1 // Copyright (C) 2007-2012 CEA/DEN, EDF R&D
3 // This library is free software; you can redistribute it and/or
4 // modify it under the terms of the GNU Lesser General Public
5 // License as published by the Free Software Foundation; either
6 // version 2.1 of the License.
8 // This library is distributed in the hope that it will be useful,
9 // but WITHOUT ANY WARRANTY; without even the implied warranty of
10 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 // Lesser General Public License for more details.
13 // You should have received a copy of the GNU Lesser General Public
14 // License along with this library; if not, write to the Free Software
15 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
19 #ifndef __CURVEINTERSECTOR_TXX__
20 #define __CURVEINTERSECTOR_TXX__
22 #include "CurveIntersector.hxx"
23 #include "InterpolationUtils.hxx"
27 namespace INTERP_KERNEL
29 template<class MyMeshType, class MyMatrix>
30 CurveIntersector<MyMeshType,MyMatrix>
31 ::CurveIntersector(const MyMeshType& meshT, const MyMeshType& meshS,
32 double precision, double tolerance, double medianLine, int printLevel):
35 _tolerance(tolerance),
36 _precision(precision),
37 _median_line(medianLine),
38 _print_level(printLevel)
40 if ( SPACEDIM != 1 && SPACEDIM != 2 )
41 throw Exception("CurveIntersector(): space dimension of mesh must be 1 or 2");
43 throw Exception("CurveIntersector(): mesh dimension must be 1");
45 _connectT = meshT.getConnectivityPtr();
46 _connectS = meshS.getConnectivityPtr();
47 _connIndexT = meshT.getConnectivityIndexPtr();
48 _connIndexS = meshS.getConnectivityIndexPtr();
49 _coordsT = meshT.getCoordinatesPtr();
50 _coordsS = meshS.getCoordinatesPtr();
53 template<class MyMeshType, class MyMatrix>
54 CurveIntersector<MyMeshType,MyMatrix>::~CurveIntersector()
58 //================================================================================
60 \brief creates the bounding boxes for all the cells of mesh \a mesh
62 \param mesh structure pointing to the mesh
63 \param bbox vector containing the bounding boxes
65 //================================================================================
67 template<class MyMeshType, class MyMatrix>
68 void CurveIntersector<MyMeshType,MyMatrix>::createBoundingBoxes (const MyMeshType& mesh,
69 std::vector<double>& bbox)
71 long nbelems = mesh.getNumberOfElements();
72 bbox.resize(2*SPACEDIM* nbelems);
73 const double* coords = mesh.getCoordinatesPtr();
74 const ConnType* conn = mesh.getConnectivityPtr();
75 const ConnType* conn_index = mesh.getConnectivityIndexPtr();
77 for(long icell=0; icell<nbelems; icell++)
79 int nb_nodes_per_elem = conn_index[icell+1]-conn_index[icell];
80 //initializing bounding box limits
81 for(int idim=0; idim<SPACEDIM; idim++)
83 bbox[2*SPACEDIM*ibox+2*idim] = std::numeric_limits<double>::max();
84 bbox[2*SPACEDIM*ibox+2*idim+1] = -std::numeric_limits<double>::max();
86 //updating the bounding box with each node of the element
87 for (int j=0; j<nb_nodes_per_elem; j++)
89 const double* coord_node = coords +
90 SPACEDIM*OTT<ConnType,numPol>
91 ::coo2C(conn[OTT<ConnType,numPol>::conn2C(conn_index[icell]+j)]);
92 for(int idim=0; idim<SPACEDIM; idim++)
94 double x = *(coord_node+idim);
95 bbox[ibox*2*SPACEDIM + 2*idim] =
96 ( bbox[ibox*2*SPACEDIM + 2*idim] < x ) ? bbox[ibox*2*SPACEDIM + 2*idim] : x;
97 bbox[ibox*2*SPACEDIM + 2*idim+1] =
98 ( bbox[ibox*2*SPACEDIM + 2*idim+1] > x ) ? bbox[ibox*2*SPACEDIM + 2*idim+1] : x;
105 //================================================================================
107 Computes the bouding box of a given element. iP in numPol mode.
109 //================================================================================
111 template<class MyMeshType, class MyMatrix>
112 void CurveIntersector<MyMeshType,MyMatrix>::getElemBB (double* bb,
113 const MyMeshType& mesh,
117 const double* coords = mesh.getCoordinatesPtr();
118 const ConnType* conn_index = mesh.getConnectivityIndexPtr();
119 const ConnType* conn = mesh.getConnectivityPtr();
120 //initializing bounding box limits
121 for(int idim=0; idim<SPACEDIM; idim++)
123 bb[2*idim ] = std::numeric_limits<double>::max();
124 bb[2*idim+1] = -std::numeric_limits<double>::max();
127 for (ConnType i=0; i<nb_nodes; i++)
129 //MN: iP= cell index, not node index, use of connectivity array ?
130 const double* coord_node = coords +
131 SPACEDIM*(OTT<ConnType,numPol>::coo2C(conn[OTT<ConnType,numPol>::conn2C(conn_index[OTT<ConnType,numPol>::ind2C(iP)]+i)]));
132 for(int idim=0; idim<SPACEDIM; idim++)
134 double x = *(coord_node+idim);
135 bb[2*idim ] = (x<bb[2*idim ]) ? x : bb[2*idim ];
136 bb[2*idim+1] = (x>bb[2*idim+1]) ? x : bb[2*idim+1];
141 //================================================================================
142 /*! Readjusts a set of bounding boxes so that they are extended
143 in all dimensions for avoiding missing interesting intersections
145 \param bbox vector containing the bounding boxes
147 //================================================================================
149 template<class MyMeshType, class MyMatrix>
150 void CurveIntersector<MyMeshType,MyMatrix>::adjustBoundingBoxes (std::vector<double>& bbox,
151 double adjustmentEpsAbs)
153 long size = bbox.size()/(2*SPACEDIM);
154 for (int i=0; i<size; i++)
156 for(int idim=0; idim<SPACEDIM; idim++)
158 bbox[i*2*SPACEDIM+2*idim ] -= adjustmentEpsAbs;
159 bbox[i*2*SPACEDIM+2*idim+1] += adjustmentEpsAbs;
164 //================================================================================
166 * @param icellT id in target mesh in format of MyMeshType.
167 * @param coordsT output val that stores coordinates of the target cell
168 * automatically resized to the right length.
169 * @return true if segment is quadratic and in this case coordinates of medium node
170 * are placed in the middle of coordsT
172 //================================================================================
174 template<class MyMeshType, class MyMatrix>
175 bool CurveIntersector<MyMeshType,MyMatrix>::getRealTargetCoordinates
176 (ConnType icellT, std::vector<double>& coordsT)
178 int nbNodesT = _connIndexT[OTT<ConnType,numPol>::ind2C(icellT)+1] -
179 _connIndexT[OTT<ConnType,numPol>::ind2C(icellT)];
180 coordsT.resize(SPACEDIM*nbNodesT);
181 for (ConnType iT=0; iT<nbNodesT; iT++)
183 for(int idim=0; idim<SPACEDIM; idim++)
185 coordsT[SPACEDIM*iT+idim] =
186 _coordsT[SPACEDIM*OTT<ConnType,numPol>::coo2C(_connectT[OTT<ConnType,numPol>::conn2C(_connIndexT[OTT<ConnType,numPol>::ind2C(icellT)]+iT)])+idim];
191 for(int idim=0; idim<SPACEDIM; idim++)
192 std::swap( coordsT[SPACEDIM*1+idim], coordsT[SPACEDIM*2+idim]);
198 //================================================================================
200 * @param icellS id in source mesh in format of MyMeshType.
201 * @param coordsS output val that stores coordinates of the source cell automatically resized to the right length.
202 * @return true if segment is quadratic and in this case coordinates of medium node
203 * are placed in the middle of coordsS
205 //================================================================================
207 template<class MyMeshType, class MyMatrix>
208 bool CurveIntersector<MyMeshType,MyMatrix>::getRealSourceCoordinates
209 (ConnType icellS, std::vector<double>& coordsS)
211 int nbNodesS = _connIndexS[OTT<ConnType,numPol>::ind2C(icellS)+1] -
212 _connIndexS[OTT<ConnType,numPol>::ind2C(icellS)];
213 coordsS.resize(SPACEDIM*nbNodesS);
214 for(ConnType iS=0; iS<nbNodesS; iS++)
216 for(int idim=0; idim<SPACEDIM; idim++)
218 coordsS[SPACEDIM*iS+idim] =
219 _coordsS[SPACEDIM*OTT<ConnType,numPol>::coo2C(_connectS[OTT<ConnType,numPol>::conn2C(_connIndexS[OTT<ConnType,numPol>::ind2C(icellS)]+iS)])+idim];
224 for(int idim=0; idim<SPACEDIM; idim++)
225 std::swap( coordsS[SPACEDIM*1+idim], coordsS[SPACEDIM*2+idim]);
231 //================================================================================
233 * \brief Return dual segments of given segment
234 * \param icell - given segment in C mode
236 * \param segments - dual segments
238 //================================================================================
240 template<class MyMeshType, class MyMatrix>
241 void CurveIntersector<MyMeshType,MyMatrix>::getDualSegments(ConnType icell,
242 const MyMeshType& mesh,
243 std::vector<TDualSegment>& segments)
245 // get coordinates of cell nodes
247 std::vector<double> ncoords;
248 std::vector<int> nodeIds;
250 const ConnType *connect = mesh.getConnectivityPtr();
251 const ConnType *connIndex = mesh.getConnectivityIndexPtr();
252 const double *coords = mesh.getCoordinatesPtr();
254 nbNodes = connIndex[icell+1] - connIndex[icell];
256 ncoords.resize(SPACEDIM*nbNodes);
257 nodeIds.resize(nbNodes);
259 for(int i=0; i<nbNodes; i++)
260 for(int idim=0; idim<SPACEDIM; idim++)
262 nodeIds[i] = connect[OTT<ConnType,numPol>::conn2C(connIndex[OTT<ConnType,numPol>::ind2C(icell)]+i)];
263 ncoords[SPACEDIM*i+idim] = coords[SPACEDIM*OTT<ConnType,numPol>::coo2C(nodeIds[i])+idim];
265 if ( nbNodes > 2 ) // quadratic segment, put medium node in the middle
267 for(int idim=0; idim<SPACEDIM; idim++)
268 std::swap( ncoords[SPACEDIM*1+idim], ncoords[SPACEDIM*2+idim]);
269 std::swap( nodeIds[1], nodeIds[2] );
275 segments.reserve( 2*nbNodes );
276 for(int i=0; i<nbNodes-1; i++)
278 segments.push_back(TDualSegment());
279 TDualSegment& seg1 = segments.back();
280 segments.push_back(TDualSegment());
281 TDualSegment& seg2 = segments.back();
283 seg1._nodeId = nodeIds[i];
284 seg2._nodeId = nodeIds[i+1];
286 seg1._coords.resize( SPACEDIM * 2 );
287 seg2._coords.resize( SPACEDIM * 2 );
289 for(int idim=0; idim<SPACEDIM; idim++)
291 double c1 = ncoords[SPACEDIM*i+idim];
292 double c2 = ncoords[SPACEDIM*(i+1)+idim];
293 double m = 0.5 * ( c1 + c2 );
294 seg1._coords[ idim ] = c1;
295 seg1._coords[ SPACEDIM + idim ] = m;
296 seg2._coords[ idim ] = m;
297 seg2._coords[ SPACEDIM + idim ] = c2;
302 //================================================================================
304 * \brief Return length of intersection of two segments
306 //================================================================================
308 template<class MyMeshType, class MyMatrix>
309 double CurveIntersector<MyMeshType,MyMatrix>::intersectSegments(double *Coords_T,
312 double xt0 = Coords_T[0], xt1 = Coords_T[1];
313 double xs0 = Coords_S[0], xs1 = Coords_S[1];
320 // check if two segments overlap in 2D within tolerance
322 double* t0 = Coords_T;
323 double* t1 = Coords_T + 2;
324 double t01[2] = { t1[X]-t0[X], t1[Y]-t0[Y] }; // tgt segment direction
325 double tSize = sqrt( t01[X]*t01[X] + t01[Y]*t01[Y] ); // tgt segment size
326 if ( tSize < _precision ) return 0; // degenerated segment
327 t01[X] /= tSize, t01[Y] /= tSize; // normalize t01
329 double* s0 = Coords_S;
330 double* s1 = Coords_S + 2;
331 double t0s0[2] = { s0[X]-t0[X], s0[Y]-t0[Y] };
332 double t0s1[2] = { s1[X]-t0[X], s1[Y]-t0[Y] };
333 double nt01_x_t0s0 = t0s0[X] * t01[Y] - t0s0[Y] * t01[X]; // t0s0 dot norm of t01
334 double nt01_x_t0s1 = t0s1[X] * t01[Y] - t0s1[Y] * t01[X]; // t0s1 dot norm of t01
335 double dist_ts0 = fabs( nt01_x_t0s0 ); // dist from tgt seg to s0
336 double dist_ts1 = fabs( nt01_x_t0s1 ); // dist from tgt seg to s1
337 bool s0_out_of_tol = ( dist_ts0 > _tolerance );
338 bool s1_out_of_tol = ( dist_ts1 > _tolerance );
339 if ( nt01_x_t0s0 * nt01_x_t0s1 > 0 && ( s0_out_of_tol || s1_out_of_tol ))
340 return 0; // tgt segment is to far from src segment
342 double S0[2] = { s0[X], s0[Y] };
343 double S1[2] = { s1[X], s1[Y] };
344 if ( s0_out_of_tol ) // put s0 within tolerance
346 double t = _tolerance * nt01_x_t0s0 / dist_ts0; // signed tolerance
347 double r = ( nt01_x_t0s0 - t ) / ( nt01_x_t0s0 - nt01_x_t0s1 );
348 S0[X] = s0[X] * ( 1.-r ) + s1[X] * r;
349 S0[Y] = s0[Y] * ( 1.-r ) + s1[Y] * r;
351 if ( s1_out_of_tol ) // put s1 within tolerance
353 double t = _tolerance * nt01_x_t0s1 / dist_ts1; // signed tolerance
354 double r = ( nt01_x_t0s1 - t ) / ( nt01_x_t0s1 - nt01_x_t0s0 );
355 S1[X] = s1[X] * ( 1.-r ) + s0[X] * r;
356 S1[Y] = s1[Y] * ( 1.-r ) + s0[Y] * r;
359 // project tgt and src segments to median line
361 double s01[2] = { S1[X]-S0[X], S1[Y]-S0[Y] }; // src segment direction
362 double sSize = sqrt( s01[X]*s01[X] + s01[Y]*s01[Y] ); // src segment size
363 if ( sSize < _precision ) return 0; // degenerated segment
364 s01[X] /= sSize, s01[Y] /= sSize; // normalize s01
366 // make t01 and s01 codirected
367 double t01_x_s01 = t01[X] * s01[X] + t01[Y] * s01[Y]; // t01 dot s01
369 s01[X] = -s01[X], s01[Y] = -s01[Y];
371 double medianDir[2] = {
372 t01[X] * ( 1.-_median_line) + s01[X] * _median_line,
373 t01[Y] * ( 1.-_median_line) + s01[Y] * _median_line
375 double medianSize = sqrt( medianDir[X]*medianDir[X] + medianDir[Y]*medianDir[Y] );
376 if ( medianSize < std::numeric_limits<double>::min() )
377 return 0; // strange...
378 medianDir[X] /= medianSize, medianDir[Y] /= medianSize;
380 xt0 = t0[X] * medianDir[X] + t0[Y] * medianDir[Y];
381 xt1 = t1[X] * medianDir[X] + t1[Y] * medianDir[Y];
382 xs0 = S0[X] * medianDir[X] + S0[Y] * medianDir[Y];
383 xs1 = S1[X] * medianDir[X] + S1[Y] * medianDir[Y];
385 } // if ( SPACEDIM == 2 )
387 if ( xt0 > xt1 ) std::swap( xt0, xt1 );
388 if ( xs0 > xs1 ) std::swap( xs0, xs1 );
390 double x0 = std::max( xt0, xs0 );
391 double x1 = std::min( xt1, xs1 );
392 return ( x0 < x1 ) ? ( x1 - x0 ) : 0.;