Salome HOME
Bug fix: Intersect2DMeshWith1DLine now correctly handling closed lines ...
[tools/medcoupling.git] / src / INTERP_KERNEL / Geometric2D / InterpKernelGeo2DQuadraticPolygon.cxx
1 // Copyright (C) 2007-2016  CEA/DEN, EDF R&D
2 //
3 // This library is free software; you can redistribute it and/or
4 // modify it under the terms of the GNU Lesser General Public
5 // License as published by the Free Software Foundation; either
6 // version 2.1 of the License, or (at your option) any later version.
7 //
8 // This library is distributed in the hope that it will be useful,
9 // but WITHOUT ANY WARRANTY; without even the implied warranty of
10 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11 // Lesser General Public License for more details.
12 //
13 // You should have received a copy of the GNU Lesser General Public
14 // License along with this library; if not, write to the Free Software
15 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
16 //
17 // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
18 //
19 // Author : Anthony Geay (CEA/DEN)
20
21 #include "InterpKernelGeo2DQuadraticPolygon.hxx"
22 #include "InterpKernelGeo2DElementaryEdge.hxx"
23 #include "InterpKernelGeo2DEdgeArcCircle.hxx"
24 #include "InterpKernelGeo2DAbstractEdge.hxx"
25 #include "InterpKernelGeo2DEdgeLin.hxx"
26 #include "InterpKernelGeo2DBounds.hxx"
27 #include "InterpKernelGeo2DEdge.txx"
28
29 #include "NormalizedUnstructuredMesh.hxx"
30
31 #include <fstream>
32 #include <sstream>
33 #include <iomanip>
34 #include <cstring>
35 #include <limits>
36
37 using namespace INTERP_KERNEL;
38
39 namespace INTERP_KERNEL
40 {
41   const unsigned MAX_SIZE_OF_LINE_XFIG_FILE=1024;
42 }
43
44 QuadraticPolygon::QuadraticPolygon(const char *file)
45 {
46   char currentLine[MAX_SIZE_OF_LINE_XFIG_FILE];
47   std::ifstream stream(file);
48   stream.exceptions(std::ios_base::eofbit);
49   try
50   {
51       do
52         stream.getline(currentLine,MAX_SIZE_OF_LINE_XFIG_FILE);
53       while(strcmp(currentLine,"1200 2")!=0);
54       do
55         {
56           Edge *newEdge=Edge::BuildFromXfigLine(stream);
57           if(!empty())
58             newEdge->changeStartNodeWith(back()->getEndNode());
59           pushBack(newEdge);
60         }
61       while(1);
62   }
63   catch(const std::ifstream::failure&)
64   {
65   }
66   catch(const std::exception & ex)
67   {
68       // Some code before this catch throws the C++98 version of the exception (mangled
69       // name is " NSt8ios_base7failureE"), but FED24 compilation of the current version of the code
70       // tries to catch the C++11 version of it (mangled name "NSt8ios_base7failureB5cxx11E").
71       // So we have this nasty hack to catch both versions ...
72
73       // TODO: the below should be replaced by a better handling avoiding exception throwing.
74       if (std::string(ex.what()) == "basic_ios::clear")
75         {
76           //std::cout << "std::ios_base::failure C++11\n";
77         }
78       else
79         throw ex;
80   }
81   front()->changeStartNodeWith(back()->getEndNode());
82 }
83
84 QuadraticPolygon::~QuadraticPolygon()
85 {
86 }
87
88 QuadraticPolygon *QuadraticPolygon::BuildLinearPolygon(std::vector<Node *>& nodes)
89 {
90   QuadraticPolygon *ret(new QuadraticPolygon);
91   std::size_t size=nodes.size();
92   for(std::size_t i=0;i<size;i++)
93     {
94       ret->pushBack(new EdgeLin(nodes[i],nodes[(i+1)%size]));
95       nodes[i]->decrRef();
96     }
97   return ret;
98 }
99
100 QuadraticPolygon *QuadraticPolygon::BuildArcCirclePolygon(std::vector<Node *>& nodes)
101 {
102   QuadraticPolygon *ret(new QuadraticPolygon);
103   std::size_t size=nodes.size();
104   for(std::size_t i=0;i<size/2;i++)
105
106     {
107       EdgeLin *e1,*e2;
108       e1=new EdgeLin(nodes[i],nodes[i+size/2]);
109       e2=new EdgeLin(nodes[i+size/2],nodes[(i+1)%(size/2)]);
110       SegSegIntersector inters(*e1,*e2);
111       bool colinearity=inters.areColinears();
112       delete e1; delete e2;
113       if(colinearity)
114         ret->pushBack(new EdgeLin(nodes[i],nodes[(i+1)%(size/2)]));
115       else
116         ret->pushBack(new EdgeArcCircle(nodes[i],nodes[i+size/2],nodes[(i+1)%(size/2)]));
117       nodes[i]->decrRef(); nodes[i+size/2]->decrRef();
118     }
119   return ret;
120 }
121
122 Edge *QuadraticPolygon::BuildLinearEdge(std::vector<Node *>& nodes)
123 {
124   if(nodes.size()!=2)
125     throw INTERP_KERNEL::Exception("QuadraticPolygon::BuildLinearEdge : input vector is expected to be of size 2 !");
126   Edge *ret(new EdgeLin(nodes[0],nodes[1]));
127   nodes[0]->decrRef(); nodes[1]->decrRef();
128   return ret;
129 }
130
131 Edge *QuadraticPolygon::BuildArcCircleEdge(std::vector<Node *>& nodes)
132 {
133   if(nodes.size()!=3)
134     throw INTERP_KERNEL::Exception("QuadraticPolygon::BuildArcCircleEdge : input vector is expected to be of size 3 !");
135   EdgeLin *e1(new EdgeLin(nodes[0],nodes[2])),*e2(new EdgeLin(nodes[2],nodes[1]));
136   SegSegIntersector inters(*e1,*e2);
137   bool colinearity=inters.areColinears();
138   delete e1; delete e2;
139   Edge *ret(0);
140   if(colinearity)
141     ret=new EdgeLin(nodes[0],nodes[1]);
142   else
143     ret=new EdgeArcCircle(nodes[0],nodes[2],nodes[1]);
144   nodes[0]->decrRef(); nodes[1]->decrRef(); nodes[2]->decrRef();
145   return ret;
146 }
147
148 void QuadraticPolygon::BuildDbgFile(const std::vector<Node *>& nodes, const char *fileName)
149 {
150   std::ofstream file(fileName);
151   file << std::setprecision(16);
152   file << "  double coords[]=" << std::endl << "    { ";
153   for(std::vector<Node *>::const_iterator iter=nodes.begin();iter!=nodes.end();iter++)
154     {
155       if(iter!=nodes.begin())
156         file << "," << std::endl << "      ";
157       file << (*(*iter))[0] << ", " << (*(*iter))[1];
158     }
159   file << "};" << std::endl;
160 }
161
162 void QuadraticPolygon::closeMe() const
163 {
164   if(!front()->changeStartNodeWith(back()->getEndNode()))
165     throw(Exception("big error: not closed polygon..."));
166 }
167
168 void QuadraticPolygon::circularPermute()
169 {
170   if(_sub_edges.size()>1)
171     {
172       ElementaryEdge *first=_sub_edges.front();
173       _sub_edges.pop_front();
174       _sub_edges.push_back(first);
175     }
176 }
177
178 bool QuadraticPolygon::isButterflyAbs()
179 {
180   INTERP_KERNEL::Bounds b;
181   double xBary,yBary;
182   b.prepareForAggregation();
183   fillBounds(b); 
184   double dimChar=b.getCaracteristicDim();
185   b.getBarycenter(xBary,yBary);
186   applyGlobalSimilarity(xBary,yBary,dimChar);
187   //
188   return isButterfly();
189 }
190
191 bool QuadraticPolygon::isButterfly() const
192 {
193   for(std::list<ElementaryEdge *>::const_iterator it=_sub_edges.begin();it!=_sub_edges.end();it++)
194     {
195       Edge *e1=(*it)->getPtr();
196       std::list<ElementaryEdge *>::const_iterator it2=it;
197       it2++;
198       for(;it2!=_sub_edges.end();it2++)
199         {
200           MergePoints commonNode;
201           ComposedEdge *outVal1=new ComposedEdge;
202           ComposedEdge *outVal2=new ComposedEdge;
203           Edge *e2=(*it2)->getPtr();
204           if(e1->intersectWith(e2,commonNode,*outVal1,*outVal2))
205             {
206               Delete(outVal1);
207               Delete(outVal2);
208               return true;
209             }
210           Delete(outVal1);
211           Delete(outVal2);
212         }
213     }
214   return false;
215 }
216
217 void QuadraticPolygon::dumpInXfigFileWithOther(const ComposedEdge& other, const char *fileName) const
218 {
219   std::ofstream file(fileName);
220   const int resolution=1200;
221   Bounds box;
222   box.prepareForAggregation();
223   fillBounds(box);
224   other.fillBounds(box);
225   dumpInXfigFile(file,resolution,box);
226   other.ComposedEdge::dumpInXfigFile(file,resolution,box);
227 }
228
229 void QuadraticPolygon::dumpInXfigFile(const char *fileName) const
230 {
231   std::ofstream file(fileName);
232   const int resolution=1200;
233   Bounds box;
234   box.prepareForAggregation();
235   fillBounds(box);
236   dumpInXfigFile(file,resolution,box);
237 }
238
239 void QuadraticPolygon::dumpInXfigFile(std::ostream& stream, int resolution, const Bounds& box) const
240 {
241   stream << "#FIG 3.2  Produced by xfig version 3.2.5-alpha5" << std::endl;
242   stream << "Landscape" << std::endl;
243   stream << "Center" << std::endl;
244   stream << "Metric" << std::endl;
245   stream << "Letter" << std::endl;
246   stream << "100.00" << std::endl;
247   stream << "Single" << std::endl;
248   stream << "-2" << std::endl;
249   stream << resolution << " 2" << std::endl;
250   ComposedEdge::dumpInXfigFile(stream,resolution,box);
251 }
252
253 /*!
254  * Warning contrary to intersectWith method this method is \b NOT const. 'this' and 'other' are modified after call of this method.
255  */
256 double QuadraticPolygon::intersectWithAbs(QuadraticPolygon& other)
257 {
258   double ret=0.,xBaryBB,yBaryBB;
259   double fact=normalize(&other,xBaryBB,yBaryBB);
260   std::vector<QuadraticPolygon *> polygs=intersectMySelfWith(other);
261   for(std::vector<QuadraticPolygon *>::iterator iter=polygs.begin();iter!=polygs.end();iter++)
262     {
263       ret+=fabs((*iter)->getArea());
264       delete *iter;
265     }
266   return ret*fact*fact;
267 }
268
269 /*!
270  * This method splits 'this' with 'other' into smaller pieces localizable. 'mapThis' is a map that gives the correspondence
271  * between nodes contained in 'this' and node ids in a global mesh.
272  * In the same way, 'mapOther' gives the correspondence between nodes contained in 'other' and node ids in a
273  * global mesh from which 'other' is extracted.
274  * This method has 1 out parameter : 'edgesThis', After the call of this method, it contains the nodal connectivity (including type)
275  * of 'this' into globlal "this mesh".
276  * This method has 2 in/out parameters : 'subDivOther' and 'addCoo'.'otherEdgeIds' is useful to put values in
277  * 'edgesThis', 'subDivOther' and 'addCoo'.
278  * Size of 'otherEdgeIds' has to be equal to number of ElementaryEdges in 'other'. No check of that will be done.
279  * The term 'abs' in the name recalls that we normalize the mesh (spatially) so that node coordinates fit into [0;1].
280  * @param offset1 is the number of nodes contained in global mesh from which 'this' is extracted.
281  * @param offset2 is the sum of nodes contained in global mesh from which 'this' is extracted and 'other' is extracted.
282  * @param edgesInOtherColinearWithThis will be appended at the end of the vector with colinear edge ids of other (if any)
283  * @param otherEdgeIds is a vector with the same size than other before calling this method. It gives in the same order
284  * the cell id in global other mesh.
285  */
286 void QuadraticPolygon::splitAbs(QuadraticPolygon& other,
287                                 const std::map<INTERP_KERNEL::Node *,int>& mapThis, const std::map<INTERP_KERNEL::Node *,int>& mapOther,
288                                 int offset1, int offset2 ,
289                                 const std::vector<int>& otherEdgeIds,
290                                 std::vector<int>& edgesThis, int cellIdThis,
291                                 std::vector< std::vector<int> >& edgesInOtherColinearWithThis, std::vector< std::vector<int> >& subDivOther,
292                                 std::vector<double>& addCoo, std::map<int,int>& mergedNodes)
293 {
294   double xBaryBB, yBaryBB;
295   double fact=normalizeExt(&other, xBaryBB, yBaryBB);
296
297   //
298   IteratorOnComposedEdge it1(this),it3(&other);
299   MergePoints merge;
300   ComposedEdge *c1=new ComposedEdge;
301   ComposedEdge *c2=new ComposedEdge;
302   int i=0;
303   std::map<INTERP_KERNEL::Node *,int> mapAddCoo;
304   for(it3.first();!it3.finished();it3.next(),i++)//iteration over 'other->_sub_edges'
305     {
306       QuadraticPolygon otherTmp;
307       ElementaryEdge* curE3=it3.current();
308       otherTmp.pushBack(new ElementaryEdge(curE3->getPtr(),curE3->getDirection())); curE3->getPtr()->incrRef();
309       IteratorOnComposedEdge it2(&otherTmp);
310       for(it2.first();!it2.finished();it2.next())//iteration on subedges of 'otherTmp->_sub_edge'
311         {
312           ElementaryEdge* curE2=it2.current();
313           if(!curE2->isThereStartPoint())
314             it1.first();
315           else
316             it1=curE2->getIterator();
317           for(;!it1.finished();)//iteration over 'this' _sub_edges
318             {
319               ElementaryEdge* curE1=it1.current();
320               merge.clear();
321               //
322               std::map<INTERP_KERNEL::Node *,int>::const_iterator thisStart(mapThis.find(curE1->getStartNode())),thisEnd(mapThis.find(curE1->getEndNode())),otherStart(mapOther.find(curE2->getStartNode())),otherEnd(mapOther.find(curE2->getEndNode()));
323               int thisStart2(thisStart==mapThis.end()?-1:(*thisStart).second),thisEnd2(thisEnd==mapThis.end()?-1:(*thisEnd).second),otherStart2(otherStart==mapOther.end()?-1:(*otherStart).second+offset1),otherEnd2(otherEnd==mapOther.end()?-1:(*otherEnd).second+offset1);
324               //
325               if(curE1->getPtr()->intersectWith(curE2->getPtr(),merge,*c1,*c2))
326                 {
327                   if(!curE1->getDirection()) c1->reverse();
328                   if(!curE2->getDirection()) c2->reverse();
329                   UpdateNeighbours(merge,it1,it2,c1,c2);
330                   //Substitution of simple edge by sub-edges.
331                   delete curE1; // <-- destroying simple edge coming from pol1
332                   delete curE2; // <-- destroying simple edge coming from pol2
333                   it1.insertElemEdges(c1,true);// <-- 2nd param is true to go next.
334                   it2.insertElemEdges(c2,false);// <-- 2nd param is false to avoid to go next.
335                   curE2=it2.current();
336                   //
337                   it1.assignMySelfToAllElems(c2);//To avoid that others
338                   SoftDelete(c1);
339                   SoftDelete(c2);
340                   c1=new ComposedEdge;
341                   c2=new ComposedEdge;
342                 }
343               else
344                 {
345                   UpdateNeighbours(merge,it1,it2,curE1,curE2);
346                   it1.next();
347                 }
348               merge.updateMergedNodes(thisStart2,thisEnd2,otherStart2,otherEnd2,mergedNodes);
349             }
350         }
351       if(otherTmp.presenceOfOn())
352         edgesInOtherColinearWithThis[otherEdgeIds[i]].push_back(cellIdThis);
353       if(otherTmp._sub_edges.size()>1)
354         {
355           for(std::list<ElementaryEdge *>::const_iterator it=otherTmp._sub_edges.begin();it!=otherTmp._sub_edges.end();it++)
356             (*it)->fillGlobalInfoAbs2(mapThis,mapOther,offset1,offset2,/**/fact,xBaryBB,yBaryBB,/**/subDivOther[otherEdgeIds[i]],addCoo,mapAddCoo);
357         }
358     }
359   Delete(c1);
360   Delete(c2);
361   //
362   for(std::list<ElementaryEdge *>::const_iterator it=_sub_edges.begin();it!=_sub_edges.end();it++)
363     (*it)->fillGlobalInfoAbs(mapThis,mapOther,offset1,offset2,/**/fact,xBaryBB,yBaryBB,/**/edgesThis,addCoo,mapAddCoo);
364   //
365 }
366
367 /*!
368  * This method builds 'this' from its descending conn stored in crude mode (MEDCoupling).
369  * Descending conn is in FORTRAN relative mode in order to give the
370  * orientation of edge (see buildDescendingConnectivity2() method).
371  * See appendEdgeFromCrudeDataArray() for params description.
372  */
373 void QuadraticPolygon::buildFromCrudeDataArray(const std::map<int,INTERP_KERNEL::Node *>& mapp, bool isQuad, const int *nodalBg, const double *coords,
374                                                const int *descBg, const int *descEnd, const std::vector<std::vector<int> >& intersectEdges)
375 {
376   std::size_t nbOfSeg=std::distance(descBg,descEnd);
377   for(std::size_t i=0;i<nbOfSeg;i++)
378     {
379       appendEdgeFromCrudeDataArray(i,mapp,isQuad,nodalBg,coords,descBg,descEnd,intersectEdges);
380     }
381 }
382
383 void QuadraticPolygon::appendEdgeFromCrudeDataArray(std::size_t edgePos, const std::map<int,INTERP_KERNEL::Node *>& mapp, bool isQuad,
384                                                     const int *nodalBg, const double *coords,
385                                                     const int *descBg, const int *descEnd, const std::vector<std::vector<int> >& intersectEdges)
386 {
387   if(!isQuad)
388     {
389       bool direct=descBg[edgePos]>0;
390       int edgeId=abs(descBg[edgePos])-1; // back to C indexing mode
391       const std::vector<int>& subEdge=intersectEdges[edgeId];
392       std::size_t nbOfSubEdges=subEdge.size()/2;
393       for(std::size_t j=0;j<nbOfSubEdges;j++)
394         appendSubEdgeFromCrudeDataArray(0,j,direct,edgeId,subEdge,mapp);
395     }
396   else
397     {
398       std::size_t nbOfSeg=std::distance(descBg,descEnd);
399       const double *st=coords+2*(nodalBg[edgePos]); 
400       INTERP_KERNEL::Node *st0=new INTERP_KERNEL::Node(st[0],st[1]);
401       const double *endd=coords+2*(nodalBg[(edgePos+1)%nbOfSeg]);
402       INTERP_KERNEL::Node *endd0=new INTERP_KERNEL::Node(endd[0],endd[1]);
403       const double *middle=coords+2*(nodalBg[edgePos+nbOfSeg]);
404       INTERP_KERNEL::Node *middle0=new INTERP_KERNEL::Node(middle[0],middle[1]);
405       EdgeLin *e1,*e2;
406       e1=new EdgeLin(st0,middle0);
407       e2=new EdgeLin(middle0,endd0);
408       SegSegIntersector inters(*e1,*e2);
409       bool colinearity=inters.areColinears();
410       delete e1; delete e2;
411       //
412       bool direct=descBg[edgePos]>0;
413       int edgeId=abs(descBg[edgePos])-1;
414       const std::vector<int>& subEdge=intersectEdges[edgeId];
415       std::size_t nbOfSubEdges=subEdge.size()/2;
416       if(colinearity)
417         {   
418           for(std::size_t j=0;j<nbOfSubEdges;j++)
419             appendSubEdgeFromCrudeDataArray(0,j,direct,edgeId,subEdge,mapp);
420         }
421       else
422         {
423           Edge *e=new EdgeArcCircle(st0,middle0,endd0,true);
424           for(std::size_t j=0;j<nbOfSubEdges;j++)
425             appendSubEdgeFromCrudeDataArray(e,j,direct,edgeId,subEdge,mapp);
426           e->decrRef();
427         }
428       st0->decrRef(); endd0->decrRef(); middle0->decrRef();
429     }
430 }
431
432 void QuadraticPolygon::appendSubEdgeFromCrudeDataArray(Edge *baseEdge, std::size_t j, bool direct, int edgeId, const std::vector<int>& subEdge, const std::map<int,INTERP_KERNEL::Node *>& mapp)
433 {
434   std::size_t nbOfSubEdges=subEdge.size()/2;
435   if(!baseEdge)
436     {//it is not a quadratic subedge
437       Node *start=(*mapp.find(direct?subEdge[2*j]:subEdge[2*nbOfSubEdges-2*j-1])).second;
438       Node *end=(*mapp.find(direct?subEdge[2*j+1]:subEdge[2*nbOfSubEdges-2*j-2])).second;
439       ElementaryEdge *e=ElementaryEdge::BuildEdgeFromStartEndDir(true,start,end);
440       pushBack(e);
441     }
442   else
443     {//it is a quadratic subedge
444       Node *start=(*mapp.find(direct?subEdge[2*j]:subEdge[2*nbOfSubEdges-2*j-1])).second;
445       Node *end=(*mapp.find(direct?subEdge[2*j+1]:subEdge[2*nbOfSubEdges-2*j-2])).second;
446       Edge *ee=baseEdge->buildEdgeLyingOnMe(start,end);
447       ElementaryEdge *eee=new ElementaryEdge(ee,true);
448       pushBack(eee);
449     }
450 }
451
452 /*!
453  * This method builds from descending conn of a quadratic polygon stored in crude mode (MEDCoupling). Descending conn is in FORTRAN relative mode in order to give the
454  * orientation of edge.
455  */
456 void QuadraticPolygon::buildFromCrudeDataArray2(const std::map<int,INTERP_KERNEL::Node *>& mapp, bool isQuad, const int *nodalBg, const double *coords, const int *descBg, const int *descEnd, const std::vector<std::vector<int> >& intersectEdges,
457                                                 const INTERP_KERNEL::QuadraticPolygon& pol1, const int *descBg1, const int *descEnd1, const std::vector<std::vector<int> >& intersectEdges1,
458                                                 const std::vector< std::vector<int> >& colinear1,
459                                                 std::map<int,std::vector<INTERP_KERNEL::ElementaryEdge *> >& alreadyExistingIn2)
460 {
461   std::size_t nbOfSeg=std::distance(descBg,descEnd);
462   for(std::size_t i=0;i<nbOfSeg;i++)//loop over all edges of pol2
463     {
464       bool direct=descBg[i]>0;
465       int edgeId=abs(descBg[i])-1;//current edge id of pol2
466       std::map<int,std::vector<INTERP_KERNEL::ElementaryEdge *> >::const_iterator it1=alreadyExistingIn2.find(descBg[i]),it2=alreadyExistingIn2.find(-descBg[i]);
467       if(it1!=alreadyExistingIn2.end() || it2!=alreadyExistingIn2.end())
468         {
469           bool sameDir=(it1!=alreadyExistingIn2.end());
470           const std::vector<INTERP_KERNEL::ElementaryEdge *>& edgesAlreadyBuilt=sameDir?(*it1).second:(*it2).second;
471           if(sameDir)
472             {
473               for(std::vector<INTERP_KERNEL::ElementaryEdge *>::const_iterator it3=edgesAlreadyBuilt.begin();it3!=edgesAlreadyBuilt.end();it3++)
474                 {
475                   Edge *ee=(*it3)->getPtr(); ee->incrRef();
476                   pushBack(new ElementaryEdge(ee,(*it3)->getDirection()));
477                 }
478             }
479           else
480             {
481               for(std::vector<INTERP_KERNEL::ElementaryEdge *>::const_reverse_iterator it4=edgesAlreadyBuilt.rbegin();it4!=edgesAlreadyBuilt.rend();it4++)
482                 {
483                   Edge *ee=(*it4)->getPtr(); ee->incrRef();
484                   pushBack(new ElementaryEdge(ee,!(*it4)->getDirection()));
485                 }
486             }
487           continue;
488         }
489       bool directos=colinear1[edgeId].empty();
490       std::vector<std::pair<int,std::pair<bool,int> > > idIns1;
491       int offset1=0;
492       if(!directos)
493         {// if the current edge of pol2 has one or more colinear edges part into pol1
494           const std::vector<int>& c=colinear1[edgeId];
495           std::size_t nbOfEdgesIn1=std::distance(descBg1,descEnd1);
496           for(std::size_t j=0;j<nbOfEdgesIn1;j++)
497             {
498               int edgeId1=abs(descBg1[j])-1;
499               if(std::find(c.begin(),c.end(),edgeId1)!=c.end())
500                 {
501                   idIns1.push_back(std::pair<int,std::pair<bool,int> >(edgeId1,std::pair<bool,int>(descBg1[j]>0,offset1)));// it exists an edge into pol1 given by tuple (idIn1,direct1) that is colinear at edge 'edgeId' in pol2
502                   //std::pair<edgeId1); direct1=descBg1[j]>0;
503                 }
504               offset1+=intersectEdges1[edgeId1].size()/2;//offset1 is used to find the INTERP_KERNEL::Edge * instance into pol1 that will be part of edge into pol2
505             }
506           directos=idIns1.empty();
507         }
508       if(directos)
509         {//no subpart of edge 'edgeId' of pol2 is in pol1 so let's operate the same thing that QuadraticPolygon::buildFromCrudeDataArray method
510           std::size_t oldSz=_sub_edges.size();
511           appendEdgeFromCrudeDataArray(i,mapp,isQuad,nodalBg,coords,descBg,descEnd,intersectEdges);
512           std::size_t newSz=_sub_edges.size();
513           std::size_t zeSz=newSz-oldSz;
514           alreadyExistingIn2[descBg[i]].resize(zeSz);
515           std::list<ElementaryEdge *>::const_reverse_iterator it5=_sub_edges.rbegin();
516           for(std::size_t p=0;p<zeSz;p++,it5++)
517             alreadyExistingIn2[descBg[i]][zeSz-p-1]=*it5;
518         }
519       else
520         {//there is subpart of edge 'edgeId' of pol2 inside pol1
521           const std::vector<int>& subEdge=intersectEdges[edgeId];
522           std::size_t nbOfSubEdges=subEdge.size()/2;
523           for(std::size_t j=0;j<nbOfSubEdges;j++)
524             {
525               int idBg=direct?subEdge[2*j]:subEdge[2*nbOfSubEdges-2*j-1];
526               int idEnd=direct?subEdge[2*j+1]:subEdge[2*nbOfSubEdges-2*j-2];
527               bool direction11,found=false;
528               bool direct1;//store if needed the direction in 1
529               int offset2;
530               std::size_t nbOfSubEdges1;
531               for(std::vector<std::pair<int,std::pair<bool,int> > >::const_iterator it=idIns1.begin();it!=idIns1.end() && !found;it++)
532                 {
533                   int idIn1=(*it).first;//store if needed the cell id in 1
534                   direct1=(*it).second.first;
535                   offset1=(*it).second.second;
536                   const std::vector<int>& subEdge1PossiblyAlreadyIn1=intersectEdges1[idIn1];
537                   nbOfSubEdges1=subEdge1PossiblyAlreadyIn1.size()/2;
538                   offset2=0;
539                   for(std::size_t k=0;k<nbOfSubEdges1 && !found;k++)
540                     {//perform a loop on all subedges of pol1 that includes edge 'edgeId' of pol2. For the moment we iterate only on subedges of ['idIn1']... To improve
541                       if(subEdge1PossiblyAlreadyIn1[2*k]==idBg && subEdge1PossiblyAlreadyIn1[2*k+1]==idEnd)
542                         { direction11=true; found=true; }
543                       else if(subEdge1PossiblyAlreadyIn1[2*k]==idEnd && subEdge1PossiblyAlreadyIn1[2*k+1]==idBg)
544                         { direction11=false; found=true; }
545                       else
546                         offset2++;
547                     }
548                 }
549               if(!found)
550                 {//the current subedge of edge 'edgeId' of pol2 is not a part of the colinear edge 'idIn1' of pol1 -> build new Edge instance
551                   //appendEdgeFromCrudeDataArray(j,mapp,isQuad,nodalBg,coords,descBg,descEnd,intersectEdges);
552                   Node *start=(*mapp.find(idBg)).second;
553                   Node *end=(*mapp.find(idEnd)).second;
554                   ElementaryEdge *e=ElementaryEdge::BuildEdgeFromStartEndDir(true,start,end);
555                   pushBack(e);
556                   alreadyExistingIn2[descBg[i]].push_back(e);
557                 }
558               else
559                 {//the current subedge of edge 'edgeId' of pol2 is part of the colinear edge 'idIn1' of pol1 -> reuse Edge instance of pol1
560                   ElementaryEdge *e=pol1[offset1+(direct1?offset2:nbOfSubEdges1-offset2-1)];
561                   Edge *ee=e->getPtr();
562                   ee->incrRef();
563                   ElementaryEdge *e2=new ElementaryEdge(ee,!(direct1^direction11));
564                   pushBack(e2);
565                   alreadyExistingIn2[descBg[i]].push_back(e2);
566                 }
567             }
568         }
569     }
570 }
571
572 /*!
573  * Method expected to be called on pol2. Every params not suffixed by numbered are supposed to refer to pol2 (this).
574  * Method to find edges that are ON.
575  */
576 void QuadraticPolygon::updateLocOfEdgeFromCrudeDataArray2(const int *descBg, const int *descEnd, const std::vector<std::vector<int> >& intersectEdges,
577                                                           const INTERP_KERNEL::QuadraticPolygon& pol1, const int *descBg1, const int *descEnd1,
578                                                           const std::vector<std::vector<int> >& intersectEdges1, const std::vector< std::vector<int> >& colinear1) const
579 {
580   std::size_t nbOfSeg=std::distance(descBg,descEnd);
581   for(std::size_t i=0;i<nbOfSeg;i++)//loop over all edges of pol2
582     {
583       bool direct=descBg[i]>0;
584       int edgeId=abs(descBg[i])-1;//current edge id of pol2
585       const std::vector<int>& c=colinear1[edgeId];
586       if(c.empty())
587         continue;
588       const std::vector<int>& subEdge=intersectEdges[edgeId];
589       std::size_t nbOfSubEdges=subEdge.size()/2;
590       //
591       std::size_t nbOfEdgesIn1=std::distance(descBg1,descEnd1);
592       int offset1=0;
593       for(std::size_t j=0;j<nbOfEdgesIn1;j++)
594         {
595           int edgeId1=abs(descBg1[j])-1;
596           if(std::find(c.begin(),c.end(),edgeId1)!=c.end())
597             {
598               for(std::size_t k=0;k<nbOfSubEdges;k++)
599                 {
600                   int idBg=direct?subEdge[2*k]:subEdge[2*nbOfSubEdges-2*k-1];
601                   int idEnd=direct?subEdge[2*k+1]:subEdge[2*nbOfSubEdges-2*k-2];
602                   int idIn1=edgeId1;
603                   bool direct1=descBg1[j]>0;
604                   const std::vector<int>& subEdge1PossiblyAlreadyIn1=intersectEdges1[idIn1];
605                   std::size_t nbOfSubEdges1=subEdge1PossiblyAlreadyIn1.size()/2;
606                   int offset2=0;
607                   bool found=false;
608                   for(std::size_t kk=0;kk<nbOfSubEdges1 && !found;kk++)
609                     {
610                       found=(subEdge1PossiblyAlreadyIn1[2*kk]==idBg && subEdge1PossiblyAlreadyIn1[2*kk+1]==idEnd) || (subEdge1PossiblyAlreadyIn1[2*kk]==idEnd && subEdge1PossiblyAlreadyIn1[2*kk+1]==idBg);
611                       if(!found)
612                         offset2++;
613                     }
614                   if(found)
615                     {
616                       ElementaryEdge *e=pol1[offset1+(direct1?offset2:nbOfSubEdges1-offset2-1)];
617                       e->getPtr()->declareOn();
618                     }
619                 }
620             }
621           offset1+=intersectEdges1[edgeId1].size()/2;//offset1 is used to find the INTERP_KERNEL::Edge * instance into pol1 that will be part of edge into pol2
622         }
623     }
624 }
625
626 void QuadraticPolygon::appendCrudeData(const std::map<INTERP_KERNEL::Node *,int>& mapp, double xBary, double yBary, double fact, int offset, std::vector<double>& addCoordsQuadratic, std::vector<int>& conn, std::vector<int>& connI) const
627 {
628   int nbOfNodesInPg=0;
629   bool presenceOfQuadratic=presenceOfQuadraticEdge();
630   conn.push_back(presenceOfQuadratic?NORM_QPOLYG:NORM_POLYGON);
631   for(std::list<ElementaryEdge *>::const_iterator it=_sub_edges.begin();it!=_sub_edges.end();it++)
632     {
633       Node *tmp=0;
634       tmp=(*it)->getStartNode();
635       std::map<INTERP_KERNEL::Node *,int>::const_iterator it1=mapp.find(tmp);
636       conn.push_back((*it1).second);
637       nbOfNodesInPg++;
638     }
639   if(presenceOfQuadratic)
640     {
641       int j=0;
642       int off=offset+((int)addCoordsQuadratic.size())/2;
643       for(std::list<ElementaryEdge *>::const_iterator it=_sub_edges.begin();it!=_sub_edges.end();it++,j++,nbOfNodesInPg++)
644         {
645           INTERP_KERNEL::Node *node=(*it)->getPtr()->buildRepresentantOfMySelf();
646           node->unApplySimilarity(xBary,yBary,fact);
647           addCoordsQuadratic.push_back((*node)[0]);
648           addCoordsQuadratic.push_back((*node)[1]);
649           conn.push_back(off+j);
650           node->decrRef();
651         }
652     }
653   connI.push_back(connI.back()+nbOfNodesInPg+1);
654 }
655
656 /*!
657  * This method make the hypothesis that \a this and \a other are split at the minimum into edges that are fully IN, OUT or ON.
658  * This method returns newly created polygons in \a conn and \a connI and the corresponding ids ( \a idThis, \a idOther) are stored respectively into \a nbThis and \a nbOther.
659  * @param [in,out] edgesThis, parameter that keep informed the caller about the edges in this not shared by the result of intersection of \a this with \a other
660  * @param [in,out] edgesBoundaryOther, parameter that stores all edges in result of intersection that are not
661  */
662 void QuadraticPolygon::buildPartitionsAbs(QuadraticPolygon& other, std::set<INTERP_KERNEL::Edge *>& edgesThis, std::set<INTERP_KERNEL::Edge *>& edgesBoundaryOther, const std::map<INTERP_KERNEL::Node *,int>& mapp, int idThis, int idOther, int offset, std::vector<double>& addCoordsQuadratic, std::vector<int>& conn, std::vector<int>& connI, std::vector<int>& nbThis, std::vector<int>& nbOther)
663 {
664   double xBaryBB, yBaryBB;
665   double fact=normalizeExt(&other, xBaryBB, yBaryBB);
666   //Locate \a this relative to \a other (edges of \a this, aka \a pol1 are marked as IN or OUT)
667   other.performLocatingOperationSlow(*this);  // without any assumption
668   std::vector<QuadraticPolygon *> res=buildIntersectionPolygons(other,*this);
669   for(std::vector<QuadraticPolygon *>::iterator it=res.begin();it!=res.end();it++)
670     {
671       (*it)->appendCrudeData(mapp,xBaryBB,yBaryBB,fact,offset,addCoordsQuadratic,conn,connI);
672       INTERP_KERNEL::IteratorOnComposedEdge it1(*it);
673       for(it1.first();!it1.finished();it1.next())
674         {
675           Edge *e=it1.current()->getPtr();
676           if(edgesThis.find(e)!=edgesThis.end())
677             edgesThis.erase(e);
678           else
679             {
680               if(edgesBoundaryOther.find(e)!=edgesBoundaryOther.end())
681                 edgesBoundaryOther.erase(e);
682               else
683                 edgesBoundaryOther.insert(e);
684             }
685         }
686       nbThis.push_back(idThis);
687       nbOther.push_back(idOther);
688       delete *it;
689     }
690   unApplyGlobalSimilarityExt(other,xBaryBB,yBaryBB,fact);
691 }
692
693 /*!
694  * Warning This method is \b NOT const. 'this' and 'other' are modified after call of this method.
695  * 'other' is a QuadraticPolygon of \b non closed edges.
696  */
697 double QuadraticPolygon::intersectWithAbs1D(QuadraticPolygon& other, bool& isColinear)
698 {
699   double ret = 0., xBaryBB, yBaryBB;
700   double fact = normalize(&other, xBaryBB, yBaryBB);
701
702   QuadraticPolygon cpyOfThis(*this);
703   QuadraticPolygon cpyOfOther(other);
704   int nbOfSplits = 0;
705   SplitPolygonsEachOther(cpyOfThis, cpyOfOther, nbOfSplits);
706   //At this point cpyOfThis and cpyOfOther have been splited at maximum edge so that in/out can been done.
707   performLocatingOperation(cpyOfOther);
708   isColinear = false;
709   for(std::list<ElementaryEdge *>::const_iterator it=cpyOfOther._sub_edges.begin();it!=cpyOfOther._sub_edges.end();it++)
710     {
711       switch((*it)->getLoc())
712       {
713         case FULL_IN_1:
714           {
715             ret += fabs((*it)->getPtr()->getCurveLength());
716             break;
717           }
718         case FULL_ON_1:
719           {
720             isColinear=true;
721             ret += fabs((*it)->getPtr()->getCurveLength());
722             break;
723           }
724         default:
725           {
726           }
727       }
728     }
729   return ret * fact;
730 }
731
732 /*!
733  * Warning contrary to intersectWith method this method is \b NOT const. 'this' and 'other' are modified after call of this method.
734  */
735 double QuadraticPolygon::intersectWithAbs(QuadraticPolygon& other, double* barycenter)
736 {
737   double ret=0.,bary[2],area,xBaryBB,yBaryBB;
738   barycenter[0] = barycenter[1] = 0.;
739   double fact=normalize(&other,xBaryBB,yBaryBB);
740   std::vector<QuadraticPolygon *> polygs=intersectMySelfWith(other);
741   for(std::vector<QuadraticPolygon *>::iterator iter=polygs.begin();iter!=polygs.end();iter++)
742     {
743       area=fabs((*iter)->getArea());
744       (*iter)->getBarycenter(bary);
745       delete *iter;
746       ret+=area;
747       barycenter[0] += bary[0]*area;
748       barycenter[1] += bary[1]*area;
749     }
750   if ( ret > std::numeric_limits<double>::min() )
751     {
752       barycenter[0]=barycenter[0]/ret*fact+xBaryBB;
753       barycenter[1]=barycenter[1]/ret*fact+yBaryBB;
754
755     }
756   return ret*fact*fact;
757 }
758
759 /*!
760  * \b WARNING this method is const and other is const too. \b BUT location of Edges in 'this' and 'other' are nevertheless modified.
761  * This is possible because loc attribute in Edge class is mutable.
762  * This implies that if 'this' or/and 'other' are reused for intersect* method initLocations has to be called on each of this/them.
763  */
764 double QuadraticPolygon::intersectWith(const QuadraticPolygon& other) const
765 {
766   double ret=0.;
767   std::vector<QuadraticPolygon *> polygs=intersectMySelfWith(other);
768   for(std::vector<QuadraticPolygon *>::iterator iter=polygs.begin();iter!=polygs.end();iter++)
769     {
770       ret+=fabs((*iter)->getArea());
771       delete *iter;
772     }
773   return ret;
774 }
775
776 /*!
777  * \b WARNING this method is const and other is const too. \b BUT location of Edges in 'this' and 'other' are nevertheless modified.
778  * This is possible because loc attribute in Edge class is mutable.
779  * This implies that if 'this' or/and 'other' are reused for intersect* method initLocations has to be called on each of this/them.
780  */
781 double QuadraticPolygon::intersectWith(const QuadraticPolygon& other, double* barycenter) const
782 {
783   double ret=0., bary[2];
784   barycenter[0] = barycenter[1] = 0.;
785   std::vector<QuadraticPolygon *> polygs=intersectMySelfWith(other);
786   for(std::vector<QuadraticPolygon *>::iterator iter=polygs.begin();iter!=polygs.end();iter++)
787     {
788       double area = fabs((*iter)->getArea());
789       (*iter)->getBarycenter(bary);
790       delete *iter;
791       ret+=area;
792       barycenter[0] += bary[0]*area;
793       barycenter[1] += bary[1]*area;
794     }
795   if ( ret > std::numeric_limits<double>::min() )
796     {
797       barycenter[0] /= ret;
798       barycenter[1] /= ret;
799     }
800   return ret;
801 }
802
803 /*!
804  * \b WARNING this method is const and other is const too. \b BUT location of Edges in 'this' and 'other' are nevertheless modified.
805  * This is possible because loc attribute in Edge class is mutable.
806  * This implies that if 'this' or/and 'other' are reused for intersect* method initLocations has to be called on each of this/them.
807  */
808 void QuadraticPolygon::intersectForPerimeter(const QuadraticPolygon& other, double& perimeterThisPart, double& perimeterOtherPart, double& perimeterCommonPart) const
809 {
810   perimeterThisPart=0.; perimeterOtherPart=0.; perimeterCommonPart=0.;
811   QuadraticPolygon cpyOfThis(*this);
812   QuadraticPolygon cpyOfOther(other); int nbOfSplits=0;
813   SplitPolygonsEachOther(cpyOfThis,cpyOfOther,nbOfSplits);
814   performLocatingOperation(cpyOfOther);
815   other.performLocatingOperation(cpyOfThis);
816   cpyOfThis.dispatchPerimeterExcl(perimeterThisPart,perimeterCommonPart);
817   cpyOfOther.dispatchPerimeterExcl(perimeterOtherPart,perimeterCommonPart);
818   perimeterCommonPart/=2.;
819 }
820
821 /*!
822  * \b WARNING this method is const and other is const too. \b BUT location of Edges in 'this' and 'other' are nevertheless modified.
823  * This is possible because loc attribute in Edge class is mutable.
824  * This implies that if 'this' or/and 'other' are reused for intersect* method initLocations has to be called on each of this/them.
825  *
826  * polThis.size()==this->size() and polOther.size()==other.size().
827  * For each ElementaryEdge of 'this', the corresponding contribution in resulting polygon is in 'polThis'.
828  * For each ElementaryEdge of 'other', the corresponding contribution in resulting polygon is in 'polOther'.
829  * As consequence common part are counted twice (in polThis \b and in polOther).
830  */
831 void QuadraticPolygon::intersectForPerimeterAdvanced(const QuadraticPolygon& other, std::vector< double >& polThis, std::vector< double >& polOther) const
832 {
833   polThis.resize(size());
834   polOther.resize(other.size());
835   IteratorOnComposedEdge it1(const_cast<QuadraticPolygon *>(this));
836   int edgeId=0;
837   for(it1.first();!it1.finished();it1.next(),edgeId++)
838     {
839       ElementaryEdge* curE1=it1.current();
840       QuadraticPolygon cpyOfOther(other);
841       QuadraticPolygon tmp;
842       tmp.pushBack(curE1->clone());
843       int tmp2;
844       SplitPolygonsEachOther(tmp,cpyOfOther,tmp2);
845       other.performLocatingOperation(tmp);
846       tmp.dispatchPerimeter(polThis[edgeId]);
847     }
848   //
849   IteratorOnComposedEdge it2(const_cast<QuadraticPolygon *>(&other));
850   edgeId=0;
851   for(it2.first();!it2.finished();it2.next(),edgeId++)
852     {
853       ElementaryEdge* curE2=it2.current();
854       QuadraticPolygon cpyOfThis(*this);
855       QuadraticPolygon tmp;
856       tmp.pushBack(curE2->clone());
857       int tmp2;
858       SplitPolygonsEachOther(tmp,cpyOfThis,tmp2);
859       performLocatingOperation(tmp);
860       tmp.dispatchPerimeter(polOther[edgeId]);
861     }
862 }
863
864
865 /*!
866  * numberOfCreatedPointsPerEdge is resized to the number of edges of 'this'.
867  * This method returns in ordered maner the number of newly created points per edge.
868  * This method performs a split process between 'this' and 'other' that gives the result PThis.
869  * Then for each edges of 'this' this method counts how many edges in Pthis have the same id.
870  */
871 void QuadraticPolygon::intersectForPoint(const QuadraticPolygon& other, std::vector< int >& numberOfCreatedPointsPerEdge) const
872 {
873   numberOfCreatedPointsPerEdge.resize(size());
874   IteratorOnComposedEdge it1(const_cast<QuadraticPolygon *>(this));
875   int edgeId=0;
876   for(it1.first();!it1.finished();it1.next(),edgeId++)
877     {
878       ElementaryEdge* curE1=it1.current();
879       QuadraticPolygon cpyOfOther(other);
880       QuadraticPolygon tmp;
881       tmp.pushBack(curE1->clone());
882       int tmp2;
883       SplitPolygonsEachOther(tmp,cpyOfOther,tmp2);
884       numberOfCreatedPointsPerEdge[edgeId]=tmp.recursiveSize()-1;
885     }
886 }
887
888 /*!
889  * \b WARNING this method is const and other is const too. \b BUT location of Edges in 'this' and 'other' are nevertheless modified.
890  * This is possible because loc attribute in Edge class is mutable.
891  * This implies that if 'this' or/and 'other' are reused for intersect* method initLocations has to be called on each of this/them.
892  */
893 std::vector<QuadraticPolygon *> QuadraticPolygon::intersectMySelfWith(const QuadraticPolygon& other) const
894 {
895   QuadraticPolygon cpyOfThis(*this);
896   QuadraticPolygon cpyOfOther(other); int nbOfSplits=0;
897   SplitPolygonsEachOther(cpyOfThis,cpyOfOther,nbOfSplits);
898   //At this point cpyOfThis and cpyOfOther have been splited at maximum edge so that in/out can been done.
899   performLocatingOperation(cpyOfOther);
900   return other.buildIntersectionPolygons(cpyOfThis,cpyOfOther);
901 }
902
903 /*!
904  * This method is typically the first step of boolean operations between pol1 and pol2.
905  * This method perform the minimal splitting so that at the end each edges constituting pol1 are fully either IN or OUT or ON.
906  * @param pol1 IN/OUT param that is equal to 'this' when called.
907  */
908 void QuadraticPolygon::SplitPolygonsEachOther(QuadraticPolygon& pol1, QuadraticPolygon& pol2, int& nbOfSplits)
909 {
910   IteratorOnComposedEdge it1(&pol1),it2(&pol2);
911   MergePoints merge;
912   ComposedEdge *c1=new ComposedEdge;
913   ComposedEdge *c2=new ComposedEdge;
914   for(it2.first();!it2.finished();it2.next())
915     {
916       ElementaryEdge* curE2=it2.current();
917       if(!curE2->isThereStartPoint())
918         it1.first();
919       else
920         it1=curE2->getIterator();
921       for(;!it1.finished();)
922         {
923
924           ElementaryEdge* curE1=it1.current();
925           merge.clear(); nbOfSplits++;
926           if(curE1->getPtr()->intersectWith(curE2->getPtr(),merge,*c1,*c2))
927             {
928               if(!curE1->getDirection()) c1->reverse();
929               if(!curE2->getDirection()) c2->reverse();
930               UpdateNeighbours(merge,it1,it2,c1,c2);
931               //Substitution of simple edge by sub-edges.
932               delete curE1; // <-- destroying simple edge coming from pol1
933               delete curE2; // <-- destroying simple edge coming from pol2
934               it1.insertElemEdges(c1,true);// <-- 2nd param is true to go next.
935               it2.insertElemEdges(c2,false);// <-- 2nd param is false to avoid to go next.
936               curE2=it2.current();
937               //
938               it1.assignMySelfToAllElems(c2);//To avoid that others
939               SoftDelete(c1);
940               SoftDelete(c2);
941               c1=new ComposedEdge;
942               c2=new ComposedEdge;
943             }
944           else
945             {
946               UpdateNeighbours(merge,it1,it2,curE1,curE2);
947               it1.next();
948             }
949         }
950     }
951   Delete(c1);
952   Delete(c2);
953 }
954
955 void QuadraticPolygon::performLocatingOperation(QuadraticPolygon& pol1) const
956 {
957   IteratorOnComposedEdge it(&pol1);
958   TypeOfEdgeLocInPolygon loc=FULL_ON_1;
959   for(it.first();!it.finished();it.next())
960     {
961       ElementaryEdge *cur=it.current();
962       loc=cur->locateFullyMySelf(*this,loc);//*this=pol2=other
963     }
964 }
965
966 void QuadraticPolygon::performLocatingOperationSlow(QuadraticPolygon& pol2) const
967 {
968   IteratorOnComposedEdge it(&pol2);
969   for(it.first();!it.finished();it.next())
970     {
971       ElementaryEdge *cur=it.current();
972       cur->locateFullyMySelfAbsolute(*this);
973     }
974 }
975
976 /*!
977  * Given 2 polygons \a pol1 and \a pol2 (localized) the resulting polygons are returned.
978  *
979  * this : pol2 simplified.
980  * @param [in] pol1 pol1 split.
981  * @param [in] pol2 pol2 split.
982  */
983 std::vector<QuadraticPolygon *> QuadraticPolygon::buildIntersectionPolygons(const QuadraticPolygon& pol1, const QuadraticPolygon& pol2) const
984 {
985   std::vector<QuadraticPolygon *> ret;
986   std::list<QuadraticPolygon *> pol2Zip=pol2.zipConsecutiveInSegments();
987   if(!pol2Zip.empty())
988     ClosePolygons(pol2Zip,pol1,*this,ret);
989   else
990     {//borders of pol2 do not cross pol1,and pol2 borders are outside of pol1. That is to say, either pol2 and pol1
991       //do not overlap or  pol1 is fully inside pol2. So in the first case no intersection, in the other case
992       //the intersection is pol1.
993       ElementaryEdge *e1FromPol1=pol1[0];
994       TypeOfEdgeLocInPolygon loc=FULL_ON_1;
995       loc=e1FromPol1->locateFullyMySelf(*this,loc);
996       if(loc==FULL_IN_1)
997         ret.push_back(new QuadraticPolygon(pol1));
998     }
999   return ret;
1000 }
1001
1002 /*!
1003  * Returns parts of potentially non closed-polygons. Each returned polygons are not mergeable.
1004  * this : pol2 split and locallized.
1005  */
1006 std::list<QuadraticPolygon *> QuadraticPolygon::zipConsecutiveInSegments() const
1007 {
1008   std::list<QuadraticPolygon *> ret;
1009   IteratorOnComposedEdge it(const_cast<QuadraticPolygon *>(this));
1010   int nbOfTurns=recursiveSize();
1011   int i=0;
1012   if(!it.goToNextInOn(false,i,nbOfTurns))
1013     return ret;
1014   i=0;
1015   //
1016   while(i<nbOfTurns)
1017     {
1018       QuadraticPolygon *tmp1=new QuadraticPolygon;
1019       TypeOfEdgeLocInPolygon loc=it.current()->getLoc();
1020       while(loc!=FULL_OUT_1 && i<nbOfTurns)
1021         {
1022           ElementaryEdge *tmp3=it.current()->clone();
1023           tmp1->pushBack(tmp3);
1024           it.nextLoop(); i++;
1025           loc=it.current()->getLoc();
1026         }
1027       if(tmp1->empty())
1028         {
1029           delete tmp1;
1030           continue;
1031         }
1032       ret.push_back(tmp1);
1033       it.goToNextInOn(true,i,nbOfTurns);
1034     }
1035   return ret;
1036 }
1037
1038 /*!
1039  * @param [in] pol2zip is a list of set of edges (=an opened polygon) coming from split polygon 2.
1040  * @param [in] pol1 is split pol1.
1041  * @param [in] pol2 should be considered as pol2Simplified.
1042  * @param [out] results the resulting \b CLOSED polygons.
1043  */
1044 void QuadraticPolygon::ClosePolygons(std::list<QuadraticPolygon *>& pol2Zip, const QuadraticPolygon& pol1, const QuadraticPolygon& pol2,
1045                                      std::vector<QuadraticPolygon *>& results)
1046 {
1047   bool directionKnownInPol1=false;
1048   bool directionInPol1;
1049   for(std::list<QuadraticPolygon *>::iterator iter=pol2Zip.begin();iter!=pol2Zip.end();)
1050     {
1051       if((*iter)->completed())
1052         {
1053           results.push_back(*iter);
1054           directionKnownInPol1=false;
1055           iter=pol2Zip.erase(iter);
1056           continue;
1057         }
1058       if(!directionKnownInPol1)
1059         {
1060           if(!(*iter)->haveIAChanceToBeCompletedBy(pol1,pol2,directionInPol1))
1061             { delete *iter; iter=pol2Zip.erase(iter); continue; }
1062           else
1063             directionKnownInPol1=true;
1064         }
1065       std::list<QuadraticPolygon *>::iterator iter2=iter; iter2++;
1066       std::list<QuadraticPolygon *>::iterator iter3=(*iter)->fillAsMuchAsPossibleWith(pol1,iter2,pol2Zip.end(),directionInPol1);
1067       if(iter3!=pol2Zip.end())
1068         {
1069           (*iter)->pushBack(*iter3);
1070           SoftDelete(*iter3);
1071           pol2Zip.erase(iter3);
1072         }
1073     }
1074 }
1075
1076 /*!
1077  * 'this' is expected to be set of edges (not closed) of pol2 split.
1078  */
1079 bool QuadraticPolygon::haveIAChanceToBeCompletedBy(const QuadraticPolygon& pol1Splitted,const QuadraticPolygon& pol2NotSplitted, bool& direction)
1080 {
1081   IteratorOnComposedEdge it(const_cast<QuadraticPolygon *>(&pol1Splitted));
1082   bool found=false;
1083   Node *n=getEndNode();
1084   ElementaryEdge *cur=it.current();
1085   for(it.first();!it.finished() && !found;)
1086     {
1087       cur=it.current();
1088       found=(cur->getStartNode()==n);
1089       if(!found)
1090         it.next();
1091     }
1092   if(!found)
1093     throw Exception("Internal error: polygons incompatible with each others. Should never happen!");
1094   //Ok we found correspondence between this and pol1. Searching for right direction to close polygon.
1095   ElementaryEdge *e=_sub_edges.back();
1096   if(e->getLoc()==FULL_ON_1)
1097     {
1098       if(e->getPtr()==cur->getPtr())
1099         {
1100           direction=false;
1101           it.previousLoop();
1102           cur=it.current();
1103           Node *repr=cur->getPtr()->buildRepresentantOfMySelf();
1104           bool ret=pol2NotSplitted.isInOrOut(repr);
1105           repr->decrRef();
1106           return ret;
1107         }
1108       else
1109         {
1110           direction=true;
1111           Node *repr=cur->getPtr()->buildRepresentantOfMySelf();
1112           bool ret=pol2NotSplitted.isInOrOut(repr);
1113           repr->decrRef();
1114           return ret;
1115         }
1116     }
1117   else
1118     direction=cur->locateFullyMySelfAbsolute(pol2NotSplitted)==FULL_IN_1;
1119   return true;
1120 }
1121
1122 /*!
1123  * This method fills as much as possible \a this (a sub-part of pol2 split) with edges of \a pol1Splitted.
1124  */
1125 std::list<QuadraticPolygon *>::iterator QuadraticPolygon::fillAsMuchAsPossibleWith(const QuadraticPolygon& pol1Splitted,
1126                                                                                    std::list<QuadraticPolygon *>::iterator iStart,
1127                                                                                    std::list<QuadraticPolygon *>::iterator iEnd,
1128                                                                                    bool direction)
1129 {
1130   IteratorOnComposedEdge it(const_cast<QuadraticPolygon *>(&pol1Splitted));
1131   bool found=false;
1132   Node *n=getEndNode();
1133   ElementaryEdge *cur;
1134   for(it.first();!it.finished() && !found;)
1135     {
1136       cur=it.current();
1137       found=(cur->getStartNode()==n);
1138       if(!found)
1139         it.next();
1140     }
1141   if(!direction)
1142     it.previousLoop();
1143   Node *nodeToTest;
1144   int szMax(pol1Splitted.size()+1),ii(0);// here a protection against aggressive users of IntersectMeshes of invalid input meshes
1145   std::list<QuadraticPolygon *>::iterator ret;
1146   do
1147     {
1148       cur=it.current();
1149       ElementaryEdge *tmp=cur->clone();
1150       if(!direction)
1151         tmp->reverse();
1152       pushBack(tmp);
1153       nodeToTest=tmp->getEndNode();
1154       direction?it.nextLoop():it.previousLoop();
1155       ret=CheckInList(nodeToTest,iStart,iEnd);
1156       if(completed())
1157         return iEnd;
1158       ii++;
1159     }
1160   while(ret==iEnd && ii<szMax);
1161   if(ii==szMax)// here a protection against aggressive users of IntersectMeshes of invalid input meshes
1162     throw INTERP_KERNEL::Exception("QuadraticPolygon::fillAsMuchAsPossibleWith : Something is invalid with input polygons !");
1163   return ret;
1164 }
1165
1166 std::list<QuadraticPolygon *>::iterator QuadraticPolygon::CheckInList(Node *n, std::list<QuadraticPolygon *>::iterator iStart,
1167                                                                       std::list<QuadraticPolygon *>::iterator iEnd)
1168 {
1169   for(std::list<QuadraticPolygon *>::iterator iter=iStart;iter!=iEnd;iter++)
1170     if((*iter)->isNodeIn(n))
1171       return iter;
1172   return iEnd;
1173 }
1174
1175 void QuadraticPolygon::ComputeResidual(const QuadraticPolygon& pol1, const std::set<Edge *>& notUsedInPol1, const std::set<Edge *>& edgesInPol2OnBoundary, const std::map<INTERP_KERNEL::Node *,int>& mapp, int offset, int idThis,
1176                                        std::vector<double>& addCoordsQuadratic, std::vector<int>& conn, std::vector<int>& connI, std::vector<int>& nb1, std::vector<int>& nb2)
1177 {
1178   pol1.initLocations();
1179   for(std::set<Edge *>::const_iterator it9=notUsedInPol1.begin();it9!=notUsedInPol1.end();it9++)
1180     { (*it9)->initLocs(); (*it9)->declareOn(); }
1181   for(std::set<Edge *>::const_iterator itA=edgesInPol2OnBoundary.begin();itA!=edgesInPol2OnBoundary.end();itA++)
1182     { (*itA)->initLocs(); (*itA)->declareIn(); }
1183   ////
1184   std::set<Edge *> notUsedInPol1L(notUsedInPol1);
1185   IteratorOnComposedEdge it(const_cast<QuadraticPolygon *>(&pol1));
1186   int sz=pol1.size();
1187   std::list<QuadraticPolygon *> pol1Zip;
1188   if(pol1.size()==(int)notUsedInPol1.size() && edgesInPol2OnBoundary.empty())
1189     {
1190       pol1.appendCrudeData(mapp,0.,0.,1.,offset,addCoordsQuadratic,conn,connI); nb1.push_back(idThis); nb2.push_back(-1);
1191       return ;
1192     }
1193   while(!notUsedInPol1L.empty())
1194     {
1195       for(int i=0;i<sz && (it.current()->getStartNode()->getLoc()!=IN_1 || it.current()->getLoc()!=FULL_ON_1);i++)
1196         it.nextLoop();
1197       if(it.current()->getStartNode()->getLoc()!=IN_1 || it.current()->getLoc()!=FULL_ON_1)
1198         throw INTERP_KERNEL::Exception("Presence of a target polygon fully included in source polygon ! The partition of this leads to a non simply connex cell (with hole) ! Impossible ! Such resulting cell cannot be stored in MED cell format !");
1199       QuadraticPolygon *tmp1=new QuadraticPolygon;
1200       do
1201         {
1202           Edge *ee=it.current()->getPtr();
1203           if(ee->getLoc()==FULL_ON_1)
1204             {
1205               ee->incrRef(); notUsedInPol1L.erase(ee);
1206               tmp1->pushBack(new ElementaryEdge(ee,it.current()->getDirection()));    
1207             }
1208           it.nextLoop();
1209         }
1210       while(it.current()->getStartNode()->getLoc()!=IN_1 && !notUsedInPol1L.empty());
1211       pol1Zip.push_back(tmp1);
1212     }
1213   ////
1214   std::list<QuadraticPolygon *> retPolsUnderContruction;
1215   std::list<Edge *> edgesInPol2OnBoundaryL(edgesInPol2OnBoundary.begin(),edgesInPol2OnBoundary.end());
1216   std::map<QuadraticPolygon *, std::list<QuadraticPolygon *> > pol1ZipConsumed;
1217   std::size_t maxNbOfTurn=edgesInPol2OnBoundaryL.size(),nbOfTurn=0,iiMNT=0;
1218   for(std::list<QuadraticPolygon *>::const_iterator itMNT=pol1Zip.begin();itMNT!=pol1Zip.end();itMNT++,iiMNT++)
1219     nbOfTurn+=(*itMNT)->size();
1220   maxNbOfTurn=maxNbOfTurn*nbOfTurn; maxNbOfTurn*=maxNbOfTurn;
1221   nbOfTurn=0;
1222   while(nbOfTurn<maxNbOfTurn && ((!pol1Zip.empty() || !edgesInPol2OnBoundaryL.empty())))
1223     {
1224       for(std::list<QuadraticPolygon *>::iterator it1=retPolsUnderContruction.begin();it1!=retPolsUnderContruction.end();)
1225         {
1226           if((*it1)->getStartNode()==(*it1)->getEndNode())
1227             {
1228               it1++;
1229               continue;
1230             }
1231           Node *curN=(*it1)->getEndNode();
1232           bool smthHappened=false;
1233           for(std::list<Edge *>::iterator it2=edgesInPol2OnBoundaryL.begin();it2!=edgesInPol2OnBoundaryL.end();)
1234             {
1235               if(curN==(*it2)->getStartNode())
1236                 { (*it2)->incrRef(); (*it1)->pushBack(new ElementaryEdge(*it2,true)); curN=(*it2)->getEndNode(); smthHappened=true; it2=edgesInPol2OnBoundaryL.erase(it2); }
1237               else if(curN==(*it2)->getEndNode())
1238                 { (*it2)->incrRef(); (*it1)->pushBack(new ElementaryEdge(*it2,false)); curN=(*it2)->getStartNode(); smthHappened=true; it2=edgesInPol2OnBoundaryL.erase(it2); }
1239               else
1240                 it2++;
1241             }
1242           if(smthHappened)
1243             {
1244               for(std::list<QuadraticPolygon *>::iterator it3=pol1Zip.begin();it3!=pol1Zip.end();)
1245                 {
1246                   if(curN==(*it3)->getStartNode())
1247                     {
1248                       for(std::list<ElementaryEdge *>::const_iterator it4=(*it3)->_sub_edges.begin();it4!=(*it3)->_sub_edges.end();it4++)
1249                         { (*it4)->getPtr()->incrRef(); bool dir=(*it4)->getDirection(); (*it1)->pushBack(new ElementaryEdge((*it4)->getPtr(),dir)); }
1250                       smthHappened=true;
1251                       pol1ZipConsumed[*it1].push_back(*it3);
1252                       curN=(*it3)->getEndNode();
1253                       it3=pol1Zip.erase(it3);
1254                     }
1255                   else
1256                     it3++;
1257                 }
1258             }
1259           if(!smthHappened)
1260             {
1261               for(std::list<ElementaryEdge *>::const_iterator it5=(*it1)->_sub_edges.begin();it5!=(*it1)->_sub_edges.end();it5++)
1262                 {
1263                   Edge *ee=(*it5)->getPtr();
1264                   if(edgesInPol2OnBoundary.find(ee)!=edgesInPol2OnBoundary.end())
1265                     edgesInPol2OnBoundaryL.push_back(ee);
1266                 }
1267               for(std::list<QuadraticPolygon *>::iterator it6=pol1ZipConsumed[*it1].begin();it6!=pol1ZipConsumed[*it1].end();it6++)
1268                 pol1Zip.push_front(*it6);
1269               pol1ZipConsumed.erase(*it1);
1270               delete *it1;
1271               it1=retPolsUnderContruction.erase(it1);
1272             }
1273         }
1274       if(!pol1Zip.empty())
1275         {
1276           QuadraticPolygon *tmp=new QuadraticPolygon;
1277           QuadraticPolygon *first=*(pol1Zip.begin());
1278           for(std::list<ElementaryEdge *>::const_iterator it4=first->_sub_edges.begin();it4!=first->_sub_edges.end();it4++)
1279             { (*it4)->getPtr()->incrRef(); bool dir=(*it4)->getDirection(); tmp->pushBack(new ElementaryEdge((*it4)->getPtr(),dir)); }
1280           pol1ZipConsumed[tmp].push_back(first);
1281           retPolsUnderContruction.push_back(tmp);
1282           pol1Zip.erase(pol1Zip.begin());
1283         }
1284       nbOfTurn++;
1285     }
1286   if(nbOfTurn==maxNbOfTurn)
1287     {
1288       std::ostringstream oss; oss << "Error during reconstruction of residual of cell ! It appears that either source or/and target mesh is/are not conform !";
1289       oss << " Number of turns is = " << nbOfTurn << " !";
1290       throw INTERP_KERNEL::Exception(oss.str().c_str());
1291     }
1292   for(std::list<QuadraticPolygon *>::iterator it1=retPolsUnderContruction.begin();it1!=retPolsUnderContruction.end();it1++)
1293     {
1294       if((*it1)->getStartNode()==(*it1)->getEndNode())
1295         {
1296           (*it1)->appendCrudeData(mapp,0.,0.,1.,offset,addCoordsQuadratic,conn,connI); nb1.push_back(idThis); nb2.push_back(-1);
1297           for(std::list<QuadraticPolygon *>::iterator it6=pol1ZipConsumed[*it1].begin();it6!=pol1ZipConsumed[*it1].end();it6++)
1298             delete *it6;
1299           delete *it1;
1300         }
1301     }
1302 }