]> SALOME platform Git repositories - tools/medcoupling.git/blob - src/INTERP_KERNEL/Geometric2D/InterpKernelGeo2DComposedEdge.cxx
Salome HOME
Minor: documentation and comments
[tools/medcoupling.git] / src / INTERP_KERNEL / Geometric2D / InterpKernelGeo2DComposedEdge.cxx
1 // Copyright (C) 2007-2013  CEA/DEN, EDF R&D
2 //
3 // This library is free software; you can redistribute it and/or
4 // modify it under the terms of the GNU Lesser General Public
5 // License as published by the Free Software Foundation; either
6 // version 2.1 of the License.
7 //
8 // This library is distributed in the hope that it will be useful,
9 // but WITHOUT ANY WARRANTY; without even the implied warranty of
10 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11 // Lesser General Public License for more details.
12 //
13 // You should have received a copy of the GNU Lesser General Public
14 // License along with this library; if not, write to the Free Software
15 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
16 //
17 // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
18 //
19 // Author : Anthony Geay (CEA/DEN)
20
21 #include "InterpKernelGeo2DComposedEdge.hxx"
22 #include "InterpKernelGeo2DElementaryEdge.hxx"
23 #include "InterpKernelGeo2DEdgeArcCircle.hxx"
24 #include "InterpKernelGeo2DEdgeInfLin.hxx"
25 #include "InterpKernelException.hxx"
26
27 #include <algorithm>
28 #include <memory>
29 #include <iterator>
30 #include <set>
31
32 using namespace INTERP_KERNEL;
33
34 ComposedEdge::ComposedEdge(const ComposedEdge& other)
35 {
36   for(std::list<ElementaryEdge *>::const_iterator iter=other._sub_edges.begin();iter!=other._sub_edges.end();iter++)
37     _sub_edges.push_back((*iter)->clone());
38 }
39
40 ComposedEdge::~ComposedEdge()
41 {
42   clearAll(_sub_edges.begin());
43 }
44
45 void ComposedEdge::setValueAt(int i, Edge *e, bool direction)
46 {
47   std::list<ElementaryEdge*>::iterator it=_sub_edges.begin();
48   for(int j=0;j<i;j++)
49     it++;
50   delete *it;
51   *it=new ElementaryEdge(e,direction);
52 }
53
54 struct AbsEdgeCmp
55 {
56   AbsEdgeCmp(ElementaryEdge *b):_b1(b) { }
57   bool operator()(ElementaryEdge *a) { return a->getPtr()==_b1->getPtr();}
58
59   ElementaryEdge *_b1;
60 };
61
62 double ComposedEdge::getCommonLengthWith(const ComposedEdge& other) const
63 {
64   double ret=0.;
65   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
66     {
67       if(find_if(other._sub_edges.begin(),other._sub_edges.end(),AbsEdgeCmp(*iter))!=other._sub_edges.end())
68         {
69           const ElementaryEdge *tmp=static_cast<const ElementaryEdge *>(*iter);
70           ret+=tmp->getCurveLength();
71         }
72     }
73   return ret;
74 }
75
76 void ComposedEdge::clear()
77 {
78   clearAll(_sub_edges.begin());
79   _sub_edges.clear();
80 }
81
82 void ComposedEdge::pushBack(Edge *edge, bool direction)
83 {
84   _sub_edges.push_back(new ElementaryEdge(edge,direction));
85 }
86
87 void ComposedEdge::pushBack(ElementaryEdge *elem)
88 {
89   _sub_edges.push_back(elem);
90 }
91
92 void ComposedEdge::pushBack(ComposedEdge *elem)
93 {
94   std::list<ElementaryEdge *> *elemsOfElem=elem->getListBehind();
95   _sub_edges.insert(_sub_edges.end(),elemsOfElem->begin(),elemsOfElem->end());
96 }
97
98 ElementaryEdge *ComposedEdge::operator[](int i) const
99 {
100   std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();
101   for(int ii=0;ii<i;ii++)
102     iter++;
103   return *iter;
104 }
105
106 void ComposedEdge::reverse()
107 {
108   _sub_edges.reverse();
109   for(std::list<ElementaryEdge *>::iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
110     (*iter)->reverse();
111 }
112
113 bool ComposedEdge::presenceOfOn() const
114 {
115   bool ret=false;
116   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end() && !ret;iter++)
117     ret=((*iter)->getLoc()==FULL_ON_1);
118   return ret;
119 }
120
121 bool ComposedEdge::presenceOfQuadraticEdge() const
122 {
123   bool ret=false;
124   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end() && !ret;iter++)
125     {
126       Edge *e=(*iter)->getPtr();
127       if(e)
128         ret=dynamic_cast<EdgeArcCircle*>(e)!=0;
129     }
130   return ret;
131 }
132
133 void ComposedEdge::initLocations() const
134 {
135   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
136     (*iter)->initLocations();
137 }
138
139 /**
140  * Reset the status of all edges (OUT, IN, ON) because they were potentially assignated
141  * by the previous candidate processing.
142  */
143 void ComposedEdge::initLocationsWithOther(const ComposedEdge& other) const
144 {
145   std::set<Edge *> s1,s2;
146   for(std::list<ElementaryEdge *>::const_iterator it1=_sub_edges.begin();it1!=_sub_edges.end();it1++)
147     s1.insert((*it1)->getPtr());
148   for(std::list<ElementaryEdge *>::const_iterator it2=other._sub_edges.begin();it2!=other._sub_edges.end();it2++)
149     s2.insert((*it2)->getPtr());
150   initLocations();
151   other.initLocations();
152   std::vector<Edge *> s3;
153   std::set_intersection(s1.begin(),s1.end(),s2.begin(),s2.end(),std::back_insert_iterator< std::vector<Edge *> >(s3));
154   for(std::vector<Edge *>::const_iterator it3=s3.begin();it3!=s3.end();it3++)
155     (*it3)->declareOn();
156 }
157
158 ComposedEdge *ComposedEdge::clone() const
159 {
160   return new ComposedEdge(*this);
161 }
162
163 bool ComposedEdge::isNodeIn(Node *n) const
164 {
165   bool ret=false;
166   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end() && !ret;iter++)
167     ret=(*iter)->isNodeIn(n);
168   return ret;
169 }
170
171 /*!
172  * This method computes the area of 'this'.
173  * By definition :
174  * \f[
175  * Area=\int_{Polygon} dS
176  * \f]
177  * Thanks to Green's theorem we have.
178  * \f[
179  * \int_{Polygon} x \cdot dS=\sum_{0 \leq i < nb of edges} -\int_{Edge_{i}}ydx=\sum_{0 \leq i < nb of edges} AreaOfZone_{Edge_{i}}
180  * \f]
181  * Where \f$ AreaOfZone_{i} \f$ is computed virtually by INTERP_KERNEL::Edge::getAreaOfZone with following formula :
182  * \f[
183  * AreaOfZone_{i}=\int_{Edge_{i}} -ydx
184  * \f]
185  */
186 double ComposedEdge::getArea() const
187 {
188   double ret=0.;
189   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
190     ret+=(*iter)->getAreaOfZone();
191   return ret;
192 }
193
194 double ComposedEdge::getPerimeter() const
195 {
196   double ret=0.;
197   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
198     ret+=(*iter)->getCurveLength();
199   return ret;
200 }
201
202 double ComposedEdge::getHydraulicDiameter() const
203 {
204   return 4*fabs(getArea())/getPerimeter();
205 }
206
207 /*!
208  * This method computes barycenter of 'this' by returning xG in bary[0] and yG in bary[1].
209  * By definition :
210  * \f[
211  * Area \cdot x_{G}=\int_{Polygon} x \cdot dS
212  * \f]
213  * \f[
214  * Area \cdot y_{G}=\int_{Polygon} y \cdot dS
215  * \f]
216  * Thanks to Green's theorem we have.
217  * \f[
218  * \int_{Polygon} x \cdot dS=\sum_{0 \leq i < nb of edges} -\int_{Edge_{i}}yxdx
219  * \f]
220  * \f[
221  * \int_{Polygon} y \cdot dS=\sum_{0 \leq i < nb of edges} -\int_{Edge_{i}}\frac{y^{2}}{2}dx
222  * \f]
223  * Area is computed using the same principle than described in INTERP_KERNEL::ComposedEdge::getArea method.
224  * \f$ -\int_{Edge_{i}}yxdx \f$ and \f$ -\int_{Edge_{i}}\frac{y^{2}}{2}dx \f$ are computed virtually with INTERP_KERNEL::Edge::getBarycenterOfZone.
225  */
226 void ComposedEdge::getBarycenter(double *bary) const
227 {
228   bary[0]=0.;
229   bary[1]=0.;
230   double area=0.;
231   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
232     {
233       (*iter)->getBarycenterOfZone(bary);
234       area+=(*iter)->getAreaOfZone();
235     }
236   bary[0]/=area;
237   bary[1]/=area;
238 }
239
240 /*!
241  * Idem ComposedEdge::getBarycenter except that the special case where _sub_edges==1 is dealt here.
242  */
243 void ComposedEdge::getBarycenterGeneral(double *bary) const
244 {
245   if(_sub_edges.empty())
246     throw INTERP_KERNEL::Exception("ComposedEdge::getBarycenterGeneral called on an empty polygon !");
247   if(_sub_edges.size()>2)
248     return getBarycenter(bary);
249   double w;
250   _sub_edges.back()->getBarycenter(bary,w);
251 }
252
253 double ComposedEdge::normalize(ComposedEdge *other, double& xBary, double& yBary)
254 {
255   Bounds b;
256   b.prepareForAggregation();
257   fillBounds(b); 
258   other->fillBounds(b);
259   double dimChar=b.getCaracteristicDim();
260   b.getBarycenter(xBary,yBary);
261   applyGlobalSimilarity(xBary,yBary,dimChar);
262   other->applyGlobalSimilarity(xBary,yBary,dimChar);
263   return dimChar;
264 }
265
266 /*!
267  * This method operates the opposite operation than ComposedEdge::applyGlobalSimilarity.
268  */
269 void ComposedEdge::unApplyGlobalSimilarityExt(ComposedEdge& other, double xBary, double yBary, double fact)
270 {
271   std::set<Node *> allNodes;
272   getAllNodes(allNodes);
273   other.getAllNodes(allNodes);
274   for(std::set<Node *>::iterator iter=allNodes.begin();iter!=allNodes.end();iter++)
275     (*iter)->unApplySimilarity(xBary,yBary,fact);
276   for(std::list<ElementaryEdge *>::iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
277     (*iter)->unApplySimilarity(xBary,yBary,fact);
278   for(std::list<ElementaryEdge *>::iterator iter=other._sub_edges.begin();iter!=other._sub_edges.end();iter++)
279     (*iter)->unApplySimilarity(xBary,yBary,fact);
280 }
281
282 double ComposedEdge::normalizeExt(ComposedEdge *other, double& xBary, double& yBary)
283 {
284   Bounds b;
285   b.prepareForAggregation();
286   fillBounds(b); 
287   other->fillBounds(b);
288   double dimChar=b.getCaracteristicDim();
289   b.getBarycenter(xBary,yBary);
290   applyGlobalSimilarity2(other,xBary,yBary,dimChar);
291   return dimChar;
292 }
293
294 void ComposedEdge::dumpInXfigFile(std::ostream& stream, int resolution, const Bounds& box) const
295 {
296   stream.precision(10);
297   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
298     (*iter)->dumpInXfigFile(stream,resolution,box);
299 }
300
301 Node *ComposedEdge::getEndNode() const
302 {
303   return _sub_edges.back()->getEndNode();
304 }
305
306 Node *ComposedEdge::getStartNode() const
307 {
308   return _sub_edges.front()->getStartNode();
309 }
310
311 bool ComposedEdge::changeEndNodeWith(Node *node) const
312 {
313   return _sub_edges.back()->changeEndNodeWith(node);
314 }
315
316 bool ComposedEdge::changeStartNodeWith(Node *node) const
317 {
318   return _sub_edges.front()->changeStartNodeWith(node);
319 }
320
321 void ComposedEdge::fillBounds(Bounds& output) const
322 {
323   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
324     (*iter)->fillBounds(output);
325 }
326
327 /*!
328  * \b WARNING : applies similarity \b ONLY on edges without any change on Nodes. To perform a global similarity call applyGlobalSimilarity.
329  */
330 void ComposedEdge::applySimilarity(double xBary, double yBary, double dimChar)
331 {
332   for(std::list<ElementaryEdge *>::iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
333     (*iter)->applySimilarity(xBary,yBary,dimChar);
334 }
335
336 /*!
337  * Perform Similarity transformation on all elements of this Nodes and Edges.
338  */
339 void ComposedEdge::applyGlobalSimilarity(double xBary, double yBary, double dimChar)
340 {
341   std::set<Node *> allNodes;
342   getAllNodes(allNodes);
343   for(std::set<Node *>::iterator iter=allNodes.begin();iter!=allNodes.end();iter++)
344     (*iter)->applySimilarity(xBary,yBary,dimChar);
345   for(std::list<ElementaryEdge *>::iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
346     (*iter)->applySimilarity(xBary,yBary,dimChar);
347 }
348
349 /*!
350  * Perform Similarity transformation on all elements of this Nodes and Edges on 'this' and 'other'.
351  * Nodes can be shared between 'this' and 'other'.
352  */
353 void ComposedEdge::applyGlobalSimilarity2(ComposedEdge *other, double xBary, double yBary, double dimChar)
354 {
355   std::set<Node *> allNodes;
356   getAllNodes(allNodes);
357   std::set<Node *> allNodes2;
358   other->getAllNodes(allNodes2);
359   for(std::set<Node *>::const_iterator it=allNodes2.begin();it!=allNodes2.end();it++)
360     if(allNodes.find(*it)!=allNodes.end())
361       (*it)->declareOn();
362   allNodes.insert(allNodes2.begin(),allNodes2.end());
363   for(std::set<Node *>::iterator iter=allNodes.begin();iter!=allNodes.end();iter++)
364     (*iter)->applySimilarity(xBary,yBary,dimChar);
365   for(std::list<ElementaryEdge *>::iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
366     (*iter)->applySimilarity(xBary,yBary,dimChar);
367   for(std::list<ElementaryEdge *>::iterator iter=other->_sub_edges.begin();iter!=other->_sub_edges.end();iter++)
368     (*iter)->applySimilarity(xBary,yBary,dimChar);
369 }
370
371 /*!
372  * This method append to param 'partConsidered' the part of length of subedges IN or ON.
373  * @param partConsidered INOUT param.
374  */
375 void ComposedEdge::dispatchPerimeter(double& partConsidered) const
376 {
377   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
378     {
379       TypeOfEdgeLocInPolygon loc=(*iter)->getLoc();
380       if(loc==FULL_IN_1 || loc==FULL_ON_1)
381         partConsidered+=(*iter)->getCurveLength();
382     }
383 }
384
385 /*!
386  * Idem dispatchPerimeterExcl except that when a subedge is declared as ON this subedge is counted in commonPart.
387  */
388 void ComposedEdge::dispatchPerimeterExcl(double& partConsidered, double& commonPart) const
389 {
390   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
391     {
392       TypeOfEdgeLocInPolygon loc=(*iter)->getLoc();
393       if(loc==FULL_IN_1)
394         partConsidered+=(*iter)->getCurveLength();
395       if(loc==FULL_ON_1)
396         commonPart+=(*iter)->getCurveLength();
397     }
398 }
399
400 void ComposedEdge::getAllNodes(std::set<Node *>& output) const
401 {
402   std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();
403   for(;iter!=_sub_edges.end();iter++)
404     (*iter)->getAllNodes(output);
405 }
406
407 void ComposedEdge::getBarycenter(double *bary, double& weigh) const
408 {
409   weigh=0.; bary[0]=0.; bary[1]=0.;
410   double tmp1,tmp2[2];
411   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
412     {
413       (*iter)->getBarycenter(tmp2,tmp1);
414       weigh+=tmp1;
415       bary[0]+=tmp1*tmp2[0];
416       bary[1]+=tmp1*tmp2[1];
417     }
418   bary[0]/=weigh;
419   bary[1]/=weigh;
420 }
421
422 /**
423  * Detect if the node is in the Polygon (ComposedEdge or not)
424  */
425 bool ComposedEdge::isInOrOut(Node *nodeToTest) const
426 {
427   Bounds b; b.prepareForAggregation();
428   fillBounds(b);
429   if(b.nearlyWhere((*nodeToTest)[0],(*nodeToTest)[1])==OUT)
430     return false;
431   // searching for e1
432   std::set<Node *> nodes;
433   getAllNodes(nodes);
434   std::set<double> radialDistributionOfNodes;
435   std::set<Node *>::const_iterator iter;
436   for(iter=nodes.begin();iter!=nodes.end();iter++)
437     radialDistributionOfNodes.insert(nodeToTest->getSlope(*(*iter)));
438   std::vector<double> radialDistrib(radialDistributionOfNodes.begin(),radialDistributionOfNodes.end());
439   radialDistributionOfNodes.clear();
440   std::vector<double> radialDistrib2(radialDistrib.size());
441   copy(radialDistrib.begin()+1,radialDistrib.end(),radialDistrib2.begin());
442   radialDistrib2.back()=M_PI+radialDistrib.front();
443   std::vector<double> radialDistrib3(radialDistrib.size());
444   std::transform(radialDistrib2.begin(),radialDistrib2.end(),radialDistrib.begin(),radialDistrib3.begin(),std::minus<double>());
445   std::vector<double>::iterator iter3=max_element(radialDistrib3.begin(),radialDistrib3.end());
446   int i=iter3-radialDistrib3.begin();
447   // ok for e1 - Let's go.
448   EdgeInfLin *e1=new EdgeInfLin(nodeToTest,radialDistrib[i]+radialDistrib3[i]/2.);
449   double ref=e1->getCharactValue(*nodeToTest);
450   std::set< IntersectElement > inOutSwitch;
451   for(std::list<ElementaryEdge *>::const_iterator iter4=_sub_edges.begin();iter4!=_sub_edges.end();iter4++)
452     {
453       ElementaryEdge *val=(*iter4);
454       if(val)
455         {
456           Edge *e=val->getPtr();
457           std::auto_ptr<EdgeIntersector> intersc(Edge::BuildIntersectorWith(e1,e));
458           bool obviousNoIntersection,areOverlapped;
459           intersc->areOverlappedOrOnlyColinears(0,obviousNoIntersection,areOverlapped);
460           if(obviousNoIntersection)
461             {
462               continue;
463             }
464           if(!areOverlapped)
465             {
466               std::list< IntersectElement > listOfIntesc=intersc->getIntersectionsCharacteristicVal();
467               for(std::list< IntersectElement >::iterator iter2=listOfIntesc.begin();iter2!=listOfIntesc.end();iter2++)
468                 if((*iter2).isIncludedByBoth())
469                   inOutSwitch.insert(*iter2);
470               }
471           //if overlapped we can forget
472         }
473       else
474         throw Exception("Invalid use of ComposedEdge::isInOrOut : only one level supported !");
475     }
476   e1->decrRef();
477   bool ret=false;
478   for(std::set< IntersectElement >::iterator iter4=inOutSwitch.begin();iter4!=inOutSwitch.end();iter4++)
479     {
480       if((*iter4).getVal1()<ref)
481         {
482           if((*iter4).getNodeOnly()->getLoc()==ON_1)
483             ret=!ret;
484         }
485       else
486         break;
487     }
488   return ret;
489 }
490
491 /*bool ComposedEdge::isInOrOut(Node *aNodeOn, Node *nodeToTest) const
492 {
493   
494   EdgeInfLin *e1=new EdgeInfLin(aNodeOn,nodeToTest);
495   double ref=e1->getCharactValue(*nodeToTest);
496   set< IntersectElement > inOutSwitch;
497   for(vector<AbstractEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
498     {
499       ElementaryEdge *val=dynamic_cast<ElementaryEdge *>(*iter);
500       if(val)
501         {
502           Edge *e=val->getPtr();
503           auto_ptr<Intersector> intersc(Edge::buildIntersectorWith(e1,e));
504           bool obviousNoIntersection,areOverlapped;
505           intersc->areOverlappedOrOnlyColinears(0,obviousNoIntersection,areOverlapped);
506           if(obviousNoIntersection)
507             {
508               continue;
509             }
510           if(!areOverlapped)
511             {
512               list< IntersectElement > listOfIntesc=intersc->getIntersectionsCharacteristicVal();
513               for(list< IntersectElement >::iterator iter2=listOfIntesc.begin();iter2!=listOfIntesc.end();iter2++)
514                 if((*iter2).isIncludedByBoth())
515                   inOutSwitch.insert(*iter2);
516               }
517           //if overlapped we can forget
518         }
519       else
520         throw Exception("Invalid use of ComposedEdge::isInOrOut : only one level supported !");
521     }
522   e1->decrRef();
523   bool ret=false;
524   for(set< IntersectElement >::iterator iter=inOutSwitch.begin();iter!=inOutSwitch.end();iter++)
525     {
526       if((*iter).getVal1()<ref)
527         {
528           if((*iter).getNodeOnly()->getLoc()==ON_1)
529             ret=!ret;
530         }
531       else
532         break;
533     }
534   return ret;
535 }*/
536
537 bool ComposedEdge::getDirection() const
538 {
539   throw Exception("ComposedEdge::getDirection : no sense");
540 }
541
542 bool ComposedEdge::intresincEqCoarse(const Edge *other) const
543 {
544   if(_sub_edges.size()!=1)
545     return false;
546   return _sub_edges.front()->intresincEqCoarse(other);
547 }
548
549 void ComposedEdge::clearAll(std::list<ElementaryEdge *>::iterator startToDel)
550 {
551   for(std::list<ElementaryEdge *>::iterator iter=startToDel;iter!=_sub_edges.end();iter++)
552     delete (*iter);
553 }