1 // Copyright (C) 2007-2024 CEA, EDF
3 // This library is free software; you can redistribute it and/or
4 // modify it under the terms of the GNU Lesser General Public
5 // License as published by the Free Software Foundation; either
6 // version 2.1 of the License, or (at your option) any later version.
8 // This library is distributed in the hope that it will be useful,
9 // but WITHOUT ANY WARRANTY; without even the implied warranty of
10 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 // Lesser General Public License for more details.
13 // You should have received a copy of the GNU Lesser General Public
14 // License along with this library; if not, write to the Free Software
15 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
19 // Author : Anthony Geay (CEA/DEN)
23 #include "CurveIntersector.hxx"
24 #include "InterpolationUtils.hxx"
25 #include "PointLocatorAlgos.txx"
29 namespace INTERP_KERNEL
31 template<class MyMeshType, class MyMatrix>
32 CurveIntersector<MyMeshType,MyMatrix>
33 ::CurveIntersector(const MyMeshType& meshT, const MyMeshType& meshS,
34 double precision, double tolerance, double medianLine, int printLevel):
37 _tolerance(tolerance),
38 _precision(precision),
39 _median_line(medianLine),
40 _print_level(printLevel)
42 if ( SPACEDIM != 1 && SPACEDIM != 2 )
43 throw Exception("CurveIntersector(): space dimension of mesh must be 1 or 2");
45 throw Exception("CurveIntersector(): mesh dimension must be 1");
47 _connectT = meshT.getConnectivityPtr();
48 _connectS = meshS.getConnectivityPtr();
49 _connIndexT = meshT.getConnectivityIndexPtr();
50 _connIndexS = meshS.getConnectivityIndexPtr();
51 _coordsT = meshT.getCoordinatesPtr();
52 _coordsS = meshS.getCoordinatesPtr();
55 template<class MyMeshType, class MyMatrix>
56 CurveIntersector<MyMeshType,MyMatrix>::~CurveIntersector()
60 //================================================================================
62 \brief creates the bounding boxes for all the cells of mesh \a mesh
64 \param mesh structure pointing to the mesh
65 \param bbox vector containing the bounding boxes
67 //================================================================================
69 template<class MyMeshType, class MyMatrix>
70 void CurveIntersector<MyMeshType,MyMatrix>::createBoundingBoxes (const MyMeshType& mesh,
71 std::vector<double>& bbox)
73 long nbelems = mesh.getNumberOfElements();
74 bbox.resize(2*SPACEDIM* nbelems);
75 const double* coords = mesh.getCoordinatesPtr();
76 const ConnType* conn = mesh.getConnectivityPtr();
77 const ConnType* conn_index = mesh.getConnectivityIndexPtr();
79 for(long icell=0; icell<nbelems; icell++)
81 ConnType nb_nodes_per_elem = conn_index[icell+1]-conn_index[icell];
82 //initializing bounding box limits
83 for(int idim=0; idim<SPACEDIM; idim++)
85 bbox[2*SPACEDIM*ibox+2*idim] = std::numeric_limits<double>::max();
86 bbox[2*SPACEDIM*ibox+2*idim+1] = -std::numeric_limits<double>::max();
88 //updating the bounding box with each node of the element
89 for (ConnType j=0; j<nb_nodes_per_elem; j++)
91 const double* coord_node = coords +
92 SPACEDIM*OTT<ConnType,numPol>
93 ::coo2C(conn[OTT<ConnType,numPol>::conn2C(conn_index[icell]+j)]);
94 for(int idim=0; idim<SPACEDIM; idim++)
96 double x = *(coord_node+idim);
97 bbox[ibox*2*SPACEDIM + 2*idim] =
98 ( bbox[ibox*2*SPACEDIM + 2*idim] < x ) ? bbox[ibox*2*SPACEDIM + 2*idim] : x;
99 bbox[ibox*2*SPACEDIM + 2*idim+1] =
100 ( bbox[ibox*2*SPACEDIM + 2*idim+1] > x ) ? bbox[ibox*2*SPACEDIM + 2*idim+1] : x;
108 Computes the bounding box of a given element. iP in numPol mode.
110 template<class MyMeshType, class MyMatrix>
111 void CurveIntersector<MyMeshType,MyMatrix>::getElemBB (double* bb,
112 const MyMeshType& mesh,
116 const double* coords = mesh.getCoordinatesPtr();
117 const ConnType* conn_index = mesh.getConnectivityIndexPtr();
118 const ConnType* conn = mesh.getConnectivityPtr();
119 //initializing bounding box limits
120 for(int idim=0; idim<SPACEDIM; idim++)
122 bb[2*idim ] = std::numeric_limits<double>::max();
123 bb[2*idim+1] = -std::numeric_limits<double>::max();
126 for (ConnType i=0; i<nb_nodes; i++)
128 //MN: iP= cell index, not node index, use of connectivity array ?
129 const double* coord_node = coords +
130 SPACEDIM*(OTT<ConnType,numPol>::coo2C(conn[OTT<ConnType,numPol>::conn2C(conn_index[OTT<ConnType,numPol>::ind2C(iP)]+i)]));
131 for(int idim=0; idim<SPACEDIM; idim++)
133 double x = *(coord_node+idim);
134 bb[2*idim ] = (x<bb[2*idim ]) ? x : bb[2*idim ];
135 bb[2*idim+1] = (x>bb[2*idim+1]) ? x : bb[2*idim+1];
141 * \param [in] startOfSeg - input coming from intersectSegments or intersectSegmentsInternal
142 * \param [in] endOfSeg - input coming from intersectSegments or intersectSegmentsInternal. NO Assume about sort
143 * \param [in] pt - position of point that the method computes the bary coords for.
145 template<class MyMeshType, class MyMatrix>
146 void CurveIntersector<MyMeshType,MyMatrix>::ComputeBaryCoordsOf(double startOfSeg, double endOfSeg, double pt, double& startPos, double& endPos)
148 double deno(endOfSeg-startOfSeg);
149 startPos = (endOfSeg-pt)/deno;
150 startPos = std::max(startPos,0.); startPos = std::min(startPos,1.);
155 * @param icellT id in target mesh in format of MyMeshType.
156 * @param coordsT output val that stores coordinates of the target cell
157 * automatically resized to the right length.
158 * @return true if segment is quadratic and in this case coordinates of medium node
159 * are placed in the middle of coordsT
161 template<class MyMeshType, class MyMatrix>
162 bool CurveIntersector<MyMeshType,MyMatrix>::getRealTargetCoordinates(ConnType icellT, std::vector<double>& coordsT) const
164 ConnType nbNodesT(_connIndexT[OTT<ConnType,numPol>::ind2C(icellT)+1] - _connIndexT[OTT<ConnType,numPol>::ind2C(icellT)]);
165 coordsT.resize(SPACEDIM*nbNodesT);
166 for (ConnType iT=0; iT<nbNodesT; iT++)
168 for(int idim=0; idim<SPACEDIM; idim++)
170 coordsT[SPACEDIM*iT+idim] =
171 _coordsT[SPACEDIM*OTT<ConnType,numPol>::coo2C(_connectT[OTT<ConnType,numPol>::conn2C(_connIndexT[OTT<ConnType,numPol>::ind2C(icellT)]+iT)])+idim];
176 for(int idim=0; idim<SPACEDIM; idim++)
177 std::swap( coordsT[SPACEDIM*1+idim], coordsT[SPACEDIM*2+idim]);
183 template<class MyMeshType, class MyMatrix>
184 typename MyMeshType::MyConnType CurveIntersector<MyMeshType,MyMatrix>::getNodeIdOfTargetCellAt(ConnType icellT, ConnType nodeIdInCellT) const
186 ConnType nbNodesT(_connIndexT[OTT<ConnType,numPol>::ind2C(icellT)+1] - _connIndexT[OTT<ConnType,numPol>::ind2C(icellT)]);
187 if(nodeIdInCellT>=0 && nodeIdInCellT<nbNodesT)
188 return OTT<ConnType,numPol>::coo2C(_connectT[OTT<ConnType,numPol>::conn2C(_connIndexT[OTT<ConnType,numPol>::ind2C(icellT)]+nodeIdInCellT)]);
190 throw Exception("getNodeIdOfTargetCellAt : error in nodeId in cell");
194 * @param icellS id in source mesh in format of MyMeshType.
195 * @param coordsS output val that stores coordinates of the source cell automatically resized to the right length.
196 * @return true if segment is quadratic and in this case coordinates of medium node
197 * are placed in the middle of coordsS
199 template<class MyMeshType, class MyMatrix>
200 bool CurveIntersector<MyMeshType,MyMatrix>::getRealSourceCoordinates(ConnType icellS, std::vector<double>& coordsS) const
202 ConnType nbNodesS = _connIndexS[OTT<ConnType,numPol>::ind2C(icellS)+1] - _connIndexS[OTT<ConnType,numPol>::ind2C(icellS)];
203 coordsS.resize(SPACEDIM*nbNodesS);
204 for(ConnType iS=0; iS<nbNodesS; iS++)
206 for(int idim=0; idim<SPACEDIM; idim++)
208 coordsS[SPACEDIM*iS+idim] =
209 _coordsS[SPACEDIM*OTT<ConnType,numPol>::coo2C(_connectS[OTT<ConnType,numPol>::conn2C(_connIndexS[OTT<ConnType,numPol>::ind2C(icellS)]+iS)])+idim];
214 for(int idim=0; idim<SPACEDIM; idim++)
215 std::swap( coordsS[SPACEDIM*1+idim], coordsS[SPACEDIM*2+idim]);
221 template<class MyMeshType, class MyMatrix>
222 typename MyMeshType::MyConnType CurveIntersector<MyMeshType,MyMatrix>::getNodeIdOfSourceCellAt(ConnType icellS, ConnType nodeIdInCellS) const
224 ConnType nbNodesS(_connIndexS[OTT<ConnType,numPol>::ind2C(icellS)+1] - _connIndexS[OTT<ConnType,numPol>::ind2C(icellS)]);
225 if(nodeIdInCellS>=0 && nodeIdInCellS<nbNodesS)
226 return OTT<ConnType,numPol>::coo2C(_connectS[OTT<ConnType,numPol>::conn2C(_connIndexS[OTT<ConnType,numPol>::ind2C(icellS)]+nodeIdInCellS)]);
228 throw Exception("getNodeIdOfSourceCellAt : error in nodeId in cell");
232 * \brief Return dual segments of given segment
233 * \param icell - given segment in C mode
235 * \param segments - dual segments
237 template<class MyMeshType, class MyMatrix>
238 void CurveIntersector<MyMeshType,MyMatrix>::getDualSegments(ConnType icell,
239 const MyMeshType& mesh,
240 std::vector<TDualSegment>& segments)
242 // get coordinates of cell nodes
244 std::vector<double> ncoords;
245 std::vector<ConnType> nodeIds;
247 const ConnType *connect = mesh.getConnectivityPtr();
248 const ConnType *connIndex = mesh.getConnectivityIndexPtr();
249 const double *coords = mesh.getCoordinatesPtr();
251 nbNodes = connIndex[icell+1] - connIndex[icell];
253 ncoords.resize(SPACEDIM*nbNodes);
254 nodeIds.resize(nbNodes);
256 for(ConnType i=0; i<nbNodes; i++)
257 for(int idim=0; idim<SPACEDIM; idim++)
259 nodeIds[i] = connect[OTT<ConnType,numPol>::conn2C(connIndex[OTT<ConnType,numPol>::ind2C(icell)]+i)];
260 ncoords[SPACEDIM*i+idim] = coords[SPACEDIM*OTT<ConnType,numPol>::coo2C(nodeIds[i])+idim];
262 if ( nbNodes > 2 ) // quadratic segment, put medium node in the middle
264 for(int idim=0; idim<SPACEDIM; idim++)
265 std::swap( ncoords[SPACEDIM*1+idim], ncoords[SPACEDIM*2+idim]);
266 std::swap( nodeIds[1], nodeIds[2] );
272 segments.reserve( 2*nbNodes );
273 for(ConnType i=0; i<nbNodes-1; i++)
275 segments.push_back(TDualSegment());
276 TDualSegment& seg1 = segments.back();
277 segments.push_back(TDualSegment());
278 TDualSegment& seg2 = segments.back();
280 seg1._nodeId = nodeIds[i];
281 seg2._nodeId = nodeIds[i+1];
283 seg1._coords.resize( SPACEDIM * 2 );
284 seg2._coords.resize( SPACEDIM * 2 );
286 for(int idim=0; idim<SPACEDIM; idim++)
288 double c1 = ncoords[SPACEDIM*i+idim];
289 double c2 = ncoords[SPACEDIM*(i+1)+idim];
290 double m = 0.5 * ( c1 + c2 );
291 seg1._coords[ idim ] = c1;
292 seg1._coords[ SPACEDIM + idim ] = m;
293 seg2._coords[ idim ] = m;
294 seg2._coords[ SPACEDIM + idim ] = c2;
299 template<class MyMeshType, class MyMatrix>
300 bool CurveIntersector<MyMeshType,MyMatrix>::projectionThis(const double *coordsT, const double *coordsS, double& xs0, double& xs1, double& xt) const
308 xs0 = coordsS[0]; xs1 = coordsS[1];
313 const double *s0(coordsS),*s1(coordsS + 2);
314 double s01[2] = { s1[X]-s0[X], s1[Y]-s0[Y] }; // src segment direction
315 double sSize = sqrt( s01[X]*s01[X] + s01[Y]*s01[Y] ); // src segment size
316 if( sSize < this->_precision )
318 s01[X] /= sSize; s01[Y] /= sSize; // normalize s01
319 double t[2] = { coordsT[X]-s0[X], coordsT[Y]-s0[Y] };
320 xs0 = 0. ; xs1 = sSize; xt = s01[X]*t[X] + s01[Y]*t[Y];
321 double proj_t_on_s[2] = { s0[X]+xt*s01[X], s0[Y]+xt*s01[Y] };
322 double dist_t_s_vect[2] = { coordsT[X]-proj_t_on_s[X], coordsT[Y]-proj_t_on_s[Y] };
323 double dist_t_s = sqrt( dist_t_s_vect[X]*dist_t_s_vect[X]+dist_t_s_vect[Y]*dist_t_s_vect[Y] );
324 return dist_t_s < this->_precision;
327 throw Exception("CurveIntersector::projectionThis : space dimension of mesh must be 1 or 2");
331 template<class MyMeshType, class MyMatrix>
332 bool CurveIntersector<MyMeshType,MyMatrix>::projectionThis(const double *coordsT, const double *coordsS,
333 double& xs0, double& xs1, double& xt0, double& xt1) const
335 xt0 = coordsT[0]; xt1 = coordsT[1];
336 xs0 = coordsS[0]; xs1 = coordsS[1];
343 // check if two segments overlap in 2D within tolerance
345 const double* t0 = coordsT;
346 const double* t1 = coordsT + 2;
347 double t01[2] = { t1[X]-t0[X], t1[Y]-t0[Y] }; // tgt segment direction
348 double tSize = sqrt( t01[X]*t01[X] + t01[Y]*t01[Y] ); // tgt segment size
349 if ( tSize < _precision )
350 return false; // degenerated segment
351 t01[X] /= tSize, t01[Y] /= tSize; // normalize t01
353 const double* s0 = coordsS;
354 const double* s1 = coordsS + 2;
355 double t0s0[2] = { s0[X]-t0[X], s0[Y]-t0[Y] };
356 double t0s1[2] = { s1[X]-t0[X], s1[Y]-t0[Y] };
357 double nt01_x_t0s0 = t0s0[X] * t01[Y] - t0s0[Y] * t01[X]; // t0s0 dot norm of t01
358 double nt01_x_t0s1 = t0s1[X] * t01[Y] - t0s1[Y] * t01[X]; // t0s1 dot norm of t01
359 double dist_ts0 = fabs( nt01_x_t0s0 ); // dist from tgt seg to s0
360 double dist_ts1 = fabs( nt01_x_t0s1 ); // dist from tgt seg to s1
361 bool s0_out_of_tol = ( dist_ts0 > _tolerance );
362 bool s1_out_of_tol = ( dist_ts1 > _tolerance );
363 if ( nt01_x_t0s0 * nt01_x_t0s1 > 0 && ( s0_out_of_tol || s1_out_of_tol ))
364 return false; // tgt segment is to far from src segment
366 double S0[2] = { s0[X], s0[Y] };
367 double S1[2] = { s1[X], s1[Y] };
368 if ( s0_out_of_tol ) // put s0 within tolerance
370 double t = _tolerance * nt01_x_t0s0 / dist_ts0; // signed tolerance
371 double r = ( nt01_x_t0s0 - t ) / ( nt01_x_t0s0 - nt01_x_t0s1 );
372 S0[X] = s0[X] * ( 1.-r ) + s1[X] * r;
373 S0[Y] = s0[Y] * ( 1.-r ) + s1[Y] * r;
375 if ( s1_out_of_tol ) // put s1 within tolerance
377 double t = _tolerance * nt01_x_t0s1 / dist_ts1; // signed tolerance
378 double r = ( nt01_x_t0s1 - t ) / ( nt01_x_t0s1 - nt01_x_t0s0 );
379 S1[X] = s1[X] * ( 1.-r ) + s0[X] * r;
380 S1[Y] = s1[Y] * ( 1.-r ) + s0[Y] * r;
383 // project tgt and src segments to median line
385 double s01[2] = { S1[X]-S0[X], S1[Y]-S0[Y] }; // src segment direction
386 double sSize = sqrt( s01[X]*s01[X] + s01[Y]*s01[Y] ); // src segment size
387 if ( sSize < _precision )
388 return false; // degenerated segment
389 s01[X] /= sSize, s01[Y] /= sSize; // normalize s01
391 // make t01 and s01 codirected
392 double t01_x_s01 = t01[X] * s01[X] + t01[Y] * s01[Y]; // t01 dot s01
394 s01[X] = -s01[X], s01[Y] = -s01[Y];
396 double medianDir[2] = {
397 t01[X] * ( 1.-_median_line) + s01[X] * _median_line,
398 t01[Y] * ( 1.-_median_line) + s01[Y] * _median_line
400 double medianSize = sqrt( medianDir[X]*medianDir[X] + medianDir[Y]*medianDir[Y] );
401 if ( medianSize < std::numeric_limits<double>::min() )
402 return false; // strange...
403 medianDir[X] /= medianSize, medianDir[Y] /= medianSize;
405 xt0 = t0[X] * medianDir[X] + t0[Y] * medianDir[Y];
406 xt1 = t1[X] * medianDir[X] + t1[Y] * medianDir[Y];
407 xs0 = S0[X] * medianDir[X] + S0[Y] * medianDir[Y];
408 xs1 = S1[X] * medianDir[X] + S1[Y] * medianDir[Y];
410 } // if ( SPACEDIM == 2 )
415 * \brief Return length of intersection of two segments
417 template<class MyMeshType, class MyMatrix>
418 double CurveIntersector<MyMeshType,MyMatrix>::intersectSegmentsInternal(const double *coordsT, const double *coordsS, double& xs0, double& xs1, double& xt0, double& xt1) const
420 if(!projectionThis(coordsT,coordsS,xs0,xs1,xt0,xt1))
423 if ( xt0 > xt1 ) std::swap( xt0, xt1 );
424 if ( xs0 > xs1 ) std::swap( xs0, xs1 );
426 double x0 = std::max( xt0, xs0 );
427 double x1 = std::min( xt1, xs1 );
428 return ( x0 < x1 ) ? ( x1 - x0 ) : 0.;
431 template<class MyMeshType>
432 class DummyMyMeshType1D
435 static const int MY_SPACEDIM=1;
436 static const int MY_MESHDIM=8;
437 typedef mcIdType MyConnType;
438 static const INTERP_KERNEL::NumberingPolicy My_numPol=MyMeshType::My_numPol;
440 // useless, but for windows compilation ...
441 const double *getCoordinatesPtr() const { return nullptr; }
442 const MyConnType *getConnectivityPtr() const { return nullptr; }
443 const MyConnType *getConnectivityIndexPtr() const { return nullptr; }
444 INTERP_KERNEL::NormalizedCellType getTypeOfElement(MyConnType) const { return (INTERP_KERNEL::NormalizedCellType)0; }
449 * This method determines if a target point ( \a coordsT ) is in source seg2 contained in \a coordsS. To do so _precision attribute is used.
450 * If target point is in, \a xs0, \a xs1 and \a xt are set to 1D referential for a further barycentric computation.
451 * This method deals with SPACEDIM == 2 (see projectionThis).
453 template<class MyMeshType, class MyMatrix>
454 bool CurveIntersector<MyMeshType,MyMatrix>::isPtIncludedInSeg(const double *coordsT, const double *coordsS, double& xs0, double& xs1, double& xt) const
456 if(!projectionThis(coordsT,coordsS,xs0,xs1,xt))
458 constexpr ConnType TAB[2]={0,1};
459 const double coordsS_1D[2]={xs0,xs1};
460 const double *coordsT_1D(&xt);
461 return PointLocatorAlgos<DummyMyMeshType1D<MyMeshType>>::isElementContainsPoint(coordsT_1D,NORM_SEG2,coordsS_1D,TAB,2,this->_precision);
465 * \brief Return length of intersection of two segments
467 template<class MyMeshType, class MyMatrix>
468 double CurveIntersector<MyMeshType,MyMatrix>::intersectSegments(const double *coordsT, const double *coordsS) const
470 double xs0,xs1,xt0,xt1;
471 return intersectSegmentsInternal(coordsT,coordsS,xs0,xs1,xt0,xt1);