1 // GEOM ARCHIMEDE : algorithm implementation
3 // Copyright (C) 2003 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
4 // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
6 // This library is free software; you can redistribute it and/or
7 // modify it under the terms of the GNU Lesser General Public
8 // License as published by the Free Software Foundation; either
9 // version 2.1 of the License.
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 // Lesser General Public License for more details.
16 // You should have received a copy of the GNU Lesser General Public
17 // License along with this library; if not, write to the Free Software
18 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 // See http://www.opencascade.org/SALOME/ or email : webmaster.salome@opencascade.org
24 // File : Archimede_VolumeSection.cxx
25 // Author : Nicolas REJNERI
30 #include "Archimede_VolumeSection.hxx"
31 #include "utilities.h"
34 #include <BRepMesh_IncrementalMesh.hxx>
35 #include <TopExp_Explorer.hxx>
36 #include <TopLoc_Location.hxx>
37 #include <Poly_Triangulation.hxx>
38 #include <Poly_Array1OfTriangle.hxx>
39 #include <BRep_Tool.hxx>
41 #include <TopoDS_Face.hxx>
42 #include <TopoDS_Shape.hxx>
43 #include <math_Matrix.hxx>
45 #include <GC_MakePlane.hxx>
47 #include <gp_Trsf.hxx>
53 #include <GeomAPI_ProjectPointOnSurf.hxx>
54 #include <Geom_RectangularTrimmedSurface.hxx>
56 //-------------------------------------------------------------------------------------------------------
57 //----------------------------------- Methodes publiques -------------------------------------------------
58 //-------------------------------------------------------------------------------------------------------
60 // Maillage de la shape
61 VolumeSection::VolumeSection(TopoDS_Shape S , Standard_Real Precision):myShape(S),Tolerance(Precision)
63 // Maillage de la shape myShape
64 BRepMesh_IncrementalMesh(myShape,Tolerance);
67 TopoDS_Shape VolumeSection::GetShape()
72 void VolumeSection::SetPlane(Handle (Geom_Plane) P)
77 void VolumeSection::CenterOfGravity()
80 Standard_Integer nbNodes;
84 // Boucle sur les faces de la shape
93 for (ex.Init(myShape, TopAbs_FACE); ex.More(); ex.Next())
95 TopoDS_Face F = TopoDS::Face(ex.Current());
96 Handle(Poly_Triangulation) Tr = BRep_Tool::Triangulation(F, L);
98 MESSAGE("Error, null layer" )
99 nbNodes = Tr->NbNodes();
100 const TColgp_Array1OfPnt& Nodes = Tr->Nodes();
102 // Calcul des dimensions de la boite englobante du solide
104 for(i=1;i<=nbNodes;i++)
106 InitPoint = Nodes(i).Transformed(L.Transformation());
107 if(InitPoint.X() < Xmin)
108 Xmin = InitPoint.X();
109 if(InitPoint.X() > Xmax)
110 Xmax = InitPoint.X();
111 if(InitPoint.Y() < Ymin)
112 Ymin = InitPoint.Y();
113 if(InitPoint.Y() > Ymax)
114 Ymax = InitPoint.Y();
115 if(InitPoint.Z() < Zmin)
116 Zmin = InitPoint.Z();
117 if(InitPoint.Z() > Zmax)
118 Zmax = InitPoint.Z();
123 // Creation du point d'initialisation, c'est à dire le centre de gravité
124 //géométrique de la boite englobante
126 InitPoint.SetX(0.5 * (Xmin + Xmax));
127 InitPoint.SetY(0.5 * (Ymin + Ymax));
131 Standard_Real VolumeSection::CalculateVolume(Standard_Real Elevation)
133 Standard_Integer i,noeud[3],flag[3];
134 Standard_Integer nbNodes;
138 Standard_Real Volume=0;
139 Standard_Real Determinant=0;
142 // Projection du point d'initialisation sur le plan de section
144 InitPoint.SetZ(Elevation);
146 for (ex.Init(myShape, TopAbs_FACE); ex.More(); ex.Next())
148 TopoDS_Face F = TopoDS::Face(ex.Current());
149 Handle(Poly_Triangulation) Tr = BRep_Tool::Triangulation(F, L);
151 MESSAGE("Error, null layer" )
152 const Poly_Array1OfTriangle& triangles = Tr->Triangles();
153 Standard_Integer nbTriangles = Tr->NbTriangles();
154 nbNodes = Tr->NbNodes();
155 const TColgp_Array1OfPnt& Nodes = Tr->Nodes();
157 // Calcul des volumes de chaque triangle, de chaque face
158 //en tenant compte des triangles coupés par le plan de section
160 for (i=1;i<=nbTriangles;i++)
163 //Gardons la meme orientation des noeuds
164 if (F.Orientation() == TopAbs_REVERSED)
165 triangles(i).Get(noeud[0], noeud[2], noeud[1]);
167 triangles(i).Get(noeud[0], noeud[1], noeud[2]);
169 P[0] = Nodes(noeud[0]).Transformed(L.Transformation());
171 P[1] = Nodes(noeud[1]).Transformed(L.Transformation());
173 P[2] = Nodes(noeud[2]).Transformed(L.Transformation());
176 // Determination des cas aux limites pour les triangles
177 Standard_Integer i,compteur=0;
181 flag[i]=Standard_False;
184 flag[i]=Standard_True;
192 Determinant = ElementaryVolume(P[0],P[1],P[2]);
198 if (flag[i]==Standard_True)
200 gp_Pnt Result1 = Intersection(P[i],P[(i+1)%3],Elevation);
201 gp_Pnt Result2 = Intersection(P[i],P[(i+2)%3],Elevation);
202 Determinant = ElementaryVolume(Result1,P[(i+1)%3],P[(i+2)%3])
203 + ElementaryVolume(Result1,P[(i+2)%3],Result2);
211 if (flag[i]==Standard_False)
213 gp_Pnt Result1 = Intersection(P[i],P[(i+1)%3],Elevation);
214 gp_Pnt Result2 = Intersection(P[i],P[(i+2)%3],Elevation);
215 Determinant = ElementaryVolume(P[i],Result1,Result2);
223 Volume += Determinant;
230 Standard_Real VolumeSection::Archimede(Standard_Real Constante , Standard_Real Epsilon)
232 // Resolution de l equation V(h) = Constante a l aide de l algorithme de dichotomie avec ponderation type
235 Standard_Real c,Binf,Bsup;
236 Standard_Real tempBsupVolume=0;
237 Standard_Real tempBinfVolume=0;
238 Standard_Real tempCVolume = 0;
244 MESSAGE("error, Bound + < Bound - in dichotomy")
247 tempBsupVolume = CalculateVolume(Bsup);
248 tempBinfVolume = CalculateVolume(Binf);
250 if (Constante>tempBsupVolume || Constante<tempBinfVolume)
252 MESSAGE("error, algorithm start Impossible. Wrong constant value" )
256 c = ((Binf*(tempBsupVolume-Constante))-(Bsup*(tempBinfVolume-Constante)))
257 /((tempBsupVolume-Constante)-(tempBinfVolume-Constante));
258 tempCVolume = CalculateVolume(c);
261 if(Abs(tempCVolume-Constante)<=Epsilon)
267 while((Bsup-Binf)>Epsilon)
269 if((tempBinfVolume-Constante)*(tempCVolume-Constante)>0 && Abs(tempCVolume-Constante)>Epsilon)
272 tempBinfVolume=tempCVolume;
274 c = ((Binf*(tempBsupVolume-Constante))-(Bsup*(tempBinfVolume-Constante)))
275 /((tempBsupVolume-Constante)-(tempBinfVolume-Constante));
276 tempCVolume=CalculateVolume(c);
278 else if((tempBinfVolume-Constante)*(tempCVolume-Constante)<0 && Abs(tempCVolume-Constante)>Epsilon)
281 tempBsupVolume =tempCVolume;
283 c = ((Binf*(tempBsupVolume-Constante))-(Bsup*(tempBinfVolume-Constante)))
284 /((tempBsupVolume-Constante)-(tempBinfVolume-Constante));
285 tempCVolume=CalculateVolume(c);
296 MESSAGE("La ligne de flottaison correspondant a la constante :"<<Constante<<" est a la cote Z = "<<c)
301 void VolumeSection::MakeRotation(gp_Dir PlaneDirection)
303 gp_Dir Zdirection(0.0,0.0,1.0);
304 Standard_Real VariationAngle = 0;
305 gp_Pnt RotationAxeLocation(0.0,0.0,0.0);
306 gp_Dir RotationAxeDirection(1.0,1.0,1.0);
307 gp_Ax1 RotationAxe(RotationAxeLocation,RotationAxeDirection);
308 gp_Trsf Transformation;
310 VariationAngle = Zdirection.Angle(PlaneDirection);
311 RotationAxe.SetDirection(PlaneDirection.Crossed(Zdirection));
312 Transformation.SetRotation(RotationAxe,VariationAngle);
313 TopLoc_Location L(Transformation);
315 myPlane->Transform(Transformation);
318 Handle (Geom_RectangularTrimmedSurface) VolumeSection::TrimSurf()
320 Standard_Real Umin,Umax,Vmin,Vmax;
321 gp_Pnt Pmin(Xmin,Ymin,Zmin);
322 GeomAPI_ProjectPointOnSurf Projection(Pmin,myPlane);
323 Projection.Parameters(1,Umin,Vmin);
324 gp_Pnt Pmax(Xmax,Ymax,Zmax);
325 GeomAPI_ProjectPointOnSurf Projection2(Pmax,myPlane);
326 Projection2.Parameters(1,Umax,Vmax);
327 Handle (Geom_RectangularTrimmedSurface) Plane = new Geom_RectangularTrimmedSurface(myPlane,Umin,Umax,Vmin,Vmax);
331 Handle (Geom_RectangularTrimmedSurface) VolumeSection::InvMakeRotation(gp_Dir PlaneDirection, Handle (Geom_RectangularTrimmedSurface) SurfTrim)
333 gp_Dir Zdirection(0.0,0.0,1.0);
334 Standard_Real VariationAngle = 0;
335 gp_Pnt RotationAxeLocation(0.0,0.0,0.0);
336 gp_Dir RotationAxeDirection(1.0,1.0,1.0);
337 gp_Ax1 RotationAxe(RotationAxeLocation,RotationAxeDirection);
338 gp_Trsf Transformation;
340 VariationAngle = Zdirection.Angle(PlaneDirection);
341 RotationAxe.SetDirection(PlaneDirection.Crossed(Zdirection));
342 Transformation.SetRotation(RotationAxe,-VariationAngle);
343 SurfTrim->Transform(Transformation);
344 TopLoc_Location L(Transformation);
350 Handle (Geom_RectangularTrimmedSurface) VolumeSection::AjustePlan(Handle (Geom_RectangularTrimmedSurface) SurfTrim, Standard_Real Cote, gp_Pnt PosPlan)
352 gp_Trsf Transformation;
353 gp_Pnt PosArchi(PosPlan.X(),PosPlan.Y(),Cote);
355 Transformation.SetTranslation(PosPlan,PosArchi);
356 SurfTrim->Transform(Transformation);
362 //-------------------------------------------------------------------------------------------------------
363 //----------------------------------- Methodes privees ---------------------------------------------------
364 //-------------------------------------------------------------------------------------------------------
367 //Fonction calculant l'intersection de la droite passant par les points P1 et P2
368 //avec le plan horizontal Z=Hauteur
369 gp_Pnt VolumeSection::Intersection(gp_Pnt P1,gp_Pnt P2,Standard_Real Hauteur)
371 Standard_Real constante;
374 constante = (Hauteur-P1.Z())/(P2.Z()-P1.Z());
375 Point.SetX(P1.X()*(1-constante) + constante*P2.X());
376 Point.SetY(P1.Y()*(1-constante) + constante*P2.Y());
382 //Fonction calculant le volume élémentaire de chaque tétraedre à partir de 3 points
383 Standard_Real VolumeSection::ElementaryVolume(gp_Pnt P1,gp_Pnt P2,gp_Pnt P3)
385 Standard_Real Determinant;
387 math_Matrix M(1,3,1,3);
389 M(1,1)=P1.X()-InitPoint.X();
390 M(1,2)=P2.X()-InitPoint.X();
391 M(1,3)=P3.X()-InitPoint.X();
392 M(2,1)=P1.Y()-InitPoint.Y();
393 M(2,2)=P2.Y()-InitPoint.Y();
394 M(2,3)=P3.Y()-InitPoint.Y();
395 M(3,1)=P1.Z()-InitPoint.Z();
396 M(3,2)=P2.Z()-InitPoint.Z();
397 M(3,3)=P3.Z()-InitPoint.Z();
399 Determinant = (1.0/6) * M.Determinant();
404 void VolumeSection::getZ( double& min, double& max)