Salome HOME
0f033d88ae760b51ea23aee107a4a164c320c3f0
[modules/med.git] / src / INTERP_KERNEL / Geometric2D / InterpKernelGeo2DComposedEdge.cxx
1 // Copyright (C) 2007-2013  CEA/DEN, EDF R&D
2 //
3 // This library is free software; you can redistribute it and/or
4 // modify it under the terms of the GNU Lesser General Public
5 // License as published by the Free Software Foundation; either
6 // version 2.1 of the License.
7 //
8 // This library is distributed in the hope that it will be useful,
9 // but WITHOUT ANY WARRANTY; without even the implied warranty of
10 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11 // Lesser General Public License for more details.
12 //
13 // You should have received a copy of the GNU Lesser General Public
14 // License along with this library; if not, write to the Free Software
15 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
16 //
17 // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
18 //
19 // Author : Anthony Geay (CEA/DEN)
20
21 #include "InterpKernelGeo2DComposedEdge.hxx"
22 #include "InterpKernelGeo2DElementaryEdge.hxx"
23 #include "InterpKernelGeo2DEdgeArcCircle.hxx"
24 #include "InterpKernelGeo2DEdgeInfLin.hxx"
25 #include "InterpKernelException.hxx"
26
27 #include <algorithm>
28 #include <memory>
29 #include <iterator>
30 #include <set>
31
32 using namespace INTERP_KERNEL;
33
34 ComposedEdge::ComposedEdge(const ComposedEdge& other)
35 {
36   for(std::list<ElementaryEdge *>::const_iterator iter=other._sub_edges.begin();iter!=other._sub_edges.end();iter++)
37     _sub_edges.push_back((*iter)->clone());
38 }
39
40 ComposedEdge::~ComposedEdge()
41 {
42   clearAll(_sub_edges.begin());
43 }
44
45 void ComposedEdge::setValueAt(int i, Edge *e, bool direction)
46 {
47   std::list<ElementaryEdge*>::iterator it=_sub_edges.begin();
48   for(int j=0;j<i;j++)
49     it++;
50   delete *it;
51   *it=new ElementaryEdge(e,direction);
52 }
53
54 struct AbsEdgeCmp
55 {
56   AbsEdgeCmp(ElementaryEdge *b):_b1(b) { }
57   bool operator()(ElementaryEdge *a) { return a->getPtr()==_b1->getPtr();}
58
59   ElementaryEdge *_b1;
60 };
61
62 double ComposedEdge::getCommonLengthWith(const ComposedEdge& other) const
63 {
64   double ret=0.;
65   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
66     {
67       if(find_if(other._sub_edges.begin(),other._sub_edges.end(),AbsEdgeCmp(*iter))!=other._sub_edges.end())
68         {
69           const ElementaryEdge *tmp=static_cast<const ElementaryEdge *>(*iter);
70           ret+=tmp->getCurveLength();
71         }
72     }
73   return ret;
74 }
75
76 void ComposedEdge::clear()
77 {
78   clearAll(_sub_edges.begin());
79   _sub_edges.clear();
80 }
81
82 void ComposedEdge::pushBack(Edge *edge, bool direction)
83 {
84   _sub_edges.push_back(new ElementaryEdge(edge,direction));
85 }
86
87 void ComposedEdge::pushBack(ElementaryEdge *elem)
88 {
89   _sub_edges.push_back(elem);
90 }
91
92 void ComposedEdge::pushBack(ComposedEdge *elem)
93 {
94   std::list<ElementaryEdge *> *elemsOfElem=elem->getListBehind();
95   _sub_edges.insert(_sub_edges.end(),elemsOfElem->begin(),elemsOfElem->end());
96 }
97
98 ElementaryEdge *ComposedEdge::operator[](int i) const
99 {
100   std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();
101   for(int ii=0;ii<i;ii++)
102     iter++;
103   return *iter;
104 }
105
106 void ComposedEdge::reverse()
107 {
108   _sub_edges.reverse();
109   for(std::list<ElementaryEdge *>::iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
110     (*iter)->reverse();
111 }
112
113 bool ComposedEdge::presenceOfOn() const
114 {
115   bool ret=false;
116   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end() && !ret;iter++)
117     ret=((*iter)->getLoc()==FULL_ON_1);
118   return ret;
119 }
120
121 bool ComposedEdge::presenceOfQuadraticEdge() const
122 {
123   bool ret=false;
124   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end() && !ret;iter++)
125     {
126       Edge *e=(*iter)->getPtr();
127       if(e)
128         ret=dynamic_cast<EdgeArcCircle*>(e)!=0;
129     }
130   return ret;
131 }
132
133 void ComposedEdge::initLocations() const
134 {
135   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
136     (*iter)->initLocations();
137 }
138
139 /**
140  * Reset the status of all edges (OUT, IN, ON) because they were potentially assignated
141  * by the previous candidate processing.
142  */
143 void ComposedEdge::initLocationsWithOther(const ComposedEdge& other) const
144 {
145   std::set<Edge *> s1,s2;
146   for(std::list<ElementaryEdge *>::const_iterator it1=_sub_edges.begin();it1!=_sub_edges.end();it1++)
147     s1.insert((*it1)->getPtr());
148   for(std::list<ElementaryEdge *>::const_iterator it2=other._sub_edges.begin();it2!=other._sub_edges.end();it2++)
149     s2.insert((*it2)->getPtr());
150   initLocations();
151   other.initLocations();
152   std::vector<Edge *> s3;
153   std::set_intersection(s1.begin(),s1.end(),s2.begin(),s2.end(),std::back_insert_iterator< std::vector<Edge *> >(s3));
154   for(std::vector<Edge *>::const_iterator it3=s3.begin();it3!=s3.end();it3++)
155     (*it3)->declareOn();
156 }
157
158 ComposedEdge *ComposedEdge::clone() const
159 {
160   return new ComposedEdge(*this);
161 }
162
163 bool ComposedEdge::isNodeIn(Node *n) const
164 {
165   bool ret=false;
166   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end() && !ret;iter++)
167     ret=(*iter)->isNodeIn(n);
168   return ret;
169 }
170
171 /*!
172  * This method computes the area of 'this'.
173  * By definition :
174  * \f[
175  * Area=\int_{Polygon} dS
176  * \f]
177  * Thanks to Green's theorem we have.
178  * \f[
179  * \int_{Polygon} x \cdot dS=\sum_{0 \leq i < nb of edges} -\int_{Edge_{i}}ydx=\sum_{0 \leq i < nb of edges} AreaOfZone_{Edge_{i}}
180  * \f]
181  * Where \f$ AreaOfZone_{i} \f$ is computed virtually by INTERP_KERNEL::Edge::getAreaOfZone with following formula :
182  * \f[
183  * AreaOfZone_{i}=\int_{Edge_{i}} -ydx
184  * \f]
185  */
186 double ComposedEdge::getArea() const
187 {
188   double ret=0.;
189   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
190     ret+=(*iter)->getAreaOfZone();
191   return ret;
192 }
193
194 double ComposedEdge::getPerimeter() const
195 {
196   double ret=0.;
197   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
198     ret+=(*iter)->getCurveLength();
199   return ret;
200 }
201
202 double ComposedEdge::getHydraulicDiameter() const
203 {
204   return 4*fabs(getArea())/getPerimeter();
205 }
206
207 /*!
208  * This method computes barycenter of 'this' by returning xG in bary[0] and yG in bary[1].
209  * By definition :
210  * \f[
211  * Area \cdot x_{G}=\int_{Polygon} x \cdot dS
212  * \f]
213  * \f[
214  * Area \cdot y_{G}=\int_{Polygon} y \cdot dS
215  * \f]
216  * Thanks to Green's theorem we have.
217  * \f[
218  * \int_{Polygon} x \cdot dS=\sum_{0 \leq i < nb of edges} -\int_{Edge_{i}}yxdx
219  * \f]
220  * \f[
221  * \int_{Polygon} y \cdot dS=\sum_{0 \leq i < nb of edges} -\int_{Edge_{i}}\frac{y^{2}}{2}dx
222  * \f]
223  * Area is computed using the same principle than described in INTERP_KERNEL::ComposedEdge::getArea method.
224  * \f$ -\int_{Edge_{i}}yxdx \f$ and \f$ -\int_{Edge_{i}}\frac{y^{2}}{2}dx \f$ are computed virtually with INTERP_KERNEL::Edge::getBarycenterOfZone.
225  */
226 void ComposedEdge::getBarycenter(double *bary) const
227 {
228   bary[0]=0.;
229   bary[1]=0.;
230   double area=0.;
231   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
232     {
233       (*iter)->getBarycenterOfZone(bary);
234       area+=(*iter)->getAreaOfZone();
235     }
236   bary[0]/=area;
237   bary[1]/=area;
238 }
239
240 /*!
241  * Idem ComposedEdge::getBarycenter except that the special case where _sub_edges==1 is dealt here.
242  */
243 void ComposedEdge::getBarycenterGeneral(double *bary) const
244 {
245   if(_sub_edges.empty())
246     throw INTERP_KERNEL::Exception("ComposedEdge::getBarycenterGeneral called on an empty polygon !");
247   if(_sub_edges.size()>2)
248     return getBarycenter(bary);
249   double w;
250   _sub_edges.back()->getBarycenter(bary,w);
251 }
252
253 double ComposedEdge::normalizeMe(double& xBary, double& yBary)
254 {
255   Bounds b;
256   b.prepareForAggregation();
257   fillBounds(b);
258   double dimChar=b.getCaracteristicDim();
259   b.getBarycenter(xBary,yBary);
260   applyGlobalSimilarity(xBary,yBary,dimChar);
261   return dimChar;
262 }
263
264 double ComposedEdge::normalize(ComposedEdge *other, double& xBary, double& yBary)
265 {
266   Bounds b;
267   b.prepareForAggregation();
268   fillBounds(b); 
269   other->fillBounds(b);
270   double dimChar=b.getCaracteristicDim();
271   b.getBarycenter(xBary,yBary);
272   applyGlobalSimilarity(xBary,yBary,dimChar);
273   other->applyGlobalSimilarity(xBary,yBary,dimChar);
274   return dimChar;
275 }
276
277 /*!
278  * This method operates the opposite operation than ComposedEdge::applyGlobalSimilarity.
279  */
280 void ComposedEdge::unApplyGlobalSimilarityExt(ComposedEdge& other, double xBary, double yBary, double fact)
281 {
282   std::set<Node *> allNodes;
283   getAllNodes(allNodes);
284   other.getAllNodes(allNodes);
285   for(std::set<Node *>::iterator iter=allNodes.begin();iter!=allNodes.end();iter++)
286     (*iter)->unApplySimilarity(xBary,yBary,fact);
287
288   // [Adrien] - same issue as in applyGlobalSimilarity() - see comments there
289   std::set<Edge *> allEdges;
290   for(std::list<ElementaryEdge *>::iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
291     allEdges.insert((*iter)->getPtr());
292   for(std::list<ElementaryEdge *>::iterator iter=other._sub_edges.begin();iter!=other._sub_edges.end();iter++)
293     allEdges.insert((*iter)->getPtr());
294   for(std::set<Edge *>::iterator iter = allEdges.begin();iter != allEdges.end();iter++)
295     (*iter)->unApplySimilarity(xBary,yBary,fact);
296 }
297
298 double ComposedEdge::normalizeExt(ComposedEdge *other, double& xBary, double& yBary)
299 {
300   Bounds b;
301   b.prepareForAggregation();
302   fillBounds(b); 
303   other->fillBounds(b);
304   double dimChar=b.getCaracteristicDim();
305   b.getBarycenter(xBary,yBary);
306   applyGlobalSimilarity2(other,xBary,yBary,dimChar);
307   return dimChar;
308 }
309
310 void ComposedEdge::dumpInXfigFile(std::ostream& stream, int resolution, const Bounds& box) const
311 {
312   stream.precision(10);
313   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
314     (*iter)->dumpInXfigFile(stream,resolution,box);
315 }
316
317 Node *ComposedEdge::getEndNode() const
318 {
319   return _sub_edges.back()->getEndNode();
320 }
321
322 Node *ComposedEdge::getStartNode() const
323 {
324   return _sub_edges.front()->getStartNode();
325 }
326
327 bool ComposedEdge::changeEndNodeWith(Node *node) const
328 {
329   return _sub_edges.back()->changeEndNodeWith(node);
330 }
331
332 bool ComposedEdge::changeStartNodeWith(Node *node) const
333 {
334   return _sub_edges.front()->changeStartNodeWith(node);
335 }
336
337 void ComposedEdge::fillBounds(Bounds& output) const
338 {
339   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
340     (*iter)->fillBounds(output);
341 }
342
343 /*!
344  * \b WARNING : applies similarity \b ONLY on edges without any change on Nodes. To perform a global similarity call applyGlobalSimilarity.
345  */
346 void ComposedEdge::applySimilarity(double xBary, double yBary, double dimChar)
347 {
348   for(std::list<ElementaryEdge *>::iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
349     (*iter)->applySimilarity(xBary,yBary,dimChar);
350 }
351
352 /*!
353  * Perform Similarity transformation on all elements of this Nodes and Edges.
354  */
355 void ComposedEdge::applyGlobalSimilarity(double xBary, double yBary, double dimChar)
356 {
357   std::set<Node *> allNodes;
358   getAllNodes(allNodes);
359   for(std::set<Node *>::iterator iter=allNodes.begin();iter!=allNodes.end();iter++)
360     (*iter)->applySimilarity(xBary,yBary,dimChar);
361   for(std::list<ElementaryEdge *>::iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
362     (*iter)->applySimilarity(xBary,yBary,dimChar);
363 }
364
365 /*!
366  * Perform Similarity transformation on all elements of this Nodes and Edges on 'this' and 'other'.
367  * Nodes can be shared between 'this' and 'other'.
368  */
369 void ComposedEdge::applyGlobalSimilarity2(ComposedEdge *other, double xBary, double yBary, double dimChar)
370 {
371   std::set<Node *> allNodes;
372   getAllNodes(allNodes);
373   std::set<Node *> allNodes2;
374   other->getAllNodes(allNodes2);
375   for(std::set<Node *>::const_iterator it=allNodes2.begin();it!=allNodes2.end();it++)
376     if(allNodes.find(*it)!=allNodes.end())
377       (*it)->declareOn();
378   allNodes.insert(allNodes2.begin(),allNodes2.end());
379   for(std::set<Node *>::iterator iter=allNodes.begin();iter!=allNodes.end();iter++)
380     (*iter)->applySimilarity(xBary,yBary,dimChar);
381   // [Adrien] many ElementaryEdge might reference the same Edge* - ensure we don'y scale twice!
382   std::set<Edge *> allEdges;
383   for(std::list<ElementaryEdge *>::iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
384     allEdges.insert((*iter)->getPtr());
385   for(std::list<ElementaryEdge *>::iterator iter=other->_sub_edges.begin();iter!=other->_sub_edges.end();iter++)
386     allEdges.insert((*iter)->getPtr());
387   // Similarity only on set of unique underlying edges:
388   for(std::set<Edge *>::iterator iter = allEdges.begin();iter != allEdges.end();iter++)
389       (*iter)->applySimilarity(xBary,yBary,dimChar);
390 }
391
392 /*!
393  * This method append to param 'partConsidered' the part of length of subedges IN or ON.
394  * @param partConsidered INOUT param.
395  */
396 void ComposedEdge::dispatchPerimeter(double& partConsidered) const
397 {
398   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
399     {
400       TypeOfEdgeLocInPolygon loc=(*iter)->getLoc();
401       if(loc==FULL_IN_1 || loc==FULL_ON_1)
402         partConsidered+=(*iter)->getCurveLength();
403     }
404 }
405
406 /*!
407  * Idem dispatchPerimeterExcl except that when a subedge is declared as ON this subedge is counted in commonPart.
408  */
409 void ComposedEdge::dispatchPerimeterExcl(double& partConsidered, double& commonPart) const
410 {
411   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
412     {
413       TypeOfEdgeLocInPolygon loc=(*iter)->getLoc();
414       if(loc==FULL_IN_1)
415         partConsidered+=(*iter)->getCurveLength();
416       if(loc==FULL_ON_1)
417         commonPart+=(*iter)->getCurveLength();
418     }
419 }
420
421 void ComposedEdge::getAllNodes(std::set<Node *>& output) const
422 {
423   std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();
424   for(;iter!=_sub_edges.end();iter++)
425     (*iter)->getAllNodes(output);
426 }
427
428 void ComposedEdge::getBarycenter(double *bary, double& weigh) const
429 {
430   weigh=0.; bary[0]=0.; bary[1]=0.;
431   double tmp1,tmp2[2];
432   for(std::list<ElementaryEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
433     {
434       (*iter)->getBarycenter(tmp2,tmp1);
435       weigh+=tmp1;
436       bary[0]+=tmp1*tmp2[0];
437       bary[1]+=tmp1*tmp2[1];
438     }
439   bary[0]/=weigh;
440   bary[1]/=weigh;
441 }
442
443 /*!
444  * This method makes the hypothesis that \a nodeToTest can be either IN or OUT.
445  * 
446  * \sa ComposedEdge::isInOrOut2
447  */
448 bool ComposedEdge::isInOrOut(Node *nodeToTest) const
449 {
450   Bounds b; b.prepareForAggregation();
451   fillBounds(b);
452   if(b.nearlyWhere((*nodeToTest)[0],(*nodeToTest)[1])==OUT)
453     return false;
454   std::set< IntersectElement > inOutSwitch;
455   double ref(isInOrOutAlg(nodeToTest,inOutSwitch));
456   bool ret(false);
457   for(std::set< IntersectElement >::iterator iter4=inOutSwitch.begin();iter4!=inOutSwitch.end();iter4++)
458     {
459       if((*iter4).getVal1()<ref)
460         {
461           if((*iter4).getNodeOnly()->getLoc()==ON_1)
462             ret=!ret;
463         }
464       else
465         break;
466     }
467   return ret;
468 }
469
470 /*!
471  * This method is close to ComposedEdge::isInOrOut behaviour except that here EPSILON is taken into account to detect if it is IN or OUT.
472  * If \a nodeToTest is close to an edge in \a this, true will be returned even if it is outside informatically from \a this.
473  *
474  * \sa ComposedEdge::isInOrOut
475  */
476 bool ComposedEdge::isInOrOut2(Node *nodeToTest) const
477 {
478   std::set< IntersectElement > inOutSwitch;
479   double ref(isInOrOutAlg(nodeToTest,inOutSwitch));
480   bool ret(false);
481   for(std::set< IntersectElement >::iterator iter4=inOutSwitch.begin();iter4!=inOutSwitch.end();iter4++)
482     {
483       double val((*iter4).getVal1());
484       if(fabs(val-ref)>=QUADRATIC_PLANAR::_precision)
485         {
486           if(val<ref)
487             {
488               if((*iter4).getNodeOnly()->getLoc()==ON_1)
489                 ret=!ret;
490             }
491           else
492             break;
493         }
494       else
495         return true;
496     }
497   return ret;
498 }
499
500 double ComposedEdge::isInOrOutAlg(Node *nodeToTest, std::set< IntersectElement >& inOutSwitch) const
501 {
502   // searching for e1
503   std::set<Node *> nodes;
504   getAllNodes(nodes);
505   std::set<double> radialDistributionOfNodes;
506   std::set<Node *>::const_iterator iter;
507   for(iter=nodes.begin();iter!=nodes.end();iter++)
508     radialDistributionOfNodes.insert(nodeToTest->getSlope(*(*iter)));
509   std::vector<double> radialDistrib(radialDistributionOfNodes.begin(),radialDistributionOfNodes.end());
510   radialDistributionOfNodes.clear();
511   std::vector<double> radialDistrib2(radialDistrib.size());
512   copy(radialDistrib.begin()+1,radialDistrib.end(),radialDistrib2.begin());
513   radialDistrib2.back()=M_PI+radialDistrib.front();
514   std::vector<double> radialDistrib3(radialDistrib.size());
515   std::transform(radialDistrib2.begin(),radialDistrib2.end(),radialDistrib.begin(),radialDistrib3.begin(),std::minus<double>());
516   std::vector<double>::iterator iter3=max_element(radialDistrib3.begin(),radialDistrib3.end());
517   int i=iter3-radialDistrib3.begin();
518   // ok for e1 - Let's go.
519   EdgeInfLin *e1=new EdgeInfLin(nodeToTest,radialDistrib[i]+radialDistrib3[i]/2.);
520   double ref=e1->getCharactValue(*nodeToTest);
521   for(std::list<ElementaryEdge *>::const_iterator iter4=_sub_edges.begin();iter4!=_sub_edges.end();iter4++)
522     {
523       ElementaryEdge *val=(*iter4);
524       if(val)
525         {
526           Edge *e=val->getPtr();
527           std::auto_ptr<EdgeIntersector> intersc(Edge::BuildIntersectorWith(e1,e));
528           bool obviousNoIntersection,areOverlapped;
529           intersc->areOverlappedOrOnlyColinears(0,obviousNoIntersection,areOverlapped);  // first parameter never used
530           if(obviousNoIntersection)
531             {
532               continue;
533             }
534           if(!areOverlapped)
535             {
536               std::list< IntersectElement > listOfIntesc=intersc->getIntersectionsCharacteristicVal();
537               for(std::list< IntersectElement >::iterator iter2=listOfIntesc.begin();iter2!=listOfIntesc.end();iter2++)
538                 if((*iter2).isIncludedByBoth())
539                   inOutSwitch.insert(*iter2);
540               }
541           //if overlapped we can forget
542         }
543       else
544         throw Exception("Invalid use of ComposedEdge::isInOrOutAlg : only one level supported !");
545     }
546   e1->decrRef();
547   return ref;
548 }
549
550 /*bool ComposedEdge::isInOrOut(Node *aNodeOn, Node *nodeToTest) const
551 {
552   
553   EdgeInfLin *e1=new EdgeInfLin(aNodeOn,nodeToTest);
554   double ref=e1->getCharactValue(*nodeToTest);
555   set< IntersectElement > inOutSwitch;
556   for(vector<AbstractEdge *>::const_iterator iter=_sub_edges.begin();iter!=_sub_edges.end();iter++)
557     {
558       ElementaryEdge *val=dynamic_cast<ElementaryEdge *>(*iter);
559       if(val)
560         {
561           Edge *e=val->getPtr();
562           auto_ptr<Intersector> intersc(Edge::buildIntersectorWith(e1,e));
563           bool obviousNoIntersection,areOverlapped;
564           intersc->areOverlappedOrOnlyColinears(0,obviousNoIntersection,areOverlapped);
565           if(obviousNoIntersection)
566             {
567               continue;
568             }
569           if(!areOverlapped)
570             {
571               list< IntersectElement > listOfIntesc=intersc->getIntersectionsCharacteristicVal();
572               for(list< IntersectElement >::iterator iter2=listOfIntesc.begin();iter2!=listOfIntesc.end();iter2++)
573                 if((*iter2).isIncludedByBoth())
574                   inOutSwitch.insert(*iter2);
575               }
576           //if overlapped we can forget
577         }
578       else
579         throw Exception("Invalid use of ComposedEdge::isInOrOut : only one level supported !");
580     }
581   e1->decrRef();
582   bool ret=false;
583   for(set< IntersectElement >::iterator iter=inOutSwitch.begin();iter!=inOutSwitch.end();iter++)
584     {
585       if((*iter).getVal1()<ref)
586         {
587           if((*iter).getNodeOnly()->getLoc()==ON_1)
588             ret=!ret;
589         }
590       else
591         break;
592     }
593   return ret;
594 }*/
595
596 bool ComposedEdge::getDirection() const
597 {
598   throw Exception("ComposedEdge::getDirection : no sense");
599 }
600
601 bool ComposedEdge::intresincEqCoarse(const Edge *other) const
602 {
603   if(_sub_edges.size()!=1)
604     return false;
605   return _sub_edges.front()->intresincEqCoarse(other);
606 }
607
608 void ComposedEdge::clearAll(std::list<ElementaryEdge *>::iterator startToDel)
609 {
610   for(std::list<ElementaryEdge *>::iterator iter=startToDel;iter!=_sub_edges.end();iter++)
611     delete (*iter);
612 }