Salome HOME
bc3c20662547cf22eadcfdc9e75746867f8c0e47
[tools/medcoupling.git] / src / INTERP_KERNEL / Geometric2D / InterpKernelGeo2DComposedEdge.cxx
1 // Copyright (C) 2007-2013  CEA/DEN, EDF R&D
2 //
3 // This library is free software; you can redistribute it and/or
4 // modify it under the terms of the GNU Lesser General Public
5 // License as published by the Free Software Foundation; either
6 // version 2.1 of the License.
7 //
8 // This library is distributed in the hope that it will be useful,
9 // but WITHOUT ANY WARRANTY; without even the implied warranty of
10 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11 // Lesser General Public License for more details.
12 //
13 // You should have received a copy of the GNU Lesser General Public
14 // License along with this library; if not, write to the Free Software
15 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
16 //
17 // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
18 //
19 // Author : Anthony Geay (CEA/DEN)
20
21 #include "InterpKernelGeo2DComposedEdge.hxx"
22 #include "InterpKernelGeo2DElementaryEdge.hxx"
23 #include "InterpKernelGeo2DEdgeArcCircle.hxx"
24 #include "InterpKernelGeo2DEdgeInfLin.hxx"
25 #include "InterpKernelException.hxx"
26
27 #include <algorithm>
28 #include <memory>
29 #include <iterator>
30 #include <set>
31
32 using namespace INTERP_KERNEL;
33
34 ComposedEdge::ComposedEdge(const ComposedEdge& other)
35 {
36   for(std::list<ElementaryEdge *>::const_iterator iter=other._sub_edges.begin();iter!=other._sub_edges.end();iter++)
37     _sub_edges.push_back((*iter)->clone());
38 }
39
40 ComposedEdge::~ComposedEdge()
41 {
42   clearAll(_sub_edges.begin());
43 }
44
45 void ComposedEdge::setValueAt(int i, Edge *e, bool direction)
46 {
47   std::list<ElementaryEdge*>::iterator it=_sub_edges.begin();
48   for(int j=0;j<i;j++)
49     it++;
50   delete *it;
51   *it=new ElementaryEdge(e,direction);
52 }
53
54 struct AbsEdgeCmp
55 {
56   AbsEdgeCmp(ElementaryEdge *b):_b1(b) { }
57   bool operator()(ElementaryEdge *a) { return a->getPtr()==_b1->getPtr();}
58
59   ElementaryEdge *_b1;
60 };
61
62 double ComposedEdge::getCommonLengthWith(const ComposedEdge& other) const
63 {
64   double ret=0.;
65   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
66     {
67       if(find_if(other._sub_edges.begin(),other._sub_edges.end(),AbsEdgeCmp(*iter))!=other._sub_edges.end())
68         {
69           const ElementaryEdge *tmp=static_cast<const ElementaryEdge *>(*iter);
70           ret+=tmp->getCurveLength();
71         }
72     }
73   return ret;
74 }
75
76 void ComposedEdge::clear()
77 {
78   clearAll(_sub_edges.begin());
79   _sub_edges.clear();
80 }
81
82 void ComposedEdge::pushBack(Edge *edge, bool direction)
83 {
84   _sub_edges.push_back(new ElementaryEdge(edge,direction));
85 }
86
87 void ComposedEdge::pushBack(ElementaryEdge *elem)
88 {
89   _sub_edges.push_back(elem);
90 }
91
92 void ComposedEdge::pushBack(ComposedEdge *elem)
93 {
94   std::list<ElementaryEdge *> *elemsOfElem=elem->getListBehind();
95   _sub_edges.insert(_sub_edges.end(),elemsOfElem->begin(),elemsOfElem->end());
96 }
97
98 ElementaryEdge *ComposedEdge::operator[](int i) const
99 {
100   std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();
101   for(int ii=0;ii<i;ii++)
102     iter++;
103   return *iter;
104 }
105
106 void ComposedEdge::reverse()
107 {
108   _sub_edges.reverse();
109   for(std::list<ElementaryEdge *>::iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
110     (*iter)->reverse();
111 }
112
113 bool ComposedEdge::presenceOfOn() const
114 {
115   bool ret=false;
116   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end() && !ret;iter++)
117     ret=((*iter)->getLoc()==FULL_ON_1);
118   return ret;
119 }
120
121 bool ComposedEdge::presenceOfQuadraticEdge() const
122 {
123   bool ret=false;
124   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end() && !ret;iter++)
125     {
126       Edge *e=(*iter)->getPtr();
127       if(e)
128         ret=dynamic_cast<EdgeArcCircle*>(e)!=0;
129     }
130   return ret;
131 }
132
133 void ComposedEdge::initLocations() const
134 {
135   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
136     (*iter)->initLocations();
137 }
138
139 /**
140  * Reset the status of all edges (OUT, IN, ON) because they were potentially assignated
141  * by the previous candidate processing.
142  */
143 void ComposedEdge::initLocationsWithOther(const ComposedEdge& other) const
144 {
145   std::set<Edge *> s1,s2;
146   for(std::list<ElementaryEdge *>::const_iterator it1=_sub_edges.begin();it1!=_sub_edges.end();it1++)
147     s1.insert((*it1)->getPtr());
148   for(std::list<ElementaryEdge *>::const_iterator it2=other._sub_edges.begin();it2!=other._sub_edges.end();it2++)
149     s2.insert((*it2)->getPtr());
150   initLocations();
151   other.initLocations();
152   std::vector<Edge *> s3;
153   std::set_intersection(s1.begin(),s1.end(),s2.begin(),s2.end(),std::back_insert_iterator< std::vector<Edge *> >(s3));
154   for(std::vector<Edge *>::const_iterator it3=s3.begin();it3!=s3.end();it3++)
155     (*it3)->declareOn();
156 }
157
158 ComposedEdge *ComposedEdge::clone() const
159 {
160   return new ComposedEdge(*this);
161 }
162
163 bool ComposedEdge::isNodeIn(Node *n) const
164 {
165   bool ret=false;
166   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end() && !ret;iter++)
167     ret=(*iter)->isNodeIn(n);
168   return ret;
169 }
170
171 /*!
172  * This method computes the area of 'this'.
173  * By definition :
174  * \f[
175  * Area=\int_{Polygon} dS
176  * \f]
177  * Thanks to Green's theorem we have.
178  * \f[
179  * \int_{Polygon} x \cdot dS=\sum_{0 \leq i < nb of edges} -\int_{Edge_{i}}ydx=\sum_{0 \leq i < nb of edges} AreaOfZone_{Edge_{i}}
180  * \f]
181  * Where \f$ AreaOfZone_{i} \f$ is computed virtually by INTERP_KERNEL::Edge::getAreaOfZone with following formula :
182  * \f[
183  * AreaOfZone_{i}=\int_{Edge_{i}} -ydx
184  * \f]
185  */
186 double ComposedEdge::getArea() const
187 {
188   double ret=0.;
189   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
190     ret+=(*iter)->getAreaOfZone();
191   return ret;
192 }
193
194 double ComposedEdge::getPerimeter() const
195 {
196   double ret=0.;
197   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
198     ret+=(*iter)->getCurveLength();
199   return ret;
200 }
201
202 double ComposedEdge::getHydraulicDiameter() const
203 {
204   return 4*fabs(getArea())/getPerimeter();
205 }
206
207 /*!
208  * This method computes barycenter of 'this' by returning xG in bary[0] and yG in bary[1].
209  * By definition :
210  * \f[
211  * Area \cdot x_{G}=\int_{Polygon} x \cdot dS
212  * \f]
213  * \f[
214  * Area \cdot y_{G}=\int_{Polygon} y \cdot dS
215  * \f]
216  * Thanks to Green's theorem we have.
217  * \f[
218  * \int_{Polygon} x \cdot dS=\sum_{0 \leq i < nb of edges} -\int_{Edge_{i}}yxdx
219  * \f]
220  * \f[
221  * \int_{Polygon} y \cdot dS=\sum_{0 \leq i < nb of edges} -\int_{Edge_{i}}\frac{y^{2}}{2}dx
222  * \f]
223  * Area is computed using the same principle than described in INTERP_KERNEL::ComposedEdge::getArea method.
224  * \f$ -\int_{Edge_{i}}yxdx \f$ and \f$ -\int_{Edge_{i}}\frac{y^{2}}{2}dx \f$ are computed virtually with INTERP_KERNEL::Edge::getBarycenterOfZone.
225  */
226 void ComposedEdge::getBarycenter(double *bary) const
227 {
228   bary[0]=0.;
229   bary[1]=0.;
230   double area=0.;
231   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
232     {
233       (*iter)->getBarycenterOfZone(bary);
234       area+=(*iter)->getAreaOfZone();
235     }
236   bary[0]/=area;
237   bary[1]/=area;
238 }
239
240 /*!
241  * Idem ComposedEdge::getBarycenter except that the special case where _sub_edges==1 is dealt here.
242  */
243 void ComposedEdge::getBarycenterGeneral(double *bary) const
244 {
245   if(_sub_edges.empty())
246     throw INTERP_KERNEL::Exception("ComposedEdge::getBarycenterGeneral called on an empty polygon !");
247   if(_sub_edges.size()>2)
248     return getBarycenter(bary);
249   double w;
250   _sub_edges.back()->getBarycenter(bary,w);
251 }
252
253 double ComposedEdge::normalizeMe(double& xBary, double& yBary)
254 {
255   Bounds b;
256   b.prepareForAggregation();
257   fillBounds(b);
258   double dimChar=b.getCaracteristicDim();
259   b.getBarycenter(xBary,yBary);
260   applyGlobalSimilarity(xBary,yBary,dimChar);
261   return dimChar;
262 }
263
264 double ComposedEdge::normalize(ComposedEdge *other, double& xBary, double& yBary)
265 {
266   Bounds b;
267   b.prepareForAggregation();
268   fillBounds(b); 
269   other->fillBounds(b);
270   double dimChar=b.getCaracteristicDim();
271   b.getBarycenter(xBary,yBary);
272   applyGlobalSimilarity(xBary,yBary,dimChar);
273   other->applyGlobalSimilarity(xBary,yBary,dimChar);
274   return dimChar;
275 }
276
277 /*!
278  * This method operates the opposite operation than ComposedEdge::applyGlobalSimilarity.
279  */
280 void ComposedEdge::unApplyGlobalSimilarityExt(ComposedEdge& other, double xBary, double yBary, double fact)
281 {
282   std::set<Node *> allNodes;
283   getAllNodes(allNodes);
284   other.getAllNodes(allNodes);
285   for(std::set<Node *>::iterator iter=allNodes.begin();iter!=allNodes.end();iter++)
286     (*iter)->unApplySimilarity(xBary,yBary,fact);
287   for(std::list<ElementaryEdge *>::iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
288     (*iter)->unApplySimilarity(xBary,yBary,fact);
289   for(std::list<ElementaryEdge *>::iterator iter=other._sub_edges.begin();iter!=other._sub_edges.end();iter++)
290     (*iter)->unApplySimilarity(xBary,yBary,fact);
291 }
292
293 double ComposedEdge::normalizeExt(ComposedEdge *other, double& xBary, double& yBary)
294 {
295   Bounds b;
296   b.prepareForAggregation();
297   fillBounds(b); 
298   other->fillBounds(b);
299   double dimChar=b.getCaracteristicDim();
300   b.getBarycenter(xBary,yBary);
301   applyGlobalSimilarity2(other,xBary,yBary,dimChar);
302   return dimChar;
303 }
304
305 void ComposedEdge::dumpInXfigFile(std::ostream& stream, int resolution, const Bounds& box) const
306 {
307   stream.precision(10);
308   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
309     (*iter)->dumpInXfigFile(stream,resolution,box);
310 }
311
312 Node *ComposedEdge::getEndNode() const
313 {
314   return _sub_edges.back()->getEndNode();
315 }
316
317 Node *ComposedEdge::getStartNode() const
318 {
319   return _sub_edges.front()->getStartNode();
320 }
321
322 bool ComposedEdge::changeEndNodeWith(Node *node) const
323 {
324   return _sub_edges.back()->changeEndNodeWith(node);
325 }
326
327 bool ComposedEdge::changeStartNodeWith(Node *node) const
328 {
329   return _sub_edges.front()->changeStartNodeWith(node);
330 }
331
332 void ComposedEdge::fillBounds(Bounds& output) const
333 {
334   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
335     (*iter)->fillBounds(output);
336 }
337
338 /*!
339  * \b WARNING : applies similarity \b ONLY on edges without any change on Nodes. To perform a global similarity call applyGlobalSimilarity.
340  */
341 void ComposedEdge::applySimilarity(double xBary, double yBary, double dimChar)
342 {
343   for(std::list<ElementaryEdge *>::iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
344     (*iter)->applySimilarity(xBary,yBary,dimChar);
345 }
346
347 /*!
348  * Perform Similarity transformation on all elements of this Nodes and Edges.
349  */
350 void ComposedEdge::applyGlobalSimilarity(double xBary, double yBary, double dimChar)
351 {
352   std::set<Node *> allNodes;
353   getAllNodes(allNodes);
354   for(std::set<Node *>::iterator iter=allNodes.begin();iter!=allNodes.end();iter++)
355     (*iter)->applySimilarity(xBary,yBary,dimChar);
356   for(std::list<ElementaryEdge *>::iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
357     (*iter)->applySimilarity(xBary,yBary,dimChar);
358 }
359
360 /*!
361  * Perform Similarity transformation on all elements of this Nodes and Edges on 'this' and 'other'.
362  * Nodes can be shared between 'this' and 'other'.
363  */
364 void ComposedEdge::applyGlobalSimilarity2(ComposedEdge *other, double xBary, double yBary, double dimChar)
365 {
366   std::set<Node *> allNodes;
367   getAllNodes(allNodes);
368   std::set<Node *> allNodes2;
369   other->getAllNodes(allNodes2);
370   for(std::set<Node *>::const_iterator it=allNodes2.begin();it!=allNodes2.end();it++)
371     if(allNodes.find(*it)!=allNodes.end())
372       (*it)->declareOn();
373   allNodes.insert(allNodes2.begin(),allNodes2.end());
374   for(std::set<Node *>::iterator iter=allNodes.begin();iter!=allNodes.end();iter++)
375     (*iter)->applySimilarity(xBary,yBary,dimChar);
376   for(std::list<ElementaryEdge *>::iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
377     (*iter)->applySimilarity(xBary,yBary,dimChar);
378   for(std::list<ElementaryEdge *>::iterator iter=other->_sub_edges.begin();iter!=other->_sub_edges.end();iter++)
379     (*iter)->applySimilarity(xBary,yBary,dimChar);
380 }
381
382 /*!
383  * This method append to param 'partConsidered' the part of length of subedges IN or ON.
384  * @param partConsidered INOUT param.
385  */
386 void ComposedEdge::dispatchPerimeter(double& partConsidered) const
387 {
388   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
389     {
390       TypeOfEdgeLocInPolygon loc=(*iter)->getLoc();
391       if(loc==FULL_IN_1 || loc==FULL_ON_1)
392         partConsidered+=(*iter)->getCurveLength();
393     }
394 }
395
396 /*!
397  * Idem dispatchPerimeterExcl except that when a subedge is declared as ON this subedge is counted in commonPart.
398  */
399 void ComposedEdge::dispatchPerimeterExcl(double& partConsidered, double& commonPart) const
400 {
401   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
402     {
403       TypeOfEdgeLocInPolygon loc=(*iter)->getLoc();
404       if(loc==FULL_IN_1)
405         partConsidered+=(*iter)->getCurveLength();
406       if(loc==FULL_ON_1)
407         commonPart+=(*iter)->getCurveLength();
408     }
409 }
410
411 void ComposedEdge::getAllNodes(std::set<Node *>& output) const
412 {
413   std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();
414   for(;iter!=_sub_edges.end();iter++)
415     (*iter)->getAllNodes(output);
416 }
417
418 void ComposedEdge::getBarycenter(double *bary, double& weigh) const
419 {
420   weigh=0.; bary[0]=0.; bary[1]=0.;
421   double tmp1,tmp2[2];
422   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
423     {
424       (*iter)->getBarycenter(tmp2,tmp1);
425       weigh+=tmp1;
426       bary[0]+=tmp1*tmp2[0];
427       bary[1]+=tmp1*tmp2[1];
428     }
429   bary[0]/=weigh;
430   bary[1]/=weigh;
431 }
432
433 /*!
434  * \sa ComposedEdge::isInOrOut2
435  */
436 bool ComposedEdge::isInOrOut(Node *nodeToTest) const
437 {
438   std::set< IntersectElement > inOutSwitch;
439   double ref(isInOrOutAlg(nodeToTest,inOutSwitch));
440   bool ret=false;
441   for(std::set< IntersectElement >::iterator iter4=inOutSwitch.begin();iter4!=inOutSwitch.end();iter4++)
442     {
443       if((*iter4).getVal1()<ref)
444         {
445           if((*iter4).getNodeOnly()->getLoc()==ON_1)
446             ret=!ret;
447         }
448       else
449         break;
450     }
451   return ret;
452 }
453
454 /*!
455  * This method is close to ComposedEdge::isInOrOut behaviour except that here EPSILON is taken into account to detect if it is IN or OUT.
456  * If \a nodeToTest is close to an edge in \a this, true will be returned even if it is outside informatically from \a this.
457  * This method makes the hypothesis that 
458  *
459  * \sa ComposedEdge::isInOrOut
460  */
461 bool ComposedEdge::isInOrOut2(Node *nodeToTest) const
462 {
463   std::set< IntersectElement > inOutSwitch;
464   double ref(isInOrOutAlg(nodeToTest,inOutSwitch));
465   bool ret=false;
466   for(std::set< IntersectElement >::iterator iter4=inOutSwitch.begin();iter4!=inOutSwitch.end();iter4++)
467     {
468       double val((*iter4).getVal1());
469       if(fabs(val-ref)>=QUADRATIC_PLANAR::_precision)
470         {
471           if(val<ref)
472             {
473               if((*iter4).getNodeOnly()->getLoc()==ON_1)
474                 ret=!ret;
475             }
476           else
477             break;
478         }
479       else
480         return true;
481     }
482   return ret;
483 }
484
485 double ComposedEdge::isInOrOutAlg(Node *nodeToTest, std::set< IntersectElement >& inOutSwitch) const
486 {
487   Bounds b; b.prepareForAggregation();
488   fillBounds(b);
489   if(b.nearlyWhere((*nodeToTest)[0],(*nodeToTest)[1])==OUT)
490     return false;
491   // searching for e1
492   std::set<Node *> nodes;
493   getAllNodes(nodes);
494   std::set<double> radialDistributionOfNodes;
495   std::set<Node *>::const_iterator iter;
496   for(iter=nodes.begin();iter!=nodes.end();iter++)
497     radialDistributionOfNodes.insert(nodeToTest->getSlope(*(*iter)));
498   std::vector<double> radialDistrib(radialDistributionOfNodes.begin(),radialDistributionOfNodes.end());
499   radialDistributionOfNodes.clear();
500   std::vector<double> radialDistrib2(radialDistrib.size());
501   copy(radialDistrib.begin()+1,radialDistrib.end(),radialDistrib2.begin());
502   radialDistrib2.back()=M_PI+radialDistrib.front();
503   std::vector<double> radialDistrib3(radialDistrib.size());
504   std::transform(radialDistrib2.begin(),radialDistrib2.end(),radialDistrib.begin(),radialDistrib3.begin(),std::minus<double>());
505   std::vector<double>::iterator iter3=max_element(radialDistrib3.begin(),radialDistrib3.end());
506   int i=iter3-radialDistrib3.begin();
507   // ok for e1 - Let's go.
508   EdgeInfLin *e1=new EdgeInfLin(nodeToTest,radialDistrib[i]+radialDistrib3[i]/2.);
509   double ref=e1->getCharactValue(*nodeToTest);
510   for(std::list<ElementaryEdge *>::const_iterator iter4=_sub_edges.begin();iter4!=_sub_edges.end();iter4++)
511     {
512       ElementaryEdge *val=(*iter4);
513       if(val)
514         {
515           Edge *e=val->getPtr();
516           std::auto_ptr<EdgeIntersector> intersc(Edge::BuildIntersectorWith(e1,e));
517           bool obviousNoIntersection,areOverlapped;
518           intersc->areOverlappedOrOnlyColinears(0,obviousNoIntersection,areOverlapped);
519           if(obviousNoIntersection)
520             {
521               continue;
522             }
523           if(!areOverlapped)
524             {
525               std::list< IntersectElement > listOfIntesc=intersc->getIntersectionsCharacteristicVal();
526               for(std::list< IntersectElement >::iterator iter2=listOfIntesc.begin();iter2!=listOfIntesc.end();iter2++)
527                 if((*iter2).isIncludedByBoth())
528                   inOutSwitch.insert(*iter2);
529               }
530           //if overlapped we can forget
531         }
532       else
533         throw Exception("Invalid use of ComposedEdge::isInOrOutAlg : only one level supported !");
534     }
535   e1->decrRef();
536   return ref;
537 }
538
539 /*bool ComposedEdge::isInOrOut(Node *aNodeOn, Node *nodeToTest) const
540 {
541   
542   EdgeInfLin *e1=new EdgeInfLin(aNodeOn,nodeToTest);
543   double ref=e1->getCharactValue(*nodeToTest);
544   set< IntersectElement > inOutSwitch;
545   for(vector<AbstractEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
546     {
547       ElementaryEdge *val=dynamic_cast<ElementaryEdge *>(*iter);
548       if(val)
549         {
550           Edge *e=val->getPtr();
551           auto_ptr<Intersector> intersc(Edge::buildIntersectorWith(e1,e));
552           bool obviousNoIntersection,areOverlapped;
553           intersc->areOverlappedOrOnlyColinears(0,obviousNoIntersection,areOverlapped);
554           if(obviousNoIntersection)
555             {
556               continue;
557             }
558           if(!areOverlapped)
559             {
560               list< IntersectElement > listOfIntesc=intersc->getIntersectionsCharacteristicVal();
561               for(list< IntersectElement >::iterator iter2=listOfIntesc.begin();iter2!=listOfIntesc.end();iter2++)
562                 if((*iter2).isIncludedByBoth())
563                   inOutSwitch.insert(*iter2);
564               }
565           //if overlapped we can forget
566         }
567       else
568         throw Exception("Invalid use of ComposedEdge::isInOrOut : only one level supported !");
569     }
570   e1->decrRef();
571   bool ret=false;
572   for(set< IntersectElement >::iterator iter=inOutSwitch.begin();iter!=inOutSwitch.end();iter++)
573     {
574       if((*iter).getVal1()<ref)
575         {
576           if((*iter).getNodeOnly()->getLoc()==ON_1)
577             ret=!ret;
578         }
579       else
580         break;
581     }
582   return ret;
583 }*/
584
585 bool ComposedEdge::getDirection() const
586 {
587   throw Exception("ComposedEdge::getDirection : no sense");
588 }
589
590 bool ComposedEdge::intresincEqCoarse(const Edge *other) const
591 {
592   if(_sub_edges.size()!=1)
593     return false;
594   return _sub_edges.front()->intresincEqCoarse(other);
595 }
596
597 void ComposedEdge::clearAll(std::list<ElementaryEdge *>::iterator startToDel)
598 {
599   for(std::list<ElementaryEdge *>::iterator iter=startToDel;iter!=_sub_edges.end();iter++)
600     delete (*iter);
601 }