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1. INTRODUCTION 

This document describes the backgrounds of the following algorithms: General Fuse Algorithm, Partition 

Algorithm, Boolean Operation Algorithm (hereafter Algorithms). 

2. OVERVIEW 

For the moment there are two algorithms that solve similar tasks:   

• Boolean Operations Algorithm in Open CASCADE 6x (BOA). 

BOA has been designed and developed in 2000. Since 2000 the algorithm is modified to fix the problems 

upon requests (in general the modifications were bug fixes). 

• Partition Algorithm for SALOME platform (PA). 

PA has been designed and developed in 2005 and uses modern (at that time) algorithms of OCC as 

auxiliary tools, for e.g. unbalanced binary tree of overlapped bounding boxes.  

PA has the following features: 

o PA is based on General Fuse Algorithm (GF).  

o PA was developed taking into account the problems faced in BOA between 2000-2005 years. 

o The architecture of PA is history-based and has been designed to support modern trends in topology 

science.  

o The architecture of PA is expandable, that allows to create a lot of specific algorithms upon requests. 
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3. ANALYSIS OF OPERATORS 

• The General Fuse operator can be applied to arbitrary number of arguments (in terms of 

TopoDS_Shape). 

The operator can be represented as the following: 

RGF=GF (S1, S2… Sn) (3.1.1) 

where 

RGF – result of the operation,  

S1, S2 … Sn - Arguments of the operation, 

n - Number of arguments (n>1) 

• The Partition operator can be applied to arbitrary number of arguments (in terms of TopoDS_Shape). 

The operator can be represented as the following: 

RPA=PA (S1, S2… SnOB, [T1, T2… TnT]) (3.1.2) 

where 

RPA – result of the operation,  

S1, S2 … SnOB  - Arguments of the operation (Objects),  

nOB  - number of Objects (nOB>1) 

T1, T2 … TnT - Arguments of the operation (Tools), 

nT - number of Tools 

It is evident that for nT=0  

RPA=PA (S1, S2… SnOB)=RGF (3.1.3) 

Thus, PA is particular case of GF. 
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• BOA provides the operations (Common, Fuse, Cut) between two arguments (in terms of 

TopoDS_Shape).   

The operator can be represented as the following: 

RBOA=B j (S1, S2) (3.1.4) 

where 

RBOA  – result of the operation 

Bj  – operation of type j (Common, Fuse, Cut), 

S1, S2 - Arguments of the operation. 

 

The result RBOA (3.1.4) can be obtained from RGF (3.1.1). 

For e.g. for the two arguments S1, S2 (see the Figure 1) the result RGF will be 

RGF=GF (S1, S2) = S p1+S p2+Sp12 (3.1.5) 

 

 

Figure 1 

S1 

S2 

Sp1 

Sp2 

Sp12 
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On the other hand   

Bcommon  (S1, S2) = Sp12 

Bcut12  (S1, S2) = Sp1 

Bcut21  (S1, S2) = Sp2   

Bfuse  (S1, S2) = S p1+S p2+Sp12 = RGF   

(3.1.6) 

RGF=GF (S1, S2) = Bfuse  = Bcommon + Bcut12+ Bcut21  (3.1.7) 

 

The fact that the RGF contains the components of RB (3.1.7) allows to consider that GF is the general 

case of BOA. Thus it is possible to implement BOA, PA as subclasses of GF using C++ inheritance 

mechanism. 
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4. TERMS AND DEFINITIONS 

The chapter contains the background, terms, definitions that are necessary to understand how the 

algorithms work.  

4.1. TOLERANCES 

Each shape that has boundary representation in the Open CASCADE contains its own internal value of 

geometrical tolerance.   

The meaning of the tolerance is different for different shapes (Table 1). 

Table 1 

No Picture Description  

 

 

 

1 

 

 

 

 

 

 

Vertex 

Value of the tolerance for a vertex V is the value 

of radii of a imaginary circumscribed sphere 

around the 3-D point of the vertex V 

 

 

 

 

 2 

 

 

 

 

 

 

Edge  

Value of the tolerance for an edge E is the value 

of radii of a imaginary circumscribed pipe around 

the 3-D curve of the edge E 

 

 

 

 

 

 

3 

 

 

 

 

 

 

Face 

Value of the tolerance for a face F is the value of 

thickness of a imaginary offset surfaces to 

underlying surface of the face F 

 

Tol 

V 
 

Tol 
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Tolerance is a way of stating how much precision is needed or conversely, how much error can be to accept 

the shape.  

The tolerances in Open CASCADE are absolute values (in some units: mm, in, etc). Absolute tolerance 

defines the maximum permissible distance apart that two shapes (or sub-shapes) are permitted to be and 

still be considered to be “close enough”, i.e. that these two shapes will be capable of being joined. 

There are the following rules for the values of tolerances: 

• For any edge E with vertices Vi:  

Tol (E) ≤ max (Tol (V i)), i=1, 2…NbV (4.1.1) 

where NbV – Number of vertices of the edge E. 

• For any edge face F with edges Ei:  

Tol (F) ≤ max (Tol (E i)), i=1, 2…NbE  (4.1.2) 

where NbE - Number of edges of the face F.  
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4.2. INTERFERENCES 

The shapes interferes between each other in terms of theirs tolerances. 

Shapes are interfered when there is a part of 3D space where the distance between the underlying geometry 

of shapes is less or equal to the sum of tolerances of the shapes.  

For the three types of shapes (vertex, edge, face) there are six types of interferences.  

4.2.1. Vertex/Vertex interference 

A vertex Vi and a vertex Vj have Vertex/Vertex interference when VI and Vj have the distance between 

corresponding 3D points that is less then sum of the tolerances Tol(V i) and Tol(V j) of the vertices (Figure 2).  

Figure 2 

Result: 

New vertex Vn with 3D point Pn and tolerance value Tol(Vn) that can be computed by the formulas: 

Pnew = 0.5•(Pi + Pj) 

Tol (V n) = max (Tol(V i), Tol(V j)) + 0.5•D  

where 

D=distance (P i, Pj) 

 

Tol (Vi) Tol (Vj) 

Vj Vi 

T s 

  

D 

 

Tol(Vn) 

Vn 

Pn 
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4.2.2. Vertex/Edge interference 

A vertex Vi and an edge Ej have Vertex/Edge interference when for the vertex Vi and the edge Ej the 

distance D between 3D point of the vertex and its projection on the 3D curve of the edge Ej is less or equal 

than sum of tolerances of the vertex Tol(V i) and the edge Tol(E j) (Figure 3). 

Figure 3 

Result: 

• Vertex Vi with the corresponding tolerance value. 

 

Tol(V i) = max (Tol(V i), Tol(E j)) + 0.5•D 

where 

D=distance (P i, PPi) 

 
• Parameter ti of the projected point PPi on the 3D curve Cj of the edge Ej. 

 

 

Ej 

Vi 

Tol(E j) 

Tol(V i) 

Vi 

Cj 

Tol(V i) 

t i 
PPi 

Pi 
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4.2.3. Vertex/Face interference 

A vertex Vi and a face Fj have Vertex/Face interference when for the vertex Vi and the face Fj the distance D 

between 3D point of the vertex and its projection on the surface of the face is less or equal than sum of 

tolerances of the vertex Tol(V i) and the face Tol(F j) (Figure 4).  

Figure 4 

Result: 

• Vertex Vi with the corresponding tolerance value. 

Tol(V i) = max (Tol(V i), Tol(E j)) + 0.5•D  

where 

D=distance (P i, PPi) 

• Parameters ui, vi of the projected point PPi on the surface Sj of the face Fj.  

 

 

Tol(V i) 

Fj 

Vi Pi 

PPi 

2•Tol(F j) 
• 

Tol(V i) 

Fj 

Vi Pi 

PPi 

u 

v
vi 

ui 

Fj 
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4.2.4. Edge/Edge interference 

An edge Ei and an edge Ej have Edge/Edge interference when for two of edges Ei and Ej (with 

corresponding 3D curves Ci, Cj) there is (are) some place(s) where the distance between the curves is less 

than (or equals to) sum of tolerances of the edges. 

 
Case 1:  Two edges have common part(s) of 3D curves in terms of tolerance (Figure 5). 

Figure 5  

Result: 

• Parametric range [ti1, ti2 ] for the 3D curve Ci of the edge Ei. 

• Parametric range [tj1, tj2 ] for the 3D curve Cj of the edge Ej.  

 
 

 

Ej 

Tol(E j) Tol(E i) 

Ei 

Ej 
Ei 

t j2 t j1 

Cj 
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Case 2: Two edges have common point(s) in terms of tolerance (Figure 6). 

Figure 6  

Result: 

• New vertex (-ices) Vn with 3D point Pn and tolerance value Tol(Vn) that are calculated by the formulas: 

Pn = 0.5•(Pi + Pj) 

Tol(V n) = max (Tol(E i), Tol(E j)) + 0.5•D 

where 

D=distance (P i, Pj) 

Pi, Pj – the nearest 3D points for the curves Ci, Cj 

• Parametr ti of Pi for the 3D curve Ci. 

• Parametr tj of Pj for the 3D curve Cj. 

 

 

Ej 

Tol(E j) 

Ei 

Tol(E i) 

Ej 

Ei 

t j 

Cj 

Vn Tol(Vn) 

Ci 
P  

t i 
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4.2.5. Edge/Face interference 

An edge Ei and a face Fj have Edge/Face interference when for the edge Ei and the face Fj (with 

corresponding 3D curve Ci, and surface Sj) there is (are) some place(s) in 3D space where the distance 

between the Ci and the surface Sj is less than (or equal to) sum of tolerances of the edge Ei and the face Fj. 

 
Case 1: Edge Ei and Face Fj have common part(s) in terms of tolerance (Figure 7). 

Figure 7 

Result: 

• Parametric range [ti1, ti2 ] for the 3D curve Ci of the edge Ei. 

 

 

Tol(E i) 

Fj 

2•Tol(F j) 

E
i 

Fj 
Ei 

Ci 

t i2 

t i1 
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Case 2: Edge Ei and Face Fj have common point(s) in terms of tolerance (Figure 8). 

Figure 8 

Result: 

 
• New vertex (-ices) Vn with 3D point Pn and tolerance value Tol(Vn) that are calculated by the formulas: 

Pn = 0.5•(Pi + Pj)  

Tol (V n) = max (Tol (E i), Tol (F j)) + 0.5•D  

where 

D=distance (P i, Pj) 

Pi, Pj – the nearest 3D points for the curve Ci and surface Sj 

• Parameter ti of Pi for the 3D curve Ci. 

• Parameters ui, vi of the projected point PPi on the surface Sj of the face Fj. 

 

 

Tol(E i) 

Fj 

2•Tol(F j) 

Ei 

Fj 

Ei 

Tol(Vn) 

Vn 

Ci 

t i 
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4.2.6. Face/Face Interference 

A face Fi and a face Fj have Face/Face interference when for the face Fi and the face Fj (with corresponding 

surfaces Si, Sj) there are some place(s) in 3D space where the distance between the surfaces is less than 

(or equal to) sum of tolerances of the faces. 

 
Case 1: Face Fi and face Fj have common curve(s) Cijk  (k=0, 1, 2…kn) in terms of tolerance (Figure 9). 

Figure 9 

Result:  

• Intersection curves Cijk  (k=0, 1, 2…kn, kn - number of intersection curves) with correspondent values of 

tolerances Tol(C ijk ). 

 

 

Tol(C ijk ) 
Fi 

2•Tol(F j) 

2•Tol(F i) 

Fj 
Cijk  
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Case 2: Face Fi and face Fj have common point(s) in terms of tolerance (Figure 10). 

Figure 10 

Result: 

 
• New vertices Vijm  (m=0, 1, 2, mn, - number of intersection points). 

• New vertex (-ices) Vijm  with 3D point Pn and tolerance value Tol(Vn) that are calculated by the formulas: 

Pn = 0.5•(Pi + Pj) 

Tol(V ijm ) = max (Tol(F i), Tol(F j)) + 0.5•D  

where 

D=distance (P i, Pj) 

Pi, Pj – the nearest 3D points for the surface Si and surface Sj. 

 
• Parameters ui , vi of the projected point PPj on the surface Sj of the face Fj 

• Parameters ui , vi of the projected point PPi on the surface Si of the face Fi 

4.2.7. Computation Order 

The interferences between shapes are computed on the basis of increasing of the dimension value of the 

shape in the following order: Vertex/Vertex, Vertex/Edge, Edge/Edge, Vertex/Face, Edge/Face, 

Face/Face . The reason is to avoid the computation of redundant interferences between upper shapes Si, Sj 

when there are interferences between lower sub-shapes Sik, Sjm.  

 

Tol(V ijm) 

Fi 

2•Tol(F j) 

2•Tol(F i) 

Fj 

Vijm  
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4.2.8. Results 

• The result of the interference is a shape that can be either interfered shape itself (or its part) or a new 

shape. 

• The result of the interference is a shape with the dimension value that is less or equal to the minimal 

dimension value of interfered shapes. For e.g. the result of Vertex/Edge interference is a vertex, but not 

an edge. 

• The result of the interference splits source shapes on parts each time as it can do that. 

4.3. PAVES 

The result of interferences of the type Vertex/Edge, Edge/Edge, Edge/Face in a number of cases is a vertex 

(new or old) lying on the edge.  

The result of interferences of the type Face/Face in a number of cases is intersection curves. These curves 

go through the vertices lying on the faces. 

The position of the vertex Vi on the curve C is determined by a value of a parameter t i of the 3D point of the 

vertex on the curve. 

A Pave PVi on a curve C is a structure containing the vertex Vi and correspondent value of the parameter t i 

of the of the 3D point of the vertex on the curve. The curve C can be 3D or 2D curve. (Figure 11) 

Figure 11 

Two paves PV1, PV2 on the one curve C can be compared using the parameter value. PV1>PV2 if t1 > t2. 

The usage of paves allows making the difference between the one vertex V shared between arbitrary 

number of edges E1, E2, …Ei 

The usage of paves allows to bind the vertex to the curve (or any structure that contains a curve: edge, 

intersection curve). 

 

 

PVb 

E 

C 

PVe 

PVi 
t i 

te 

tb=0 

Ve Vb 
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4.4. PAVE BLOCKS  

A set of paves PVi (i=1, 2...nPV, nPV- number of paves) of the curve C can be sorted in increasing order 

using the value of parameter t on the curve C. 

A pave block PBi  is a part of the object (edge, intersection curve) between neighboring paves. (Figure 12) 

Figure 12 

 

Any finite source edge E has the one bounding pave block that contains two paves PVb, PVe. The pave PVb 

corresponds to the vertex Vb with minimal parameter tb on the curve of the edge. The pave PVe corresponds 

to the vertex Ve with maximal parameter te on the curve of the edge. 

 

PVb 

E 

C 

PVe 

PVi 

tb=0 

Ve Vb 

Vi 

PVh PVj th 

t i 

t j 

te 

 

Vh 

Vj 

PB i 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 

Copyright © 2001- 2010.  All rights reserved. 
 

 Page 21 of 56 
 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

 

4.5. SHRUNK RANGE 

A pave block PV (Figure 13) of a curve C is bounded by vertices V1, V2 with the values of tolerances Tol(V1), 

Tol(V2). 

The curve C has a value of tolerance Tol(C) . In case of edge the value of tolerance is tolerance of the edge. 

In case of intersection curve the value of tolerance is obtained from an intersection algorithm. 

Figure 13 

 

The theoretical parametric range of the pave block is [t 1C, t2C].  

The positions of the vertices V1, V2 of the pave block can be different and are determined by the following 

conditions: 

Distance (P 1, P1c) ≤ Tol(V 1)+Tol(C)  

Distance (P 2, P2c) ≤ Tol(V 2)+Tol(C) 

 

The Figure 13 shows that each tolerance sphere of a vertex can reduce the parametric range of the pave 

block to [t 1S, t2S]. The range [t 1S, t2S] is the shrunk range of the pave block. At limiting state t1S=t1C, t2S=t2C. 

The shrunk range of the pave block is the part of 3D curve that can interfere with other shapes. 

 

V1 

V2 

C (t) 

Tol (V2) 
Tol (V1) Tol (C)  

t1C 

t2C t2S t1S
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4.6. COMMON BLOCKS  

The interferences of the type Edge/Edge, Edge/Face can produce results as common parts. In case of 

Edge/Edge  interference the common parts are pave blocks having different edges as a base. (Figure 14) 

Figure 14 

 

If the pave blocks PV1, PV2…PVNbPV (NbPV – number of the pave blocks) have the same bounding vertices 

and geometrically coincide, the pave blocks form common block CB. 

In case of Edge/Face  interference the common parts are pave block lying on a face(s) (Figure 15). 

Figure 15 

If the pave blocks PVi geometrically coincide with a face Fj, the pave block form common block CB. 

In general case a common block CB contains:  

• Pave blocks PVi (i=2, 3… NbPV) 

• A set of faces Fj (j=0,1..NbF, NbF – number of faces). 
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4.7. CONNEXITY CHAINS 

The interfering shapes can produce connexity chains.  

The term connexity chains can be explained by the following examples  

• Interfering vertices. (Figure 16) 

Figure 16 

The pairs of interfered vertices are: (nV11, nV12), (nV11, nV13), (nV12, nV13), (nV13, nV15), (nV13, nV14), (nV14, 

nV15), (nV21, nV22), (nV21, nV23), (nV22, nV23) 

The pairs produce the two connexity chains: (nV11, nV12, nV13, nV14, nV15), (nV21, nV22, nV23).  

Each connexity chain is used to create new vertex: VN1, VN2. 

• Interfering edges (Figure 17) 

Figure 17 

The pairs of coincided pave blocks are: (PB11, PB12), (PB11, PB13), (PB12, PB13), (PB21, PB22), (PB21, PB23), 

(PB22, PB23) 
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The pairs produce the two connexity chains: (PB11, PB12, PB13),  (PB21, PB22, PB23). 

• Interfering faces (Figure 18) 

Figure 18  

 

The pairs of same domain faces are: (F11, F21), (F22, F31), (F41, F51) , (F41, F6) , (F51, F6) 

The pairs produce the three connexity chains: (F11, F21), (F22, F31), (F41, F51, F6) 

 

A connexity chain contains shapes that are Same Domain Shapes (same domain vertices, same domain 

edges, same domain faces).  

4.8. SPLIT EDGES 

The set of pave blocks PB1, PB2… PBnPB (nPB – number of pave blocks) for the edge E is used to build split 

edges Spi (i=1, 2…nPB). 

4.9. SECTION EDGES 

The set of pave blocks PB1, PB2… PBnPB (nPB – number of pave blocks) for the intercestion curve C is used 

to build section edges Sci (i=1, 2…nPB). 
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5. MAIN PARTS OF ALGORITHMS 

The Algorithms (GF, PA, BOA) consist of three parts: 

5.1. DATA STRUCTURE 

Data Structure (DS) is used tob 

• Store information for data and intermediate results 

• Provide the access to the information 

• Provide the links between chunks of information 

The contents of the information are: 

• Arguments 

• New shapes  

• Interferences 

• Pave Blocks 

• Common Blocks 

5.2. INTERSECTION PART 

Intersection Part (IP) is used to   

• Initialize DS 

• Compute interferences between the arguments (and their sub-shapes) 

• Compute same domain vertices, edges 

• Build split edges 

• Build section edges 

• Build p-Curves 

• Store all obtained information in DS 

IP uses DS as input data. 

5.3. BUILDING PART 

Building Part (BP) is used to  

• Build sub-shapes of the result of the operation 

• Build the result of the operation 
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• Provide history information (in terms of BRepBuilderAPI_MakeShape::Generated(), ::Modified(), 

:IsDeleted()) 

BP uses DS as input data. 

6. GENERAL FUSE ALGORITHM 

6.1. ARGUMENTS 

• The arguments are shapes (in terms of TopoDS_Shape). 

• Number of arguments is non-limited 

• Each argument is valid shape (in terms of BRepCheck_Analyzer); 

• Each argument can be one of the following types (see theTable 2) 

Table 2 

No Type Index of Type  

1 COMPOUND 0 

2 COMPSOLID 1 

3 SOLID 2 

4 SHELL 3 

5 FACE 4 

6 WIRE 5 

7 EDGE 6 

8 VERTEX 7 

 

• The argument of type 0 (COMPOUND) can include any number of shapes of any type (0, 1…7). 

• The argument should not be self-interfered, i.e. all sub-shapes of the argument that have geometrical 

coincidence through any topological entities (vertices, edges, faces) must share these entities.  
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6.2. RESULTS  

• During the operation the argument Si can be splitted on parts (Si1, Si2… Si1NbSp, NbSp - number of the 

parts). The set (Si1, Si2… Si1NbSp) is image of the argument Si. 

• The result of GF operation is a compound. Each sub-shape of the compound (resulting shape) 

corresponds to the concrete argument shape S1, S2…Sn and has shared sub-shapes in accordance with 

interferences between the argument and the others. 

• For the arguments of the type EDGE, FACE, SOLID the result contains split parts of the argument 

• For the arguments of the type WIRE, SHELL, COMPSOLID, COMPOUND the result contains the image 

of the shape with the corresponding type (i.e. WIRE, SHELL, COMPSOLID, and COMPOUND. 

 

The types of resulting shapes depend on the type of the corresponding argument (Table 3). 

Table 3 

No Type of argument Type of resulting 

shape 

Comments 

1 COMPOUND COMPOUND The resulting COMPOUND is built from  

• Images of sub-shapes of type COMPOUND 

COMPSOLID, SHELL, WIRE, VERTEX 

• Sets of splitted sub-shapes of type SOLID, FACE, 

EDGE 

2 COMPSOLID  COMPSOLID The resulting COMPSOLID is built from split SOLID-s 

3 SOLID Set of split SOLID-s  

4 SHELL  SHELL The resulting SHELL is built from split FACE-s 

5 FACE Set of split FACE-s  

6 WIRE WIRE The resulting WIRE is built from split  

EDGE-s 

7 EDGE Set of split EDGE-s  

8 VERTEX VERTEX  

 

The following set of examples is to clarify the definition above. 
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6.2.1. Example 1 

The arguments are three edges E1, E2, E3 (Figure 19), that intersect in one 3D point. 

Figure 19 

 

The result of GF operation is compound. 

The compound contains 6 new edges E11, E12, E21, E22, E31, and E32. These edges have one shared vertex 

Vn1.  

 

In this case:  

• the argument edge E1 has resulting split edges E11, E12 (image of E1), 

• the argument edge E2 has resulting split edges E21, E22 (image of E2), 

• the argument edge E3 has resulting split edges E31, E32. (image of E3). 
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6.2.2. Example 2 

The arguments are two wires W1 (Ew11, Ew12, Ew13), W2 (Ew21, Ew22, Ew23) and the edge E1 (Figure 20). 

Figure 20 

 

The result of GF operation is compound.  

The compound consist of 2 wires Wn1 (Ew11, En1, En2, En3, Ew13), Wn2 (Ew21, En2, En3, En4, Ew23) and 

edges E11, E12.  

In this case  

• the argument W1 has image Wn1,  

• the argument W2 has image Wn2,  

• the argument edge E1 has split edges E11, E22. (image of E1) 

 

The edges En1, En2, En3, En4 and the vertex Vn1 are new shapes created during the operation so as the 

edge Ew12 has split edges En1, En2, En3, the edge Ew22 has split edges En2, En3, En4.  
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6.2.3. Example 3 

The arguments are the edge E1 and the face F2 (Figure 21). 

Figure 21 

The result of GF operation is compound.  

The compound consists of 3 shapes:  

• Split parts of the edge E11, E12 (image of E1) 

• New face F21 with internal edge E12. (image of F2) 

6.2.4. Example 4 

The arguments are the edge E1 and the face F2 (Figure 22). 

Figure 22 

The result of GF operation is compound. The compound consists of 5 shapes:  

• Split parts of the edge E11, E12 , E13 (image of E1), 

• Split parts of the face F21, F22 (image of F2) 

E1 

F2 

F21 

E11 E12 

E12 

 

E1 

F2 

F21 

F22 

E12 

E12 

E11 E13 

 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 

Copyright © 2001- 2010.  All rights reserved. 
 

 Page 31 of 56 
 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

 

6.2.5. Example 5 

The arguments are the edge E1 and the shell Sh2 that consists of 2 faces F21, F22 (Figure 23). 

Figure 23 

The result of GF operation is compound. The compound consists of 5 shapes:  

• Split parts of the edge E11, E12 , E13, E14 (image of E1) 

• Image shell Sh21 (that contains split parts of the faces F211, F212, F221, F222)   

6.2.6. Example 6 

The arguments are the wire W1 (E1, E2, E3, E4) and the shell Sh2 (F21, F22) (Figure 24). 

Figure 24 

The result of GF operation is compound. The compound consists of 2 shapes:  

• Image wire W11 that consist of split parts of the edges of W1: E11, E12 , E13, E14 

• Image shell Sh21 that contains split parts of the faces F211, F212, , F213, F221, F222, F223  
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6.2.7. Example 7 

The arguments are 3 faces F1, F2, F3 (Figure 25). 

 

Figure 25 

 

The result of GF operation is compound. The compound consists of 7 shapes:  

• Split parts of the faces Fn1, Fn2, Fn3, Fn4, Fn5, Fn6, Fn7 

6.2.8. Example 8 

The arguments are the shell Sh1 (F11, F12, F13) and the face F2 (Figure 26). 

Figure 26 

 

The result of GFoperation is compound. The compound consists of 4 shapes:  

• Image shell Sh11 that consist of split parts of the faces of Sh1: Fn1, Fn2, Fn3, Fn4, Fn5, Fn6 

• Split parts of the face F2: Fn3, Fn6, Fn7 
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6.2.9. Example 9 

The arguments are the shell Sh1 (F11, F12…F16) and the solid So2 (Figure 27). 

Figure 27 

The result of GF operation is compound.  

The compound consists of 2 shapes (Figure 28) 

• Image shell Sh11 that consist of split parts of the faces of Sh1: Fn1, Fn2….Fn8. 

• Solid So21 with internal shell. (image of So2) 

Figure 28 
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6.2.10. Example 10 

The arguments are the compound Cm1 (of 2 solids So11, So12) and the solid So2 (Figure 29). 

Figure 29 

The result of GF operation is compound. The compound consists of 4 shapes (Figure 30) 

• Image compound Cm11 that consists of split parts of the solids of So11, So12 (Sn1, Sn2, Sn3, Sn4). 

• Split parts of the solid So2 (Sn2, Sn3, Sn5). 

Figure 30 
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7. PARTITION ALGORITHM  

7.1. ARGUMENTS 

The arguments of the algorithm are shapes (in terms of TopoDS_Shape). The main requirements for the 

arguments are described in 6.1 

The arguments in PA are separated in two groups: 

• Shapes 

• Tools 

7.2. RESULTS  

The main difference between GF and PA algorithms is in the rules of building the result.  

• For arguments of Shapes  group the rules are the same as it has been described in 6.2. 

• For the arguments of Tools  group there is the following rule: The result should not contain any shape St i 

from Tools  group or image of the shape St i (St i1, St i2...StiNbt Nbt - number of Tools) from Tools  group if 

these shapes are not included in images of Shapes  group. 

• The result will contain shapes that have complexity (in terms of TopAbs_ShapeEnum) that is less or 

equal to given Limit. The values of Limit can have any value.  In case when Limit  =TopAbs_SHAPE the 

result will contain shapes with complexity that corresponds to the complexity of the arguments. 
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7.2.1. Example 1 

The arguments are  

• Shapes: edges E1, E2  

• Tools: edge E3 (Figure 31) 

• Limit : TopAbs_SHAPE 

Figure 31 

 

The result of PA operation is compound. 

The compound contains 4 new edges E11, E12, E21, E22. These edges have one shared vertex Vn1.  

In this case:  

• the argument edge E1 has resulting split edges E11, E12 (image of E1), 

• the argument edge E2 has resulting split edges E21, E22 (image of E2) 
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7.2.2. Example 2 

The arguments are  

• Shapes: wire W1 (Ew11, Ew12, Ew13) and the edge E1  

• Tools: wire W2 (Ew21, Ew22, Ew23) (Figure 32). 

• Limit : TopAbs_SHAPE 

Figure 32 

 

The result of PA operation is compound.  

The compound consist of wire Wn1 (Ew11, En1, En2, En3, Ew13), and edges E11, E12.  

In this case  

• the argument W1 has image Wn1  

• the argument edge E1 has split edges E11, E22. (image of E1) 

The edges En1, En2, En3, En4 and the vertex Vn1 are new shapes created during the operation so as the 

edge Ew12 has split edges En1, En2, En3, the edge Ew22 has split edges En2, En3, En4.  
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7.2.3. Example 3 

The arguments are  

• Shapes: the face F2  

• Tools: the edge E1 (Figure 33). 

• Limit : TopAbs_FACE 

 

Figure 33 

 

The result of PA operation is compound.  

The compound consists of 3 shapes:  

• New face F21 with internal edge E12. (image of F2) 
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8. BOOLEAN OPERATIONS ALGORITHM 

8.1. ARGUMENTS 

• The arguments are shapes (in terms of TopoDS_Shape). 

• Number of arguments: 2 (Object, Tool ). 

• Each argument is valid shape (in terms of BRepCheck_Analyzer). 

• Each argument can be one of the following types (Table 4). 

Table 4 

No Type Index of Type  Dimension 

1 COMPOUND 0 One of number 0, 1, 2, 3 

2 COMPSOLID 1 3 

3 SOLID 2 3 

4 SHELL 3 2 

5 FACE 4 2 

6 WIRE 5 1 

7 EDGE 6 1 

8 VERTEX 7 0 

 

• The argument of type 0 (COMPOUND) can include any number of shapes of any type (0, 1…7). 

• Each argument should have constant value of the dimension to (Table 4) 

• The argument should not be self-interfered, i.e. all sub-shapes of the argument that have geometrical 

coincidence through any topological entities (vertices, edges, faces) must share these entities. 

• For Boolean operation Fuse the arguments should have equal dimensions. 

• For Boolean operation Cut the dimension of Object  should be not less then the dimension of Tool . 
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8.2. RESULTS  

• The results of BOA1 is defined by the formulas: 

Bcommon =Object ∩ Tool  (8.2.1) 

Bfuse=Object + Tool (8.2.2) 

Bcut12=Object – Tool (8.2.3) 

Bcut21= Tool – Object (8.2.4) 

 

• The result of BOA operation is a compound Bj . Each component of the compound has shared sub-

shapes in accordance with interferences between the Object  and Tool . 

• Bj contains components obtained by the formulas (8.2.1 - 8.2.4). The components are containers of sub-

shapes having same dimensions in accordance with Table 4 (in terms of connexity for cases of edges, 

faces). 

• The result Bcommon should have the dimension that is equal to the lower dimension of the arguments. 

 

                                                 
1 The rules are valid for Open CASCADE 5.0 and higher 
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8.2.1. Example 1 

The arguments are (Figure 34) 

• Object: edge E1 

• Tool: edge E2 

Figure 34 

The result of BOA operation is compound. 

Bcommon  The compound contains noting because the dimension of intersection (vertex) is less 

than minimal dimension of arguments. 

B fuse  The compound contains a wire of 4 new edges E11, E12, E21, E22. The edges have one 

shared vertex Vn1. 

Bcut12  The compound contains a wire of 2 new edges E11, E12. The edges have one shared 

vertex Vn1. 

Bcut21  The compound contains a wire of 2 new edges E21, E22. The edges have one shared 

vertex Vn1. 
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8.2.2. Example 2 

The arguments are (Figure 35): 

• Object: edge E1  

• Tool: edge E2  

 

Figure 35 

 

The result of BOA operation is compound. 

Bcommon  The compound contains a wire of 1 new edge E12. 

B fuse  The compound contains a wire of 3 new edges E11, E12, E13. The edges have shared 

vertices. 

Bcut12  The compound contains a wire of 1 new edge E11. 

Bcut21  The compound contains a wire of 1 new edge E13. 
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8.2.3. Example 3 

The arguments are (Figure 36) 

• Object: face F  

• Tool: edge E  

Arguments 
 

 

Bcommon 

 

 
 B fuse=0 

 
 Bcut12=0 

 
 Bcut21 

 

 

Figure 36 

The result of BOA operation is compound. 

Bcommon  The compound contains new edge E11. 

B fuse  The compound contains nothing (different dimensions of the arguments). 

Bcut12  The compound contains nothing. 

Bcut21  The compound contains new edge E12. 
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8.2.4. Example 4 

The arguments are (Figure 37) 

• Object: face F1 

• Tool: face F2 

Arguments 
 

 

Bcommon 

 

 
 

 B fuse 
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 Bcut12 

 

 

 Bcut21  

 

Figure 37 

 

The result of BOA operation is compound. 

Bcommon  The compound contains new face F12. 

B fuse  The compound contains a shell of 3 new faces F11, F12, F22. 

Bcut12  The compound contains new face F11. 

Bcut21  The compound contains new face F22. 

 

F11 

F22 



SALOME : The Open Source Integration Platform for Numerical Simulation 
 

Copyright © 2001- 2010.  All rights reserved. 
 

 Page 46 of 56 
 

S
A

L
O

M
E

 
P

l
a

t
f

o
r

m
 

 

9. LIMITATIONS OF ALGORITHMS 

The chapter is devoted to the problems that should be considered as limitations of Algorithms. In most cases 

the reason of failure is a superposition of different factors (self-interfered arguments, inappropriate, 

ungrounded values of the tolerances of the arguments, adverse mutual position of the arguments, tangency, 

etc).  

The description below is just to illustrate the limitations and do not exhaust all problems that can be faced in 

practice.  

Each case of failure of Algorithms is the matter of the maintenance service. 

9.1. ARGUMENTS 

9.1.1. Common requirements  

Each argument should be valid (in terms of BRepCheck_Analyzer), or conversely, if the argument is 

considered as not-valid (in terms of BRepCheck_Analyzer), it can not be used as an argument of the 

algorithm. 

The class BRepCheck_Analyzer is to check the overall validity of a shape. For a shape (or its sub-shapes) to 

be valid in Open CASCADE, it must respect certain criteria. If the shape is determined as not valid, the 

problems can be fixed by tools from ShapeAnalysis, ShapeUpgrade, ShapeFix packages. 

The class BRepCheck_Analyzer is just hand-made tool that has its own problems. Examples of such 

problems: 

• The Analyzer checks the distances between the two 3D-points Pi, PSi of an edge on a face F. The point 

Pi is obtained from 3D-curve (at the parameter ti) of the edge. PSi is obtained from 2D-curve (at the 

parameter ti) of the edge on surface S of the face F. To be valid the distance should be less then Tol(E). 

The number of these check-points is constant value (say 23). It is supposed that edge E is valid (in terms 

of BRepCheck_Analyzer). 

• Split the edge E onto two split edges E1, E2. Each split edge has 3D-curve and 2D-curve as the edge E 

has. Let’s check E1 (or E2). The Analyzer again checks the distances between the two 3D-points Pi, PSi. 

The number of these check-points is again constant value (23). But there are not guarantee that the 

distance should be less then Tol(E), because the points for E1 are not the same as for E. 

• So, in case when E1 is not valid, the edge E also should not be valid. But E is supposed as valid. Thus 

the Analyzer is wrong for E. 

 

The fact that the argument of Algorithm is valid shape (in terms of BRepCheck_Analyzer) is necessary 

requirement but not sufficient to produce valid result of the Algorithms. 
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9.1.2. Pure self-interference 

The argument should not be self-interfered, i.e. all sub-shapes of the argument that have geometrical 

coincidence through any topological entities (vertices, edges, faces) should share these entities. 

9.1.2.1. Example 1 

The compound of two edges E1, E2 (Figure 38) is self-interfered shape and can not be used as the argument 

of the Algorithms. 

Figure 38 

9.1.2.2. Example 2 

The edge E (Figure 39) is self-interfered shape and can not be used as the argument of the Algorithms. 

Figure 39 

9.1.2.3. Example 3 

The face F (Figure 40) is self-interfered shape and can not be used as the argument of the Algorithms. 

Figure 40 

E1 

E2 

E 

F 
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9.1.2.4. Example 4 

The face F (Figure 42) has been obtained by revolution of the edge E around the line L (Figure 41)  

  

Figure 41 Figure 42 

In spite of the fact that the face F is valid (in terms of BRepCheck_Analyzer) the face F is self-interfered 

shape and can not be used as the argument of the Algorithms. 

E 

L  

F 
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9.1.3. Self-interferences due to tolerances 

9.1.3.1. Example 1 

The edge E (Figure 43) is based on non-closed circle.  

The distance between the vertices of E is D=0.69799.  

The values of the tolerances Tol(V1)=Tol(V2)=0.5  (Figure 44).  

  

Figure 43 Figure 44 

In spite of the fact that the edge E is valid (in terms of BRepCheck_Analyzer) the edge E is self-interfered 

shape because its vertices are interfered. Thus the edge E can not be used as the argument of the 

Algorithms. 

9.1.3.2. Example 2 

The solid S (Figure 45) contains the vertex V. The value of the tolerance Tol(V)= 50.000075982061 (Figure 

46). [pkv/901/A9] 

    

Figure 45 Figure 46 

In spite of the fact that the solid S is valid (in terms of BRepCheck_Analyzer) the solid S is self-interfered 

shape because the vertex V is interfered with a lot of sub-shapes of S without any topological connection 

with them. Thus the edge E can not be used as the argument of the Algorithms. 

E 

E 

D 

V1 

V2 

S 

V 

S 

V 
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9.1.4. Parametric representation 

The parametrization of some surfaces (cylinder, cone, surface of revolution) can be the cause of limitations. 

9.1.4.1. Example 1 

The parameterization range for cylindrical surface is: 

U: [0, 2*π], V: ]-∞, + ∞[ (9.1.4) 

The range on U coordinate is always restricted; meanwhile the range on V coordinate is non- restricted. 

For clearness  

• The face (cylinder-based, radii R=3, H=6) (Figure 47). The Figure 48 shows p-Curves for the cylinder. 

  

Figure 47  Figure 48  

• The face (cylinder-based, radii R=3000, H=6000, scale factor ScF=1000) (Figure 49). The Figure 50 

shows p-Curves for the cylinder. Please, draw attention on Zoom value on the Figures. 

  

Figure 49 Figure 50  
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It is evident that starting with some value of ScF (say ScF>1000000.) all sloped p-Curves on the Figure 48  

will be almost vertical (like on the Figure 50). At least there will be not difference between the values of its 

angles computed by standard C Run-Time Library functions like double acos(double x). The loss of accuracy 

in computation of angles can be the cause of failure of some sub-algorithms of BP (building faces from set of 

edges, building solids from set of faces)  

9.1.5. Stop-gaps 

Due to tolerance model it is possible to create shapes that use sub-shapes of lower order to stop gups. 

9.1.5.1. Example 1 

The face F has two edges E1, E2 and two vertices, plane {0,0,0, 0,0,1} (Figure 51). 

• The edge E1 is based on line {0,0,0, 1,0,0} Tol(E1)=1.e-7. 

• The edge E2 is based on line {0,1,0, 1,0,0} Tol(E2)=1.e-7. 

• The vertex V1, point {0,0.5,0} Tol(V1)=1. 

• The vertex V2, point {10,0.5,0} Tol(V2)=1. 

 

The face F is valid (in terms of BRepCheck_Analyzer). 

 

Figure 51 

The values of tolerances Tol(V1), Tol(V2) are big enough to fix the gups between the ends of the edges. But 

the vertices V1, V2 does not contain an information about trajectories of connection between corresponding 

ends of the edges. The trajectories are undefined. The fact will be the cause of failure of some sub-

algorithms of BP. The sub-algorithms for building faces from set of edges for e.g. use information about all 

edges connected in a vertex. The situation when one vertex will have several pairs of edges of kind above 

will not be solved in right way.  

 

F 

E1 
E2 

V1 

V2 
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9.2. INTERSECTION PROBLEMS  

9.2.1. Pure intersections and common zones  

9.2.1.1. Example 1 

Intersection between two edges (Figure 52): 

• E1 – based on line:  {0,-10,0, 1,0,0} , Tol(E1)=2. 

• E2 – based on circle: {0,0,0,  0,0,1}, R=10, Tol(E3)=2. 

 

Figure 52 

 

The result of pure intersection between E1 and E2 is vertex Vx {0,-10,0}. 

The result of intersection taking into account tolerances is the common zone CZ (part of 3D-space where the 

distance between the curves is less than (or equals to) sum of tolerances of the edges.  

As for IP of Algorithms it uses result of pure intersection Vx instead of CZ, because of the reasons: 

• The Algorithms does not produce Common Blocks between edges based on underlying curves of 

explicitly different type (Line / Circle for this case). The rule of thumb is the following: the different type of 

curves is special sign to produce the result of type “vertex”. The rule does not work for non-analytic 

curves (Bezier, B-Spline) and theirs combinations with analytic curves. 

• The algorithm of intersection between two surfaces (IntPatch_Intersection) does not compute CZ of 

intersection curve (-s), point (-s). So even if CZ was computed by Edge/Edge intersection algorithm, its 

result could not be treated by Face/Face intersection algorithm. 

E2 

E1 2*Tol(E1) 

2*Tol(E2) 

CZ(E1,E2) 

Vx 
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9.2.2. Tolerances 

The limitations are due to modeling errors or inaccuracies. 

9.2.2.1. Example 1 

The arguments are vertex V1 and edge E2 (Figure 53). 

The vertex V1 interferes with the vertex V12. The vertex V1 interferes with the vertex V22.  

So the vertex V21 should interfere with the vertex V22.  

But it is impossible because the vertices V21, V22 are the vertices of the edge E2, thus V21≠V22. 

Figure 53 

The problem can not be solved in general, because the length can be as small as possible to provide validity 

of E2 (in extreme case: Length (E2)=Tol(V21) + Tol(V22) + ε , ε → 0). 

In particular case the problem can be solved by decreasing the values Tol(V21), Tol(V22)  Tol(V1)  (refinement 

of arguments). 

It is easy to see that if the E2 were slightly above than tolerance sphere of V1 the problem wouldn’t appear at 

all. 

 

V21 V22 

E2 

V1 

 

Tol(V1) 

Tol(V21) Tol(V22) 
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9.2.2.2. Example 2 

The arguments are two planar rectangular faces F1, F2 (Figure 54). 

Intersection curve between the planes is the curve C12.  The curve produces new intersection edge EC12. 

The edge goes through the vertices V1, V2 thanks to big values of the tolerances of the vertices Tol(V1), 

Tol(V2). The situation is: two straight edges (E12, EC12) go through the two vertices. It is impossible for this 

case. 

Figure 54 

The problem can’t be solved in general, because the length of E12 can be infinite and the values of Tol(V1) 

and Tol(V2) theoretically can be infinite too.  

In particular case the problem can be solved by several ways: 

• Decrease if possible the values Tol(V1), Tol(V2) (refinement of F1). 

• Analysis of the value of Tol(EC12). Increase Tol(EC12) in order to get common part between the edges 

EC12, E12. The common part then will be rejected as already existing edge E12 for the face F1. 

It is easy to see that if the C12 were slightly above than tolerance spheres of V1, V2 the problem wouldn’t 

appear at all. 

 

V3 

Tol(V1) 

V2 

E12 

E23 
E41 

F1 

C12 

E34 
V4 

 

F2 EC12 

V1 

Tol(V2) 
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9.2.2.3. Example 3 

The arguments are two edges E1, E2 (Figure 55): 

• The edges E1, E2 have common vertices V1, V2.  

• The edges E1, E2 have 3D-curves C1, C2.  

• Tol(E1)=1.e-7, Tol(E2)=1.e-7  

 

C1 practically coincides in 3D with C2. The value of deflection is Dmax (say Dmax=1.e-6)  

 

Figure 55 

 

The evident and prospective result should be Common Block between E1, E2. But the result of intersection is 

on the Figure 56 

 

Figure 56 

 

The result contains three new vertices Vx1, VX2, Vx3 and 8 new edges (between whiles V1, Vx1, VX2, Vx3, V2) 

and no Common Blocks. The result (Figure 56) is quite correct due to source data: Tol(E1)=1.e-7, 

Tol(E2)=1.e-7, Dmax=1.e-6. 

In particular case the problem can be solved by several ways: 

• Increase if possible the values Tol(E1), Tol(E2) to get coincidence in 3D between E1, E2 in terms of 

tolerance. 

• Replace E1 by more by the more accurate model. 

 

E1 

E2 

Dmax 

V1 V2 

C1 

C2 

E1 

E2 

2*Tol(E1) 2*Tol(E2) 

VX1 VX2 VX3 
V1 V2 
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The example can be extended from 1D (edges) to 2D (faces) (Figure 57). 

 

Figure 57 

 

The comments and recommendations are the same as for 1D case. 

F1 

F2 

Dmax 

S2 
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