1 // Copyright (C) 2007-2013 CEA/DEN, EDF R&D
3 // This library is free software; you can redistribute it and/or
4 // modify it under the terms of the GNU Lesser General Public
5 // License as published by the Free Software Foundation; either
6 // version 2.1 of the License.
8 // This library is distributed in the hope that it will be useful,
9 // but WITHOUT ANY WARRANTY; without even the implied warranty of
10 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 // Lesser General Public License for more details.
13 // You should have received a copy of the GNU Lesser General Public
14 // License along with this library; if not, write to the Free Software
15 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
19 // Author : Anthony Geay (CEA/DEN)
21 #include "InterpKernelGeo2DQuadraticPolygon.hxx"
22 #include "InterpKernelGeo2DElementaryEdge.hxx"
23 #include "InterpKernelGeo2DEdgeArcCircle.hxx"
24 #include "InterpKernelGeo2DAbstractEdge.hxx"
25 #include "InterpKernelGeo2DEdgeLin.hxx"
26 #include "InterpKernelGeo2DBounds.hxx"
27 #include "InterpKernelGeo2DEdge.txx"
29 #include "NormalizedUnstructuredMesh.hxx"
37 using namespace INTERP_KERNEL;
39 namespace INTERP_KERNEL
41 const unsigned MAX_SIZE_OF_LINE_XFIG_FILE=1024;
44 QuadraticPolygon::QuadraticPolygon(const char *file)
46 char currentLine[MAX_SIZE_OF_LINE_XFIG_FILE];
47 std::ifstream stream(file);
48 stream.exceptions(std::ios_base::eofbit);
52 stream.getline(currentLine,MAX_SIZE_OF_LINE_XFIG_FILE);
53 while(strcmp(currentLine,"1200 2")!=0);
56 Edge *newEdge=Edge::BuildFromXfigLine(stream);
58 newEdge->changeStartNodeWith(back()->getEndNode());
63 catch(std::ifstream::failure&)
66 front()->changeStartNodeWith(back()->getEndNode());
69 QuadraticPolygon::~QuadraticPolygon()
73 QuadraticPolygon *QuadraticPolygon::BuildLinearPolygon(std::vector<Node *>& nodes, bool isClosed)
75 QuadraticPolygon *ret=new QuadraticPolygon;
76 std::size_t size=nodes.size();
77 for(std::size_t i=0;i< (size - (isClosed?0:1));i++)
79 ret->pushBack(new EdgeLin(nodes[i],nodes[(i+1)%size]));
83 nodes[size-1]->decrRef();
87 QuadraticPolygon *QuadraticPolygon::BuildArcCirclePolygon(std::vector<Node *>& nodes, bool isClosed)
89 QuadraticPolygon *ret=new QuadraticPolygon;
90 std::size_t size=nodes.size();
91 std::size_t quad_offset = isClosed ? (size/2) : (size/2+1);
92 for(std::size_t i = 0; i < size/2; i++)
95 e1=new EdgeLin(nodes[i],nodes[i+quad_offset]);
96 e2=new EdgeLin(nodes[i+quad_offset],nodes[(i+1)%quad_offset]);
97 SegSegIntersector inters(*e1,*e2);
98 bool colinearity=inters.areColinears();
101 ret->pushBack(new EdgeLin(nodes[i],nodes[(i+1)%quad_offset]));
103 ret->pushBack(new EdgeArcCircle(nodes[i],nodes[i+quad_offset],nodes[(i+1)%quad_offset]));
104 nodes[i]->decrRef(); nodes[i+quad_offset]->decrRef();
107 nodes[quad_offset-1]->decrRef();
111 void QuadraticPolygon::BuildDbgFile(const std::vector<Node *>& nodes, const char *fileName)
113 std::ofstream file(fileName);
114 file << std::setprecision(16);
115 file << " double coords[]=" << std::endl << " { ";
116 for(std::vector<Node *>::const_iterator iter=nodes.begin();iter!=nodes.end();iter++)
118 if(iter!=nodes.begin())
119 file << "," << std::endl << " ";
120 file << (*(*iter))[0] << ", " << (*(*iter))[1];
122 file << "};" << std::endl;
125 void QuadraticPolygon::closeMe() const
127 if(!front()->changeStartNodeWith(back()->getEndNode()))
128 throw(Exception("big error: not closed polygon..."));
131 void QuadraticPolygon::circularPermute()
133 if(_sub_edges.size()>1)
135 ElementaryEdge *first=_sub_edges.front();
136 _sub_edges.pop_front();
137 _sub_edges.push_back(first);
141 bool QuadraticPolygon::isButterflyAbs()
143 INTERP_KERNEL::Bounds b;
145 b.prepareForAggregation();
147 double dimChar=b.getCaracteristicDim();
148 b.getBarycenter(xBary,yBary);
149 applyGlobalSimilarity(xBary,yBary,dimChar);
151 return isButterfly();
154 bool QuadraticPolygon::isButterfly() const
156 for(std::list<ElementaryEdge *>::const_iterator it=_sub_edges.begin();it!=_sub_edges.end();it++)
158 Edge *e1=(*it)->getPtr();
159 std::list<ElementaryEdge *>::const_iterator it2=it;
161 for(;it2!=_sub_edges.end();it2++)
163 MergePoints commonNode;
164 ComposedEdge *outVal1=new ComposedEdge;
165 ComposedEdge *outVal2=new ComposedEdge;
166 Edge *e2=(*it2)->getPtr();
167 if(e1->intersectWith(e2,commonNode,*outVal1,*outVal2))
180 void QuadraticPolygon::dumpInXfigFileWithOther(const ComposedEdge& other, const char *fileName) const
182 std::ofstream file(fileName);
183 const int resolution=1200;
185 box.prepareForAggregation();
187 other.fillBounds(box);
188 dumpInXfigFile(file,resolution,box);
189 other.ComposedEdge::dumpInXfigFile(file,resolution,box);
192 void QuadraticPolygon::dumpInXfigFile(const char *fileName) const
194 std::ofstream file(fileName);
195 const int resolution=1200;
197 box.prepareForAggregation();
199 dumpInXfigFile(file,resolution,box);
202 void QuadraticPolygon::dumpInXfigFile(std::ostream& stream, int resolution, const Bounds& box) const
204 stream << "#FIG 3.2 Produced by xfig version 3.2.5-alpha5" << std::endl;
205 stream << "Landscape" << std::endl;
206 stream << "Center" << std::endl;
207 stream << "Metric" << std::endl;
208 stream << "Letter" << std::endl;
209 stream << "100.00" << std::endl;
210 stream << "Single" << std::endl;
211 stream << "-2" << std::endl;
212 stream << resolution << " 2" << std::endl;
213 ComposedEdge::dumpInXfigFile(stream,resolution,box);
217 * Warning contrary to intersectWith method this method is \b NOT const. 'this' and 'other' are modified after call of this method.
219 double QuadraticPolygon::intersectWithAbs(QuadraticPolygon& other)
221 double ret=0.,xBaryBB,yBaryBB;
222 double fact=normalize(&other,xBaryBB,yBaryBB);
223 std::vector<QuadraticPolygon *> polygs=intersectMySelfWith(other);
224 for(std::vector<QuadraticPolygon *>::iterator iter=polygs.begin();iter!=polygs.end();iter++)
226 ret+=fabs((*iter)->getArea());
229 return ret*fact*fact;
233 * This method splits 'this' with 'other' into smaller pieces localizable. 'mapThis' is a map that gives the correspondance
234 * between nodes contained in 'this' and node ids in a global mesh.
235 * In the same way, 'mapOther' gives the correspondance between nodes contained in 'other' and node ids in a
236 * global mesh from wich 'other' is extracted.
237 * This method has 1 out paramater : 'edgesThis', After the call of this method, it contains the nodal connectivity (including type)
238 * of 'this' into globlal "this mesh".
239 * This method has 2 in/out parameters : 'subDivOther' and 'addCoo'.'otherEdgeIds' is useful to put values in
240 * 'edgesThis', 'subDivOther' and 'addCoo'.
241 * Size of 'otherEdgeIds' has to be equal to number of ElementaryEdges in 'other'. No check of that will be done.
242 * The term 'abs' in the name recalls that we normalize the mesh (spatially) so that node coordinates fit into [0;1].
243 * @param offset1 is the number of nodes contained in global mesh from which 'this' is extracted.
244 * @param offset2 is the sum of nodes contained in global mesh from which 'this' is extracted and 'other' is extracted.
245 * @param edgesInOtherColinearWithThis will be appended at the end of the vector with colinear edge ids of other (if any)
246 * @param otherEdgeIds is a vector with the same size than other before calling this method. It gives in the same order
247 * the cell id in global other mesh.
249 void QuadraticPolygon::splitAbs(QuadraticPolygon& other,
250 const std::map<INTERP_KERNEL::Node *,int>& mapThis, const std::map<INTERP_KERNEL::Node *,int>& mapOther,
251 int offset1, int offset2 ,
252 const std::vector<int>& otherEdgeIds,
253 std::vector<int>& edgesThis, int cellIdThis,
254 std::vector< std::vector<int> >& edgesInOtherColinearWithThis, std::vector< std::vector<int> >& subDivOther,
255 std::vector<double>& addCoo)
257 double xBaryBB, yBaryBB;
258 double fact=normalizeExt(&other, xBaryBB, yBaryBB);
260 IteratorOnComposedEdge it1(this),it3(&other);
262 ComposedEdge *c1=new ComposedEdge;
263 ComposedEdge *c2=new ComposedEdge;
265 std::map<INTERP_KERNEL::Node *,int> mapAddCoo;
266 for(it3.first();!it3.finished();it3.next(),i++)//iteration over 'other' _sub_edges
268 QuadraticPolygon otherTmp;
269 ElementaryEdge* curE3=it3.current();
270 otherTmp.pushBack(new ElementaryEdge(curE3->getPtr(),curE3->getDirection())); curE3->getPtr()->incrRef();
271 IteratorOnComposedEdge it2(&otherTmp);
272 for(it2.first();!it2.finished();it2.next())//iteration on subedges of 'other->_sub_edge'
274 ElementaryEdge* curE2=it2.current();
275 if(!curE2->isThereStartPoint())
278 it1=curE2->getIterator();
279 for(;!it1.finished();)//iteration over 'this' _sub_edges
281 ElementaryEdge* curE1=it1.current();
283 if(curE1->getPtr()->intersectWith(curE2->getPtr(),merge,*c1,*c2))
285 if(!curE1->getDirection()) c1->reverse();
286 if(!curE2->getDirection()) c2->reverse();
287 UpdateNeighbours(merge,it1,it2,c1,c2);
288 //Substitution of simple edge by sub-edges.
289 delete curE1; // <-- destroying simple edge coming from pol1
290 delete curE2; // <-- destroying simple edge coming from pol2
291 it1.insertElemEdges(c1,true);// <-- 2nd param is true to go next.
292 it2.insertElemEdges(c2,false);// <-- 2nd param is false to avoid to go next.
295 it1.assignMySelfToAllElems(c2);//To avoid that others
303 UpdateNeighbours(merge,it1,it2,curE1,curE2);
308 if(otherTmp.presenceOfOn())
309 edgesInOtherColinearWithThis[otherEdgeIds[i]].push_back(cellIdThis);
310 if(otherTmp._sub_edges.size()>1)
312 for(std::list<ElementaryEdge *>::const_iterator it=otherTmp._sub_edges.begin();it!=otherTmp._sub_edges.end();it++)
313 (*it)->fillGlobalInfoAbs2(mapThis,mapOther,offset1,offset2,/**/fact,xBaryBB,yBaryBB,/**/subDivOther[otherEdgeIds[i]],addCoo,mapAddCoo);
319 for(std::list<ElementaryEdge *>::const_iterator it=_sub_edges.begin();it!=_sub_edges.end();it++)
320 (*it)->fillGlobalInfoAbs(mapThis,mapOther,offset1,offset2,/**/fact,xBaryBB,yBaryBB,/**/edgesThis,addCoo,mapAddCoo);
325 * This method builds 'this' from its descending conn stored in crude mode (MEDCoupling).
326 * Descending conn is in FORTRAN relative mode in order to give the
327 * orientation of edge (see buildDescendingConnectivity2() method).
328 * See appendEdgeFromCrudeDataArray() for params description.
330 void QuadraticPolygon::buildFromCrudeDataArray(const std::map<int,INTERP_KERNEL::Node *>& mapp, bool isQuad, const int *nodalBg, const double *coords,
331 const int *descBg, const int *descEnd, const std::vector<std::vector<int> >& intersectEdges)
333 std::size_t nbOfSeg=std::distance(descBg,descEnd);
334 for(std::size_t i=0;i<nbOfSeg;i++)
336 appendEdgeFromCrudeDataArray(i,mapp,isQuad,nodalBg,coords,descBg,descEnd,intersectEdges);
340 void QuadraticPolygon::appendEdgeFromCrudeDataArray(std::size_t edgePos, const std::map<int,INTERP_KERNEL::Node *>& mapp, bool isQuad,
341 const int *nodalBg, const double *coords,
342 const int *descBg, const int *descEnd, const std::vector<std::vector<int> >& intersectEdges)
346 bool direct=descBg[edgePos]>0;
347 int edgeId=abs(descBg[edgePos])-1; // back to C indexing mode
348 const std::vector<int>& subEdge=intersectEdges[edgeId];
349 std::size_t nbOfSubEdges=subEdge.size()/2;
350 for(std::size_t j=0;j<nbOfSubEdges;j++)
351 appendSubEdgeFromCrudeDataArray(0,j,direct,edgeId,subEdge,mapp);
355 std::size_t nbOfSeg=std::distance(descBg,descEnd);
356 const double *st=coords+2*(nodalBg[edgePos]);
357 INTERP_KERNEL::Node *st0=new INTERP_KERNEL::Node(st[0],st[1]);
358 const double *endd=coords+2*(nodalBg[(edgePos+1)%nbOfSeg]);
359 INTERP_KERNEL::Node *endd0=new INTERP_KERNEL::Node(endd[0],endd[1]);
360 const double *middle=coords+2*(nodalBg[edgePos+nbOfSeg]);
361 INTERP_KERNEL::Node *middle0=new INTERP_KERNEL::Node(middle[0],middle[1]);
363 e1=new EdgeLin(st0,middle0);
364 e2=new EdgeLin(middle0,endd0);
365 SegSegIntersector inters(*e1,*e2);
366 bool colinearity=inters.areColinears();
367 delete e1; delete e2;
369 bool direct=descBg[edgePos]>0;
370 int edgeId=abs(descBg[edgePos])-1;
371 const std::vector<int>& subEdge=intersectEdges[edgeId];
372 std::size_t nbOfSubEdges=subEdge.size()/2;
375 for(std::size_t j=0;j<nbOfSubEdges;j++)
376 appendSubEdgeFromCrudeDataArray(0,j,direct,edgeId,subEdge,mapp);
380 Edge *e=new EdgeArcCircle(st0,middle0,endd0,true);
381 for(std::size_t j=0;j<nbOfSubEdges;j++)
382 appendSubEdgeFromCrudeDataArray(e,j,direct,edgeId,subEdge,mapp);
385 st0->decrRef(); endd0->decrRef(); middle0->decrRef();
389 void QuadraticPolygon::appendSubEdgeFromCrudeDataArray(Edge *baseEdge, std::size_t j, bool direct, int edgeId, const std::vector<int>& subEdge, const std::map<int,INTERP_KERNEL::Node *>& mapp)
391 std::size_t nbOfSubEdges=subEdge.size()/2;
393 {//it is not a quadratic subedge
394 Node *start=(*mapp.find(direct?subEdge[2*j]:subEdge[2*nbOfSubEdges-2*j-1])).second;
395 Node *end=(*mapp.find(direct?subEdge[2*j+1]:subEdge[2*nbOfSubEdges-2*j-2])).second;
396 ElementaryEdge *e=ElementaryEdge::BuildEdgeFromCrudeDataArray(true,start,end);
400 {//it is a quadratic subedge
401 Node *start=(*mapp.find(direct?subEdge[2*j]:subEdge[2*nbOfSubEdges-2*j-1])).second;
402 Node *end=(*mapp.find(direct?subEdge[2*j+1]:subEdge[2*nbOfSubEdges-2*j-2])).second;
403 Edge *ee=baseEdge->buildEdgeLyingOnMe(start,end);
404 ElementaryEdge *eee=new ElementaryEdge(ee,true);
410 * This method builds from descending conn of a quadratic polygon stored in crude mode (MEDCoupling). Descending conn is in FORTRAN relative mode in order to give the
411 * orientation of edge.
413 void QuadraticPolygon::buildFromCrudeDataArray2(const std::map<int,INTERP_KERNEL::Node *>& mapp, bool isQuad, const int *nodalBg, const double *coords, const int *descBg, const int *descEnd, const std::vector<std::vector<int> >& intersectEdges,
414 const INTERP_KERNEL::QuadraticPolygon& pol1, const int *descBg1, const int *descEnd1, const std::vector<std::vector<int> >& intersectEdges1,
415 const std::vector< std::vector<int> >& colinear1,
416 std::map<int,std::vector<INTERP_KERNEL::ElementaryEdge *> >& alreadyExistingIn2)
418 std::size_t nbOfSeg=std::distance(descBg,descEnd);
419 for(std::size_t i=0;i<nbOfSeg;i++)//loop over all edges of pol2
421 bool direct=descBg[i]>0;
422 int edgeId=abs(descBg[i])-1;//current edge id of pol2
423 std::map<int,std::vector<INTERP_KERNEL::ElementaryEdge *> >::const_iterator it1=alreadyExistingIn2.find(descBg[i]),it2=alreadyExistingIn2.find(-descBg[i]);
424 if(it1!=alreadyExistingIn2.end() || it2!=alreadyExistingIn2.end())
426 bool sameDir=(it1!=alreadyExistingIn2.end());
427 const std::vector<INTERP_KERNEL::ElementaryEdge *>& edgesAlreadyBuilt=sameDir?(*it1).second:(*it2).second;
430 for(std::vector<INTERP_KERNEL::ElementaryEdge *>::const_iterator it3=edgesAlreadyBuilt.begin();it3!=edgesAlreadyBuilt.end();it3++)
432 Edge *ee=(*it3)->getPtr(); ee->incrRef();
433 pushBack(new ElementaryEdge(ee,(*it3)->getDirection()));
438 for(std::vector<INTERP_KERNEL::ElementaryEdge *>::const_reverse_iterator it4=edgesAlreadyBuilt.rbegin();it4!=edgesAlreadyBuilt.rend();it4++)
440 Edge *ee=(*it4)->getPtr(); ee->incrRef();
441 pushBack(new ElementaryEdge(ee,!(*it4)->getDirection()));
446 bool directos=colinear1[edgeId].empty();
447 std::vector<std::pair<int,std::pair<bool,int> > > idIns1;
450 {// if the current edge of pol2 has one or more colinear edges part into pol1
451 const std::vector<int>& c=colinear1[edgeId];
452 std::size_t nbOfEdgesIn1=std::distance(descBg1,descEnd1);
453 for(std::size_t j=0;j<nbOfEdgesIn1;j++)
455 int edgeId1=abs(descBg1[j])-1;
456 if(std::find(c.begin(),c.end(),edgeId1)!=c.end())
458 idIns1.push_back(std::pair<int,std::pair<bool,int> >(edgeId1,std::pair<bool,int>(descBg1[j]>0,offset1)));// it exists an edge into pol1 given by tuple (idIn1,direct1) that is colinear at edge 'edgeId' in pol2
459 //std::pair<edgeId1); direct1=descBg1[j]>0;
461 offset1+=intersectEdges1[edgeId1].size()/2;//offset1 is used to find the INTERP_KERNEL::Edge * instance into pol1 that will be part of edge into pol2
463 directos=idIns1.empty();
466 {//no subpart of edge 'edgeId' of pol2 is in pol1 so let's operate the same thing that QuadraticPolygon::buildFromCrudeDataArray method
467 std::size_t oldSz=_sub_edges.size();
468 appendEdgeFromCrudeDataArray(i,mapp,isQuad,nodalBg,coords,descBg,descEnd,intersectEdges);
469 std::size_t newSz=_sub_edges.size();
470 std::size_t zeSz=newSz-oldSz;
471 alreadyExistingIn2[descBg[i]].resize(zeSz);
472 std::list<ElementaryEdge *>::const_reverse_iterator it5=_sub_edges.rbegin();
473 for(std::size_t p=0;p<zeSz;p++,it5++)
474 alreadyExistingIn2[descBg[i]][zeSz-p-1]=*it5;
477 {//there is subpart of edge 'edgeId' of pol2 inside pol1
478 const std::vector<int>& subEdge=intersectEdges[edgeId];
479 std::size_t nbOfSubEdges=subEdge.size()/2;
480 for(std::size_t j=0;j<nbOfSubEdges;j++)
482 int idBg=direct?subEdge[2*j]:subEdge[2*nbOfSubEdges-2*j-1];
483 int idEnd=direct?subEdge[2*j+1]:subEdge[2*nbOfSubEdges-2*j-2];
484 bool direction11,found=false;
485 bool direct1;//store if needed the direction in 1
487 std::size_t nbOfSubEdges1;
488 for(std::vector<std::pair<int,std::pair<bool,int> > >::const_iterator it=idIns1.begin();it!=idIns1.end() && !found;it++)
490 int idIn1=(*it).first;//store if needed the cell id in 1
491 direct1=(*it).second.first;
492 offset1=(*it).second.second;
493 const std::vector<int>& subEdge1PossiblyAlreadyIn1=intersectEdges1[idIn1];
494 nbOfSubEdges1=subEdge1PossiblyAlreadyIn1.size()/2;
496 for(std::size_t k=0;k<nbOfSubEdges1 && !found;k++)
497 {//perform a loop on all subedges of pol1 that includes edge 'edgeId' of pol2. For the moment we iterate only on subedges of ['idIn1']... To improve
498 if(subEdge1PossiblyAlreadyIn1[2*k]==idBg && subEdge1PossiblyAlreadyIn1[2*k+1]==idEnd)
499 { direction11=true; found=true; }
500 else if(subEdge1PossiblyAlreadyIn1[2*k]==idEnd && subEdge1PossiblyAlreadyIn1[2*k+1]==idBg)
501 { direction11=false; found=true; }
507 {//the current subedge of edge 'edgeId' of pol2 is not a part of the colinear edge 'idIn1' of pol1 -> build new Edge instance
508 //appendEdgeFromCrudeDataArray(j,mapp,isQuad,nodalBg,coords,descBg,descEnd,intersectEdges);
509 Node *start=(*mapp.find(idBg)).second;
510 Node *end=(*mapp.find(idEnd)).second;
511 ElementaryEdge *e=ElementaryEdge::BuildEdgeFromCrudeDataArray(true,start,end);
513 alreadyExistingIn2[descBg[i]].push_back(e);
516 {//the current subedge of edge 'edgeId' of pol2 is part of the colinear edge 'idIn1' of pol1 -> reuse Edge instance of pol1
517 ElementaryEdge *e=pol1[offset1+(direct1?offset2:nbOfSubEdges1-offset2-1)];
518 Edge *ee=e->getPtr();
520 ElementaryEdge *e2=new ElementaryEdge(ee,!(direct1^direction11));
522 alreadyExistingIn2[descBg[i]].push_back(e2);
530 * Method expected to be called on pol2. Every params not suffixed by numbered are supposed to refer to pol2 (this).
531 * Method to find edges that are ON.
533 void QuadraticPolygon::updateLocOfEdgeFromCrudeDataArray2(const int *descBg, const int *descEnd, const std::vector<std::vector<int> >& intersectEdges,
534 const INTERP_KERNEL::QuadraticPolygon& pol1, const int *descBg1, const int *descEnd1,
535 const std::vector<std::vector<int> >& intersectEdges1, const std::vector< std::vector<int> >& colinear1) const
537 std::size_t nbOfSeg=std::distance(descBg,descEnd);
538 for(std::size_t i=0;i<nbOfSeg;i++)//loop over all edges of pol2
540 bool direct=descBg[i]>0;
541 int edgeId=abs(descBg[i])-1;//current edge id of pol2
542 const std::vector<int>& c=colinear1[edgeId];
545 const std::vector<int>& subEdge=intersectEdges[edgeId];
546 std::size_t nbOfSubEdges=subEdge.size()/2;
548 std::size_t nbOfEdgesIn1=std::distance(descBg1,descEnd1);
550 for(std::size_t j=0;j<nbOfEdgesIn1;j++)
552 int edgeId1=abs(descBg1[j])-1;
553 if(std::find(c.begin(),c.end(),edgeId1)!=c.end())
555 for(std::size_t k=0;k<nbOfSubEdges;k++)
557 int idBg=direct?subEdge[2*k]:subEdge[2*nbOfSubEdges-2*k-1];
558 int idEnd=direct?subEdge[2*k+1]:subEdge[2*nbOfSubEdges-2*k-2];
560 bool direct1=descBg1[j]>0;
561 const std::vector<int>& subEdge1PossiblyAlreadyIn1=intersectEdges1[idIn1];
562 std::size_t nbOfSubEdges1=subEdge1PossiblyAlreadyIn1.size()/2;
565 for(std::size_t kk=0;kk<nbOfSubEdges1 && !found;kk++)
567 found=(subEdge1PossiblyAlreadyIn1[2*kk]==idBg && subEdge1PossiblyAlreadyIn1[2*kk+1]==idEnd) || (subEdge1PossiblyAlreadyIn1[2*kk]==idEnd && subEdge1PossiblyAlreadyIn1[2*kk+1]==idBg);
573 ElementaryEdge *e=pol1[offset1+(direct1?offset2:nbOfSubEdges1-offset2-1)];
574 e->getPtr()->declareOn();
578 offset1+=intersectEdges1[edgeId1].size()/2;//offset1 is used to find the INTERP_KERNEL::Edge * instance into pol1 that will be part of edge into pol2
583 void QuadraticPolygon::appendCrudeData(const std::map<INTERP_KERNEL::Node *,int>& mapp, double xBary, double yBary, double fact, int offset, std::vector<double>& addCoordsQuadratic, std::vector<int>& conn, std::vector<int>& connI) const
586 bool presenceOfQuadratic=presenceOfQuadraticEdge();
587 conn.push_back(presenceOfQuadratic?NORM_QPOLYG:NORM_POLYGON);
588 for(std::list<ElementaryEdge *>::const_iterator it=_sub_edges.begin();it!=_sub_edges.end();it++)
591 tmp=(*it)->getStartNode();
592 std::map<INTERP_KERNEL::Node *,int>::const_iterator it1=mapp.find(tmp);
593 conn.push_back((*it1).second);
596 if(presenceOfQuadratic)
599 int off=offset+((int)addCoordsQuadratic.size())/2;
600 for(std::list<ElementaryEdge *>::const_iterator it=_sub_edges.begin();it!=_sub_edges.end();it++,j++,nbOfNodesInPg++)
602 INTERP_KERNEL::Node *node=(*it)->getPtr()->buildRepresentantOfMySelf();
603 node->unApplySimilarity(xBary,yBary,fact);
604 addCoordsQuadratic.push_back((*node)[0]);
605 addCoordsQuadratic.push_back((*node)[1]);
606 conn.push_back(off+j);
610 connI.push_back(connI.back()+nbOfNodesInPg+1);
614 * This method make the hypothesis that 'this' and 'other' are splited at the minimum into edges that are fully IN, OUT or ON.
615 * This method returns newly created polygons in 'conn' and 'connI' and the corresponding ids ('idThis','idOther') are stored respectively into 'nbThis' and 'nbOther'.
616 * @param [in,out] edgesThis, parameter that keep informed the caller abount the edges in this not shared by the result of intersection of \a this with \a other
617 * @param [in,out] edgesBoundaryOther, parameter that strores all edges in result of intersection that are not
619 void QuadraticPolygon::buildPartitionsAbs(QuadraticPolygon& other, std::set<INTERP_KERNEL::Edge *>& edgesThis, std::set<INTERP_KERNEL::Edge *>& edgesBoundaryOther, const std::map<INTERP_KERNEL::Node *,int>& mapp, int idThis, int idOther, int offset, std::vector<double>& addCoordsQuadratic, std::vector<int>& conn, std::vector<int>& connI, std::vector<int>& nbThis, std::vector<int>& nbOther)
621 double xBaryBB, yBaryBB;
622 double fact=normalizeExt(&other, xBaryBB, yBaryBB);
623 //Locate 'this' relative to 'other'
624 other.performLocatingOperationSlow(*this); // without any assumption
625 std::vector<QuadraticPolygon *> res=buildIntersectionPolygons(other,*this);
626 for(std::vector<QuadraticPolygon *>::iterator it=res.begin();it!=res.end();it++)
628 (*it)->appendCrudeData(mapp,xBaryBB,yBaryBB,fact,offset,addCoordsQuadratic,conn,connI);
629 INTERP_KERNEL::IteratorOnComposedEdge it1(*it);
630 for(it1.first();!it1.finished();it1.next())
632 Edge *e=it1.current()->getPtr();
633 if(edgesThis.find(e)!=edgesThis.end())
637 if(edgesBoundaryOther.find(e)!=edgesBoundaryOther.end())
638 edgesBoundaryOther.erase(e);
640 edgesBoundaryOther.insert(e);
643 nbThis.push_back(idThis);
644 nbOther.push_back(idOther);
647 unApplyGlobalSimilarityExt(other,xBaryBB,yBaryBB,fact);
651 * Warning This method is \b NOT const. 'this' and 'other' are modified after call of this method.
652 * 'other' is a QuadraticPolygon of \b non closed edges.
654 double QuadraticPolygon::intersectWithAbs1D(QuadraticPolygon& other, bool& isColinear)
656 double ret = 0., xBaryBB, yBaryBB;
657 double fact = normalize(&other, xBaryBB, yBaryBB);
659 QuadraticPolygon cpyOfThis(*this);
660 QuadraticPolygon cpyOfOther(other);
662 SplitPolygonsEachOther(cpyOfThis, cpyOfOther, nbOfSplits);
663 //At this point cpyOfThis and cpyOfOther have been splited at maximum edge so that in/out can been done.
664 performLocatingOperation(cpyOfOther);
666 for(std::list<ElementaryEdge *>::const_iterator it=cpyOfOther._sub_edges.begin();it!=cpyOfOther._sub_edges.end();it++)
668 switch((*it)->getLoc())
672 ret += fabs((*it)->getPtr()->getCurveLength());
678 ret += fabs((*it)->getPtr()->getCurveLength());
690 * Warning contrary to intersectWith method this method is \b NOT const. 'this' and 'other' are modified after call of this method.
692 double QuadraticPolygon::intersectWithAbs(QuadraticPolygon& other, double* barycenter)
694 double ret=0.,bary[2],area,xBaryBB,yBaryBB;
695 barycenter[0] = barycenter[1] = 0.;
696 double fact=normalize(&other,xBaryBB,yBaryBB);
697 std::vector<QuadraticPolygon *> polygs=intersectMySelfWith(other);
698 for(std::vector<QuadraticPolygon *>::iterator iter=polygs.begin();iter!=polygs.end();iter++)
700 area=fabs((*iter)->getArea());
701 (*iter)->getBarycenter(bary);
704 barycenter[0] += bary[0]*area;
705 barycenter[1] += bary[1]*area;
707 if ( ret > std::numeric_limits<double>::min() )
709 barycenter[0]=barycenter[0]/ret*fact+xBaryBB;
710 barycenter[1]=barycenter[1]/ret*fact+yBaryBB;
713 return ret*fact*fact;
717 * \b WARNING this method is const and other is const too. \b BUT location of Edges in 'this' and 'other' are nevertheless modified.
718 * This is possible because loc attribute in Edge class is mutable.
719 * This implies that if 'this' or/and 'other' are reused for intersect* method initLocations has to be called on each of this/them.
721 double QuadraticPolygon::intersectWith(const QuadraticPolygon& other) const
724 std::vector<QuadraticPolygon *> polygs=intersectMySelfWith(other);
725 for(std::vector<QuadraticPolygon *>::iterator iter=polygs.begin();iter!=polygs.end();iter++)
727 ret+=fabs((*iter)->getArea());
734 * \b WARNING this method is const and other is const too. \b BUT location of Edges in 'this' and 'other' are nevertheless modified.
735 * This is possible because loc attribute in Edge class is mutable.
736 * This implies that if 'this' or/and 'other' are reused for intersect* method initLocations has to be called on each of this/them.
738 double QuadraticPolygon::intersectWith(const QuadraticPolygon& other, double* barycenter) const
740 double ret=0., bary[2];
741 barycenter[0] = barycenter[1] = 0.;
742 std::vector<QuadraticPolygon *> polygs=intersectMySelfWith(other);
743 for(std::vector<QuadraticPolygon *>::iterator iter=polygs.begin();iter!=polygs.end();iter++)
745 double area = fabs((*iter)->getArea());
746 (*iter)->getBarycenter(bary);
749 barycenter[0] += bary[0]*area;
750 barycenter[1] += bary[1]*area;
752 if ( ret > std::numeric_limits<double>::min() )
754 barycenter[0] /= ret;
755 barycenter[1] /= ret;
761 * \b WARNING this method is const and other is const too. \b BUT location of Edges in 'this' and 'other' are nevertheless modified.
762 * This is possible because loc attribute in Edge class is mutable.
763 * This implies that if 'this' or/and 'other' are reused for intersect* method initLocations has to be called on each of this/them.
765 void QuadraticPolygon::intersectForPerimeter(const QuadraticPolygon& other, double& perimeterThisPart, double& perimeterOtherPart, double& perimeterCommonPart) const
767 perimeterThisPart=0.; perimeterOtherPart=0.; perimeterCommonPart=0.;
768 QuadraticPolygon cpyOfThis(*this);
769 QuadraticPolygon cpyOfOther(other); int nbOfSplits=0;
770 SplitPolygonsEachOther(cpyOfThis,cpyOfOther,nbOfSplits);
771 performLocatingOperation(cpyOfOther);
772 other.performLocatingOperation(cpyOfThis);
773 cpyOfThis.dispatchPerimeterExcl(perimeterThisPart,perimeterCommonPart);
774 cpyOfOther.dispatchPerimeterExcl(perimeterOtherPart,perimeterCommonPart);
775 perimeterCommonPart/=2.;
779 * \b WARNING this method is const and other is const too. \b BUT location of Edges in 'this' and 'other' are nevertheless modified.
780 * This is possible because loc attribute in Edge class is mutable.
781 * This implies that if 'this' or/and 'other' are reused for intersect* method initLocations has to be called on each of this/them.
783 * polThis.size()==this->size() and polOther.size()==other.size().
784 * For each ElementaryEdge of 'this', the corresponding contribution in resulting polygon is in 'polThis'.
785 * For each ElementaryEdge of 'other', the corresponding contribution in resulting polygon is in 'polOther'.
786 * As consequence common part are counted twice (in polThis \b and in polOther).
788 void QuadraticPolygon::intersectForPerimeterAdvanced(const QuadraticPolygon& other, std::vector< double >& polThis, std::vector< double >& polOther) const
790 polThis.resize(size());
791 polOther.resize(other.size());
792 IteratorOnComposedEdge it1(const_cast<QuadraticPolygon *>(this));
794 for(it1.first();!it1.finished();it1.next(),edgeId++)
796 ElementaryEdge* curE1=it1.current();
797 QuadraticPolygon cpyOfOther(other);
798 QuadraticPolygon tmp;
799 tmp.pushBack(curE1->clone());
801 SplitPolygonsEachOther(tmp,cpyOfOther,tmp2);
802 other.performLocatingOperation(tmp);
803 tmp.dispatchPerimeter(polThis[edgeId]);
806 IteratorOnComposedEdge it2(const_cast<QuadraticPolygon *>(&other));
808 for(it2.first();!it2.finished();it2.next(),edgeId++)
810 ElementaryEdge* curE2=it2.current();
811 QuadraticPolygon cpyOfThis(*this);
812 QuadraticPolygon tmp;
813 tmp.pushBack(curE2->clone());
815 SplitPolygonsEachOther(tmp,cpyOfThis,tmp2);
816 performLocatingOperation(tmp);
817 tmp.dispatchPerimeter(polOther[edgeId]);
823 * numberOfCreatedPointsPerEdge is resized to the number of edges of 'this'.
824 * This method returns in ordered maner the number of newly created points per edge.
825 * This method performs a split process between 'this' and 'other' that gives the result PThis.
826 * Then for each edges of 'this' this method counts how many edges in Pthis have the same id.
828 void QuadraticPolygon::intersectForPoint(const QuadraticPolygon& other, std::vector< int >& numberOfCreatedPointsPerEdge) const
830 numberOfCreatedPointsPerEdge.resize(size());
831 IteratorOnComposedEdge it1(const_cast<QuadraticPolygon *>(this));
833 for(it1.first();!it1.finished();it1.next(),edgeId++)
835 ElementaryEdge* curE1=it1.current();
836 QuadraticPolygon cpyOfOther(other);
837 QuadraticPolygon tmp;
838 tmp.pushBack(curE1->clone());
840 SplitPolygonsEachOther(tmp,cpyOfOther,tmp2);
841 numberOfCreatedPointsPerEdge[edgeId]=tmp.recursiveSize()-1;
846 * \b WARNING this method is const and other is const too. \b BUT location of Edges in 'this' and 'other' are nevertheless modified.
847 * This is possible because loc attribute in Edge class is mutable.
848 * This implies that if 'this' or/and 'other' are reused for intersect* method initLocations has to be called on each of this/them.
850 std::vector<QuadraticPolygon *> QuadraticPolygon::intersectMySelfWith(const QuadraticPolygon& other) const
852 QuadraticPolygon cpyOfThis(*this);
853 QuadraticPolygon cpyOfOther(other); int nbOfSplits=0;
854 SplitPolygonsEachOther(cpyOfThis,cpyOfOther,nbOfSplits);
855 //At this point cpyOfThis and cpyOfOther have been splited at maximum edge so that in/out can been done.
856 performLocatingOperation(cpyOfOther);
857 return other.buildIntersectionPolygons(cpyOfThis,cpyOfOther);
861 * This method is typically the first step of boolean operations between pol1 and pol2.
862 * This method perform the minimal splitting so that at the end each edges constituting pol1 are fully either IN or OUT or ON.
863 * @param pol1 IN/OUT param that is equal to 'this' when called.
865 void QuadraticPolygon::SplitPolygonsEachOther(QuadraticPolygon& pol1, QuadraticPolygon& pol2, int& nbOfSplits)
867 IteratorOnComposedEdge it1(&pol1),it2(&pol2);
869 ComposedEdge *c1=new ComposedEdge;
870 ComposedEdge *c2=new ComposedEdge;
871 for(it2.first();!it2.finished();it2.next())
873 ElementaryEdge* curE2=it2.current();
874 if(!curE2->isThereStartPoint())
877 it1=curE2->getIterator();
878 for(;!it1.finished();)
881 ElementaryEdge* curE1=it1.current();
882 merge.clear(); nbOfSplits++;
883 if(curE1->getPtr()->intersectWith(curE2->getPtr(),merge,*c1,*c2))
885 if(!curE1->getDirection()) c1->reverse();
886 if(!curE2->getDirection()) c2->reverse();
887 UpdateNeighbours(merge,it1,it2,c1,c2);
888 //Substitution of simple edge by sub-edges.
889 delete curE1; // <-- destroying simple edge coming from pol1
890 delete curE2; // <-- destroying simple edge coming from pol2
891 it1.insertElemEdges(c1,true);// <-- 2nd param is true to go next.
892 it2.insertElemEdges(c2,false);// <-- 2nd param is false to avoid to go next.
895 it1.assignMySelfToAllElems(c2);//To avoid that others
903 UpdateNeighbours(merge,it1,it2,curE1,curE2);
912 void QuadraticPolygon::performLocatingOperation(QuadraticPolygon& pol2) const
914 IteratorOnComposedEdge it(&pol2);
915 TypeOfEdgeLocInPolygon loc=FULL_ON_1;
916 for(it.first();!it.finished();it.next())
918 ElementaryEdge *cur=it.current();
919 loc=cur->locateFullyMySelf(*this,loc);
923 void QuadraticPolygon::performLocatingOperationSlow(QuadraticPolygon& pol2) const
925 IteratorOnComposedEdge it(&pol2);
926 for(it.first();!it.finished();it.next())
928 ElementaryEdge *cur=it.current();
929 cur->locateFullyMySelfAbsolute(*this);
934 * Given 2 polygons 'pol1' and 'pol2' (localized) the resulting polygons are returned.
936 * this : pol2 simplified.
937 * @param pol1 pol1 split.
938 * @param pol2 pol2 split.
940 std::vector<QuadraticPolygon *> QuadraticPolygon::buildIntersectionPolygons(const QuadraticPolygon& pol1, const QuadraticPolygon& pol2) const
942 std::vector<QuadraticPolygon *> ret;
943 std::list<QuadraticPolygon *> pol2Zip=pol2.zipConsecutiveInSegments();
945 closePolygons(pol2Zip,pol1,ret);
947 {//borders of pol2 do not cross pol1,and pol2 borders are outside of pol1. That is to say, either pol2 and pol1
948 //do not overlap or pol1 is fully inside pol2. So in the first case no intersection, in the other case
949 //the intersection is pol1.
950 ElementaryEdge *e1FromPol1=pol1[0];
951 TypeOfEdgeLocInPolygon loc=FULL_ON_1;
952 loc=e1FromPol1->locateFullyMySelf(*this,loc);
954 ret.push_back(new QuadraticPolygon(pol1));
960 * Returns parts of potentially non closed-polygons. Each returned polygons are not mergeable.
961 * this : pol2 split and locallized.
963 std::list<QuadraticPolygon *> QuadraticPolygon::zipConsecutiveInSegments() const
965 std::list<QuadraticPolygon *> ret;
966 IteratorOnComposedEdge it(const_cast<QuadraticPolygon *>(this));
967 int nbOfTurns=recursiveSize();
969 if(!it.goToNextInOn(false,i,nbOfTurns))
975 QuadraticPolygon *tmp1=new QuadraticPolygon;
976 TypeOfEdgeLocInPolygon loc=it.current()->getLoc();
977 while(loc!=FULL_OUT_1 && i<nbOfTurns)
979 ElementaryEdge *tmp3=it.current()->clone();
980 tmp1->pushBack(tmp3);
982 loc=it.current()->getLoc();
990 it.goToNextInOn(true,i,nbOfTurns);
996 * 'this' should be considered as pol2Simplified.
997 * @param pol2zip is a list of set of edges (openned polygon) coming from split polygon 2.
998 * @param pol1 is split pol1.
999 * @param results the resulting \b CLOSED polygons.
1001 void QuadraticPolygon::closePolygons(std::list<QuadraticPolygon *>& pol2Zip, const QuadraticPolygon& pol1,
1002 std::vector<QuadraticPolygon *>& results) const
1004 bool directionKnownInPol1=false;
1005 bool directionInPol1;
1006 for(std::list<QuadraticPolygon *>::iterator iter=pol2Zip.begin();iter!=pol2Zip.end();)
1008 if((*iter)->completed())
1010 results.push_back(*iter);
1011 directionKnownInPol1=false;
1012 iter=pol2Zip.erase(iter);
1015 if(!directionKnownInPol1)
1017 if(!(*iter)->amIAChanceToBeCompletedBy(pol1,*this,directionInPol1))
1018 { delete *iter; iter=pol2Zip.erase(iter); continue; }
1020 directionKnownInPol1=true;
1022 std::list<QuadraticPolygon *>::iterator iter2=iter; iter2++;
1023 std::list<QuadraticPolygon *>::iterator iter3=(*iter)->fillAsMuchAsPossibleWith(pol1,iter2,pol2Zip.end(),directionInPol1);
1024 if(iter3!=pol2Zip.end())
1026 (*iter)->pushBack(*iter3);
1028 pol2Zip.erase(iter3);
1034 * 'this' is expected to be set of edges (not closed) of pol2 split.
1036 bool QuadraticPolygon::amIAChanceToBeCompletedBy(const QuadraticPolygon& pol1Splitted,const QuadraticPolygon& pol2NotSplitted, bool& direction)
1038 IteratorOnComposedEdge it(const_cast<QuadraticPolygon *>(&pol1Splitted));
1040 Node *n=getEndNode();
1041 ElementaryEdge *cur=it.current();
1042 for(it.first();!it.finished() && !found;)
1045 found=(cur->getStartNode()==n);
1050 throw Exception("Internal error : polygons uncompatible each others. Should never happend");
1051 //Ok we found correspondance between this and pol1. Searching for right direction to close polygon.
1052 ElementaryEdge *e=_sub_edges.back();
1053 if(e->getLoc()==FULL_ON_1)
1055 if(e->getPtr()==cur->getPtr())
1060 Node *repr=cur->getPtr()->buildRepresentantOfMySelf();
1061 bool ret=pol2NotSplitted.isInOrOut(repr);
1068 Node *repr=cur->getPtr()->buildRepresentantOfMySelf();
1069 bool ret=pol2NotSplitted.isInOrOut(repr);
1075 direction=cur->locateFullyMySelfAbsolute(pol2NotSplitted)==FULL_IN_1;
1080 * This method fills as much as possible 'this' (part of pol2 split) with edges of 'pol1Splitted'.
1082 std::list<QuadraticPolygon *>::iterator QuadraticPolygon::fillAsMuchAsPossibleWith(const QuadraticPolygon& pol1Splitted,
1083 std::list<QuadraticPolygon *>::iterator iStart,
1084 std::list<QuadraticPolygon *>::iterator iEnd,
1087 IteratorOnComposedEdge it(const_cast<QuadraticPolygon *>(&pol1Splitted));
1089 Node *n=getEndNode();
1090 ElementaryEdge *cur;
1091 for(it.first();!it.finished() && !found;)
1094 found=(cur->getStartNode()==n);
1101 std::list<QuadraticPolygon *>::iterator ret;
1105 ElementaryEdge *tmp=cur->clone();
1109 nodeToTest=tmp->getEndNode();
1110 direction?it.nextLoop():it.previousLoop();
1111 ret=CheckInList(nodeToTest,iStart,iEnd);
1119 std::list<QuadraticPolygon *>::iterator QuadraticPolygon::CheckInList(Node *n, std::list<QuadraticPolygon *>::iterator iStart,
1120 std::list<QuadraticPolygon *>::iterator iEnd)
1122 for(std::list<QuadraticPolygon *>::iterator iter=iStart;iter!=iEnd;iter++)
1123 if((*iter)->isNodeIn(n))
1128 void QuadraticPolygon::ComputeResidual(const QuadraticPolygon& pol1, const std::set<Edge *>& notUsedInPol1, const std::set<Edge *>& edgesInPol2OnBoundary, const std::map<INTERP_KERNEL::Node *,int>& mapp, int offset, int idThis,
1129 std::vector<double>& addCoordsQuadratic, std::vector<int>& conn, std::vector<int>& connI, std::vector<int>& nb1, std::vector<int>& nb2)
1131 pol1.initLocations();
1132 for(std::set<Edge *>::const_iterator it9=notUsedInPol1.begin();it9!=notUsedInPol1.end();it9++)
1133 { (*it9)->initLocs(); (*it9)->declareOn(); }
1134 for(std::set<Edge *>::const_iterator itA=edgesInPol2OnBoundary.begin();itA!=edgesInPol2OnBoundary.end();itA++)
1135 { (*itA)->initLocs(); (*itA)->declareIn(); }
1137 std::set<Edge *> notUsedInPol1L(notUsedInPol1);
1138 IteratorOnComposedEdge it(const_cast<QuadraticPolygon *>(&pol1));
1140 std::list<QuadraticPolygon *> pol1Zip;
1141 if(pol1.size()==(int)notUsedInPol1.size() && edgesInPol2OnBoundary.empty())
1143 pol1.appendCrudeData(mapp,0.,0.,1.,offset,addCoordsQuadratic,conn,connI); nb1.push_back(idThis); nb2.push_back(-1);
1146 while(!notUsedInPol1L.empty())
1148 for(int i=0;i<sz && (it.current()->getStartNode()->getLoc()!=IN_1 || it.current()->getLoc()!=FULL_ON_1);i++)
1150 if(it.current()->getStartNode()->getLoc()!=IN_1 || it.current()->getLoc()!=FULL_ON_1)
1151 throw INTERP_KERNEL::Exception("Presence of a target polygon fully included in source polygon ! The partition of this leads to a non simply connex cell (with hole) ! Impossible ! Such resulting cell cannot be stored in MED cell format !");
1152 QuadraticPolygon *tmp1=new QuadraticPolygon;
1155 Edge *ee=it.current()->getPtr();
1156 if(ee->getLoc()==FULL_ON_1)
1158 ee->incrRef(); notUsedInPol1L.erase(ee);
1159 tmp1->pushBack(new ElementaryEdge(ee,it.current()->getDirection()));
1163 while(it.current()->getStartNode()->getLoc()!=IN_1 && !notUsedInPol1L.empty());
1164 pol1Zip.push_back(tmp1);
1167 std::list<QuadraticPolygon *> retPolsUnderContruction;
1168 std::list<Edge *> edgesInPol2OnBoundaryL(edgesInPol2OnBoundary.begin(),edgesInPol2OnBoundary.end());
1169 std::map<QuadraticPolygon *, std::list<QuadraticPolygon *> > pol1ZipConsumed;
1170 std::size_t maxNbOfTurn=edgesInPol2OnBoundaryL.size(),nbOfTurn=0,iiMNT=0;
1171 for(std::list<QuadraticPolygon *>::const_iterator itMNT=pol1Zip.begin();itMNT!=pol1Zip.end();itMNT++,iiMNT++)
1172 nbOfTurn+=(*itMNT)->size();
1173 maxNbOfTurn=maxNbOfTurn*nbOfTurn; maxNbOfTurn*=maxNbOfTurn;
1175 while(nbOfTurn<maxNbOfTurn && ((!pol1Zip.empty() || !edgesInPol2OnBoundaryL.empty())))
1177 for(std::list<QuadraticPolygon *>::iterator it1=retPolsUnderContruction.begin();it1!=retPolsUnderContruction.end();)
1179 if((*it1)->getStartNode()==(*it1)->getEndNode())
1184 Node *curN=(*it1)->getEndNode();
1185 bool smthHappened=false;
1186 for(std::list<Edge *>::iterator it2=edgesInPol2OnBoundaryL.begin();it2!=edgesInPol2OnBoundaryL.end();)
1188 if(curN==(*it2)->getStartNode())
1189 { (*it2)->incrRef(); (*it1)->pushBack(new ElementaryEdge(*it2,true)); curN=(*it2)->getEndNode(); smthHappened=true; it2=edgesInPol2OnBoundaryL.erase(it2); }
1190 else if(curN==(*it2)->getEndNode())
1191 { (*it2)->incrRef(); (*it1)->pushBack(new ElementaryEdge(*it2,false)); curN=(*it2)->getStartNode(); smthHappened=true; it2=edgesInPol2OnBoundaryL.erase(it2); }
1197 for(std::list<QuadraticPolygon *>::iterator it3=pol1Zip.begin();it3!=pol1Zip.end();)
1199 if(curN==(*it3)->getStartNode())
1201 for(std::list<ElementaryEdge *>::const_iterator it4=(*it3)->_sub_edges.begin();it4!=(*it3)->_sub_edges.end();it4++)
1202 { (*it4)->getPtr()->incrRef(); bool dir=(*it4)->getDirection(); (*it1)->pushBack(new ElementaryEdge((*it4)->getPtr(),dir)); }
1204 pol1ZipConsumed[*it1].push_back(*it3);
1205 curN=(*it3)->getEndNode();
1206 it3=pol1Zip.erase(it3);
1214 for(std::list<ElementaryEdge *>::const_iterator it5=(*it1)->_sub_edges.begin();it5!=(*it1)->_sub_edges.end();it5++)
1216 Edge *ee=(*it5)->getPtr();
1217 if(edgesInPol2OnBoundary.find(ee)!=edgesInPol2OnBoundary.end())
1218 edgesInPol2OnBoundaryL.push_back(ee);
1220 for(std::list<QuadraticPolygon *>::iterator it6=pol1ZipConsumed[*it1].begin();it6!=pol1ZipConsumed[*it1].end();it6++)
1221 pol1Zip.push_front(*it6);
1222 pol1ZipConsumed.erase(*it1);
1224 it1=retPolsUnderContruction.erase(it1);
1227 if(!pol1Zip.empty())
1229 QuadraticPolygon *tmp=new QuadraticPolygon;
1230 QuadraticPolygon *first=*(pol1Zip.begin());
1231 for(std::list<ElementaryEdge *>::const_iterator it4=first->_sub_edges.begin();it4!=first->_sub_edges.end();it4++)
1232 { (*it4)->getPtr()->incrRef(); bool dir=(*it4)->getDirection(); tmp->pushBack(new ElementaryEdge((*it4)->getPtr(),dir)); }
1233 pol1ZipConsumed[tmp].push_back(first);
1234 retPolsUnderContruction.push_back(tmp);
1235 pol1Zip.erase(pol1Zip.begin());
1239 if(nbOfTurn==maxNbOfTurn)
1241 std::ostringstream oss; oss << "Error during reconstruction of residual of cell ! It appears that either source or/and target mesh is/are not conform !";
1242 oss << " Number of turns is = " << nbOfTurn << " !";
1243 throw INTERP_KERNEL::Exception(oss.str().c_str());
1245 for(std::list<QuadraticPolygon *>::iterator it1=retPolsUnderContruction.begin();it1!=retPolsUnderContruction.end();it1++)
1247 if((*it1)->getStartNode()==(*it1)->getEndNode())
1249 (*it1)->appendCrudeData(mapp,0.,0.,1.,offset,addCoordsQuadratic,conn,connI); nb1.push_back(idThis); nb2.push_back(-1);
1250 for(std::list<QuadraticPolygon *>::iterator it6=pol1ZipConsumed[*it1].begin();it6!=pol1ZipConsumed[*it1].end();it6++)