
© OPEN CASCADE, 2005 20050627_MIGRATING_TO_SALOME3_PROCEDURE_NOT_UPTODATE.DOC

 Page 1 / 13

MIGRATING OF SALOME MODULES ON NEW
SALOME GUI ARCHITECTURE

T
IT

LE

Specification

Revision history:
Version Reviser Revision date Remarks
0.1 VSR 27/06/05

© OPEN CASCADE, 2005 20050627_MIGRATING_TO_SALOME3_PROCEDURE_NOT_UPTODATE.DOC

 Page 2 / 13

Table of content
1. Introduction __ 3

2. General information ___ 3

2.1. The structure of the document ________________ __________________________ 3

2.2. Terms and abbreviations ______________________ _________________________ 3

3. C++ modules migrating __ 3

3.1. Configuration and building ___________________ __________________________ 3
3.1.1. msg2qm __ 3
3.1.2. SALOME GUI __ 4
3.1.3. Additional configuration procedures __ 4
3.1.4. Building of module’s GUI library ___ 4

3.2. Sources adopting _____________________________ ________________________ 5
3.2.1. Module ___ 5
3.2.2. Data model __ 6
3.2.3. Selection handling __ 7
3.2.4. Menus, toolbars and context menus management _________________________________ 7
3.2.5. Resources and preferences handling ___ 8
3.2.6. View management ___ 10
3.2.7. Object Browser, python console, etc. __ 10

3.3. Launching ____________________________________ ______________________ 11

4. Python modules migrating __ 11

4.1. Python API ___________________________________ _______________________ 11

4.2. Configuration and building ___________________ _________________________ 11
4.2.1. msg2qm ___ 12
4.2.2. Menu resources ___ 12

4.3. Launching ____________________________________ ______________________ 12

4.4. Caveats ______________________________________ _______________________ 12
4.4.1. Multi-desktop environment ___ 12
4.4.2. Workspace ___ 12

APPENDIX __ 13

Check SALOME GUI procedure ________________________ ____________________ 13

© OPEN CASCADE, 2005 20050627_MIGRATING_TO_SALOME3_PROCEDURE_NOT_UPTODATE.DOC

 Page 3 / 13

1. INTRODUCTION

From version 3.0.0 SALOME platform proposes new SUIT-based GUI architecture. This architecture
includes multi-desktop dockable-windowed interface, common tabbed workspace for all integrated
viewers, new selection mechanism based on customizable selectors, unified resource manager,
unified menu/toolbars/popup menus and viewers handling, common exception/signals handling,
embedded CORBA engine simplifying implementation of persistence operations for the no-CORBA-
engine modules, etc.
Moreover in contrast to the versions 2.x.x in SALOME 3 GUI is separated from the KERNEL
implementation and provided as additional distribution.

These changes in the SALOME architecture assume the migration of all SALOME-based modules in
order to be compliant with new GUI. Some parts of code need re-implementing and/or adopting
according to the new rules.

2. GENERAL INFORMATION

2.1. The structure of the document

This document describes the actions to be performed for the custom SALOME modules to bring them
in SALOME 3 compatible state and refers both to C++ and pure Python modules. This document does
not concern changes connected with modifications of KERNEL implementation.

2.2. Terms and abbreviations

• SUIT – SALOME User Interface Toolkit – GUI toolkit library.

3. C++ MODULES MIGRATING

The SALOME GUI has significantly changed from version 2.x to 3.0. Almost all basic mechanisms
were re-implemented. Since the GUI is now separated from the KERNEL the procedure of
configuration/building of SALOME-based modules includes some additional steps and checks.
This section overviews main changes which should be taken into account when porting existing C++
modules to new GUI architecture. The procedure of porting of pure Python modules is described in the
next section.
Only GUI changes are described here in this document. The changes of module engine connected
with the modifications of KERNEL are out of scope of this document.

3.1. Configuration and building

To allow module sources to be compilable with new GUI some additional checks should be performed
by the configure script.

3.1.1. msg2qm

msg2qm is a Qt tool which is used for the converting of *.po text files to the *.qm resources.
Unfortunately this tool is not included to the standard Qt distribution. It is built and distributed as
separate prerequisite product with the SALOME 3 installation procedure. To compile *.po resource
files it is necessary to add msg2qm check step to the configure procedure. The corresponding
check_msg2qm.m4 file is included in the KERNEL sources package (salome_adm/unix/check_files
folder). It is just necessary to modify configure.in.base file and make_commence.in file:

configure.in.base :
…
echo
echo ---
echo testing msg2qm

© OPEN CASCADE, 2005 20050627_MIGRATING_TO_SALOME3_PROCEDURE_NOT_UPTODATE.DOC

 Page 4 / 13

echo ---
echo

CHECK_MSG2QM
…
echo
echo ---
echo Summary
echo ---
echo

variables="cc_ok lex_yacc_ok python_ok … msg2qm_ok … Kernel_ok"
…

make_commence.in :
…
msg2qm
MSG2QM = @MSG2QM@
…

Note: module is not obliged to provide *.po files if it does not need to use internationalization
mechanism. There is also no need now to put empty *.po files to the module’s GUI package - these
files can be just omitted.

3.1.2. SALOME GUI

To ensure at the configure step that SALOME GUI distribution is set correctly the configuration
procedure may need additional check. The check_GUI.m4 file provides this procedure (see
APPENDIX, Check SALOME GUI procedure). To include it in the configuration script put this file in
your adm_local/unix/check_files folder and modify configure.in.base file:

…
echo
echo ---
echo Testing GUI
echo ---
echo

CHECK_SALOME_GUI
…

echo
echo ---
echo Summary
echo ---
echo

variables="cc_ok lex_yacc_ok python_ok … Kernel_ok SalomeGUI_ok"
…

3.1.3. Additional configuration procedures

Depending on what SALOME GUI packages the custom module depends on (through include files
or/and linkage) some additional check procedures may be needed (e.g. BOOST flags may be
required). In this case these procedures should be added manually by modifying configure.in.base and
make_commence.in files.

3.1.4. Building of module’s GUI library

Makefile.in of the module’s GUI library should be modified to take into account additional
compilation/linkage flags (see previous section), e.g.:
…
CPPFLAGS += -I${GUI_ROOT_DIR}/include/salome

© OPEN CASCADE, 2005 20050627_MIGRATING_TO_SALOME3_PROCEDURE_NOT_UPTODATE.DOC

 Page 5 / 13

CXXFLAGS += -I${GUI_ROOT_DIR}/include/salome
LDFLAGS += -L${GUI_ROOT_DIR}/lib/salome -lSalomeAp p
…

In SALOME 3 default GUI library name does not have postfix “GUI”. So the library target should be
modified in the Makefile.in (for example, for HELLO sample module):
…
Libraries targets
LIB = libHELLO.la
…

There is a possibility to define the name of the module’s GUI library directly in the user preferences file
(see 3.3 and 4.3 below). In this case it is not necessary to rename library target in the Makefile.in.

3.2. Sources adopting

3.2.1. Module

The class SalomeApp_Module provides basic functionality for all custom modules: it is the main GUI
module class. Each custom module should implement its own module GUI class inherited from
SalomeApp_Module . The instance of this class should be created and exported each time when
application requests it by createModule() function, e.g.:

…
extern "C" {
 Standard_EXPORT CAM_Module* createModule() {
 return new GeometryGUI();
 }
}
…

Some methods of this class should be re-implemented in successors in order to customize the
module’s behavior:

Method Description
public:
void initialize (CAM_Application*); This method is called once when the instance of

the module is created by the application (when
the module is loaded first time for each study).
This method is usually responsible for the
creation of main menu, toolbars and context
popup menu actions, preparation of the popup
menu manager, creation/getting of the engine
reference instance, etc.

void windows (QMap<int, int>&) const; This method should fill in the list of dockable GUI
elements (ObjectBrowser, LogWindow,
PythonConsole) which should be shown by
default when the module is activated.

void viewManagers (QStringList&) const; Similar to the windows () this method should
provide the list of compatible views (OCCViewer,
VTKViewer, etc).

QString engineIOR () const; This method should return module engine IOR.

void contextMenuPopup (const QString&,
QPopupMenu*, QString&);

This optional method can be defined in order to
override default mechanism of context popup
menus handling (through popup menu manager,
see 3.2.4 below).

void createPreferences (); This optional method can be defined to export
preferences by using preferences handling
mechanism (see 3.2.5 below).

© OPEN CASCADE, 2005 20050627_MIGRATING_TO_SALOME3_PROCEDURE_NOT_UPTODATE.DOC

 Page 6 / 13

void studyActivated (); This optional method can be defined, for
example, to notify the engine that active study is
changed by user.

protected:
CAM_DataModel* createDataModel (); This optional method should be re-implemented

if the module has own data model which is
different from default one (see 3.2.2 below).

SalomeApp_Selection* createSelection () const; This method takes place in the context popup
menus definition process (via popup menu
manager). The goal of this method is to analyze
currently selected objects and create an instance
of QtxPopupMgr::Selection class (or its
successor) to define rules which are taken into
account when popup manager collects the menu
commands for the popup menu being created.
The rules for each command are usually created
in the initialize() method (refer to 3.2.4 for
details).

public slots:
bool activateModul e(SUIT_Study*); This method is called each time when the module

is activated by the application. This method can
activate menus, toolbars created previously by
initialize () method. In addition, it is the right place
to set custom selectors to the Object browser or
viewers, etc.

bool deactivateModule (SUIT_Study*); This method is called each time when the module
is deactivated by the application (e.g. when user
activates another module). It should deactivate
menus and toolbars shown by activate () method.
It should also disable its own selectors and
enable other ones which were active before the
module was activated.

Note: when overriding virtual methods do not forget to call base implementation (except the cases
when it is really necessary to hide default implemetation).

3.2.2. Data model

Data model classes are responsible for the transient presentation of the module’s data. It means data
internal organization and the way how the data should be presented in GUI (in the Object browser,
viewer windows, etc.). By default SALOME-based modules use the data model from SalomeApp
package. This data model is based on SALOMEDS_Study and represents the structure of the study
basing on SALOMEDS_SObject objects.
If the module does not use default SALOMEDS-based data model, it is necessary to create it’s own
data model and export it in the createDataModel() method of the successor of the
SalomeApp_Module class.

The data model classes are defined in SalomeApp package. Custom module may inherit these
classes and override the default behavior when necessary. In some cases it can be reasonable to use
the corresponding classes from CAM package (refer to LIGHT sample module for example).

SalomeApp_DataModel Data model itself, it is responsible for the creating, loading, saving

and updating of the internal data structure.
SalomeApp_DataObject This class presents the elementary unit of the data model. It

includes presentation methods like name (), icon (), toolTip (), etc.
SalomeApp_ModuleObject This is the root object of the data model.

Note that SalomeApp_ModuleObject class uses virtual inheritance, because it inherits the
SUIT_DataObject class through the different branches.

© OPEN CASCADE, 2005 20050627_MIGRATING_TO_SALOME3_PROCEDURE_NOT_UPTODATE.DOC

 Page 7 / 13

3.2.3. Selection handling

Access to the selection is provided via SalomeApp_SelectionMgr class. It allows getting of the list
of the currently selected objects including sub-objects for the complex objects (like nodes of mesh,
etc), modifying of the selection (by adding/removing objects to the selection), clearing the selection,
etc. The class SalomeApp_DataOwner class together with SALOME_InteractiveObject provides
the way of identifying data objects when they are involved in the selection mechanism.
The data objects in SALOME GUI are identified by their entries in the SALOMEDS_Study (as it was in
previous versions of SALOME).

If the module has own data model it also probably needs own data objects identification mechanism.
In this case the data owner class should be implemented (refer to LIGHT sample module for the
example).
Moreover, in this case module may need to define its own selector class(es) (SUIT_Selector class
successors). When module is activated it should install own selectors to the object browser, viewer
windows and disable other previously installed selectors. These own selectors will then control all the
selection operations and notify the selection manager when the selection is changed. And when the
module is deactivated it is necessary to deactivate own selectors and activate again previous ones.

3.2.4. Menus, toolbars and context menus management

There is no support for XML-based menu definition files in SALOME 3 GUI as it was before. Instead
all the GUI actions should be hard-coded in the module GUI implementation.
The usual place where to do it is the successor of the SalomeApp_Module class.
This class defines a family of createAction() , createMenu() and createTool() methods in
order to create actions and associate them with the main menu, toolbars and popup menus. This can
be done in the initialize() method of the module.

The created menus and toolbars are not shown immediately after creation. To do it activate()
method of the module class should call setMenuShown(true) and setToolShown(true)
methods.
And vice versa, deactivate() method should hide the menus and toolbars by calling
setMenuShown(false) and setToolShown(false).

Note: for the internationalization of the menus, the corresponding *.po resource files should be used.

The processing of the context popup menus is possible by two ways. The simplest way is overriding of
the contextMenuPopup() method, then filling in the popup menu with commands manually
according to the current selection and menu context (object browser, viewer, etc.) and then processing
of the chosen action in the corresponding slot.

Another way is the using of the popup menu management mechanism. First it is necessary in the
initialize() method of the module to create all actions which should be presented in the context
popup menu, then push all these actions to the popup manager and define the lexical rule for each
action. Each time when the popup menu is requested these rules define, should some action appear
in the menu or not and should it be checked on or off (for switching actions).
Then it is necessary to override createSelection() method which should create the instance of
SalomeApp_Selection class (or its successor). This class analyzes the current selection and
defines some variables which are engaged in the lexical rules definition.
For example,

void GeometryGUI::initialize(CAM_Application* app)
{
 …
 // create “Erase All” action
 createGeomAction(214, “ERASE_ALL”);
 // get the popup menu manager
 QtxPopupMgr* mgr = popupMgr();
 // push the action to the popup manager
 mgr->insert(action(214), -1, -1);
 // define the rule for the action

© OPEN CASCADE, 2005 20050627_MIGRATING_TO_SALOME3_PROCEDURE_NOT_UPTODATE.DOC

 Page 8 / 13

 mgr->setRule(action(214), "isActiveViewer=true \\
 and $client in {'OCCViewer' 'VTKVie wer'}", true);
 …
}

In the above example the “Erase All” action will appear in the popup menu only if there is active viewer
and context popup menu is requested for the OCC or VTK viewer. The <isActiveViewer> and
<$client> variables are defined by the GEOMGUI_Selection class methods:

void GEOMGUI_Selection::init(const QString& client ,
 SalomeApp_SelectionMg r* mgr)
{
 …
 // remember the client
 myPopupClient = client;
 …
}

QtxValue GEOMGUI_Selection::param(const int ind, c onst QString& p) const
{
 QtxValue val(SalomeApp_Selection::param(ind, p));
 if (!val.isValid()) {
 …
 // the “client” parameter is requested
 if (p=="client") return myPopupClient;
 // the “isActiveViewer” parameter is requested
 if (p == "isActiveViewer") return QtxValue(i sActiveViewer());
 …
 }
 …
}

It is possible to use SalomeApp_Selection class instance – it defines a lot of helpful variables, but
if its functionality is not enough for your needs you can implement own class inheriting from
SalomeApp_Selection or from QtxPopupMgr::Selection .

The second way seems some more difficult to implement but in this case you will not need to re-
analyze all code responsible for the popup menu creation each time when you add some new action
or introduce new selection rules.

3.2.5. Resources and preferences handling

SALOME application provides unified access to resources and preferences via Resource manager.
It is initialized when the application is started and automatically loads resource files for all modules
and packagese mentioned in the “resources” section of the configuration file.
There are two configuration files, both defined in XML format. The first one is SalomeApp.xml file,
called “global” and situated in the ${GUI_ROOT_DIR}/share/salome/resources folder. The user can
not change this file – it defines the default settings of the application. The user configuration file
named .SalomeApprc.3.x.x (where 3.x.x is a SALOME version number, e.g. 3.0.0) is created during
the first application launch in the user’s home directory.

All modules and packages which need some resource files to be loaded by the application should be
mentioned in the “resources” section of the configuration file(s). For example:
…
<section name="resources">
 <parameter name="SUIT" value="${SUITRoot}/resou rces"/>
 <parameter name="STD" value="${SUITRoot}/resour ces"/>
 <parameter name="GEOM" value="${GEOM_ROOT_DIR}/ share/salome/resources"/>
 …
</section>
…

© OPEN CASCADE, 2005 20050627_MIGRATING_TO_SALOME3_PROCEDURE_NOT_UPTODATE.DOC

 Page 9 / 13

The value of each parameter defines the directory where Resource manager should look for resource
files of some module. It is possible to use any environment variables to define search path. Resource
files are the *.qm Qt internationalization files (compiled from *.po files by msg2qm tool), image files
(*.png, *.bmp, etc) and other user-defined files. By default Resource manager looks for
<MODULE>_msg_<LANG>.qm, <MODULE>_icons.qm and <MODULE>_images.qm files, where
<MODULE> is a module name and <LANG> is a used language (defined in “language” section of the
configuration file).

The access to the Resource manager is provided by the SalomeApp_Application class:

SUIT_ResourceMgr* resourceMgr() const;

To create the pixmap from the icon file use loadPixmap() method of the Resource manager:

QPixmap loadPixmap(const QString&, const QString&) const;

To find some other resource file use path() method:

QString path(const QString&, const QString&, const QString&) const;

Sometimes might be necessary to load some internationalization files manually. It can be done by
calling loadTranslator() method:

void loadTranslator(const QString&, const QString&);

Access to the user preferences is also provided via the Resource manager. The preferences are
automatically loaded when application is started and saved when application is closed normally (i.e.
not killed by killSalome.py script). Each user preference is defined by its section and name. The
Resource manager provides a lot of methods to read/write preferences:

bool hasSection(const QString&) const;
bool hasValue(const QString&, const QString&) const;

bool value(const QString&, const QString&, int&) const;
bool value(const QString&, const QString&, doub le&) const;
bool value(const QString&, const QString&, bool &) const;
bool value(const QString&, const QString&, QCol or&) const;
bool value(const QString&, const QString&, QStr ing&, const bool = true) const;
int integerValue(const QString&, const QString &, const int = 0) const;
double doubleValue(const QString&, const QString& , const double = 0) const;
bool booleanValue(const QString&, const QString &, const bool = false) const;
QColor colorValue(const QString&, const QString&, const QColor& = QColor()) const;
QString stringValue(const QString&, const QString& , const char* = 0) const;

void setValue(const QString&, const QString&, c onst int);
void setValue(const QString&, const QString&, c onst double);
void setValue(const QString&, const QString&, c onst bool);
void setValue(const QString&, const QString&, c onst QColor&);
void setValue(const QString&, const QString&, c onst QString&);

void remove(const QString&, const QString&);
void removeSection(const QString&);

The first parameter of all these methods is a resource section name, and second is a name of the
setting.

In addition SALOME 3 GUI provides the common preferences edition dialog box. This dialog box has
the separated tab page for each module. The module which wants to export some preferences to the
common dialog may redefine createPreferences() method and then use addPreference() and
setPreferenceProperty() methods:

void GeometryGUI::createPreferences()
{

© OPEN CASCADE, 2005 20050627_MIGRATING_TO_SALOME3_PROCEDURE_NOT_UPTODATE.DOC

 Page 10 / 13

 int tabId = addPreference(tr("PREF_TAB_SETTINGS "));

 int genGroup = addPreference(tr("PREF_GROUP_GEN ERAL"), tabId);
 addPreference(tr("PREF_SHADING_COLOR"), genGro up,
 SalomeApp_Preferences::Color, "Geo metry", "shading_color");
 int step = addPreference(tr("PREF_STEP_VALUE") , genGroup,
 SalomeApp_Preferences::IntSpin, "Geometr y", "SettingsGeomStep");

 setPreferenceProperty(genGroup, "columns", 1);

 setPreferenceProperty(step, "min", 0.001);
 setPreferenceProperty(step, "max", 10000);
 setPreferenceProperty(step, "precision", 3);
}

This dialog box allows editing of most used types of settings, like strings, color values, integer and
floating point values, boolean values, etc. Refer to SalomeApp_Preferences class for more details.

3.2.6. View management

To operate with viewers the mechanism of view managers is provided by the SALOME 3 GUI.
To get the view manager use getViewManager() method of SalomeApp_Application class:

SUIT_ViewManager* getViewManager(const QString&, c onst bool);

The first parameter defines the type of the view manager being requested, e.g. “OCCViewer”,
“VTKViewer” or “Plot2d”. The second parameter says if it is necessary to create new view manager if
there is no yet appropriate one. The new view window is created automatically when necessary.

To create new view window use its createView() method. To get active view, use
getActiveView() .

Active view manager can be also get from the SalomeApp_Application by
activeViewManager() method.

3.2.7. Object Browser, python console, etc.

The access to the Object browser is provided via SalomeApp_Application class:

OB_Browser* objectBrowser();

You unlekely need to have direct access to the Object Browser if you do not implement your own
selector class.
To get the selected objects from the Object browser use getSelected() methods; to set the
selection, use setSelected() methods.
To get the root entry (in order to iterate through the children) you may use getRootObject()
method, and to update its contents call updateTree(SUIT_DataObject*) .

In addition, the SalomeApp_Application class provides method updateObjectBrowser(
const bool = true) to update the Object browser contents. The optional parameter says if it is
necessary also to update data models for all loaded modules.

The access to the embedded Python console is possible via SalomeApp_Application class:

PythonConsole* pythonConsole();

To execute a Python command in the embedded Python console, use its exec(const QString&)
method.

To send the text message to the Log output window use logWindow() method of the
SalomeApp_Application class:

© OPEN CASCADE, 2005 20050627_MIGRATING_TO_SALOME3_PROCEDURE_NOT_UPTODATE.DOC

 Page 11 / 13

LogWindow* log = logWindow();
log->putMessage(“simple message”);

3.3. Launching

To launch SALOME with custom module it is necessary to define environment variable
<MODULE>_ROOT_DIR to point to you module’s binaries distribution and then modify configuration
file (see 3.2.5 above for more details about Resource manager). Here and below <MODULE> is a
module symbolic name, e.g. for Geometry module’s symbolic name is GEOM.

…
 <section name="launch">
 <parameter name="modules" value="MODULE"/>
 </section>
 <section name="resources">
 <parameter name="MODULE" value="${MODULE_ROOT_D IR}/share/salome/resources"/>
 </section>
 <section name="MODULE">
 <parameter name="name" value="Module"/>
 <parameter name="icon" value="Module.png"/>
 <parameter name="library" value="libModuleGUI.s o"/>
 </section>
…

Section “launch” defines the modules which should be taken into account when launching SALOME
application.
Section “resources” defines for each module the directory or list of directories where SALOME
application should look for resource files. Usually it is a module’s share/salome/resources folder.
The module configuration section may contain any module-specific preferences, but several
parameters in this section are obligatory:

- “name” parameter defines the module user name (that one displayed in the “Components”
toolbar);

- “icon” parameter defines the icon for the module;
- optional “library” parameter defines the name of the library which should be used as GUI

library for the module; by default lib<MODULE>.so file name is used.

4. PYTHON MODULES MIGRATING

In order to minimize expenses concerned with migrating of existing Python modules on new GUI
architecture SALOME 3 tries to keep as much as possible the compatibility with SALOME 2.x Python
API. This concern SalomePyQt, libSALOME_Swig and SalomePy libraries which are used from the
python code to access SALOME GUI functionality, and SalomePyQtGUI library which represents a
base GUI library for all Python modules.

This paragraph refers to the pure Python modules, i.e. which contain no C++ code. Modules which
include both C++ and Python code may need to perform some migrating steps which are descried in
the previous section of this document.

4.1. Python API

As it is mentioned above, the Python API of SALOME GUI (wrapped by SIP and SWIG tools) is fully
compatible with the previous versions of SALOME. The functions which became obsolete in the new
GUI are still supported. This significantly reduces the migrating expenses for the Python modules.

The new Python modules should use the new API included in the SalomePyQt, libSALOME_Swig and
SalomePy libraries, but old ones still may use old API with some reserves.

4.2. Configuration and building

Minimum modifications are needed to make the Python module package to be built with new GUI.

© OPEN CASCADE, 2005 20050627_MIGRATING_TO_SALOME3_PROCEDURE_NOT_UPTODATE.DOC

 Page 12 / 13

4.2.1. msg2qm

For *.po resource files to be compiled it is necessary to add check step to the configure script (see
3.1.1).

4.2.2. Menu resources

As it was mentioned in 3.2.4 menu resource files (XML-based) are not supported in SALOME 3 GUI.
All menu/toolbars actions should be hard-coded in the module sources. The only exception to this rule
is made to the Python modules. The support of XML-based menu resource files is kept as before. The
SalomePyQtGUI library automatically tries to find menu definition file and parses it to create main
menus, toolbars and popup menus. The format of menu definition files is not changed too.

Note: new Python modules should avoid using of XML-defined menus, because this way of menu
definition is obsolete and can be removed in future versions of SALOME. New Python API should be
used instead in order to create menu, toolbars, etc.

Some modules can use direct access to main menu via SalomePyQt module:

static QMenuBar* getMainMenuBar();
static QPopupMenu* getPopupMenu(const MenuName);

Such modules add menu items to the main menu manually, usually by using insertItem()
functions. Since application does not clear automatically all “alien” menu items the module is obliged
to remove these menu items by its own. Note that if XML-based files are used for creation of menus
the clearing is performed automatically.

4.3. Launching

The paragraph 3.3 describes the actions which should be done in order to launch SALOME with
custom module(s). The same concerns the pure Python modules. The “library” parameter of the
module preferences section should contain “libSalomePyQtGUI.so” value. It means that for the Python
modules which do not have own GUI libraries libSalomePyQtGUI.so should be used.

4.4. Caveats

4.4.1. Multi-desktop environment

Since SALOME 3 GUI introduces multi-desktop interface, Python module GUI should take it into
attention. It means that if any desktop-referenced variable is used in the code this variable should be
reinitialized in setSetting() and activeStudyChanged() methods. It is recommended to re-get
desktop each time when it is needed by calling of the corresponding SALOME Python API methods.

4.4.2. Workspace

SALOME 3 GUI uses tabbed widget to stack all viewer windows. Moreover, SUIT library provides
different types of desktop, and the default desktop type can be changed in future or even become
customizable. So, the Python module GUI should not rely on the value passed by
setWorkspace(ws) method – it may have 0 (zero) value. This method seems not to have
significant utility. It is considered as obsolete.

© OPEN CASCADE, 2005 20050627_MIGRATING_TO_SALOME3_PROCEDURE_NOT_UPTODATE.DOC

 Page 13 / 13

APPENDIX

Check SALOME GUI procedure

AC_DEFUN([CHECK_SALOME_GUI],[

AC_CHECKING(for Salome GUI)

SalomeGUI_ok=no

AC_ARG_WITH(gui,
 --with-salome_gui=DIR root directory path of S ALOME GUI
installation,
 SALOME_GUI_DIR="$withval",SALOME_GUI_DIR="")

if test "x$SALOME_GUI_DIR" = "x" ; then
 if test "x$GUI_ROOT_DIR" != "x" ; then
 SALOME_GUI_DIR=$GUI_ROOT_DIR
 else
 # search Salome binaries in PATH variable
 AC_PATH_PROG(TEMP, SUITApp)
 if test "x$TEMP" != "x" ; then
 SALOME_GUI_BIN_DIR=`dirname $TEMP`
 SALOME_GUI_DIR=`dirname $SALOME_GUI_BIN_DIR`
 fi
 fi
fi

if test "x$SALOME_GUI_DIR" != "x" ; then
 if test -f ${SALOME_GUI_DIR}/bin/salome/SUITApp ; then
 SalomeGUI_ok=yes
 AC_MSG_RESULT(Using SALOME GUI distribution in ${SALOME_GUI_DIR})
 GUI_ROOT_DIR=${SALOME_GUI_DIR}
 fi
fi
if test "x$SalomeGUI_ok" == "xno" ; then
 AC_MSG_WARN("Cannot find compiled SALOME GUI dist ribution")
fi

AC_SUBST(GUI_ROOT_DIR)

AC_MSG_RESULT(for SALOME GUI: $SalomeGUI_ok)

])dnl

