1 // Copyright (C) 2007-2013 CEA/DEN, EDF R&D
3 // This library is free software; you can redistribute it and/or
4 // modify it under the terms of the GNU Lesser General Public
5 // License as published by the Free Software Foundation; either
6 // version 2.1 of the License.
8 // This library is distributed in the hope that it will be useful,
9 // but WITHOUT ANY WARRANTY; without even the implied warranty of
10 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 // Lesser General Public License for more details.
13 // You should have received a copy of the GNU Lesser General Public
14 // License along with this library; if not, write to the Free Software
15 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
19 // Author : Anthony Geay (CEA/DEN)
21 #include "InterpKernelGeo2DQuadraticPolygon.hxx"
22 #include "InterpKernelGeo2DElementaryEdge.hxx"
23 #include "InterpKernelGeo2DEdgeArcCircle.hxx"
24 #include "InterpKernelGeo2DAbstractEdge.hxx"
25 #include "InterpKernelGeo2DEdgeLin.hxx"
26 #include "InterpKernelGeo2DBounds.hxx"
27 #include "InterpKernelGeo2DEdge.txx"
29 #include "NormalizedUnstructuredMesh.hxx"
37 using namespace INTERP_KERNEL;
39 namespace INTERP_KERNEL
41 const unsigned MAX_SIZE_OF_LINE_XFIG_FILE=1024;
44 QuadraticPolygon::QuadraticPolygon(const char *file)
46 char currentLine[MAX_SIZE_OF_LINE_XFIG_FILE];
47 std::ifstream stream(file);
48 stream.exceptions(std::ios_base::eofbit);
52 stream.getline(currentLine,MAX_SIZE_OF_LINE_XFIG_FILE);
53 while(strcmp(currentLine,"1200 2")!=0);
56 Edge *newEdge=Edge::BuildFromXfigLine(stream);
58 newEdge->changeStartNodeWith(back()->getEndNode());
63 catch(std::ifstream::failure&)
66 front()->changeStartNodeWith(back()->getEndNode());
69 QuadraticPolygon::~QuadraticPolygon()
73 QuadraticPolygon *QuadraticPolygon::BuildLinearPolygon(std::vector<Node *>& nodes)
75 QuadraticPolygon *ret=new QuadraticPolygon;
76 std::size_t size=nodes.size();
77 for(std::size_t i=0;i<size;i++)
79 ret->pushBack(new EdgeLin(nodes[i],nodes[(i+1)%size]));
85 QuadraticPolygon *QuadraticPolygon::BuildArcCirclePolygon(std::vector<Node *>& nodes)
87 QuadraticPolygon *ret=new QuadraticPolygon;
88 std::size_t size=nodes.size();
89 for(std::size_t i=0;i<size/2;i++)
92 e1=new EdgeLin(nodes[i],nodes[i+size/2]);
93 e2=new EdgeLin(nodes[i+size/2],nodes[(i+1)%(size/2)]);
94 SegSegIntersector inters(*e1,*e2);
95 bool colinearity=inters.areColinears();
98 ret->pushBack(new EdgeLin(nodes[i],nodes[(i+1)%(size/2)]));
100 ret->pushBack(new EdgeArcCircle(nodes[i],nodes[i+size/2],nodes[(i+1)%(size/2)]));
101 nodes[i]->decrRef(); nodes[i+size/2]->decrRef();
106 void QuadraticPolygon::BuildDbgFile(const std::vector<Node *>& nodes, const char *fileName)
108 std::ofstream file(fileName);
109 file << std::setprecision(16);
110 file << " double coords[]=" << std::endl << " { ";
111 for(std::vector<Node *>::const_iterator iter=nodes.begin();iter!=nodes.end();iter++)
113 if(iter!=nodes.begin())
114 file << "," << std::endl << " ";
115 file << (*(*iter))[0] << ", " << (*(*iter))[1];
117 file << "};" << std::endl;
120 void QuadraticPolygon::closeMe() const
122 if(!front()->changeStartNodeWith(back()->getEndNode()))
123 throw(Exception("big error: not closed polygon..."));
126 void QuadraticPolygon::circularPermute()
128 if(_sub_edges.size()>1)
130 ElementaryEdge *first=_sub_edges.front();
131 _sub_edges.pop_front();
132 _sub_edges.push_back(first);
136 bool QuadraticPolygon::isButterflyAbs()
138 INTERP_KERNEL::Bounds b;
140 b.prepareForAggregation();
142 double dimChar=b.getCaracteristicDim();
143 b.getBarycenter(xBary,yBary);
144 applyGlobalSimilarity(xBary,yBary,dimChar);
146 return isButterfly();
149 bool QuadraticPolygon::isButterfly() const
151 for(std::list<ElementaryEdge *>::const_iterator it=_sub_edges.begin();it!=_sub_edges.end();it++)
153 Edge *e1=(*it)->getPtr();
154 std::list<ElementaryEdge *>::const_iterator it2=it;
156 for(;it2!=_sub_edges.end();it2++)
158 MergePoints commonNode;
159 ComposedEdge *outVal1=new ComposedEdge;
160 ComposedEdge *outVal2=new ComposedEdge;
161 Edge *e2=(*it2)->getPtr();
162 if(e1->intersectWith(e2,commonNode,*outVal1,*outVal2))
175 void QuadraticPolygon::dumpInXfigFileWithOther(const ComposedEdge& other, const char *fileName) const
177 std::ofstream file(fileName);
178 const int resolution=1200;
180 box.prepareForAggregation();
182 other.fillBounds(box);
183 dumpInXfigFile(file,resolution,box);
184 other.ComposedEdge::dumpInXfigFile(file,resolution,box);
187 void QuadraticPolygon::dumpInXfigFile(const char *fileName) const
189 std::ofstream file(fileName);
190 const int resolution=1200;
192 box.prepareForAggregation();
194 dumpInXfigFile(file,resolution,box);
197 void QuadraticPolygon::dumpInXfigFile(std::ostream& stream, int resolution, const Bounds& box) const
199 stream << "#FIG 3.2 Produced by xfig version 3.2.5-alpha5" << std::endl;
200 stream << "Landscape" << std::endl;
201 stream << "Center" << std::endl;
202 stream << "Metric" << std::endl;
203 stream << "Letter" << std::endl;
204 stream << "100.00" << std::endl;
205 stream << "Single" << std::endl;
206 stream << "-2" << std::endl;
207 stream << resolution << " 2" << std::endl;
208 ComposedEdge::dumpInXfigFile(stream,resolution,box);
212 * Warning contrary to intersectWith method this method is \b NOT const. 'this' and 'other' are modified after call of this method.
214 double QuadraticPolygon::intersectWithAbs(QuadraticPolygon& other)
216 double ret=0.,xBaryBB,yBaryBB;
217 double fact=normalize(&other,xBaryBB,yBaryBB);
218 std::vector<QuadraticPolygon *> polygs=intersectMySelfWith(other);
219 for(std::vector<QuadraticPolygon *>::iterator iter=polygs.begin();iter!=polygs.end();iter++)
221 ret+=fabs((*iter)->getArea());
224 return ret*fact*fact;
228 * This method splits 'this' with 'other' into smaller pieces localizable. 'mapThis' is a map that gives the correspondance
229 * between nodes contained in 'this' and node ids in a global mesh.
230 * In the same way, 'mapOther' gives the correspondance between nodes contained in 'other' and node ids in a
231 * global mesh from wich 'other' is extracted.
232 * This method has 1 out paramater : 'edgesThis', After the call of this method, it contains the nodal connectivity (including type)
233 * of 'this' into globlal "this mesh".
234 * This method has 2 in/out parameters : 'subDivOther' and 'addCoo'.'otherEdgeIds' is useful to put values in
235 * 'edgesThis', 'subDivOther' and 'addCoo'.
236 * Size of 'otherEdgeIds' has to be equal to number of ElementaryEdges in 'other'. No check of that will be done.
237 * The term 'abs' in the name recalls that we normalize the mesh (spatially) so that node coordinates fit into [0;1].
238 * @param offset1 is the number of nodes contained in global mesh from which 'this' is extracted.
239 * @param offset2 is the sum of nodes contained in global mesh from which 'this' is extracted and 'other' is extracted.
240 * @param edgesInOtherColinearWithThis will be appended at the end of the vector with colinear edge ids of other (if any)
241 * @param otherEdgeIds is a vector with the same size than other before calling this method. It gives in the same order
242 * the cell id in global other mesh.
244 void QuadraticPolygon::splitAbs(QuadraticPolygon& other,
245 const std::map<INTERP_KERNEL::Node *,int>& mapThis, const std::map<INTERP_KERNEL::Node *,int>& mapOther,
246 int offset1, int offset2 ,
247 const std::vector<int>& otherEdgeIds,
248 std::vector<int>& edgesThis, int cellIdThis,
249 std::vector< std::vector<int> >& edgesInOtherColinearWithThis, std::vector< std::vector<int> >& subDivOther,
250 std::vector<double>& addCoo)
252 double xBaryBB, yBaryBB;
253 double fact=normalizeExt(&other, xBaryBB, yBaryBB);
255 IteratorOnComposedEdge it1(this),it3(&other);
257 ComposedEdge *c1=new ComposedEdge;
258 ComposedEdge *c2=new ComposedEdge;
260 std::map<INTERP_KERNEL::Node *,int> mapAddCoo;
261 for(it3.first();!it3.finished();it3.next(),i++)//iteration over 'other' _sub_edges
263 QuadraticPolygon otherTmp;
264 ElementaryEdge* curE3=it3.current();
265 otherTmp.pushBack(new ElementaryEdge(curE3->getPtr(),curE3->getDirection())); curE3->getPtr()->incrRef();
266 IteratorOnComposedEdge it2(&otherTmp);
267 for(it2.first();!it2.finished();it2.next())//iteration on subedges of 'other->_sub_edge'
269 ElementaryEdge* curE2=it2.current();
270 if(!curE2->isThereStartPoint())
273 it1=curE2->getIterator();
274 for(;!it1.finished();)//iteration over 'this' _sub_edges
276 ElementaryEdge* curE1=it1.current();
278 if(curE1->getPtr()->intersectWith(curE2->getPtr(),merge,*c1,*c2))
280 if(!curE1->getDirection()) c1->reverse();
281 if(!curE2->getDirection()) c2->reverse();
282 UpdateNeighbours(merge,it1,it2,c1,c2);
283 //Substitution of simple edge by sub-edges.
284 delete curE1; // <-- destroying simple edge coming from pol1
285 delete curE2; // <-- destroying simple edge coming from pol2
286 it1.insertElemEdges(c1,true);// <-- 2nd param is true to go next.
287 it2.insertElemEdges(c2,false);// <-- 2nd param is false to avoid to go next.
290 it1.assignMySelfToAllElems(c2);//To avoid that others
298 UpdateNeighbours(merge,it1,it2,curE1,curE2);
303 if(otherTmp.presenceOfOn())
304 edgesInOtherColinearWithThis[otherEdgeIds[i]].push_back(cellIdThis);
305 if(otherTmp._sub_edges.size()>1)
307 for(std::list<ElementaryEdge *>::const_iterator it=otherTmp._sub_edges.begin();it!=otherTmp._sub_edges.end();it++)
308 (*it)->fillGlobalInfoAbs2(mapThis,mapOther,offset1,offset2,/**/fact,xBaryBB,yBaryBB,/**/subDivOther[otherEdgeIds[i]],addCoo,mapAddCoo);
314 for(std::list<ElementaryEdge *>::const_iterator it=_sub_edges.begin();it!=_sub_edges.end();it++)
315 (*it)->fillGlobalInfoAbs(mapThis,mapOther,offset1,offset2,/**/fact,xBaryBB,yBaryBB,/**/edgesThis,addCoo,mapAddCoo);
320 * This method builds 'this' from its descending conn stored in crude mode (MEDCoupling).
321 * Descending conn is in FORTRAN relative mode in order to give the
322 * orientation of edge (see buildDescendingConnectivity2() method).
323 * See appendEdgeFromCrudeDataArray() for params description.
325 void QuadraticPolygon::buildFromCrudeDataArray(const std::map<int,INTERP_KERNEL::Node *>& mapp, bool isQuad, const int *nodalBg, const double *coords,
326 const int *descBg, const int *descEnd, const std::vector<std::vector<int> >& intersectEdges)
328 std::size_t nbOfSeg=std::distance(descBg,descEnd);
329 for(std::size_t i=0;i<nbOfSeg;i++)
331 appendEdgeFromCrudeDataArray(i,mapp,isQuad,nodalBg,coords,descBg,descEnd,intersectEdges);
335 void QuadraticPolygon::appendEdgeFromCrudeDataArray(std::size_t edgePos, const std::map<int,INTERP_KERNEL::Node *>& mapp, bool isQuad,
336 const int *nodalBg, const double *coords,
337 const int *descBg, const int *descEnd, const std::vector<std::vector<int> >& intersectEdges)
341 bool direct=descBg[edgePos]>0;
342 int edgeId=abs(descBg[edgePos])-1; // back to C indexing mode
343 const std::vector<int>& subEdge=intersectEdges[edgeId];
344 std::size_t nbOfSubEdges=subEdge.size()/2;
345 for(std::size_t j=0;j<nbOfSubEdges;j++)
346 appendSubEdgeFromCrudeDataArray(0,j,direct,edgeId,subEdge,mapp);
350 std::size_t nbOfSeg=std::distance(descBg,descEnd);
351 const double *st=coords+2*(nodalBg[edgePos]);
352 INTERP_KERNEL::Node *st0=new INTERP_KERNEL::Node(st[0],st[1]);
353 const double *endd=coords+2*(nodalBg[(edgePos+1)%nbOfSeg]);
354 INTERP_KERNEL::Node *endd0=new INTERP_KERNEL::Node(endd[0],endd[1]);
355 const double *middle=coords+2*(nodalBg[edgePos+nbOfSeg]);
356 INTERP_KERNEL::Node *middle0=new INTERP_KERNEL::Node(middle[0],middle[1]);
358 e1=new EdgeLin(st0,middle0);
359 e2=new EdgeLin(middle0,endd0);
360 SegSegIntersector inters(*e1,*e2);
361 bool colinearity=inters.areColinears();
362 delete e1; delete e2;
364 bool direct=descBg[edgePos]>0;
365 int edgeId=abs(descBg[edgePos])-1;
366 const std::vector<int>& subEdge=intersectEdges[edgeId];
367 std::size_t nbOfSubEdges=subEdge.size()/2;
370 for(std::size_t j=0;j<nbOfSubEdges;j++)
371 appendSubEdgeFromCrudeDataArray(0,j,direct,edgeId,subEdge,mapp);
375 Edge *e=new EdgeArcCircle(st0,middle0,endd0,true);
376 for(std::size_t j=0;j<nbOfSubEdges;j++)
377 appendSubEdgeFromCrudeDataArray(e,j,direct,edgeId,subEdge,mapp);
380 st0->decrRef(); endd0->decrRef(); middle0->decrRef();
384 void QuadraticPolygon::appendSubEdgeFromCrudeDataArray(Edge *baseEdge, std::size_t j, bool direct, int edgeId, const std::vector<int>& subEdge, const std::map<int,INTERP_KERNEL::Node *>& mapp)
386 std::size_t nbOfSubEdges=subEdge.size()/2;
388 {//it is not a quadratic subedge
389 Node *start=(*mapp.find(direct?subEdge[2*j]:subEdge[2*nbOfSubEdges-2*j-1])).second;
390 Node *end=(*mapp.find(direct?subEdge[2*j+1]:subEdge[2*nbOfSubEdges-2*j-2])).second;
391 ElementaryEdge *e=ElementaryEdge::BuildEdgeFromCrudeDataArray(true,start,end);
395 {//it is a quadratic subedge
396 Node *start=(*mapp.find(direct?subEdge[2*j]:subEdge[2*nbOfSubEdges-2*j-1])).second;
397 Node *end=(*mapp.find(direct?subEdge[2*j+1]:subEdge[2*nbOfSubEdges-2*j-2])).second;
398 Edge *ee=baseEdge->buildEdgeLyingOnMe(start,end);
399 ElementaryEdge *eee=new ElementaryEdge(ee,true);
405 * This method builds from descending conn of a quadratic polygon stored in crude mode (MEDCoupling). Descending conn is in FORTRAN relative mode in order to give the
406 * orientation of edge.
408 void QuadraticPolygon::buildFromCrudeDataArray2(const std::map<int,INTERP_KERNEL::Node *>& mapp, bool isQuad, const int *nodalBg, const double *coords, const int *descBg, const int *descEnd, const std::vector<std::vector<int> >& intersectEdges,
409 const INTERP_KERNEL::QuadraticPolygon& pol1, const int *descBg1, const int *descEnd1, const std::vector<std::vector<int> >& intersectEdges1,
410 const std::vector< std::vector<int> >& colinear1,
411 std::map<int,std::vector<INTERP_KERNEL::ElementaryEdge *> >& alreadyExistingIn2)
413 std::size_t nbOfSeg=std::distance(descBg,descEnd);
414 for(std::size_t i=0;i<nbOfSeg;i++)//loop over all edges of pol2
416 bool direct=descBg[i]>0;
417 int edgeId=abs(descBg[i])-1;//current edge id of pol2
418 std::map<int,std::vector<INTERP_KERNEL::ElementaryEdge *> >::const_iterator it1=alreadyExistingIn2.find(descBg[i]),it2=alreadyExistingIn2.find(-descBg[i]);
419 if(it1!=alreadyExistingIn2.end() || it2!=alreadyExistingIn2.end())
421 bool sameDir=(it1!=alreadyExistingIn2.end());
422 const std::vector<INTERP_KERNEL::ElementaryEdge *>& edgesAlreadyBuilt=sameDir?(*it1).second:(*it2).second;
425 for(std::vector<INTERP_KERNEL::ElementaryEdge *>::const_iterator it3=edgesAlreadyBuilt.begin();it3!=edgesAlreadyBuilt.end();it3++)
427 Edge *ee=(*it3)->getPtr(); ee->incrRef();
428 pushBack(new ElementaryEdge(ee,(*it3)->getDirection()));
433 for(std::vector<INTERP_KERNEL::ElementaryEdge *>::const_reverse_iterator it4=edgesAlreadyBuilt.rbegin();it4!=edgesAlreadyBuilt.rend();it4++)
435 Edge *ee=(*it4)->getPtr(); ee->incrRef();
436 pushBack(new ElementaryEdge(ee,!(*it4)->getDirection()));
441 bool directos=colinear1[edgeId].empty();
442 std::vector<std::pair<int,std::pair<bool,int> > > idIns1;
445 {// if the current edge of pol2 has one or more colinear edges part into pol1
446 const std::vector<int>& c=colinear1[edgeId];
447 std::size_t nbOfEdgesIn1=std::distance(descBg1,descEnd1);
448 for(std::size_t j=0;j<nbOfEdgesIn1;j++)
450 int edgeId1=abs(descBg1[j])-1;
451 if(std::find(c.begin(),c.end(),edgeId1)!=c.end())
453 idIns1.push_back(std::pair<int,std::pair<bool,int> >(edgeId1,std::pair<bool,int>(descBg1[j]>0,offset1)));// it exists an edge into pol1 given by tuple (idIn1,direct1) that is colinear at edge 'edgeId' in pol2
454 //std::pair<edgeId1); direct1=descBg1[j]>0;
456 offset1+=intersectEdges1[edgeId1].size()/2;//offset1 is used to find the INTERP_KERNEL::Edge * instance into pol1 that will be part of edge into pol2
458 directos=idIns1.empty();
461 {//no subpart of edge 'edgeId' of pol2 is in pol1 so let's operate the same thing that QuadraticPolygon::buildFromCrudeDataArray method
462 std::size_t oldSz=_sub_edges.size();
463 appendEdgeFromCrudeDataArray(i,mapp,isQuad,nodalBg,coords,descBg,descEnd,intersectEdges);
464 std::size_t newSz=_sub_edges.size();
465 std::size_t zeSz=newSz-oldSz;
466 alreadyExistingIn2[descBg[i]].resize(zeSz);
467 std::list<ElementaryEdge *>::const_reverse_iterator it5=_sub_edges.rbegin();
468 for(std::size_t p=0;p<zeSz;p++,it5++)
469 alreadyExistingIn2[descBg[i]][zeSz-p-1]=*it5;
472 {//there is subpart of edge 'edgeId' of pol2 inside pol1
473 const std::vector<int>& subEdge=intersectEdges[edgeId];
474 std::size_t nbOfSubEdges=subEdge.size()/2;
475 for(std::size_t j=0;j<nbOfSubEdges;j++)
477 int idBg=direct?subEdge[2*j]:subEdge[2*nbOfSubEdges-2*j-1];
478 int idEnd=direct?subEdge[2*j+1]:subEdge[2*nbOfSubEdges-2*j-2];
479 bool direction11,found=false;
480 bool direct1;//store if needed the direction in 1
482 std::size_t nbOfSubEdges1;
483 for(std::vector<std::pair<int,std::pair<bool,int> > >::const_iterator it=idIns1.begin();it!=idIns1.end() && !found;it++)
485 int idIn1=(*it).first;//store if needed the cell id in 1
486 direct1=(*it).second.first;
487 offset1=(*it).second.second;
488 const std::vector<int>& subEdge1PossiblyAlreadyIn1=intersectEdges1[idIn1];
489 nbOfSubEdges1=subEdge1PossiblyAlreadyIn1.size()/2;
491 for(std::size_t k=0;k<nbOfSubEdges1 && !found;k++)
492 {//perform a loop on all subedges of pol1 that includes edge 'edgeId' of pol2. For the moment we iterate only on subedges of ['idIn1']... To improve
493 if(subEdge1PossiblyAlreadyIn1[2*k]==idBg && subEdge1PossiblyAlreadyIn1[2*k+1]==idEnd)
494 { direction11=true; found=true; }
495 else if(subEdge1PossiblyAlreadyIn1[2*k]==idEnd && subEdge1PossiblyAlreadyIn1[2*k+1]==idBg)
496 { direction11=false; found=true; }
502 {//the current subedge of edge 'edgeId' of pol2 is not a part of the colinear edge 'idIn1' of pol1 -> build new Edge instance
503 //appendEdgeFromCrudeDataArray(j,mapp,isQuad,nodalBg,coords,descBg,descEnd,intersectEdges);
504 Node *start=(*mapp.find(idBg)).second;
505 Node *end=(*mapp.find(idEnd)).second;
506 ElementaryEdge *e=ElementaryEdge::BuildEdgeFromCrudeDataArray(true,start,end);
508 alreadyExistingIn2[descBg[i]].push_back(e);
511 {//the current subedge of edge 'edgeId' of pol2 is part of the colinear edge 'idIn1' of pol1 -> reuse Edge instance of pol1
512 ElementaryEdge *e=pol1[offset1+(direct1?offset2:nbOfSubEdges1-offset2-1)];
513 Edge *ee=e->getPtr();
515 ElementaryEdge *e2=new ElementaryEdge(ee,!(direct1^direction11));
517 alreadyExistingIn2[descBg[i]].push_back(e2);
525 * Method expected to be called on pol2. Every params not suffixed by numbered are supposed to refer to pol2 (this).
526 * Method to find edges that are ON.
528 void QuadraticPolygon::updateLocOfEdgeFromCrudeDataArray2(const int *descBg, const int *descEnd, const std::vector<std::vector<int> >& intersectEdges,
529 const INTERP_KERNEL::QuadraticPolygon& pol1, const int *descBg1, const int *descEnd1,
530 const std::vector<std::vector<int> >& intersectEdges1, const std::vector< std::vector<int> >& colinear1) const
532 std::size_t nbOfSeg=std::distance(descBg,descEnd);
533 for(std::size_t i=0;i<nbOfSeg;i++)//loop over all edges of pol2
535 bool direct=descBg[i]>0;
536 int edgeId=abs(descBg[i])-1;//current edge id of pol2
537 const std::vector<int>& c=colinear1[edgeId];
540 const std::vector<int>& subEdge=intersectEdges[edgeId];
541 std::size_t nbOfSubEdges=subEdge.size()/2;
543 std::size_t nbOfEdgesIn1=std::distance(descBg1,descEnd1);
545 for(std::size_t j=0;j<nbOfEdgesIn1;j++)
547 int edgeId1=abs(descBg1[j])-1;
548 if(std::find(c.begin(),c.end(),edgeId1)!=c.end())
550 for(std::size_t k=0;k<nbOfSubEdges;k++)
552 int idBg=direct?subEdge[2*k]:subEdge[2*nbOfSubEdges-2*k-1];
553 int idEnd=direct?subEdge[2*k+1]:subEdge[2*nbOfSubEdges-2*k-2];
555 bool direct1=descBg1[j]>0;
556 const std::vector<int>& subEdge1PossiblyAlreadyIn1=intersectEdges1[idIn1];
557 std::size_t nbOfSubEdges1=subEdge1PossiblyAlreadyIn1.size()/2;
560 for(std::size_t kk=0;kk<nbOfSubEdges1 && !found;kk++)
562 found=(subEdge1PossiblyAlreadyIn1[2*kk]==idBg && subEdge1PossiblyAlreadyIn1[2*kk+1]==idEnd) || (subEdge1PossiblyAlreadyIn1[2*kk]==idEnd && subEdge1PossiblyAlreadyIn1[2*kk+1]==idBg);
568 ElementaryEdge *e=pol1[offset1+(direct1?offset2:nbOfSubEdges1-offset2-1)];
569 e->getPtr()->declareOn();
573 offset1+=intersectEdges1[edgeId1].size()/2;//offset1 is used to find the INTERP_KERNEL::Edge * instance into pol1 that will be part of edge into pol2
578 void QuadraticPolygon::appendCrudeData(const std::map<INTERP_KERNEL::Node *,int>& mapp, double xBary, double yBary, double fact, int offset, std::vector<double>& addCoordsQuadratic, std::vector<int>& conn, std::vector<int>& connI) const
581 bool presenceOfQuadratic=presenceOfQuadraticEdge();
582 conn.push_back(presenceOfQuadratic?NORM_QPOLYG:NORM_POLYGON);
583 for(std::list<ElementaryEdge *>::const_iterator it=_sub_edges.begin();it!=_sub_edges.end();it++)
586 tmp=(*it)->getStartNode();
587 std::map<INTERP_KERNEL::Node *,int>::const_iterator it1=mapp.find(tmp);
588 conn.push_back((*it1).second);
591 if(presenceOfQuadratic)
594 int off=offset+((int)addCoordsQuadratic.size())/2;
595 for(std::list<ElementaryEdge *>::const_iterator it=_sub_edges.begin();it!=_sub_edges.end();it++,j++,nbOfNodesInPg++)
597 INTERP_KERNEL::Node *node=(*it)->getPtr()->buildRepresentantOfMySelf();
598 node->unApplySimilarity(xBary,yBary,fact);
599 addCoordsQuadratic.push_back((*node)[0]);
600 addCoordsQuadratic.push_back((*node)[1]);
601 conn.push_back(off+j);
605 connI.push_back(connI.back()+nbOfNodesInPg+1);
609 * This method make the hypothesis that 'this' and 'other' are splited at the minimum into edges that are fully IN, OUT or ON.
610 * This method returns newly created polygons in 'conn' and 'connI' and the corresponding ids ('idThis','idOther') are stored respectively into 'nbThis' and 'nbOther'.
611 * @param [in,out] edgesThis, parameter that keep informed the caller abount the edges in this not shared by the result of intersection of \a this with \a other
612 * @param [in,out] edgesBoundaryOther, parameter that strores all edges in result of intersection that are not
614 void QuadraticPolygon::buildPartitionsAbs(QuadraticPolygon& other, std::set<INTERP_KERNEL::Edge *>& edgesThis, std::set<INTERP_KERNEL::Edge *>& edgesBoundaryOther, const std::map<INTERP_KERNEL::Node *,int>& mapp, int idThis, int idOther, int offset, std::vector<double>& addCoordsQuadratic, std::vector<int>& conn, std::vector<int>& connI, std::vector<int>& nbThis, std::vector<int>& nbOther)
616 double xBaryBB, yBaryBB;
617 double fact=normalizeExt(&other, xBaryBB, yBaryBB);
618 //Locate 'this' relative to 'other'
619 other.performLocatingOperationSlow(*this); // without any assumption
620 std::vector<QuadraticPolygon *> res=buildIntersectionPolygons(other,*this);
621 for(std::vector<QuadraticPolygon *>::iterator it=res.begin();it!=res.end();it++)
623 (*it)->appendCrudeData(mapp,xBaryBB,yBaryBB,fact,offset,addCoordsQuadratic,conn,connI);
624 INTERP_KERNEL::IteratorOnComposedEdge it1(*it);
625 for(it1.first();!it1.finished();it1.next())
627 Edge *e=it1.current()->getPtr();
628 if(edgesThis.find(e)!=edgesThis.end())
632 if(edgesBoundaryOther.find(e)!=edgesBoundaryOther.end())
633 edgesBoundaryOther.erase(e);
635 edgesBoundaryOther.insert(e);
638 nbThis.push_back(idThis);
639 nbOther.push_back(idOther);
642 unApplyGlobalSimilarityExt(other,xBaryBB,yBaryBB,fact);
646 * Warning This method is \b NOT const. 'this' and 'other' are modified after call of this method.
647 * 'other' is a QuadraticPolygon of \b non closed edges.
649 double QuadraticPolygon::intersectWithAbs1D(QuadraticPolygon& other, bool& isColinear)
651 double ret = 0., xBaryBB, yBaryBB;
652 double fact = normalize(&other, xBaryBB, yBaryBB);
654 QuadraticPolygon cpyOfThis(*this);
655 QuadraticPolygon cpyOfOther(other);
657 SplitPolygonsEachOther(cpyOfThis, cpyOfOther, nbOfSplits);
658 //At this point cpyOfThis and cpyOfOther have been splited at maximum edge so that in/out can been done.
659 performLocatingOperation(cpyOfOther);
661 for(std::list<ElementaryEdge *>::const_iterator it=cpyOfOther._sub_edges.begin();it!=cpyOfOther._sub_edges.end();it++)
663 switch((*it)->getLoc())
667 ret += fabs((*it)->getPtr()->getCurveLength());
673 ret += fabs((*it)->getPtr()->getCurveLength());
685 * Warning contrary to intersectWith method this method is \b NOT const. 'this' and 'other' are modified after call of this method.
687 double QuadraticPolygon::intersectWithAbs(QuadraticPolygon& other, double* barycenter)
689 double ret=0.,bary[2],area,xBaryBB,yBaryBB;
690 barycenter[0] = barycenter[1] = 0.;
691 double fact=normalize(&other,xBaryBB,yBaryBB);
692 std::vector<QuadraticPolygon *> polygs=intersectMySelfWith(other);
693 for(std::vector<QuadraticPolygon *>::iterator iter=polygs.begin();iter!=polygs.end();iter++)
695 area=fabs((*iter)->getArea());
696 (*iter)->getBarycenter(bary);
699 barycenter[0] += bary[0]*area;
700 barycenter[1] += bary[1]*area;
702 if ( ret > std::numeric_limits<double>::min() )
704 barycenter[0]=barycenter[0]/ret*fact+xBaryBB;
705 barycenter[1]=barycenter[1]/ret*fact+yBaryBB;
708 return ret*fact*fact;
712 * \b WARNING this method is const and other is const too. \b BUT location of Edges in 'this' and 'other' are nevertheless modified.
713 * This is possible because loc attribute in Edge class is mutable.
714 * This implies that if 'this' or/and 'other' are reused for intersect* method initLocations has to be called on each of this/them.
716 double QuadraticPolygon::intersectWith(const QuadraticPolygon& other) const
719 std::vector<QuadraticPolygon *> polygs=intersectMySelfWith(other);
720 for(std::vector<QuadraticPolygon *>::iterator iter=polygs.begin();iter!=polygs.end();iter++)
722 ret+=fabs((*iter)->getArea());
729 * \b WARNING this method is const and other is const too. \b BUT location of Edges in 'this' and 'other' are nevertheless modified.
730 * This is possible because loc attribute in Edge class is mutable.
731 * This implies that if 'this' or/and 'other' are reused for intersect* method initLocations has to be called on each of this/them.
733 double QuadraticPolygon::intersectWith(const QuadraticPolygon& other, double* barycenter) const
735 double ret=0., bary[2];
736 barycenter[0] = barycenter[1] = 0.;
737 std::vector<QuadraticPolygon *> polygs=intersectMySelfWith(other);
738 for(std::vector<QuadraticPolygon *>::iterator iter=polygs.begin();iter!=polygs.end();iter++)
740 double area = fabs((*iter)->getArea());
741 (*iter)->getBarycenter(bary);
744 barycenter[0] += bary[0]*area;
745 barycenter[1] += bary[1]*area;
747 if ( ret > std::numeric_limits<double>::min() )
749 barycenter[0] /= ret;
750 barycenter[1] /= ret;
756 * \b WARNING this method is const and other is const too. \b BUT location of Edges in 'this' and 'other' are nevertheless modified.
757 * This is possible because loc attribute in Edge class is mutable.
758 * This implies that if 'this' or/and 'other' are reused for intersect* method initLocations has to be called on each of this/them.
760 void QuadraticPolygon::intersectForPerimeter(const QuadraticPolygon& other, double& perimeterThisPart, double& perimeterOtherPart, double& perimeterCommonPart) const
762 perimeterThisPart=0.; perimeterOtherPart=0.; perimeterCommonPart=0.;
763 QuadraticPolygon cpyOfThis(*this);
764 QuadraticPolygon cpyOfOther(other); int nbOfSplits=0;
765 SplitPolygonsEachOther(cpyOfThis,cpyOfOther,nbOfSplits);
766 performLocatingOperation(cpyOfOther);
767 other.performLocatingOperation(cpyOfThis);
768 cpyOfThis.dispatchPerimeterExcl(perimeterThisPart,perimeterCommonPart);
769 cpyOfOther.dispatchPerimeterExcl(perimeterOtherPart,perimeterCommonPart);
770 perimeterCommonPart/=2.;
774 * \b WARNING this method is const and other is const too. \b BUT location of Edges in 'this' and 'other' are nevertheless modified.
775 * This is possible because loc attribute in Edge class is mutable.
776 * This implies that if 'this' or/and 'other' are reused for intersect* method initLocations has to be called on each of this/them.
778 * polThis.size()==this->size() and polOther.size()==other.size().
779 * For each ElementaryEdge of 'this', the corresponding contribution in resulting polygon is in 'polThis'.
780 * For each ElementaryEdge of 'other', the corresponding contribution in resulting polygon is in 'polOther'.
781 * As consequence common part are counted twice (in polThis \b and in polOther).
783 void QuadraticPolygon::intersectForPerimeterAdvanced(const QuadraticPolygon& other, std::vector< double >& polThis, std::vector< double >& polOther) const
785 polThis.resize(size());
786 polOther.resize(other.size());
787 IteratorOnComposedEdge it1(const_cast<QuadraticPolygon *>(this));
789 for(it1.first();!it1.finished();it1.next(),edgeId++)
791 ElementaryEdge* curE1=it1.current();
792 QuadraticPolygon cpyOfOther(other);
793 QuadraticPolygon tmp;
794 tmp.pushBack(curE1->clone());
796 SplitPolygonsEachOther(tmp,cpyOfOther,tmp2);
797 other.performLocatingOperation(tmp);
798 tmp.dispatchPerimeter(polThis[edgeId]);
801 IteratorOnComposedEdge it2(const_cast<QuadraticPolygon *>(&other));
803 for(it2.first();!it2.finished();it2.next(),edgeId++)
805 ElementaryEdge* curE2=it2.current();
806 QuadraticPolygon cpyOfThis(*this);
807 QuadraticPolygon tmp;
808 tmp.pushBack(curE2->clone());
810 SplitPolygonsEachOther(tmp,cpyOfThis,tmp2);
811 performLocatingOperation(tmp);
812 tmp.dispatchPerimeter(polOther[edgeId]);
818 * numberOfCreatedPointsPerEdge is resized to the number of edges of 'this'.
819 * This method returns in ordered maner the number of newly created points per edge.
820 * This method performs a split process between 'this' and 'other' that gives the result PThis.
821 * Then for each edges of 'this' this method counts how many edges in Pthis have the same id.
823 void QuadraticPolygon::intersectForPoint(const QuadraticPolygon& other, std::vector< int >& numberOfCreatedPointsPerEdge) const
825 numberOfCreatedPointsPerEdge.resize(size());
826 IteratorOnComposedEdge it1(const_cast<QuadraticPolygon *>(this));
828 for(it1.first();!it1.finished();it1.next(),edgeId++)
830 ElementaryEdge* curE1=it1.current();
831 QuadraticPolygon cpyOfOther(other);
832 QuadraticPolygon tmp;
833 tmp.pushBack(curE1->clone());
835 SplitPolygonsEachOther(tmp,cpyOfOther,tmp2);
836 numberOfCreatedPointsPerEdge[edgeId]=tmp.recursiveSize()-1;
841 * \b WARNING this method is const and other is const too. \b BUT location of Edges in 'this' and 'other' are nevertheless modified.
842 * This is possible because loc attribute in Edge class is mutable.
843 * This implies that if 'this' or/and 'other' are reused for intersect* method initLocations has to be called on each of this/them.
845 std::vector<QuadraticPolygon *> QuadraticPolygon::intersectMySelfWith(const QuadraticPolygon& other) const
847 QuadraticPolygon cpyOfThis(*this);
848 QuadraticPolygon cpyOfOther(other); int nbOfSplits=0;
849 SplitPolygonsEachOther(cpyOfThis,cpyOfOther,nbOfSplits);
850 //At this point cpyOfThis and cpyOfOther have been splited at maximum edge so that in/out can been done.
851 performLocatingOperation(cpyOfOther);
852 return other.buildIntersectionPolygons(cpyOfThis,cpyOfOther);
856 * This method is typically the first step of boolean operations between pol1 and pol2.
857 * This method perform the minimal splitting so that at the end each edges constituting pol1 are fully either IN or OUT or ON.
858 * @param pol1 IN/OUT param that is equal to 'this' when called.
860 void QuadraticPolygon::SplitPolygonsEachOther(QuadraticPolygon& pol1, QuadraticPolygon& pol2, int& nbOfSplits)
862 IteratorOnComposedEdge it1(&pol1),it2(&pol2);
864 ComposedEdge *c1=new ComposedEdge;
865 ComposedEdge *c2=new ComposedEdge;
866 for(it2.first();!it2.finished();it2.next())
868 ElementaryEdge* curE2=it2.current();
869 if(!curE2->isThereStartPoint())
872 it1=curE2->getIterator();
873 for(;!it1.finished();)
876 ElementaryEdge* curE1=it1.current();
877 merge.clear(); nbOfSplits++;
878 if(curE1->getPtr()->intersectWith(curE2->getPtr(),merge,*c1,*c2))
880 if(!curE1->getDirection()) c1->reverse();
881 if(!curE2->getDirection()) c2->reverse();
882 UpdateNeighbours(merge,it1,it2,c1,c2);
883 //Substitution of simple edge by sub-edges.
884 delete curE1; // <-- destroying simple edge coming from pol1
885 delete curE2; // <-- destroying simple edge coming from pol2
886 it1.insertElemEdges(c1,true);// <-- 2nd param is true to go next.
887 it2.insertElemEdges(c2,false);// <-- 2nd param is false to avoid to go next.
890 it1.assignMySelfToAllElems(c2);//To avoid that others
898 UpdateNeighbours(merge,it1,it2,curE1,curE2);
907 void QuadraticPolygon::performLocatingOperation(QuadraticPolygon& pol2) const
909 IteratorOnComposedEdge it(&pol2);
910 TypeOfEdgeLocInPolygon loc=FULL_ON_1;
911 for(it.first();!it.finished();it.next())
913 ElementaryEdge *cur=it.current();
914 loc=cur->locateFullyMySelf(*this,loc);
918 void QuadraticPolygon::performLocatingOperationSlow(QuadraticPolygon& pol2) const
920 IteratorOnComposedEdge it(&pol2);
921 for(it.first();!it.finished();it.next())
923 ElementaryEdge *cur=it.current();
924 cur->locateFullyMySelfAbsolute(*this);
929 * Given 2 polygons 'pol1' and 'pol2' (localized) the resulting polygons are returned.
931 * this : pol2 simplified.
932 * @param pol1 pol1 split.
933 * @param pol2 pol2 split.
935 std::vector<QuadraticPolygon *> QuadraticPolygon::buildIntersectionPolygons(const QuadraticPolygon& pol1, const QuadraticPolygon& pol2) const
937 std::vector<QuadraticPolygon *> ret;
938 std::list<QuadraticPolygon *> pol2Zip=pol2.zipConsecutiveInSegments();
940 closePolygons(pol2Zip,pol1,ret);
942 {//borders of pol2 do not cross pol1,and pol2 borders are outside of pol1. That is to say, either pol2 and pol1
943 //do not overlap or pol1 is fully inside pol2. So in the first case no intersection, in the other case
944 //the intersection is pol1.
945 ElementaryEdge *e1FromPol1=pol1[0];
946 TypeOfEdgeLocInPolygon loc=FULL_ON_1;
947 loc=e1FromPol1->locateFullyMySelf(*this,loc);
949 ret.push_back(new QuadraticPolygon(pol1));
955 * Returns parts of potentially non closed-polygons. Each returned polygons are not mergeable.
956 * this : pol2 split and locallized.
958 std::list<QuadraticPolygon *> QuadraticPolygon::zipConsecutiveInSegments() const
960 std::list<QuadraticPolygon *> ret;
961 IteratorOnComposedEdge it(const_cast<QuadraticPolygon *>(this));
962 int nbOfTurns=recursiveSize();
964 if(!it.goToNextInOn(false,i,nbOfTurns))
970 QuadraticPolygon *tmp1=new QuadraticPolygon;
971 TypeOfEdgeLocInPolygon loc=it.current()->getLoc();
972 while(loc!=FULL_OUT_1 && i<nbOfTurns)
974 ElementaryEdge *tmp3=it.current()->clone();
975 tmp1->pushBack(tmp3);
977 loc=it.current()->getLoc();
985 it.goToNextInOn(true,i,nbOfTurns);
991 * 'this' should be considered as pol2Simplified.
992 * @param pol2zip is a list of set of edges (openned polygon) coming from split polygon 2.
993 * @param pol1 is split pol1.
994 * @param results the resulting \b CLOSED polygons.
996 void QuadraticPolygon::closePolygons(std::list<QuadraticPolygon *>& pol2Zip, const QuadraticPolygon& pol1,
997 std::vector<QuadraticPolygon *>& results) const
999 bool directionKnownInPol1=false;
1000 bool directionInPol1;
1001 for(std::list<QuadraticPolygon *>::iterator iter=pol2Zip.begin();iter!=pol2Zip.end();)
1003 if((*iter)->completed())
1005 results.push_back(*iter);
1006 directionKnownInPol1=false;
1007 iter=pol2Zip.erase(iter);
1010 if(!directionKnownInPol1)
1012 if(!(*iter)->amIAChanceToBeCompletedBy(pol1,*this,directionInPol1))
1013 { delete *iter; iter=pol2Zip.erase(iter); continue; }
1015 directionKnownInPol1=true;
1017 std::list<QuadraticPolygon *>::iterator iter2=iter; iter2++;
1018 std::list<QuadraticPolygon *>::iterator iter3=(*iter)->fillAsMuchAsPossibleWith(pol1,iter2,pol2Zip.end(),directionInPol1);
1019 if(iter3!=pol2Zip.end())
1021 (*iter)->pushBack(*iter3);
1023 pol2Zip.erase(iter3);
1029 * 'this' is expected to be set of edges (not closed) of pol2 split.
1031 bool QuadraticPolygon::amIAChanceToBeCompletedBy(const QuadraticPolygon& pol1Splitted,const QuadraticPolygon& pol2NotSplitted, bool& direction)
1033 IteratorOnComposedEdge it(const_cast<QuadraticPolygon *>(&pol1Splitted));
1035 Node *n=getEndNode();
1036 ElementaryEdge *cur=it.current();
1037 for(it.first();!it.finished() && !found;)
1040 found=(cur->getStartNode()==n);
1045 throw Exception("Internal error : polygons uncompatible each others. Should never happend");
1046 //Ok we found correspondance between this and pol1. Searching for right direction to close polygon.
1047 ElementaryEdge *e=_sub_edges.back();
1048 if(e->getLoc()==FULL_ON_1)
1050 if(e->getPtr()==cur->getPtr())
1055 Node *repr=cur->getPtr()->buildRepresentantOfMySelf();
1056 bool ret=pol2NotSplitted.isInOrOut(repr);
1063 Node *repr=cur->getPtr()->buildRepresentantOfMySelf();
1064 bool ret=pol2NotSplitted.isInOrOut(repr);
1070 direction=cur->locateFullyMySelfAbsolute(pol2NotSplitted)==FULL_IN_1;
1075 * This method fills as much as possible 'this' (part of pol2 split) with edges of 'pol1Splitted'.
1077 std::list<QuadraticPolygon *>::iterator QuadraticPolygon::fillAsMuchAsPossibleWith(const QuadraticPolygon& pol1Splitted,
1078 std::list<QuadraticPolygon *>::iterator iStart,
1079 std::list<QuadraticPolygon *>::iterator iEnd,
1082 IteratorOnComposedEdge it(const_cast<QuadraticPolygon *>(&pol1Splitted));
1084 Node *n=getEndNode();
1085 ElementaryEdge *cur;
1086 for(it.first();!it.finished() && !found;)
1089 found=(cur->getStartNode()==n);
1096 std::list<QuadraticPolygon *>::iterator ret;
1100 ElementaryEdge *tmp=cur->clone();
1104 nodeToTest=tmp->getEndNode();
1105 direction?it.nextLoop():it.previousLoop();
1106 ret=CheckInList(nodeToTest,iStart,iEnd);
1114 std::list<QuadraticPolygon *>::iterator QuadraticPolygon::CheckInList(Node *n, std::list<QuadraticPolygon *>::iterator iStart,
1115 std::list<QuadraticPolygon *>::iterator iEnd)
1117 for(std::list<QuadraticPolygon *>::iterator iter=iStart;iter!=iEnd;iter++)
1118 if((*iter)->isNodeIn(n))
1123 void QuadraticPolygon::ComputeResidual(const QuadraticPolygon& pol1, const std::set<Edge *>& notUsedInPol1, const std::set<Edge *>& edgesInPol2OnBoundary, const std::map<INTERP_KERNEL::Node *,int>& mapp, int offset, int idThis,
1124 std::vector<double>& addCoordsQuadratic, std::vector<int>& conn, std::vector<int>& connI, std::vector<int>& nb1, std::vector<int>& nb2)
1126 pol1.initLocations();
1127 for(std::set<Edge *>::const_iterator it9=notUsedInPol1.begin();it9!=notUsedInPol1.end();it9++)
1128 { (*it9)->initLocs(); (*it9)->declareOn(); }
1129 for(std::set<Edge *>::const_iterator itA=edgesInPol2OnBoundary.begin();itA!=edgesInPol2OnBoundary.end();itA++)
1130 { (*itA)->initLocs(); (*itA)->declareIn(); }
1132 std::set<Edge *> notUsedInPol1L(notUsedInPol1);
1133 IteratorOnComposedEdge it(const_cast<QuadraticPolygon *>(&pol1));
1135 std::list<QuadraticPolygon *> pol1Zip;
1136 if(pol1.size()==(int)notUsedInPol1.size() && edgesInPol2OnBoundary.empty())
1138 pol1.appendCrudeData(mapp,0.,0.,1.,offset,addCoordsQuadratic,conn,connI); nb1.push_back(idThis); nb2.push_back(-1);
1141 while(!notUsedInPol1L.empty())
1143 for(int i=0;i<sz && (it.current()->getStartNode()->getLoc()!=IN_1 || it.current()->getLoc()!=FULL_ON_1);i++)
1145 if(it.current()->getStartNode()->getLoc()!=IN_1 || it.current()->getLoc()!=FULL_ON_1)
1146 throw INTERP_KERNEL::Exception("Presence of a target polygon fully included in source polygon ! The partition of this leads to a non simply connex cell (with hole) ! Impossible ! Such resulting cell cannot be stored in MED cell format !");
1147 QuadraticPolygon *tmp1=new QuadraticPolygon;
1150 Edge *ee=it.current()->getPtr();
1151 if(ee->getLoc()==FULL_ON_1)
1153 ee->incrRef(); notUsedInPol1L.erase(ee);
1154 tmp1->pushBack(new ElementaryEdge(ee,it.current()->getDirection()));
1158 while(it.current()->getStartNode()->getLoc()!=IN_1 && !notUsedInPol1L.empty());
1159 pol1Zip.push_back(tmp1);
1162 std::list<QuadraticPolygon *> retPolsUnderContruction;
1163 std::list<Edge *> edgesInPol2OnBoundaryL(edgesInPol2OnBoundary.begin(),edgesInPol2OnBoundary.end());
1164 std::map<QuadraticPolygon *, std::list<QuadraticPolygon *> > pol1ZipConsumed;
1165 std::size_t maxNbOfTurn=edgesInPol2OnBoundaryL.size(),nbOfTurn=0,iiMNT=0;
1166 for(std::list<QuadraticPolygon *>::const_iterator itMNT=pol1Zip.begin();itMNT!=pol1Zip.end();itMNT++,iiMNT++)
1167 nbOfTurn+=(*itMNT)->size();
1168 maxNbOfTurn=maxNbOfTurn*nbOfTurn; maxNbOfTurn*=maxNbOfTurn;
1170 while(nbOfTurn<maxNbOfTurn && ((!pol1Zip.empty() || !edgesInPol2OnBoundaryL.empty())))
1172 for(std::list<QuadraticPolygon *>::iterator it1=retPolsUnderContruction.begin();it1!=retPolsUnderContruction.end();)
1174 if((*it1)->getStartNode()==(*it1)->getEndNode())
1179 Node *curN=(*it1)->getEndNode();
1180 bool smthHappened=false;
1181 for(std::list<Edge *>::iterator it2=edgesInPol2OnBoundaryL.begin();it2!=edgesInPol2OnBoundaryL.end();)
1183 if(curN==(*it2)->getStartNode())
1184 { (*it2)->incrRef(); (*it1)->pushBack(new ElementaryEdge(*it2,true)); curN=(*it2)->getEndNode(); smthHappened=true; it2=edgesInPol2OnBoundaryL.erase(it2); }
1185 else if(curN==(*it2)->getEndNode())
1186 { (*it2)->incrRef(); (*it1)->pushBack(new ElementaryEdge(*it2,false)); curN=(*it2)->getStartNode(); smthHappened=true; it2=edgesInPol2OnBoundaryL.erase(it2); }
1192 for(std::list<QuadraticPolygon *>::iterator it3=pol1Zip.begin();it3!=pol1Zip.end();)
1194 if(curN==(*it3)->getStartNode())
1196 for(std::list<ElementaryEdge *>::const_iterator it4=(*it3)->_sub_edges.begin();it4!=(*it3)->_sub_edges.end();it4++)
1197 { (*it4)->getPtr()->incrRef(); bool dir=(*it4)->getDirection(); (*it1)->pushBack(new ElementaryEdge((*it4)->getPtr(),dir)); }
1199 pol1ZipConsumed[*it1].push_back(*it3);
1200 curN=(*it3)->getEndNode();
1201 it3=pol1Zip.erase(it3);
1209 for(std::list<ElementaryEdge *>::const_iterator it5=(*it1)->_sub_edges.begin();it5!=(*it1)->_sub_edges.end();it5++)
1211 Edge *ee=(*it5)->getPtr();
1212 if(edgesInPol2OnBoundary.find(ee)!=edgesInPol2OnBoundary.end())
1213 edgesInPol2OnBoundaryL.push_back(ee);
1215 for(std::list<QuadraticPolygon *>::iterator it6=pol1ZipConsumed[*it1].begin();it6!=pol1ZipConsumed[*it1].end();it6++)
1216 pol1Zip.push_front(*it6);
1217 pol1ZipConsumed.erase(*it1);
1219 it1=retPolsUnderContruction.erase(it1);
1222 if(!pol1Zip.empty())
1224 QuadraticPolygon *tmp=new QuadraticPolygon;
1225 QuadraticPolygon *first=*(pol1Zip.begin());
1226 for(std::list<ElementaryEdge *>::const_iterator it4=first->_sub_edges.begin();it4!=first->_sub_edges.end();it4++)
1227 { (*it4)->getPtr()->incrRef(); bool dir=(*it4)->getDirection(); tmp->pushBack(new ElementaryEdge((*it4)->getPtr(),dir)); }
1228 pol1ZipConsumed[tmp].push_back(first);
1229 retPolsUnderContruction.push_back(tmp);
1230 pol1Zip.erase(pol1Zip.begin());
1234 if(nbOfTurn==maxNbOfTurn)
1236 std::ostringstream oss; oss << "Error during reconstruction of residual of cell ! It appears that either source or/and target mesh is/are not conform !";
1237 oss << " Number of turns is = " << nbOfTurn << " !";
1238 throw INTERP_KERNEL::Exception(oss.str().c_str());
1240 for(std::list<QuadraticPolygon *>::iterator it1=retPolsUnderContruction.begin();it1!=retPolsUnderContruction.end();it1++)
1242 if((*it1)->getStartNode()==(*it1)->getEndNode())
1244 (*it1)->appendCrudeData(mapp,0.,0.,1.,offset,addCoordsQuadratic,conn,connI); nb1.push_back(idThis); nb2.push_back(-1);
1245 for(std::list<QuadraticPolygon *>::iterator it6=pol1ZipConsumed[*it1].begin();it6!=pol1ZipConsumed[*it1].end();it6++)