1 // Copyright (C) 2007-2019 CEA/DEN, EDF R&D
3 // This library is free software; you can redistribute it and/or
4 // modify it under the terms of the GNU Lesser General Public
5 // License as published by the Free Software Foundation; either
6 // version 2.1 of the License, or (at your option) any later version.
8 // This library is distributed in the hope that it will be useful,
9 // but WITHOUT ANY WARRANTY; without even the implied warranty of
10 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 // Lesser General Public License for more details.
13 // You should have received a copy of the GNU Lesser General Public
14 // License along with this library; if not, write to the Free Software
15 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
19 // Author : Anthony Geay (CEA/DEN)
20 #ifndef __CURVEINTERSECTOR_TXX__
21 #define __CURVEINTERSECTOR_TXX__
23 #include "CurveIntersector.hxx"
24 #include "InterpolationUtils.hxx"
28 namespace INTERP_KERNEL
30 template<class MyMeshType, class MyMatrix>
31 CurveIntersector<MyMeshType,MyMatrix>
32 ::CurveIntersector(const MyMeshType& meshT, const MyMeshType& meshS,
33 double precision, double tolerance, double medianLine, int printLevel):
36 _tolerance(tolerance),
37 _precision(precision),
38 _median_line(medianLine),
39 _print_level(printLevel)
41 if ( SPACEDIM != 1 && SPACEDIM != 2 )
42 throw Exception("CurveIntersector(): space dimension of mesh must be 1 or 2");
44 throw Exception("CurveIntersector(): mesh dimension must be 1");
46 _connectT = meshT.getConnectivityPtr();
47 _connectS = meshS.getConnectivityPtr();
48 _connIndexT = meshT.getConnectivityIndexPtr();
49 _connIndexS = meshS.getConnectivityIndexPtr();
50 _coordsT = meshT.getCoordinatesPtr();
51 _coordsS = meshS.getCoordinatesPtr();
54 template<class MyMeshType, class MyMatrix>
55 CurveIntersector<MyMeshType,MyMatrix>::~CurveIntersector()
59 //================================================================================
61 \brief creates the bounding boxes for all the cells of mesh \a mesh
63 \param mesh structure pointing to the mesh
64 \param bbox vector containing the bounding boxes
66 //================================================================================
68 template<class MyMeshType, class MyMatrix>
69 void CurveIntersector<MyMeshType,MyMatrix>::createBoundingBoxes (const MyMeshType& mesh,
70 std::vector<double>& bbox)
72 long nbelems = mesh.getNumberOfElements();
73 bbox.resize(2*SPACEDIM* nbelems);
74 const double* coords = mesh.getCoordinatesPtr();
75 const ConnType* conn = mesh.getConnectivityPtr();
76 const ConnType* conn_index = mesh.getConnectivityIndexPtr();
78 for(long icell=0; icell<nbelems; icell++)
80 ConnType nb_nodes_per_elem = conn_index[icell+1]-conn_index[icell];
81 //initializing bounding box limits
82 for(int idim=0; idim<SPACEDIM; idim++)
84 bbox[2*SPACEDIM*ibox+2*idim] = std::numeric_limits<double>::max();
85 bbox[2*SPACEDIM*ibox+2*idim+1] = -std::numeric_limits<double>::max();
87 //updating the bounding box with each node of the element
88 for (ConnType j=0; j<nb_nodes_per_elem; j++)
90 const double* coord_node = coords +
91 SPACEDIM*OTT<ConnType,numPol>
92 ::coo2C(conn[OTT<ConnType,numPol>::conn2C(conn_index[icell]+j)]);
93 for(int idim=0; idim<SPACEDIM; idim++)
95 double x = *(coord_node+idim);
96 bbox[ibox*2*SPACEDIM + 2*idim] =
97 ( bbox[ibox*2*SPACEDIM + 2*idim] < x ) ? bbox[ibox*2*SPACEDIM + 2*idim] : x;
98 bbox[ibox*2*SPACEDIM + 2*idim+1] =
99 ( bbox[ibox*2*SPACEDIM + 2*idim+1] > x ) ? bbox[ibox*2*SPACEDIM + 2*idim+1] : x;
107 Computes the bounding box of a given element. iP in numPol mode.
109 template<class MyMeshType, class MyMatrix>
110 void CurveIntersector<MyMeshType,MyMatrix>::getElemBB (double* bb,
111 const MyMeshType& mesh,
115 const double* coords = mesh.getCoordinatesPtr();
116 const ConnType* conn_index = mesh.getConnectivityIndexPtr();
117 const ConnType* conn = mesh.getConnectivityPtr();
118 //initializing bounding box limits
119 for(int idim=0; idim<SPACEDIM; idim++)
121 bb[2*idim ] = std::numeric_limits<double>::max();
122 bb[2*idim+1] = -std::numeric_limits<double>::max();
125 for (ConnType i=0; i<nb_nodes; i++)
127 //MN: iP= cell index, not node index, use of connectivity array ?
128 const double* coord_node = coords +
129 SPACEDIM*(OTT<ConnType,numPol>::coo2C(conn[OTT<ConnType,numPol>::conn2C(conn_index[OTT<ConnType,numPol>::ind2C(iP)]+i)]));
130 for(int idim=0; idim<SPACEDIM; idim++)
132 double x = *(coord_node+idim);
133 bb[2*idim ] = (x<bb[2*idim ]) ? x : bb[2*idim ];
134 bb[2*idim+1] = (x>bb[2*idim+1]) ? x : bb[2*idim+1];
140 * \param [in] startOfSeg - input coming from intersectSegments or intersectSegmentsInternal
141 * \param [in] endOfSeg - input coming from intersectSegments or intersectSegmentsInternal. Assume that endOfSeg>startOfSeg.
142 * \param [in] pt - position of point that the method computes the bary coords for.
144 template<class MyMeshType, class MyMatrix>
145 bool CurveIntersector<MyMeshType,MyMatrix>::ComputeBaryCoordsOf(double startOfSeg, double endOfSeg, double pt, double& startPos, double& endPos)
147 double deno(endOfSeg-startOfSeg);
148 startPos=(endOfSeg-pt)/deno;
150 return startPos>=0. && endPos>=0.;
153 /*! Readjusts a set of bounding boxes so that they are extended
154 in all dimensions for avoiding missing interesting intersections
156 \param bbox vector containing the bounding boxes
158 template<class MyMeshType, class MyMatrix>
159 void CurveIntersector<MyMeshType,MyMatrix>::adjustBoundingBoxes (std::vector<double>& bbox,
160 double adjustmentEpsAbs)
162 std::size_t size = bbox.size()/(2*SPACEDIM);
163 for (std::size_t i=0; i<size; i++)
165 for(int idim=0; idim<SPACEDIM; idim++)
167 bbox[i*2*SPACEDIM+2*idim ] -= adjustmentEpsAbs;
168 bbox[i*2*SPACEDIM+2*idim+1] += adjustmentEpsAbs;
174 * @param icellT id in target mesh in format of MyMeshType.
175 * @param coordsT output val that stores coordinates of the target cell
176 * automatically resized to the right length.
177 * @return true if segment is quadratic and in this case coordinates of medium node
178 * are placed in the middle of coordsT
180 template<class MyMeshType, class MyMatrix>
181 bool CurveIntersector<MyMeshType,MyMatrix>::getRealTargetCoordinates(ConnType icellT, std::vector<double>& coordsT) const
183 ConnType nbNodesT(_connIndexT[OTT<ConnType,numPol>::ind2C(icellT)+1] - _connIndexT[OTT<ConnType,numPol>::ind2C(icellT)]);
184 coordsT.resize(SPACEDIM*nbNodesT);
185 for (ConnType iT=0; iT<nbNodesT; iT++)
187 for(int idim=0; idim<SPACEDIM; idim++)
189 coordsT[SPACEDIM*iT+idim] =
190 _coordsT[SPACEDIM*OTT<ConnType,numPol>::coo2C(_connectT[OTT<ConnType,numPol>::conn2C(_connIndexT[OTT<ConnType,numPol>::ind2C(icellT)]+iT)])+idim];
195 for(int idim=0; idim<SPACEDIM; idim++)
196 std::swap( coordsT[SPACEDIM*1+idim], coordsT[SPACEDIM*2+idim]);
202 template<class MyMeshType, class MyMatrix>
203 typename MyMeshType::MyConnType CurveIntersector<MyMeshType,MyMatrix>::getNodeIdOfTargetCellAt(ConnType icellT, ConnType nodeIdInCellT) const
205 ConnType nbNodesT(_connIndexT[OTT<ConnType,numPol>::ind2C(icellT)+1] - _connIndexT[OTT<ConnType,numPol>::ind2C(icellT)]);
206 if(nodeIdInCellT>=0 && nodeIdInCellT<nbNodesT)
207 return OTT<ConnType,numPol>::coo2C(_connectT[OTT<ConnType,numPol>::conn2C(_connIndexT[OTT<ConnType,numPol>::ind2C(icellT)]+nodeIdInCellT)]);
209 throw Exception("getNodeIdOfTargetCellAt : error in nodeId in cell");
213 * @param icellS id in source mesh in format of MyMeshType.
214 * @param coordsS output val that stores coordinates of the source cell automatically resized to the right length.
215 * @return true if segment is quadratic and in this case coordinates of medium node
216 * are placed in the middle of coordsS
218 template<class MyMeshType, class MyMatrix>
219 bool CurveIntersector<MyMeshType,MyMatrix>::getRealSourceCoordinates(ConnType icellS, std::vector<double>& coordsS) const
221 ConnType nbNodesS = _connIndexS[OTT<ConnType,numPol>::ind2C(icellS)+1] - _connIndexS[OTT<ConnType,numPol>::ind2C(icellS)];
222 coordsS.resize(SPACEDIM*nbNodesS);
223 for(ConnType iS=0; iS<nbNodesS; iS++)
225 for(int idim=0; idim<SPACEDIM; idim++)
227 coordsS[SPACEDIM*iS+idim] =
228 _coordsS[SPACEDIM*OTT<ConnType,numPol>::coo2C(_connectS[OTT<ConnType,numPol>::conn2C(_connIndexS[OTT<ConnType,numPol>::ind2C(icellS)]+iS)])+idim];
233 for(int idim=0; idim<SPACEDIM; idim++)
234 std::swap( coordsS[SPACEDIM*1+idim], coordsS[SPACEDIM*2+idim]);
240 template<class MyMeshType, class MyMatrix>
241 typename MyMeshType::MyConnType CurveIntersector<MyMeshType,MyMatrix>::getNodeIdOfSourceCellAt(ConnType icellS, ConnType nodeIdInCellS) const
243 ConnType nbNodesS(_connIndexS[OTT<ConnType,numPol>::ind2C(icellS)+1] - _connIndexS[OTT<ConnType,numPol>::ind2C(icellS)]);
244 if(nodeIdInCellS>=0 && nodeIdInCellS<nbNodesS)
245 return OTT<ConnType,numPol>::coo2C(_connectS[OTT<ConnType,numPol>::conn2C(_connIndexS[OTT<ConnType,numPol>::ind2C(icellS)]+nodeIdInCellS)]);
247 throw Exception("getNodeIdOfSourceCellAt : error in nodeId in cell");
251 * \brief Return dual segments of given segment
252 * \param icell - given segment in C mode
254 * \param segments - dual segments
256 template<class MyMeshType, class MyMatrix>
257 void CurveIntersector<MyMeshType,MyMatrix>::getDualSegments(ConnType icell,
258 const MyMeshType& mesh,
259 std::vector<TDualSegment>& segments)
261 // get coordinates of cell nodes
263 std::vector<double> ncoords;
264 std::vector<ConnType> nodeIds;
266 const ConnType *connect = mesh.getConnectivityPtr();
267 const ConnType *connIndex = mesh.getConnectivityIndexPtr();
268 const double *coords = mesh.getCoordinatesPtr();
270 nbNodes = connIndex[icell+1] - connIndex[icell];
272 ncoords.resize(SPACEDIM*nbNodes);
273 nodeIds.resize(nbNodes);
275 for(ConnType i=0; i<nbNodes; i++)
276 for(int idim=0; idim<SPACEDIM; idim++)
278 nodeIds[i] = connect[OTT<ConnType,numPol>::conn2C(connIndex[OTT<ConnType,numPol>::ind2C(icell)]+i)];
279 ncoords[SPACEDIM*i+idim] = coords[SPACEDIM*OTT<ConnType,numPol>::coo2C(nodeIds[i])+idim];
281 if ( nbNodes > 2 ) // quadratic segment, put medium node in the middle
283 for(int idim=0; idim<SPACEDIM; idim++)
284 std::swap( ncoords[SPACEDIM*1+idim], ncoords[SPACEDIM*2+idim]);
285 std::swap( nodeIds[1], nodeIds[2] );
291 segments.reserve( 2*nbNodes );
292 for(ConnType i=0; i<nbNodes-1; i++)
294 segments.push_back(TDualSegment());
295 TDualSegment& seg1 = segments.back();
296 segments.push_back(TDualSegment());
297 TDualSegment& seg2 = segments.back();
299 seg1._nodeId = nodeIds[i];
300 seg2._nodeId = nodeIds[i+1];
302 seg1._coords.resize( SPACEDIM * 2 );
303 seg2._coords.resize( SPACEDIM * 2 );
305 for(int idim=0; idim<SPACEDIM; idim++)
307 double c1 = ncoords[SPACEDIM*i+idim];
308 double c2 = ncoords[SPACEDIM*(i+1)+idim];
309 double m = 0.5 * ( c1 + c2 );
310 seg1._coords[ idim ] = c1;
311 seg1._coords[ SPACEDIM + idim ] = m;
312 seg2._coords[ idim ] = m;
313 seg2._coords[ SPACEDIM + idim ] = c2;
318 template<class MyMeshType, class MyMatrix>
319 bool CurveIntersector<MyMeshType,MyMatrix>::projectionThis(const double *coordsT, const double *coordsS,
320 double& xs0, double& xs1, double& xt0, double& xt1) const
322 xt0 = coordsT[0]; xt1 = coordsT[1];
323 xs0 = coordsS[0]; xs1 = coordsS[1];
330 // check if two segments overlap in 2D within tolerance
332 const double* t0 = coordsT;
333 const double* t1 = coordsT + 2;
334 double t01[2] = { t1[X]-t0[X], t1[Y]-t0[Y] }; // tgt segment direction
335 double tSize = sqrt( t01[X]*t01[X] + t01[Y]*t01[Y] ); // tgt segment size
336 if ( tSize < _precision )
337 return false; // degenerated segment
338 t01[X] /= tSize, t01[Y] /= tSize; // normalize t01
340 const double* s0 = coordsS;
341 const double* s1 = coordsS + 2;
342 double t0s0[2] = { s0[X]-t0[X], s0[Y]-t0[Y] };
343 double t0s1[2] = { s1[X]-t0[X], s1[Y]-t0[Y] };
344 double nt01_x_t0s0 = t0s0[X] * t01[Y] - t0s0[Y] * t01[X]; // t0s0 dot norm of t01
345 double nt01_x_t0s1 = t0s1[X] * t01[Y] - t0s1[Y] * t01[X]; // t0s1 dot norm of t01
346 double dist_ts0 = fabs( nt01_x_t0s0 ); // dist from tgt seg to s0
347 double dist_ts1 = fabs( nt01_x_t0s1 ); // dist from tgt seg to s1
348 bool s0_out_of_tol = ( dist_ts0 > _tolerance );
349 bool s1_out_of_tol = ( dist_ts1 > _tolerance );
350 if ( nt01_x_t0s0 * nt01_x_t0s1 > 0 && ( s0_out_of_tol || s1_out_of_tol ))
351 return false; // tgt segment is to far from src segment
353 double S0[2] = { s0[X], s0[Y] };
354 double S1[2] = { s1[X], s1[Y] };
355 if ( s0_out_of_tol ) // put s0 within tolerance
357 double t = _tolerance * nt01_x_t0s0 / dist_ts0; // signed tolerance
358 double r = ( nt01_x_t0s0 - t ) / ( nt01_x_t0s0 - nt01_x_t0s1 );
359 S0[X] = s0[X] * ( 1.-r ) + s1[X] * r;
360 S0[Y] = s0[Y] * ( 1.-r ) + s1[Y] * r;
362 if ( s1_out_of_tol ) // put s1 within tolerance
364 double t = _tolerance * nt01_x_t0s1 / dist_ts1; // signed tolerance
365 double r = ( nt01_x_t0s1 - t ) / ( nt01_x_t0s1 - nt01_x_t0s0 );
366 S1[X] = s1[X] * ( 1.-r ) + s0[X] * r;
367 S1[Y] = s1[Y] * ( 1.-r ) + s0[Y] * r;
370 // project tgt and src segments to median line
372 double s01[2] = { S1[X]-S0[X], S1[Y]-S0[Y] }; // src segment direction
373 double sSize = sqrt( s01[X]*s01[X] + s01[Y]*s01[Y] ); // src segment size
374 if ( sSize < _precision )
375 return false; // degenerated segment
376 s01[X] /= sSize, s01[Y] /= sSize; // normalize s01
378 // make t01 and s01 codirected
379 double t01_x_s01 = t01[X] * s01[X] + t01[Y] * s01[Y]; // t01 dot s01
381 s01[X] = -s01[X], s01[Y] = -s01[Y];
383 double medianDir[2] = {
384 t01[X] * ( 1.-_median_line) + s01[X] * _median_line,
385 t01[Y] * ( 1.-_median_line) + s01[Y] * _median_line
387 double medianSize = sqrt( medianDir[X]*medianDir[X] + medianDir[Y]*medianDir[Y] );
388 if ( medianSize < std::numeric_limits<double>::min() )
389 return false; // strange...
390 medianDir[X] /= medianSize, medianDir[Y] /= medianSize;
392 xt0 = t0[X] * medianDir[X] + t0[Y] * medianDir[Y];
393 xt1 = t1[X] * medianDir[X] + t1[Y] * medianDir[Y];
394 xs0 = S0[X] * medianDir[X] + S0[Y] * medianDir[Y];
395 xs1 = S1[X] * medianDir[X] + S1[Y] * medianDir[Y];
397 } // if ( SPACEDIM == 2 )
402 * \brief Return length of intersection of two segments
404 template<class MyMeshType, class MyMatrix>
405 double CurveIntersector<MyMeshType,MyMatrix>::intersectSegmentsInternal(const double *coordsT, const double *coordsS, double& xs0, double& xs1, double& xt0, double& xt1) const
407 if(!projectionThis(coordsT,coordsS,xs0,xs1,xt0,xt1))
410 if ( xt0 > xt1 ) std::swap( xt0, xt1 );
411 if ( xs0 > xs1 ) std::swap( xs0, xs1 );
413 double x0 = std::max( xt0, xs0 );
414 double x1 = std::min( xt1, xs1 );
415 return ( x0 < x1 ) ? ( x1 - x0 ) : 0.;
419 * \brief Return length of intersection of two segments
421 template<class MyMeshType, class MyMatrix>
422 double CurveIntersector<MyMeshType,MyMatrix>::intersectSegments(const double *coordsT, const double *coordsS) const
424 double xs0,xs1,xt0,xt1;
425 return intersectSegmentsInternal(coordsT,coordsS,xs0,xs1,xt0,xt1);