVal,multiVal,slic,daIntTyypp); }
3777             catch(INTERP_KERNEL::Exception& e)
3778               { std::ostringstream oss; oss << "MEDCouplingFieldDouble::__getitem__ : invalid type in 2nd parameter (compo) !" << e.what(); throw INTERP_KERNEL::Exception(oss.str().c_str()); }
3779             MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret0=ParaMEDMEM_MEDCouplingFieldDouble_buildSubPart(self,elt0);
3780             DataArrayDouble *ret0Arr=ret0->getArray();
3781             if(!ret0Arr)
3782               throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::__getitem__ : no array exists to apply restriction on component on it !");
3783             switch(sw)
3784               {
3785               case 1:
3786                 {
3787                   std::vector<int> v2(1,singleVal);
3788                   MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aarr=static_cast<DataArrayDouble *>(ret0Arr->keepSelectedComponents(v2));
3789                   ret0->setArray(aarr);
3790                   return ret0.retn();
3791                 }
3792               case 2:
3793                 {
3794                   MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aarr=static_cast<DataArrayDouble *>(ret0Arr->keepSelectedComponents(multiVal));
3795                   ret0->setArray(aarr);
3796                   return ret0.retn();
3797                 }
3798               case 3:
3799                 {
3800                   int nbOfComp=DataArray::GetNumberOfItemGivenBESRelative(slic.first,slic.second.first,slic.second.second,"MEDCouplingFieldDouble::__getitem__ : invalid range in 2nd parameter (components) !");
3801                   std::vector<int> v2(nbOfComp);
3802                   for(int i=0;i<nbOfComp;i++)
3803                     v2[i]=slic.first+i*slic.second.second;
3804                   MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aarr=static_cast<DataArrayDouble *>(ret0Arr->keepSelectedComponents(v2));
3805                   ret0->setArray(aarr);
3806                   return ret0.retn();
3807                 }
3808               default:
3809                 throw INTERP_KERNEL::Exception(msg);
3810               }
3811             
3812           }
3813         else
3814           return ParaMEDMEM_MEDCouplingFieldDouble_buildSubPart(self,li);
3815       }
3816
3817       PyObject *getMaxValue2() const throw(INTERP_KERNEL::Exception)
3818       {
3819         DataArrayInt *tmp;
3820         double r1=self->getMaxValue2(tmp);
3821         PyObject *ret=PyTuple_New(2);
3822         PyTuple_SetItem(ret,0,PyFloat_FromDouble(r1));
3823         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
3824         return ret;
3825       }
3826       
3827       PyObject *getMinValue2() const throw(INTERP_KERNEL::Exception)
3828       {
3829         DataArrayInt *tmp;
3830         double r1=self->getMinValue2(tmp);
3831         PyObject *ret=PyTuple_New(2);
3832         PyTuple_SetItem(ret,0,PyFloat_FromDouble(r1));
3833         PyTuple_SetItem(ret,1,SWIG_NewPointerObj(SWIG_as_voidptr(tmp),SWIGTYPE_p_ParaMEDMEM__DataArrayInt, SWIG_POINTER_OWN | 0 ));
3834         return ret;
3835       }
3836       
3837       MEDCouplingFieldDouble *keepSelectedComponents(PyObject *li) const throw(INTERP_KERNEL::Exception)
3838       {
3839         std::vector<int> tmp;
3840         convertPyToNewIntArr3(li,tmp);
3841         return self->keepSelectedComponents(tmp);
3842       }
3843
3844       void setSelectedComponents(const MEDCouplingFieldDouble *f, PyObject *li) throw(INTERP_KERNEL::Exception)
3845       {
3846         std::vector<int> tmp;
3847         convertPyToNewIntArr3(li,tmp);
3848         self->setSelectedComponents(f,tmp);
3849       }
3850
3851       MEDCouplingFieldDouble *extractSlice3D(PyObject *origin, PyObject *vec, double eps) const throw(INTERP_KERNEL::Exception)
3852       {
3853         double val,val2;
3854         DataArrayDouble *a,*a2;
3855         DataArrayDoubleTuple *aa,*aa2;
3856         std::vector<double> bb,bb2;
3857         int sw;
3858         int spaceDim=3;
3859         const char msg[]="Python wrap of MEDCouplingFieldDouble::extractSlice3D : 1st paramater for origin.";
3860         const char msg2[]="Python wrap of MEDCouplingFieldDouble::extractSlice3D : 2nd paramater for vector.";
3861         const double *orig=convertObjToPossibleCpp5_Safe(origin,sw,val,a,aa,bb,msg,1,spaceDim,true);
3862         const double *vect=convertObjToPossibleCpp5_Safe(vec,sw,val2,a2,aa2,bb2,msg2,1,spaceDim,true);
3863         //
3864         return self->extractSlice3D(orig,vect,eps);
3865       }
3866
3867       MEDCouplingFieldDouble *__add__(PyObject *obj) throw(INTERP_KERNEL::Exception)
3868       {
3869         return ParaMEDMEM_MEDCouplingFieldDouble___add__Impl(self,obj);
3870       }
3871
3872       MEDCouplingFieldDouble *__radd__(PyObject *obj) throw(INTERP_KERNEL::Exception)
3873       {
3874         return ParaMEDMEM_MEDCouplingFieldDouble___radd__Impl(self,obj);
3875       }
3876
3877       MEDCouplingFieldDouble *__sub__(PyObject *obj) throw(INTERP_KERNEL::Exception)
3878       {
3879         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__sub__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
3880         const char msg2[]="in MEDCouplingFieldDouble.__sub__ : self field has no Array of values set !";
3881         void *argp;
3882         //
3883         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
3884           {
3885             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
3886             if(other)
3887               return (*self)-(*other);
3888             else
3889               throw INTERP_KERNEL::Exception(msg);
3890           }
3891         //
3892         double val;
3893         DataArrayDouble *a;
3894         DataArrayDoubleTuple *aa;
3895         std::vector<double> bb;
3896         int sw;
3897         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
3898         switch(sw)
3899           {
3900           case 1:
3901             {
3902               if(!self->getArray())
3903                 throw INTERP_KERNEL::Exception(msg2);
3904               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=self->getArray()->deepCpy();
3905               ret->applyLin(1.,-val);
3906               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3907               ret2->setArray(ret);
3908               return ret2.retn();
3909             }
3910           case 2:
3911             {
3912               if(!self->getArray())
3913                 throw INTERP_KERNEL::Exception(msg2);
3914               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Substract(self->getArray(),a);
3915               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3916               ret2->setArray(ret);
3917               return ret2.retn();
3918             }
3919           case 3:
3920             {
3921               if(!self->getArray())
3922                 throw INTERP_KERNEL::Exception(msg2);
3923               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
3924               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Substract(self->getArray(),aaa);
3925               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3926               ret2->setArray(ret);
3927               return ret2.retn();
3928             }
3929           case 4:
3930             {
3931               if(!self->getArray())
3932                 throw INTERP_KERNEL::Exception(msg2);
3933               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
3934               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Substract(self->getArray(),aaa);
3935               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3936               ret2->setArray(ret);
3937               return ret2.retn();
3938             }
3939           default:
3940             { throw INTERP_KERNEL::Exception(msg); }
3941           }
3942       }
3943
3944       MEDCouplingFieldDouble *__rsub__(PyObject *obj) throw(INTERP_KERNEL::Exception)
3945       {
3946         return ParaMEDMEM_MEDCouplingFieldDouble___rsub__Impl(self,obj);
3947       }
3948
3949       MEDCouplingFieldDouble *__mul__(PyObject *obj) throw(INTERP_KERNEL::Exception)
3950       {
3951         return ParaMEDMEM_MEDCouplingFieldDouble___mul__Impl(self,obj);
3952       }
3953
3954       MEDCouplingFieldDouble *__rmul__(PyObject *obj) throw(INTERP_KERNEL::Exception)
3955       {
3956         return ParaMEDMEM_MEDCouplingFieldDouble___rmul__Impl(self,obj);
3957       }
3958
3959       MEDCouplingFieldDouble *__div__(PyObject *obj) throw(INTERP_KERNEL::Exception)
3960       {
3961         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__div__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
3962         const char msg2[]="in MEDCouplingFieldDouble.__div__ : self field has no Array of values set !";
3963         void *argp;
3964         //
3965         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
3966           {
3967             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
3968             if(other)
3969               return (*self)/(*other);
3970             else
3971               throw INTERP_KERNEL::Exception(msg);
3972           }
3973         //
3974         double val;
3975         DataArrayDouble *a;
3976         DataArrayDoubleTuple *aa;
3977         std::vector<double> bb;
3978         int sw;
3979         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
3980         switch(sw)
3981           {
3982           case 1:
3983             {
3984               if(val==0.)
3985                 throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble.__div__ : trying to divide by zero !");
3986               if(!self->getArray())
3987                 throw INTERP_KERNEL::Exception(msg2);
3988               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=self->getArray()->deepCpy();
3989               ret->applyLin(1./val,0);
3990               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
3991               ret2->setArray(ret);
3992               return ret2.retn();
3993             }
3994           case 2:
3995             {
3996               if(!self->getArray())
3997                 throw INTERP_KERNEL::Exception(msg2);
3998               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Divide(self->getArray(),a);
3999               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4000               ret2->setArray(ret);
4001               return ret2.retn();
4002             }
4003           case 3:
4004             {
4005               if(!self->getArray())
4006                 throw INTERP_KERNEL::Exception(msg2);
4007               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4008               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Divide(self->getArray(),aaa);
4009               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4010               ret2->setArray(ret);
4011               return ret2.retn();
4012             }
4013           case 4:
4014             {
4015               if(!self->getArray())
4016                 throw INTERP_KERNEL::Exception(msg2);
4017               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4018               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Divide(self->getArray(),aaa);
4019               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4020               ret2->setArray(ret);
4021               return ret2.retn();
4022             }
4023           default:
4024             { throw INTERP_KERNEL::Exception(msg); }
4025           }
4026       }
4027
4028       MEDCouplingFieldDouble *__rdiv__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4029       {
4030         return ParaMEDMEM_MEDCouplingFieldDouble___rdiv__Impl(self,obj);
4031       }
4032
4033       MEDCouplingFieldDouble *__pow__(PyObject *obj) throw(INTERP_KERNEL::Exception)
4034       {
4035         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__pow__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4036         const char msg2[]="in MEDCouplingFieldDouble.__pow__ : self field has no Array of values set !";
4037         void *argp;
4038         //
4039         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
4040           {
4041             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
4042             if(other)
4043               return (*self)^(*other);
4044             else
4045               throw INTERP_KERNEL::Exception(msg);
4046           }
4047         //
4048         double val;
4049         DataArrayDouble *a;
4050         DataArrayDoubleTuple *aa;
4051         std::vector<double> bb;
4052         int sw;
4053         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
4054         switch(sw)
4055           {
4056           case 1:
4057             {
4058               if(!self->getArray())
4059                 throw INTERP_KERNEL::Exception(msg2);
4060               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=self->getArray()->deepCpy();
4061               ret->applyPow(val);
4062               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4063               ret2->setArray(ret);
4064               return ret2.retn();
4065             }
4066           case 2:
4067             {
4068               if(!self->getArray())
4069                 throw INTERP_KERNEL::Exception(msg2);
4070               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Pow(self->getArray(),a);
4071               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4072               ret2->setArray(ret);
4073               return ret2.retn();
4074             }
4075           case 3:
4076             {
4077               if(!self->getArray())
4078                 throw INTERP_KERNEL::Exception(msg2);
4079               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4080               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Pow(self->getArray(),aaa);
4081               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4082               ret2->setArray(ret);
4083               return ret2.retn();
4084             }
4085           case 4:
4086             {
4087               if(!self->getArray())
4088                 throw INTERP_KERNEL::Exception(msg2);
4089               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4090               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret=DataArrayDouble::Pow(self->getArray(),aaa);
4091               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4092               ret2->setArray(ret);
4093               return ret2.retn();
4094             }
4095           default:
4096             { throw INTERP_KERNEL::Exception(msg); }
4097           }
4098       }
4099
4100       MEDCouplingFieldDouble *__neg__() const throw(INTERP_KERNEL::Exception)
4101       {
4102         return self->negate();
4103       }
4104
4105       PyObject *___iadd___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
4106       {
4107         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__iadd__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4108         const char msg2[]="in MEDCouplingFieldDouble.__iadd__ : self field has no Array of values set !";
4109         void *argp;
4110         //
4111         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
4112           {
4113             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
4114             if(other)
4115               {
4116                 *self+=*other;
4117                 Py_XINCREF(trueSelf);
4118                 return trueSelf;
4119               }
4120             else
4121               throw INTERP_KERNEL::Exception(msg);
4122           }
4123         //
4124         double val;
4125         DataArrayDouble *a;
4126         DataArrayDoubleTuple *aa;
4127         std::vector<double> bb;
4128         int sw;
4129         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
4130         switch(sw)
4131           {
4132           case 1:
4133             {
4134               if(!self->getArray())
4135                 throw INTERP_KERNEL::Exception(msg2);
4136               self->getArray()->applyLin(1.,val);
4137               Py_XINCREF(trueSelf);
4138               return trueSelf;
4139             }
4140           case 2:
4141             {
4142               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4143               ret2->setArray(a);
4144               *self+=*ret2;
4145               Py_XINCREF(trueSelf);
4146               return trueSelf;
4147             }
4148           case 3:
4149             {
4150               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4151               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4152               ret2->setArray(aaa);
4153               *self+=*ret2;
4154               Py_XINCREF(trueSelf);
4155               return trueSelf;
4156             }
4157           case 4:
4158             {
4159               if(!self->getArray())
4160                 throw INTERP_KERNEL::Exception(msg2);
4161               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4162               self->getArray()->addEqual(aaa);
4163               Py_XINCREF(trueSelf);
4164               return trueSelf;
4165             }
4166           default:
4167             { throw INTERP_KERNEL::Exception(msg); }
4168           }
4169       }
4170
4171       PyObject *___isub___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
4172       {
4173         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__isub__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4174         const char msg2[]="in MEDCouplingFieldDouble.__isub__ : self field has no Array of values set !";
4175         void *argp;
4176         //
4177         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
4178           {
4179             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
4180             if(other)
4181               {
4182                 *self-=*other;
4183                 Py_XINCREF(trueSelf);
4184                 return trueSelf;
4185               }
4186             else
4187               throw INTERP_KERNEL::Exception(msg);
4188           }
4189         //
4190         double val;
4191         DataArrayDouble *a;
4192         DataArrayDoubleTuple *aa;
4193         std::vector<double> bb;
4194         int sw;
4195         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
4196         switch(sw)
4197           {
4198           case 1:
4199             {
4200               if(!self->getArray())
4201                 throw INTERP_KERNEL::Exception(msg2);
4202               self->getArray()->applyLin(1.,-val);
4203               Py_XINCREF(trueSelf);
4204               return trueSelf;
4205             }
4206           case 2:
4207             {
4208               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4209               ret2->setArray(a);
4210               *self-=*ret2;
4211               Py_XINCREF(trueSelf);
4212               return trueSelf;
4213             }
4214           case 3:
4215             {
4216               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4217               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4218               ret2->setArray(aaa);
4219               *self-=*ret2;
4220               Py_XINCREF(trueSelf);
4221               return trueSelf;
4222             }
4223           case 4:
4224             {
4225               if(!self->getArray())
4226                 throw INTERP_KERNEL::Exception(msg2);
4227               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4228               self->getArray()->substractEqual(aaa);
4229               Py_XINCREF(trueSelf);
4230               return trueSelf;
4231             }
4232           default:
4233             { throw INTERP_KERNEL::Exception(msg); }
4234           }
4235       }
4236
4237       PyObject *___imul___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
4238       {
4239         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__imul__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4240         const char msg2[]="in MEDCouplingFieldDouble.__imul__ : self field has no Array of values set !";
4241         void *argp;
4242         //
4243         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
4244           {
4245             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
4246             if(other)
4247               {
4248                 *self*=*other;
4249                 Py_XINCREF(trueSelf);
4250                 return trueSelf;
4251               }
4252             else
4253               throw INTERP_KERNEL::Exception(msg);
4254           }
4255         //
4256         double val;
4257         DataArrayDouble *a;
4258         DataArrayDoubleTuple *aa;
4259         std::vector<double> bb;
4260         int sw;
4261         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
4262         switch(sw)
4263           {
4264           case 1:
4265             {
4266               if(!self->getArray())
4267                 throw INTERP_KERNEL::Exception(msg2);
4268               self->getArray()->applyLin(val,0);
4269               Py_XINCREF(trueSelf);
4270               return trueSelf;
4271             }
4272           case 2:
4273             {
4274               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4275               ret2->setArray(a);
4276               *self*=*ret2;
4277               Py_XINCREF(trueSelf);
4278               return trueSelf;
4279             }
4280           case 3:
4281             {
4282               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4283               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4284               ret2->setArray(aaa);
4285               *self*=*ret2;
4286               Py_XINCREF(trueSelf);
4287               return trueSelf;
4288             }
4289           case 4:
4290             {
4291               if(!self->getArray())
4292                 throw INTERP_KERNEL::Exception(msg2);
4293               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4294               self->getArray()->multiplyEqual(aaa);
4295               Py_XINCREF(trueSelf);
4296               return trueSelf;
4297             }
4298           default:
4299             { throw INTERP_KERNEL::Exception(msg); }
4300           }
4301       }
4302
4303       PyObject *___idiv___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
4304       {
4305         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__idiv__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4306         const char msg2[]="in MEDCouplingFieldDouble.__idiv__ : self field has no Array of values set !";
4307         void *argp;
4308         //
4309         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
4310           {
4311             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
4312             if(other)
4313               {
4314                 *self/=*other;
4315                 Py_XINCREF(trueSelf);
4316                 return trueSelf;
4317               }
4318             else
4319               throw INTERP_KERNEL::Exception(msg);
4320           }
4321         //
4322         double val;
4323         DataArrayDouble *a;
4324         DataArrayDoubleTuple *aa;
4325         std::vector<double> bb;
4326         int sw;
4327         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
4328         switch(sw)
4329           {
4330           case 1:
4331             {
4332               if(val==0.)
4333                 throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble.__idiv__ : trying to divide by zero !");
4334               if(!self->getArray())
4335                 throw INTERP_KERNEL::Exception(msg2);
4336               self->getArray()->applyLin(1./val,0);
4337               Py_XINCREF(trueSelf);
4338               return trueSelf;
4339             }
4340           case 2:
4341             {
4342               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4343               ret2->setArray(a);
4344               *self/=*ret2;
4345               Py_XINCREF(trueSelf);
4346               return trueSelf;
4347             }
4348           case 3:
4349             {
4350               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4351               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4352               ret2->setArray(aaa);
4353               *self/=*ret2;
4354               Py_XINCREF(trueSelf);
4355               return trueSelf;
4356             }
4357           case 4:
4358             {
4359               if(!self->getArray())
4360                 throw INTERP_KERNEL::Exception(msg2);
4361               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4362               self->getArray()->divideEqual(aaa);
4363               Py_XINCREF(trueSelf);
4364               return trueSelf;
4365             }
4366           default:
4367             { throw INTERP_KERNEL::Exception(msg); }
4368           }
4369       }
4370
4371       PyObject *___ipow___(PyObject *trueSelf, PyObject *obj) throw(INTERP_KERNEL::Exception)
4372       {
4373         const char msg[]="Unexpected situation in MEDCouplingFieldDouble.__ipow__ ! Expecting a not null MEDCouplingFieldDouble or DataArrayDouble or DataArrayDoubleTuple instance, or a list of double, or a double.";
4374         const char msg2[]="in MEDCouplingFieldDouble.__ipow__ : self field has no Array of values set !";
4375         void *argp;
4376         //
4377         if(SWIG_IsOK(SWIG_ConvertPtr(obj,&argp,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,0|0)))
4378           {
4379             MEDCouplingFieldDouble *other=reinterpret_cast< ParaMEDMEM::MEDCouplingFieldDouble * >(argp);
4380             if(other)
4381               {
4382                 *self^=*other;
4383                 Py_XINCREF(trueSelf);
4384                 return trueSelf;
4385               }
4386             else
4387               throw INTERP_KERNEL::Exception(msg);
4388           }
4389         //
4390         double val;
4391         DataArrayDouble *a;
4392         DataArrayDoubleTuple *aa;
4393         std::vector<double> bb;
4394         int sw;
4395         convertObjToPossibleCpp5(obj,sw,val,a,aa,bb);
4396         switch(sw)
4397           {
4398           case 1:
4399             {
4400               if(!self->getArray())
4401                 throw INTERP_KERNEL::Exception(msg2);
4402               self->getArray()->applyPow(val);
4403               Py_XINCREF(trueSelf);
4404               return trueSelf;
4405             }
4406           case 2:
4407             {
4408               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4409               ret2->setArray(a);
4410               *self^=*ret2;
4411               Py_XINCREF(trueSelf);
4412               return trueSelf;
4413             }
4414           case 3:
4415             {
4416               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=aa->buildDADouble(1,self->getNumberOfComponents());
4417               MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret2=self->clone(false);
4418               ret2->setArray(aaa);
4419               *self^=*ret2;
4420               Py_XINCREF(trueSelf);
4421               return trueSelf;
4422             }
4423           case 4:
4424             {
4425               if(!self->getArray())
4426                 throw INTERP_KERNEL::Exception(msg2);
4427               MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> aaa=DataArrayDouble::New(); aaa->useArray(&bb[0],false,CPP_DEALLOC,1,(int)bb.size());
4428               self->getArray()->powEqual(aaa);
4429               Py_XINCREF(trueSelf);
4430               return trueSelf;
4431             }
4432           default:
4433             { throw INTERP_KERNEL::Exception(msg); }
4434           }
4435       }
4436
4437       static MEDCouplingFieldDouble *MergeFields(PyObject *li) throw(INTERP_KERNEL::Exception)
4438       {
4439         std::vector<const MEDCouplingFieldDouble *> tmp;
4440         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4441         return MEDCouplingFieldDouble::MergeFields(tmp);
4442       }
4443
4444       static void WriteVTK(const char *fileName, PyObject *li) throw(INTERP_KERNEL::Exception)
4445       {
4446         std::vector<const MEDCouplingFieldDouble *> tmp;
4447         convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4448         MEDCouplingFieldDouble::WriteVTK(fileName,tmp);
4449       }
4450     }
4451   };
4452
4453   class MEDCouplingMultiFields : public RefCountObject, public TimeLabel
4454   {
4455   public:
4456     int getNumberOfFields() const;
4457     MEDCouplingMultiFields *deepCpy() const;
4458     virtual std::string simpleRepr() const throw(INTERP_KERNEL::Exception);
4459     virtual std::string advancedRepr() const throw(INTERP_KERNEL::Exception);
4460     virtual bool isEqual(const MEDCouplingMultiFields *other, double meshPrec, double valsPrec) const;
4461     virtual bool isEqualWithoutConsideringStr(const MEDCouplingMultiFields *other, double meshPrec, double valsPrec) const;
4462     virtual void checkCoherency() const throw(INTERP_KERNEL::Exception);
4463     %extend
4464        {
4465          std::string __str__() const throw(INTERP_KERNEL::Exception)
4466          {
4467            return self->simpleRepr();
4468          }
4469          static MEDCouplingMultiFields *New(PyObject *li) throw(INTERP_KERNEL::Exception)
4470          {
4471            std::vector<const ParaMEDMEM::MEDCouplingFieldDouble *> tmp;
4472            convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4473            int sz=tmp.size();
4474            std::vector<MEDCouplingFieldDouble *> fs(sz);
4475            for(int i=0;i<sz;i++)
4476              fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
4477            return MEDCouplingMultiFields::New(fs);
4478          }
4479          MEDCouplingMultiFields(PyObject *li) throw(INTERP_KERNEL::Exception)
4480          {
4481            std::vector<const ParaMEDMEM::MEDCouplingFieldDouble *> tmp;
4482            convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4483            int sz=tmp.size();
4484            std::vector<MEDCouplingFieldDouble *> fs(sz);
4485            for(int i=0;i<sz;i++)
4486              fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
4487            return MEDCouplingMultiFields::New(fs);
4488          }
4489          PyObject *getFields() const
4490          {
4491            std::vector<const MEDCouplingFieldDouble *> fields=self->getFields();
4492            int sz=fields.size();
4493            PyObject *res = PyList_New(sz);
4494            for(int i=0;i<sz;i++)
4495              {
4496                if(fields[i])
4497                  {
4498                    fields[i]->incrRef();
4499                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(fields[i]),SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble, SWIG_POINTER_OWN | 0 ));
4500                  }
4501                else
4502                  {
4503                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble, 0 ));
4504                  }
4505              }
4506            return res;
4507          }
4508          PyObject *getFieldAtPos(int id) const throw(INTERP_KERNEL::Exception)
4509          {
4510            const MEDCouplingFieldDouble *ret=self->getFieldAtPos(id);
4511            if(ret)
4512              {
4513                ret->incrRef();
4514                return SWIG_NewPointerObj(SWIG_as_voidptr(ret),SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble, SWIG_POINTER_OWN | 0 );
4515              }
4516            else
4517              return SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble, 0 );
4518          }
4519          PyObject *getMeshes() const throw(INTERP_KERNEL::Exception)
4520          {
4521            std::vector<MEDCouplingMesh *> ms=self->getMeshes();
4522            int sz=ms.size();
4523            PyObject *res = PyList_New(sz);
4524            for(int i=0;i<sz;i++)
4525              {
4526                if(ms[i])
4527                  {
4528                    ms[i]->incrRef();
4529                    PyList_SetItem(res,i,convertMesh(ms[i], SWIG_POINTER_OWN | 0 ));
4530                  }
4531                else
4532                  {
4533                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, 0 ));
4534                  }
4535              }
4536            return res;
4537          }
4538          PyObject *getDifferentMeshes() const throw(INTERP_KERNEL::Exception)
4539          {
4540            std::vector<int> refs;
4541            std::vector<MEDCouplingMesh *> ms=self->getDifferentMeshes(refs);
4542            int sz=ms.size();
4543            PyObject *res = PyList_New(sz);
4544            for(int i=0;i<sz;i++)
4545              {
4546                if(ms[i])
4547                  {
4548                    ms[i]->incrRef();
4549                    PyList_SetItem(res,i,convertMesh(ms[i], SWIG_POINTER_OWN | 0 ));
4550                  }
4551                else
4552                  {
4553                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__MEDCouplingUMesh, 0 ));
4554                  }
4555              }
4556            //
4557            PyObject *ret=PyTuple_New(2);
4558            PyTuple_SetItem(ret,0,res);
4559            PyTuple_SetItem(ret,1,convertIntArrToPyList2(refs));
4560            return ret;
4561          }
4562          PyObject *getArrays() const throw(INTERP_KERNEL::Exception)
4563          {
4564            std::vector<DataArrayDouble *> ms=self->getArrays();
4565            int sz=ms.size();
4566            PyObject *res = PyList_New(sz);
4567            for(int i=0;i<sz;i++)
4568              {
4569                if(ms[i])
4570                  {
4571                    ms[i]->incrRef();
4572                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(ms[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
4573                  }
4574                else
4575                  {
4576                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, 0 ));
4577                  }
4578              }
4579            return res;
4580          }
4581          PyObject *getDifferentArrays() const throw(INTERP_KERNEL::Exception)
4582          {
4583            std::vector< std::vector<int> > refs;
4584            std::vector<DataArrayDouble *> ms=self->getDifferentArrays(refs);
4585            int sz=ms.size();
4586            PyObject *res = PyList_New(sz);
4587            PyObject *res2 = PyList_New(sz);
4588            for(int i=0;i<sz;i++)
4589              {
4590                if(ms[i])
4591                  {
4592                    ms[i]->incrRef();
4593                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(ms[i]),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, SWIG_POINTER_OWN | 0 ));
4594                  }
4595                else
4596                  {
4597                    PyList_SetItem(res,i,SWIG_NewPointerObj(SWIG_as_voidptr(0),SWIGTYPE_p_ParaMEDMEM__DataArrayDouble, 0 ));
4598                  }
4599                PyList_SetItem(res2,i,convertIntArrToPyList2(refs[i]));
4600              }
4601            //
4602            PyObject *ret=PyTuple_New(2);
4603            PyTuple_SetItem(ret,0,res);
4604            PyTuple_SetItem(ret,1,res2);
4605            return ret;
4606          }
4607        }
4608   };
4609   
4610   class MEDCouplingDefinitionTime
4611   {
4612   public:
4613     MEDCouplingDefinitionTime();
4614     void assign(const MEDCouplingDefinitionTime& other);
4615     bool isEqual(const MEDCouplingDefinitionTime& other) const;
4616     double getTimeResolution() const;
4617     std::vector<double> getHotSpotsTime() const;
4618     %extend
4619       {
4620         std::string __str__() const throw(INTERP_KERNEL::Exception)
4621           {
4622             std::ostringstream oss;
4623             self->appendRepr(oss);
4624             return oss.str();
4625           }
4626
4627         PyObject *getIdsOnTimeRight(double tm) const throw(INTERP_KERNEL::Exception)
4628         {
4629           int meshId,arrId,arrIdInField,fieldId;
4630           self->getIdsOnTimeRight(tm,meshId,arrId,arrIdInField,fieldId);
4631           PyObject *res=PyList_New(4);
4632           PyList_SetItem(res,0,PyInt_FromLong(meshId));
4633           PyList_SetItem(res,1,PyInt_FromLong(arrId));
4634           PyList_SetItem(res,2,PyInt_FromLong(arrIdInField));
4635           PyList_SetItem(res,3,PyInt_FromLong(fieldId));
4636           return res;
4637         }
4638
4639         PyObject *getIdsOnTimeLeft(double tm) const throw(INTERP_KERNEL::Exception)
4640         {
4641           int meshId,arrId,arrIdInField,fieldId;
4642           self->getIdsOnTimeLeft(tm,meshId,arrId,arrIdInField,fieldId);
4643           PyObject *res=PyList_New(4);
4644           PyList_SetItem(res,0,PyInt_FromLong(meshId));
4645           PyList_SetItem(res,1,PyInt_FromLong(arrId));
4646           PyList_SetItem(res,2,PyInt_FromLong(arrIdInField));
4647           PyList_SetItem(res,3,PyInt_FromLong(fieldId));
4648           return res;
4649         }
4650       }
4651   };
4652
4653   class MEDCouplingFieldOverTime : public MEDCouplingMultiFields
4654   {
4655   public:
4656     double getTimeTolerance() const throw(INTERP_KERNEL::Exception);
4657     MEDCouplingDefinitionTime getDefinitionTimeZone() const;
4658     
4659     %extend
4660       {
4661         MEDCouplingFieldOverTime(PyObject *li) throw(INTERP_KERNEL::Exception)
4662           {
4663             std::vector<const ParaMEDMEM::MEDCouplingFieldDouble *> tmp;
4664             convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4665             int sz=tmp.size();
4666             std::vector<MEDCouplingFieldDouble *> fs(sz);
4667             for(int i=0;i<sz;i++)
4668               fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
4669             return MEDCouplingFieldOverTime::New(fs);
4670           }
4671         std::string __str__() const throw(INTERP_KERNEL::Exception)
4672           {
4673             return self->simpleRepr();
4674           }
4675         static MEDCouplingFieldOverTime *New(PyObject *li) throw(INTERP_KERNEL::Exception)
4676         {
4677           std::vector<const ParaMEDMEM::MEDCouplingFieldDouble *> tmp;
4678           convertFromPyObjVectorOfObj<const ParaMEDMEM::MEDCouplingFieldDouble *>(li,SWIGTYPE_p_ParaMEDMEM__MEDCouplingFieldDouble,"MEDCouplingFieldDouble",tmp);
4679            int sz=tmp.size();
4680            std::vector<MEDCouplingFieldDouble *> fs(sz);
4681            for(int i=0;i<sz;i++)
4682              fs[i]=const_cast<MEDCouplingFieldDouble *>(tmp[i]);
4683            return MEDCouplingFieldOverTime::New(fs);
4684          }
4685       }
4686   };
4687 }
4688
4689 %pythoncode %{
4690 import os
4691 __filename=os.environ.get('PYTHONSTARTUP')
4692 if __filename and os.path.isfile(__filename):
4693   execfile(__filename)
4694   pass
4695 %}