Salome HOME
Intersec bug fix: point not added properly inserted in splitting.
[tools/medcoupling.git] / src / INTERP_KERNEL / Geometric2D / InterpKernelGeo2DEdge.cxx
1 // Copyright (C) 2007-2016  CEA/DEN, EDF R&D
2 //
3 // This library is free software; you can redistribute it and/or
4 // modify it under the terms of the GNU Lesser General Public
5 // License as published by the Free Software Foundation; either
6 // version 2.1 of the License, or (at your option) any later version.
7 //
8 // This library is distributed in the hope that it will be useful,
9 // but WITHOUT ANY WARRANTY; without even the implied warranty of
10 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11 // Lesser General Public License for more details.
12 //
13 // You should have received a copy of the GNU Lesser General Public
14 // License along with this library; if not, write to the Free Software
15 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
16 //
17 // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
18 //
19 // Author : Anthony Geay (CEA/DEN)
20
21 #include "InterpKernelGeo2DEdge.hxx"
22 #include "InterpKernelGeo2DEdgeLin.hxx"
23 #include "InterpKernelGeo2DEdgeInfLin.hxx"
24 //#include "EdgeParabol.hxx"
25 #include "InterpKernelGeo2DEdgeArcCircle.hxx"
26 #include "InterpKernelGeo2DComposedEdge.hxx"
27 #include "InterpKernelException.hxx"
28
29 #include <algorithm>
30
31 #include <functional>
32
33
34 using namespace INTERP_KERNEL;
35
36 MergePoints::MergePoints():_ass1Start1(0),_ass1End1(0),_ass1Start2(0),_ass1End2(0),
37     _ass2Start1(0),_ass2End1(0),_ass2Start2(0),_ass2End2(0)
38 {
39 }
40
41 void MergePoints::start1Replaced()
42 {
43   unsigned nbOfAsso=getNumberOfAssociations();
44   if(nbOfAsso==0)
45     _ass1Start1=1;
46   else
47     _ass2Start1=1;
48 }
49
50 void MergePoints::end1Replaced()
51 {
52   unsigned nbOfAsso=getNumberOfAssociations();
53   if(nbOfAsso==0)
54     _ass1End1=1;
55   else
56     _ass2End1=1;
57 }
58
59 void MergePoints::start1OnStart2()
60 {
61   unsigned nbOfAsso=getNumberOfAssociations();
62   if(nbOfAsso==0)
63     {
64       _ass1Start1=1;
65       _ass1Start2=1;
66     }
67   else
68     {
69       _ass2Start1=1;
70       _ass2Start2=1;
71     }
72 }
73
74 void MergePoints::start1OnEnd2()
75 {
76   unsigned nbOfAsso=getNumberOfAssociations();
77   if(nbOfAsso==0)
78     {
79       _ass1Start1=1;
80       _ass1End2=1;
81     }
82   else
83     {
84       _ass2Start1=1;
85       _ass2End2=1;
86     }
87 }
88
89 void MergePoints::end1OnStart2()
90 {
91   unsigned nbOfAsso=getNumberOfAssociations();
92   if(nbOfAsso==0)
93     {
94       _ass1End1=1;
95       _ass1Start2=1;
96     }
97   else
98     {
99       _ass2End1=1;
100       _ass2Start2=1;
101     }
102 }
103
104 void MergePoints::end1OnEnd2()
105 {
106   unsigned nbOfAsso=getNumberOfAssociations();
107   if(nbOfAsso==0)
108     {
109       _ass1End1=1;
110       _ass1End2=1;
111     }
112   else
113     {
114       _ass2End1=1;
115       _ass2End2=1;
116     }
117 }
118
119 bool MergePoints::isStart1(unsigned rk) const
120 {
121   if(rk==0)
122     return _ass1Start1;
123   else
124     return _ass2Start1;
125 }
126
127 bool MergePoints::isEnd1(unsigned rk) const
128 {
129   if(rk==0)
130     return _ass1End1;
131   else
132     return _ass2End1;
133 }
134
135 bool MergePoints::isStart2(unsigned rk) const
136 {
137   if(rk==0)
138     return _ass1Start2;
139   else
140     return _ass2Start2;
141 }
142
143 bool MergePoints::isEnd2(unsigned rk) const
144 {
145   if(rk==0)
146     return _ass1End2;
147   else
148     return _ass2End2;
149 }
150
151 void MergePoints::clear()
152 {
153   _ass1Start1=0;_ass1End1=0;_ass1Start2=0;_ass1End2=0;
154   _ass2Start1=0;_ass2End1=0;_ass2Start2=0;_ass2End2=0;
155 }
156
157 unsigned MergePoints::getNumberOfAssociations() const
158 {
159   unsigned ret=0;
160   unsigned subTot=_ass1Start1+_ass1End1+_ass1Start2+_ass1End2;
161   if(subTot!=0)
162     ret++;
163   subTot=_ass2Start1+_ass2End1+_ass2Start2+_ass2End2;
164   if(subTot!=0)
165     ret++;
166   return ret;
167 }
168
169 void MergePoints::PushInMap(int key, int value, std::map<int,int>& mergedNodes)
170 {
171   if(key!=-1 && value!=-1)
172     mergedNodes[key]=value;
173 }
174
175 void MergePoints::updateMergedNodes(int e1Start, int e1End, int e2Start, int e2End, std::map<int,int>& mergedNodes)
176 {
177   unsigned subTot(_ass1Start1+_ass1End1+_ass1Start2+_ass1End2);
178   if(subTot!=0)
179     {
180       if(_ass1Start1 && _ass1Start2)
181         PushInMap(e2Start,e1Start,mergedNodes);
182       if(_ass1Start1 && _ass1End2)
183         PushInMap(e2End,e1Start,mergedNodes);
184       if(_ass1End1 && _ass1Start2)
185         PushInMap(e2Start,e1End,mergedNodes);
186       if(_ass1End1 && _ass1End2)
187         PushInMap(e2End,e1End,mergedNodes);
188     }
189   subTot=_ass2Start1+_ass2End1+_ass2Start2+_ass2End2;
190   if(subTot!=0)
191     {
192       if(_ass2Start1 && _ass2Start2)
193         PushInMap(e2Start,e1Start,mergedNodes);
194       if(_ass2Start1 && _ass2End2)
195         PushInMap(e2End,e1Start,mergedNodes);
196       if(_ass2End1 && _ass2Start2)
197         PushInMap(e2Start,e1End,mergedNodes);
198       if(_ass2End1 && _ass2End2)
199         PushInMap(e2End,e1End,mergedNodes);
200     }
201 }
202
203 IntersectElement::IntersectElement(double val1, double val2, bool start1, bool end1, bool start2, bool end2, Node *node
204                                    , const Edge& e1, const Edge& e2, bool keepOrder):_1S(keepOrder?start1:start2),
205                                        _1E(keepOrder?end1:end2),
206                                        _2S(keepOrder?start2:start1),
207                                        _2E(keepOrder?end2:end1),
208                                        _chararct_val_for_e1(keepOrder?val1:val2),
209                                        _chararct_val_for_e2(keepOrder?val2:val1),
210                                        _node(node),_loc_of_node(node->getLoc()),_e1(keepOrder?e1:e2),
211                                        _e2(keepOrder?e2:e1)
212 {
213 }
214
215 IntersectElement::IntersectElement(const IntersectElement& other):_1S(other._1S),_1E(other._1E),_2S(other._2S),_2E(other._2E),
216     _chararct_val_for_e1(other._chararct_val_for_e1),
217     _chararct_val_for_e2(other._chararct_val_for_e2),_node(other._node),
218     _loc_of_node(other._loc_of_node),_e1(other._e1), _e2(other._e2)
219 {
220   if(_node)
221     _node->incrRef();
222 }
223
224 IntersectElement& IntersectElement::operator=(const IntersectElement& other)
225 {
226   _1S=other._1S;_1E=other._1E; _2S=other._2S; _2E=other._2E;
227   _chararct_val_for_e1=other._chararct_val_for_e1;
228   _chararct_val_for_e2=other._chararct_val_for_e2;
229   setNode(other._node);
230   return *this;
231 }
232
233 bool IntersectElement::operator<(const IntersectElement& other) const
234 {
235   return _e1.isLower(_chararct_val_for_e1,other._chararct_val_for_e1);
236 }
237
238 IntersectElement::~IntersectElement()
239 {
240   if(_node)
241     _node->decrRef();
242 }
243
244 /*!
245  * Returns 0 or 1.
246  */
247 bool IntersectElement::isOnMergedExtremity() const
248 {
249   if( (_1S && _2S) || (_1S && _2E) || (_1E && _2S) || (_1E && _2E) )
250     return true;
251   return false;
252 }
253
254 /*!
255  * To call if isOnMergedExtremity returned true.
256  */
257 void IntersectElement::performMerging(MergePoints& commonNode) const
258 {
259   if(_1S && _2S)
260     {
261       if(_e1.changeStartNodeWith(_e2.getStartNode()))
262         {
263           _e2.getStartNode()->declareOnLim();
264           commonNode.start1OnStart2();
265         }
266     }
267   else if(_1S && _2E)
268     {
269       if(_e1.changeStartNodeWith(_e2.getEndNode()))
270         {
271           _e2.getEndNode()->declareOnLim();
272           commonNode.start1OnEnd2();
273         }
274     }
275   else if(_1E && _2S)
276     {
277       if(_e1.changeEndNodeWith(_e2.getStartNode()))
278         {
279           _e2.getStartNode()->declareOnLim();
280           commonNode.end1OnStart2();
281         }
282     }
283   else if(_1E && _2E)
284     {
285       if(_e1.changeEndNodeWith(_e2.getEndNode()))
286         {
287           _e2.getEndNode()->declareOnLim();
288           commonNode.end1OnEnd2();
289         }
290     }
291 }
292
293 /*!
294  * This method is const because 'node' is supposed to be equal geometrically to _node.
295  */
296 void IntersectElement::setNode(Node *node) const
297 {
298   if(node!=_node)
299     {
300       if(_node)
301         ((Node *)_node)->decrRef();
302       (const_cast<IntersectElement *>(this))->_node=node;
303       if(_node)
304         _node->incrRef();
305     }
306 }
307
308 bool IntersectElement::isLowerOnOther(const IntersectElement& other) const
309 {
310   return _e2.isLower(_chararct_val_for_e2,other._chararct_val_for_e2);
311 }
312
313 unsigned IntersectElement::isOnExtrForAnEdgeAndInForOtherEdge() const
314 {
315   if(( _1S && !(_2S || _2E) ) || ( _1E && !(_2S || _2E) ))
316     {
317       if(_1S && !(_2S || _2E))
318         setNode(_e1.getStartNode());
319       else
320         setNode(_e1.getEndNode());
321       if(_e2.isIn(_chararct_val_for_e2))
322         return LIMIT_ON;
323       return LIMIT_ALONE;
324     }
325   if(( _2S && !(_1S || _1E) ) || ( _2E && !(_1S || _1E)))
326     {
327       if(_2S && !(_1S || _1E))
328         setNode(_e2.getStartNode());
329       else
330         setNode(_e2.getEndNode());
331       if(_e1.isIn(_chararct_val_for_e1))
332         return LIMIT_ON;
333       return LIMIT_ALONE;
334     }
335   return NO_LIMIT;
336 }
337
338 bool IntersectElement::isIncludedByBoth() const
339 {
340   return _e1.isIn(_chararct_val_for_e1) && _e2.isIn(_chararct_val_for_e2);
341 }
342
343 bool EdgeIntersector::intersect(const Bounds *whereToFind, std::vector<Node *>& newNodes, bool& order, MergePoints& commonNode)
344 {
345   std::list< IntersectElement > listOfIntesc=getIntersectionsCharacteristicVal();
346   std::list< IntersectElement >::iterator iter;
347   for(iter=listOfIntesc.begin();iter!=listOfIntesc.end();)
348     {
349       if((*iter).isOnMergedExtremity())
350         {
351           (*iter).performMerging(commonNode);
352           iter=listOfIntesc.erase(iter);
353           continue;
354         }
355       unsigned tmp=(*iter).isOnExtrForAnEdgeAndInForOtherEdge();
356       if(tmp==IntersectElement::LIMIT_ALONE)
357         {
358           iter=listOfIntesc.erase(iter);
359           continue;
360         }
361       else if(tmp==IntersectElement::LIMIT_ON)
362         {
363           (*iter).attachLoc();
364           iter++;
365           continue;
366         }
367       if(!(*iter).isIncludedByBoth())
368         {
369           iter=listOfIntesc.erase(iter);
370           continue;
371         }
372       (*iter).attachLoc();
373       iter++;
374     }
375   if(listOfIntesc.size()==0)
376     return false;
377   if(listOfIntesc.size()==1)
378     {
379       order=true;//useless
380       newNodes.push_back(listOfIntesc.front().getNodeAndReleaseIt());
381     }
382   else
383     {
384       std::vector<IntersectElement> vecOfIntesc(listOfIntesc.begin(),listOfIntesc.end());
385       listOfIntesc.clear();
386       sort(vecOfIntesc.begin(),vecOfIntesc.end());
387       for(std::vector<IntersectElement>::iterator iterV=vecOfIntesc.begin();iterV!=vecOfIntesc.end();iterV++)
388         newNodes.push_back((*iterV).getNodeAndReleaseIt());
389       order=vecOfIntesc.front().isLowerOnOther(vecOfIntesc.back());
390     }
391   return true;
392 }
393
394 /*!
395  * Locates 'node' regarding edge this->_e1. If node is located close to (with distant lt epsilon) start or end point of _e1,
396  * 'node' takes its place. In this case 'obvious' is set to true and 'commonNode' stores information of merge point and finally 'where' is set.
397  * Furthermore 'node' is declared as ON LIMIT to indicate in locating process that an absolute location computation will have to be done.
398  * If 'node' is not close to start or end point of _e1, 'obvious' is set to false and 'commonNode' and 'where' are let unchanged.
399  */
400 void EdgeIntersector::obviousCaseForCurvAbscisse(Node *node, TypeOfLocInEdge& where, MergePoints& commonNode, bool& obvious) const
401 {
402   obvious=true;
403   if(node->isEqual(*_e1.getStartNode()))
404     {
405       where=START;
406       if(_e1.changeStartNodeWith(node))
407         {
408           commonNode.start1Replaced();
409           node->declareOnLim();
410         }
411       return ;
412     }
413   if(node->isEqual(*_e1.getEndNode()))
414     {
415       where=END;
416       if(_e1.changeEndNodeWith(node))
417         {
418           commonNode.end1Replaced();
419           node->declareOnLim();
420         }
421       return ;
422     }
423   obvious=false;
424 }
425
426 Edge::Edge(double sX, double sY, double eX, double eY):_cnt(1),_loc(FULL_UNKNOWN),_start(new Node(sX,sY)),_end(new Node(eX,eY))
427 {
428 }
429
430 Edge::~Edge()
431 {
432   _start->decrRef();
433   if(_end)
434     _end->decrRef();
435 }
436
437 bool Edge::decrRef()
438 {
439   bool ret=(--_cnt==0);
440   if(ret)
441     delete this;
442   return ret;
443 }
444
445 void Edge::declareOn() const
446 {
447   if(_loc==FULL_UNKNOWN)
448     {
449       _loc=FULL_ON_1;
450       _start->declareOn();
451       _end->declareOn();
452     }
453 }
454
455 void Edge::declareIn() const
456 {
457   if(_loc==FULL_UNKNOWN)
458     {
459       _loc=FULL_IN_1;
460       _start->declareIn();
461       _end->declareIn();
462     }
463 }
464
465 void Edge::declareOut() const
466 {
467   if(_loc==FULL_UNKNOWN)
468     {
469       _loc=FULL_OUT_1;
470       _start->declareOut();
471       _end->declareOut();
472     }
473 }
474
475 void Edge::fillXfigStreamForLoc(std::ostream& stream) const
476 {
477   switch(_loc)
478   {
479     case FULL_IN_1:
480       stream << '2';//Green
481       break;
482     case FULL_OUT_1:
483       stream << '1';//Bleue
484       break;
485     case FULL_ON_1:
486       stream << '4';//Red
487       break;
488     default:
489       stream << '0';
490   }
491 }
492
493 bool Edge::changeStartNodeWith(Node *otherStartNode) const
494 {
495   if(_start==otherStartNode)
496     return true;
497   if(_start->isEqual(*otherStartNode))
498     {
499       ((const_cast<Edge *>(this))->_start)->decrRef();//un-const cast Ok thanks to 2 lines above.
500       ((const_cast<Edge *>(this))->_start)=otherStartNode;
501       _start->incrRef();
502       return true;
503     }
504   return false;
505 }
506
507 bool Edge::changeStartNodeWithAndKeepTrack(Node *otherStartNode, std::vector<Node *>& track) const
508 {
509   if(_start==otherStartNode)
510     return true;
511   if(_start->isEqualAndKeepTrack(*otherStartNode,track))
512     {
513       ((const_cast<Edge *>(this))->_start)->decrRef();//un-const cast Ok thanks to 2 lines above.
514       ((const_cast<Edge *>(this))->_start)=otherStartNode;
515       otherStartNode->incrRef();
516       return true;
517     }
518   return false;
519 }
520
521 bool Edge::changeEndNodeWith(Node *otherEndNode) const
522 {
523   if(_end==otherEndNode)
524     return true;
525   if(_end->isEqual(*otherEndNode))
526     {
527       ((const_cast<Edge *>(this))->_end)->decrRef();
528       ((const_cast<Edge *>(this))->_end)=otherEndNode;
529       _end->incrRef();
530       return true;
531     }
532   return false;
533 }
534
535 bool Edge::changeEndNodeWithAndKeepTrack(Node *otherEndNode, std::vector<Node *>& track) const
536 {
537   if(_end==otherEndNode)
538     return true;
539   if(_end->isEqualAndKeepTrack(*otherEndNode,track))
540     {
541       ((const_cast<Edge *>(this))->_end)->decrRef();
542       ((const_cast<Edge *>(this))->_end)=otherEndNode;
543       otherEndNode->incrRef();
544       return true;
545     }
546   return false;
547 }
548
549 /*!
550  * Precondition : 'start' and 'end' are lying on the same curve than 'this'.
551  * Add in vec the sub edge lying on this.
552  * If 'start' is equal (by pointer) to '_end' and 'end' is equal to '_end' too nothing is added.
553  * If 'start' is equal (by pointer) to '_start' and 'end' is equal to '_start' too nothing is added.
554  * If 'start' is equal (by pointer) to '_start' and 'end' is equal to '_end' this is added in vec.
555  */
556 void Edge::addSubEdgeInVector(Node *start, Node *end, ComposedEdge& vec) const
557 {
558   if((start==_start && end==_start) || (start==_end && end==_end))
559     return ;
560   if(start==_start && end==_end)
561     {
562       incrRef();
563       vec.pushBack(const_cast<Edge *>(this));
564       return ;
565     }
566   vec.pushBack(buildEdgeLyingOnMe(start,end,true));
567 }
568
569 /*!
570  * Retrieves a vector 'vectOutput' that is normal to 'this'. 'vectOutput' is normalized.
571  */
572 void Edge::getNormalVector(double *vectOutput) const
573 {
574   std::copy((const double *)(*_end),(const double *)(*_end)+2,vectOutput);
575   std::transform(vectOutput,vectOutput+2,(const double *)(*_start),vectOutput,std::minus<double>());
576   double norm=1./Node::norm(vectOutput);
577   std::transform(vectOutput,vectOutput+2,vectOutput,bind2nd(std::multiplies<double>(),norm));
578   double tmp=vectOutput[0];
579   vectOutput[0]=vectOutput[1];
580   vectOutput[1]=-tmp;
581 }
582
583 Edge *Edge::BuildEdgeFrom3Points(const double *start, const double *middle, const double *end)
584 {
585   Node *b(new Node(start[0],start[1])),*m(new Node(middle[0],middle[1])),*e(new Node(end[0],end[1]));
586   EdgeLin *e1(new EdgeLin(b,m)),*e2(new EdgeLin(m,e));
587   SegSegIntersector inters(*e1,*e2); bool colinearity=inters.areColinears(); delete e1; delete e2;
588   Edge *ret=0;
589   if(colinearity)
590     ret=new EdgeLin(b,e);
591   else
592     ret=new EdgeArcCircle(b,m,e);
593   b->decrRef(); m->decrRef(); e->decrRef();
594   return ret;
595 }
596
597 Edge *Edge::BuildEdgeFrom(Node *start, Node *end)
598 {
599   return new EdgeLin(start,end);
600 }
601
602 Edge *Edge::BuildFromXfigLine(std::istream& str)
603 {
604   unsigned char type;
605   str >> type;
606   if(type=='2')
607     return new EdgeLin(str);
608   else if(type=='5')
609     return new EdgeArcCircle(str);
610   else
611     {
612       std::cerr << "Unknown line found...";
613       return 0;
614     }
615 }
616
617 /*!
618  * \param other The Edge with which we are going to intersect.
619  * \param commonNode Output. The common nodes found during operation of intersecting.
620  * \param outVal1 Output filled in case true is returned. It specifies the new or not new edges by which 'this' is replaced after intersecting op.
621  * \param outVal2 Output filled in case true is returned. It specifies the new or not new edges by which 'other' is replaced after intersecting op.
622  * return true if the intersection between this.
623  */
624 bool Edge::intersectWith(const Edge *other, MergePoints& commonNode,
625                          ComposedEdge& outVal1, ComposedEdge& outVal2) const
626 {
627   bool ret=true;
628   Bounds *merge=_bounds.nearlyAmIIntersectingWith(other->getBounds());
629   if(!merge)
630     return false;
631   delete merge;
632   merge=0;
633   EdgeIntersector *intersector=BuildIntersectorWith(this,other);
634   ret=Intersect(this,other,intersector,merge,commonNode,outVal1,outVal2);
635   delete intersector;
636   return ret;
637 }
638
639 bool Edge::IntersectOverlapped(const Edge *f1, const Edge *f2, EdgeIntersector *intersector, MergePoints& commonNode,
640                                ComposedEdge& outValForF1, ComposedEdge& outValForF2)
641 {
642   bool rev=intersector->haveTheySameDirection();
643   Node *f2Start=f2->getNode(rev?START:END);
644   Node *f2End=f2->getNode(rev?END:START);
645   TypeOfLocInEdge place1, place2;
646   intersector->getPlacements(f2Start,f2End,place1,place2,commonNode);
647   int codeForIntersectionCase=CombineCodes(place1,place2);
648   return SplitOverlappedEdges(f1,f2,f2Start,f2End,rev,codeForIntersectionCase,outValForF1,outValForF2);
649 }
650
651 /*!
652  * Perform 1D linear interpolation. Warning distrib1 and distrib2 are expected to be in ascending mode.
653  */
654 void Edge::Interpolate1DLin(const std::vector<double>& distrib1, const std::vector<double>& distrib2, std::map<int, std::map<int,double> >& result)
655 {
656   int nbOfV1=distrib1.size()-1;
657   int nbOfV2=distrib2.size()-1;
658   Node *n1=new Node(0.,0.); Node *n3=new Node(0.,0.);
659   Node *n2=new Node(0.,0.); Node *n4=new Node(0.,0.);
660   MergePoints commonNode;
661   for(int i=0;i<nbOfV1;i++)
662     {
663       std::vector<double>::const_iterator iter=find_if(distrib2.begin()+1,distrib2.end(),bind2nd(std::greater_equal<double>(),distrib1[i]));
664       if(iter!=distrib2.end())
665         {
666           for(int j=(iter-1)-distrib2.begin();j<nbOfV2;j++)
667             {
668               if(distrib2[j]<=distrib1[i+1])
669                 {
670                   EdgeLin *e1=new EdgeLin(n1,n2); EdgeLin *e2=new EdgeLin(n3,n4);
671                   n1->setNewCoords(distrib1[i],0.); n2->setNewCoords(distrib1[i+1],0.);
672                   n3->setNewCoords(distrib2[j],0.); n4->setNewCoords(distrib2[j+1],0.);
673                   ComposedEdge *f1=new ComposedEdge;
674                   ComposedEdge *f2=new ComposedEdge;
675                   SegSegIntersector inters(*e1,*e2);
676                   bool b1,b2;
677                   inters.areOverlappedOrOnlyColinears(0,b1,b2);
678                   if(IntersectOverlapped(e1,e2,&inters,commonNode,*f1,*f2))
679                     {
680                       result[i][j]=f1->getCommonLengthWith(*f2)/e1->getCurveLength();
681                     }
682                   ComposedEdge::Delete(f1); ComposedEdge::Delete(f2);
683                   e1->decrRef(); e2->decrRef();
684                 }
685             }
686         }
687     }
688   n1->decrRef(); n2->decrRef(); n3->decrRef(); n4->decrRef();
689 }
690
691 EdgeIntersector *Edge::BuildIntersectorWith(const Edge *e1, const Edge *e2)
692 {
693   EdgeIntersector *ret=0;
694   const EdgeLin *tmp1=0;
695   const EdgeArcCircle *tmp2=0;
696   unsigned char type1=e1->getTypeOfFunc();
697   e1->dynCastFunction(tmp1,tmp2);
698   unsigned char type2=e2->getTypeOfFunc();
699   e2->dynCastFunction(tmp1,tmp2);
700   type1|=type2;
701   switch(type1)
702   {
703     case 1:// Intersection seg/seg
704       ret=new SegSegIntersector((const EdgeLin &)(*e1),(const EdgeLin &)(*e2));
705       break;
706     case 5:// Intersection seg/arc of circle
707       ret=new ArcCSegIntersector(*tmp2,*tmp1,tmp2==e1);
708       break;
709     case 4:// Intersection arc/arc of circle
710       ret=new ArcCArcCIntersector((const EdgeArcCircle &)(*e1),(const EdgeArcCircle &)(*e2));
711       break;
712     default:
713       //Should never happen
714       throw Exception("A non managed association of edge has been detected. Go work for intersection computation implementation.");
715   }
716   return ret;
717 }
718
719 /*!
720  * See Node::applySimilarity to see signification of params.
721  */
722 void Edge::applySimilarity(double xBary, double yBary, double dimChar)
723 {
724   _bounds.applySimilarity(xBary,yBary,dimChar);
725 }
726
727 void Edge::unApplySimilarity(double xBary, double yBary, double dimChar)
728 {
729   _bounds.unApplySimilarity(xBary,yBary,dimChar);
730 }
731
732 void Edge::getMiddleOfPointsOriented(const double *p1, const double *p2, double *mid) const
733 {
734   return getMiddleOfPoints(p1, p2, mid);
735 }
736
737 bool Edge::Intersect(const Edge *f1, const Edge *f2, EdgeIntersector *intersector, const Bounds *whereToFind, MergePoints& commonNode,
738                      ComposedEdge& outValForF1, ComposedEdge& outValForF2)
739 {
740   bool obviousNoIntersection;
741   bool areOverlapped;
742   intersector->areOverlappedOrOnlyColinears(whereToFind,obviousNoIntersection,areOverlapped);
743   if(areOverlapped)
744     return IntersectOverlapped(f1,f2,intersector,commonNode,outValForF1,outValForF2);
745   if(obviousNoIntersection)
746     return false;
747   std::vector<Node *> newNodes;
748   bool order;
749   if(intersector->intersect(whereToFind,newNodes,order,commonNode))
750     {
751       if(newNodes.empty())
752         throw Exception("Internal error occurred - error in intersector implementation!");// This case should never happen
753       std::vector<Node *>::iterator iter=newNodes.begin();
754       std::vector<Node *>::reverse_iterator iterR=newNodes.rbegin();
755       f1->addSubEdgeInVector(f1->getStartNode(),*iter,outValForF1);
756       f2->addSubEdgeInVector(f2->getStartNode(),order?*iter:*iterR,outValForF2);
757       for(std::vector<Node *>::iterator iter2=newNodes.begin();iter2!=newNodes.end();iter2++,iterR++)
758         {
759           if((iter2+1)==newNodes.end())
760             {
761               f1->addSubEdgeInVector(*iter2,f1->getEndNode(),outValForF1);
762               (*iter2)->decrRef();
763               f2->addSubEdgeInVector(order?*iter2:*iterR,f2->getEndNode(),outValForF2);
764             }
765           else
766             {
767               f1->addSubEdgeInVector(*iter2,*(iter2+1),outValForF1);
768               (*iter2)->decrRef();
769               f2->addSubEdgeInVector(order?*iter2:*iterR,order?*(iter2+1):*(iterR+1),outValForF2);
770             }
771         }
772       return true;
773     }
774   else//no intersection inside whereToFind
775     return false;
776 }
777
778 int Edge::CombineCodes(TypeOfLocInEdge code1, TypeOfLocInEdge code2)
779 {
780   int ret=(int)code1;
781   ret*=OFFSET_FOR_TYPEOFLOCINEDGE;
782   ret+=(int)code2;
783   return ret;
784 }
785
786 /*!
787  * This method splits e1 and e2 into pieces as much sharable as possible. The precondition to the call of this method
788  * is that e1 and e2 have been declared as overlapped by corresponding intersector built from e1 and e2 type.
789  *
790  * @param nS start node of e2 with the SAME DIRECTION as e1. The pointer nS should be equal to start node of e2 or to its end node.
791  * @param nE end node of e2 with the SAME DIRECTION as e1. The pointer nE should be equal to start node of e2 or to its end node.
792  * @param direction is param that specifies if e2 and e1 have same directions (true) or opposed (false).
793  * @param code is the code returned by method Edge::combineCodes.
794  */
795 bool Edge::SplitOverlappedEdges(const Edge *e1, const Edge *e2, Node *nS, Node *nE, bool direction, int code,
796                                 ComposedEdge& outVal1, ComposedEdge& outVal2)
797 {
798   Edge *tmp;
799   switch(code)
800   {
801     case OUT_BEFORE*OFFSET_FOR_TYPEOFLOCINEDGE+START:      // OUT_BEFORE - START
802     case OUT_BEFORE*OFFSET_FOR_TYPEOFLOCINEDGE+OUT_BEFORE: // OUT_BEFORE - OUT_BEFORE
803     case OUT_AFTER*OFFSET_FOR_TYPEOFLOCINEDGE+OUT_AFTER:   // OUT_AFTER - OUT_AFTER
804     case END*OFFSET_FOR_TYPEOFLOCINEDGE+OUT_AFTER:         // END - OUT_AFTER
805     case END*OFFSET_FOR_TYPEOFLOCINEDGE+START:             // END - START
806     return false;
807     case INSIDE*OFFSET_FOR_TYPEOFLOCINEDGE+OUT_AFTER:      // INSIDE - OUT_AFTER
808     outVal1.pushBack(e1->buildEdgeLyingOnMe(e1->getStartNode(),nS,true));
809     tmp=e1->buildEdgeLyingOnMe(nS,e1->getEndNode()); tmp->incrRef();
810     outVal1.pushBack(tmp);
811     outVal2.resize(2);
812     outVal2.setValueAt(direction?0:1,tmp,direction); tmp->declareOn();
813     outVal2.setValueAt(direction?1:0,e1->buildEdgeLyingOnMe(e1->getEndNode(),nE,direction));
814     return true;
815     case INSIDE*OFFSET_FOR_TYPEOFLOCINEDGE+INSIDE:         // INSIDE - INSIDE
816     {
817       if(!e2->isIn(e2->getCharactValue(*(e1->getStartNode()))))
818         {
819           e2->incrRef(); e2->incrRef();
820           outVal1.resize(3);
821           outVal1.setValueAt(0,e1->buildEdgeLyingOnMe(e1->getStartNode(),nS));
822           outVal1.setValueAt(1,const_cast<Edge*>(e2),direction);
823           outVal1.setValueAt(2,e1->buildEdgeLyingOnMe(nE,e1->getEndNode()));
824           outVal2.pushBack(const_cast<Edge*>(e2)); e2->declareOn();
825           return true;
826         }
827       else
828         {
829           outVal1.resize(3);
830           outVal2.resize(3);
831           tmp=e1->buildEdgeLyingOnMe(e1->getStartNode(),nE); tmp->incrRef(); tmp->declareOn();
832           outVal1.setValueAt(0,tmp,true); outVal2.setValueAt(direction?2:0,tmp,direction);
833           outVal1.setValueAt(1,e1->buildEdgeLyingOnMe(nE,nS));
834           tmp=e1->buildEdgeLyingOnMe(nS,e1->getEndNode()); tmp->incrRef(); tmp->declareOn();
835           outVal1.setValueAt(2,tmp,true); outVal2.setValueAt(direction?0:2,tmp,direction);
836           tmp=e1->buildEdgeLyingOnMe(e1->getEndNode(),e1->getStartNode());
837           outVal2.setValueAt(1,tmp,direction);
838           return true;
839         }
840     }
841     case OUT_BEFORE*OFFSET_FOR_TYPEOFLOCINEDGE+INSIDE:     // OUT_BEFORE - INSIDE
842     {
843       tmp=e1->buildEdgeLyingOnMe(e1->getStartNode(),nE); tmp->incrRef();
844       outVal1.pushBack(tmp);
845       outVal1.pushBack(e1->buildEdgeLyingOnMe(nE,e1->getEndNode()));
846       outVal2.resize(2);
847       outVal2.setValueAt(direction?0:1,e1->buildEdgeLyingOnMe(nS,e1->getStartNode(),direction));
848       outVal2.setValueAt(direction?1:0,tmp,direction); tmp->declareOn();
849       return true;
850     }
851     case OUT_BEFORE*OFFSET_FOR_TYPEOFLOCINEDGE+OUT_AFTER:  // OUT_BEFORE - OUT_AFTER
852     {
853       e1->incrRef(); e1->incrRef();
854       outVal1.pushBack(const_cast<Edge*>(e1));
855       outVal2.resize(3);
856       outVal2.setValueAt(direction?0:2,e1->buildEdgeLyingOnMe(nS,e1->getStartNode(),direction));
857       outVal2.setValueAt(1,const_cast<Edge*>(e1),direction); e1->declareOn();
858       outVal2.setValueAt(direction?2:0,e1->buildEdgeLyingOnMe(e1->getEndNode(),nE,direction));
859       return true;
860     }
861     case START*OFFSET_FOR_TYPEOFLOCINEDGE+END:             // START - END
862     {
863       e1->incrRef(); e1->incrRef();
864       outVal1.pushBack(const_cast<Edge*>(e1));
865       outVal2.pushBack(const_cast<Edge*>(e1),direction); e1->declareOn();
866       return true;
867     }
868     case START*OFFSET_FOR_TYPEOFLOCINEDGE+OUT_AFTER:       // START - OUT_AFTER
869     {
870       e1->incrRef(); e1->incrRef();
871       outVal1.pushBack(const_cast<Edge*>(e1));
872       outVal2.resize(2);
873       outVal2.setValueAt(direction?0:1,const_cast<Edge*>(e1),direction); e1->declareOn();
874       outVal2.setValueAt(direction?1:0,e1->buildEdgeLyingOnMe(e1->getEndNode(),nE,direction));
875       return true;
876     }
877     case INSIDE*OFFSET_FOR_TYPEOFLOCINEDGE+END:            // INSIDE - END
878     {
879       e2->incrRef(); e2->incrRef();
880       outVal1.pushBack(e1->buildEdgeLyingOnMe(e1->getStartNode(),nS,true));
881       outVal1.pushBack(const_cast<Edge*>(e2),direction);
882       outVal2.pushBack(const_cast<Edge*>(e2)); e2->declareOn();
883       return true;
884     }
885     case OUT_BEFORE*OFFSET_FOR_TYPEOFLOCINEDGE+END:        // OUT_BEFORE - END
886     {
887       e1->incrRef(); e1->incrRef();
888       outVal1.pushBack(const_cast<Edge*>(e1));
889       outVal2.resize(2);
890       outVal2.setValueAt(direction?0:1,e1->buildEdgeLyingOnMe(nS,e1->getStartNode(),direction));
891       outVal2.setValueAt(direction?1:0,const_cast<Edge*>(e1),direction); e1->declareOn();
892       return true;
893     }
894     case START*OFFSET_FOR_TYPEOFLOCINEDGE+INSIDE:          // START - INSIDE
895     {
896       e2->incrRef(); e2->incrRef();
897       outVal1.pushBack(const_cast<Edge*>(e2),direction);
898       outVal1.pushBack(e1->buildEdgeLyingOnMe(nE,e1->getEndNode()));
899       outVal2.pushBack(const_cast<Edge*>(e2)); e2->declareOn();
900       return true;
901     }
902     case INSIDE*OFFSET_FOR_TYPEOFLOCINEDGE+START:          // INSIDE - START
903     {
904       outVal1.resize(2);
905       outVal2.resize(2);
906       tmp=e1->buildEdgeLyingOnMe(nS,e1->getEndNode()); tmp->incrRef(); tmp->declareOn();
907       outVal1.setValueAt(0,e1->buildEdgeLyingOnMe(e1->getStartNode(),nS));
908       outVal1.setValueAt(1,tmp);
909       outVal2.setValueAt(direction?0:1,tmp,direction);
910       outVal2.setValueAt(direction?1:0,e1->buildEdgeLyingOnMe(e1->getEndNode(),nE,direction));
911       return true;
912     }
913     case END*OFFSET_FOR_TYPEOFLOCINEDGE+INSIDE:            // END - INSIDE
914     {
915       outVal1.resize(2);
916       outVal2.resize(2);
917       tmp=e1->buildEdgeLyingOnMe(e1->getStartNode(),nE); tmp->incrRef(); tmp->declareOn();
918       outVal1.setValueAt(0,tmp);
919       outVal1.setValueAt(1,e1->buildEdgeLyingOnMe(nE,e1->getEndNode()));
920       outVal2.setValueAt(direction?0:1,e1->buildEdgeLyingOnMe(e1->getEndNode(),e1->getStartNode(),direction));
921       outVal2.setValueAt(direction?1:0,tmp,direction);
922       return true;
923     }
924     default:
925       throw Exception("Unexpected situation of overlapping edges : internal error occurs ! ");
926   }
927 }
928
929 void Edge::dumpToCout(const std::map<INTERP_KERNEL::Node *,int>& mapp, int index) const
930 {
931   auto sI(mapp.find(getStartNode())), eI(mapp.find(getEndNode()));
932   int start = (sI == mapp.end() ? -1 : sI->second), end = (eI == mapp.end() ? -1 : eI->second);
933   std::string locs;
934   switch (getLoc())
935   {
936     case FULL_IN_1: locs="FULL_IN_1"; break;
937     case FULL_ON_1: locs="FULL_ON_1"; break;
938     case FULL_OUT_1: locs="FULL_OUT_1"; break;
939     case FULL_UNKNOWN: locs="FULL_UNKNOWN"; break;
940     default: locs="oh my God! This is so wrong.";
941   }
942   std::cout << "Edge [" << index << "] : ("<<  std::hex << this << std::dec << ") -> (" << start << ", " << end << ")\t" << locs << std::endl;
943 }
944
945 bool Edge::isEqual(const Edge& other) const
946 {
947   return _start->isEqual(*other._start) && _end->isEqual(*other._end);
948 }
949
950 /**
951  * This method takes in input nodes in \a subNodes (using \a coo)
952  *
953  * \param [in,out] subNodes to be sorted
954  * \return true if a reordering was necessary false if not.
955  */
956 bool Edge::sortSubNodesAbs(const double *coo, std::vector<int>& subNodes)
957 {
958   Bounds b;
959   b.prepareForAggregation();
960   b.aggregate(getBounds());
961   double xBary,yBary;
962   double dimChar(b.getCaracteristicDim());
963   b.getBarycenter(xBary,yBary);
964   applySimilarity(xBary,yBary,dimChar);
965   _start->applySimilarity(xBary,yBary,dimChar);
966   _end->applySimilarity(xBary,yBary,dimChar);
967   //
968   std::size_t sz(subNodes.size()),i(0);
969   std::vector< std::pair<double,Node *> > an2(sz);
970   std::map<Node *, int> m;
971   for(std::vector<int>::const_iterator it=subNodes.begin();it!=subNodes.end();it++,i++)
972     {
973       Node *n(new Node(coo[2*(*it)],coo[2*(*it)+1]));
974       n->applySimilarity(xBary,yBary,dimChar);
975       m[n]=*it;
976       an2[i]=std::pair<double,Node *>(getCharactValueBtw0And1(*n),n);
977     }
978   std::sort(an2.begin(),an2.end());
979   //
980   bool ret(false);
981   for(i=0;i<sz;i++)
982     {
983       int id(m[an2[i].second]);
984       if(id!=subNodes[i])
985         { subNodes[i]=id; ret=true; }
986     }
987   //
988   for(std::map<INTERP_KERNEL::Node *,int>::const_iterator it2=m.begin();it2!=m.end();it2++)
989     (*it2).first->decrRef();
990   return ret;
991 }
992
993 /**
994  * Sort nodes so that they all lie consecutively on the edge that has been cut.
995  */
996 void Edge::sortIdsAbs(const std::vector<INTERP_KERNEL::Node *>& addNodes, const std::map<INTERP_KERNEL::Node *, int>& mapp1,
997                       const std::map<INTERP_KERNEL::Node *, int>& mapp2, std::vector<int>& edgesThis)
998 {
999   int startId=(*mapp1.find(_start)).second;
1000   int endId=(*mapp1.find(_end)).second;
1001   if (! addNodes.size()) // quick way out, no new node to add.
1002     {
1003       edgesThis.push_back(startId);
1004       edgesThis.push_back(endId);
1005       return;
1006     }
1007
1008   Bounds b;
1009   b.prepareForAggregation();
1010   b.aggregate(getBounds());
1011   double xBary,yBary;
1012   double dimChar=b.getCaracteristicDim();
1013   b.getBarycenter(xBary,yBary);
1014   for(std::vector<Node *>::const_iterator iter=addNodes.begin();iter!=addNodes.end();iter++)
1015     (*iter)->applySimilarity(xBary,yBary,dimChar);
1016   applySimilarity(xBary,yBary,dimChar);
1017   _start->applySimilarity(xBary,yBary,dimChar);
1018   _end->applySimilarity(xBary,yBary,dimChar);
1019   std::size_t sz=addNodes.size();
1020   std::vector< std::pair<double,Node *> > an2(sz);
1021   for(std::size_t i=0;i<sz;i++)
1022     an2[i]=std::pair<double,Node *>(getCharactValueBtw0And1(*addNodes[i]),addNodes[i]);
1023   std::sort(an2.begin(),an2.end());
1024   std::vector<int> tmpp;
1025   for(std::vector< std::pair<double,Node *> >::const_iterator it=an2.begin();it!=an2.end();it++)
1026     {
1027       int idd=(*mapp2.find((*it).second)).second;
1028       if((*it).first<QuadraticPlanarPrecision::getPrecision())
1029         {
1030           startId=idd;
1031           continue;
1032         }
1033       if((*it).first>1-QuadraticPlanarPrecision::getPrecision())
1034         {
1035           endId=idd;
1036           continue;
1037         }
1038       tmpp.push_back(idd);
1039     }
1040   std::vector<int> tmpp2(tmpp.size()+2);
1041   tmpp2[0]=startId;
1042   std::copy(tmpp.begin(),tmpp.end(),tmpp2.begin()+1);
1043   tmpp2[tmpp.size()+1]=endId;
1044   std::vector<int>::iterator itt=std::unique(tmpp2.begin(),tmpp2.end());
1045   tmpp2.resize(std::distance(tmpp2.begin(),itt));
1046   int nbOfEdges=tmpp2.size()-1;
1047   for(int i=0;i<nbOfEdges;i++)
1048     {
1049       edgesThis.push_back(tmpp2[i]);
1050       edgesThis.push_back(tmpp2[i+1]);
1051     }
1052 }
1053
1054 void Edge::fillGlobalInfoAbs(bool direction, const std::map<INTERP_KERNEL::Node *,int>& mapThis, const std::map<INTERP_KERNEL::Node *,int>& mapOther, int offset1, int offset2, double fact, double baryX, double baryY,
1055                                 std::vector<int>& edgesThis, std::vector<double>& addCoo, std::map<INTERP_KERNEL::Node *,int> mapAddCoo) const
1056 {
1057   int tmp[2];
1058   _start->fillGlobalInfoAbs(mapThis,mapOther,offset1,offset2,fact,baryX,baryY,addCoo,mapAddCoo,tmp);
1059   _end->fillGlobalInfoAbs(mapThis,mapOther,offset1,offset2,fact,baryX,baryY,addCoo,mapAddCoo,tmp+1);
1060   if(direction)
1061     {
1062       edgesThis.push_back(tmp[0]);
1063       edgesThis.push_back(tmp[1]);
1064     }
1065   else
1066     {
1067       edgesThis.push_back(tmp[1]);
1068       edgesThis.push_back(tmp[0]);
1069     }
1070 }
1071
1072 void Edge::fillGlobalInfoAbs2(const std::map<INTERP_KERNEL::Node *,int>& mapThis, const std::map<INTERP_KERNEL::Node *,int>& mapOther, int offset1, int offset2, double fact, double baryX, double baryY,
1073                               unsigned skipStartOrEnd,
1074                               std::vector<int>& edgesOther, std::vector<double>& addCoo, std::map<INTERP_KERNEL::Node *,int>& mapAddCoo) const
1075 {
1076   if (skipStartOrEnd != 1) // see meaning in splitAbs()
1077     _start->fillGlobalInfoAbs2(mapThis,mapOther,offset1,offset2,fact,baryX,baryY,addCoo,mapAddCoo,edgesOther);
1078   if (skipStartOrEnd != 2)
1079   _end->fillGlobalInfoAbs2(mapThis,mapOther,offset1,offset2,fact,baryX,baryY,addCoo,mapAddCoo,edgesOther);
1080 }