
CDMATH-CoreFlows user guide

M. Ndjinga
email : michael dot ndjinga at cea dot fr

21-03-2016

1 Presentation of CDMATH-CoreFlows

CDMATH-CoreFlows is an open source C++/Python library intended at solv-
ing PDE systems arising from the thermalhydraulics of two phase flows in power
plant boilers. It is a simple environment meant at students and researchers to
test new numerical methods on general geometries with unstructured meshes.
It is developped at CEA Saclay by Michael Ndjinga and its students since 2014
and proposes a few basic models and finite volume numerical methods. Some
of the main objectives are the study of

• Numerical schemes for compressible flows at low Mach numbers

• Well balanced schemes for stiff source terms (heat source, phase change,
pressure losses)

• Flow inversion and counter-current two phase flows

• Schemes that preserve the phasic volume fraction α ∈ [0, 1]

• Convergence of finite volume methods

• New preconditioners for implicit methods for two phase flows

• The coupling of fluid models or multiphysics coupling (eg thermal hy-
draulics and neutronics or thermal hydraulics and solid thermics)

CDMATH-CoreFlows relies on the toolbox [23] of the project CDMATH [22]
for the handling of meshes, fields and matrices. Meshes and fields are managed
thanks to the SALOME library MEDCoupling [24], and large sparse matrices
are managed thanks to the library Petsc [21].

2 Software structure

CDMATH-CoreFlows is composed of 6 concrete classes dealing with specific
models. They are listed in chronological order

• SinglePhase implementing the compressible Navier-Stokes equations (sec-
tion 4.2)

• DriftModel implementing the 4 equation drift model (section 4.3.1)

1

• IsothermalTwoFluid implementing the isentropic two-fluid model (section
4.3.2)

• FiveEqsTwoFluid implementing the equal temperature two fluid model
(section 4.3.3)

• TransportEquation implementing a scalar advection equation for the fluid
enthalpy (section 4.1.1)

• DiffusionEquation implementing a scalar heat equation for the Uranium
rods temperature (section 4.1.2)

On top of these classes there are two abstract classes that mutualise functions
that are common to several models.

• ProblemFluid which contains the methods that are common to the non
scalar models : SinglePhase DriftModel IsothermalTwoFluid and FiveE-
qsTwoFluid

• ProblemCoreFlows which contains the methods that are common to the
scalar and non scalar models: ProblemFluid, TransportEquation and Dif-
fusionEquation

Here follows an inheritance diagram of CoreFlows

Figure 1: Inheritance diagram of CoreFlows

The program can build simple geometries and meshes using the library CD-
MATH [22] or read complex geometries and meshes written with the MED file
format (see [18]). The output files containing the fields resulting from the cal-
culation can be either of VTK ([20]) or MED type. One can use Paraview [19]
or Salome [18] to visualise the results.
Vector and matrices structures come from the Petsc [21] library. The matrices
are stored in a block sparse format (type baij in Petsc conventions). The default
linear solver is GMRES and the default preconditioner is ILU, both provided
by Petsc.

3 Installation and use of CDMATH-CoreFlows

CDMATH-CoreFlows is currently developped and maintained on Fedora and
Ubuntu distributions. You will need the packages

• cmake [28] and its prerequisite hdf5 [26],

2

• doxygen [27] if you want to generate the documentation

• swig [25] and numpy [30] if you want to use CDMATH-CoreFlows in
python scripts

3.1 Download and compilation of Petsc (Optonal)

During the installation of CDMATH (see section 3.2), if PETSc is not detected
in your system then a sequential version is automatically installed. If you would
rather install your own version of PETSC, you need first to download and com-
pile the sources of PETSC, version 3.4 or later. For instance the sources of
PETSC 3.10.2 can be downloaded with the command

wget http://ftp.mcs.anl.gov/pub/petsc/release-snapshots/petsc-3.10.2.tar.gz

Unzip the file and move into the newly created directory using the commands

tar xzf petsc-3.10.2.tar.gz

cd petsc-3.10.2

Then you can build a sequential version of PETSc using the commands

./configure --with-mpi=0 --download-f2cblaslapack=1

make all

make install

For the moment, CDMATH-CoreFlows is a sequential library (no parallelism).

3.2 Download and compilation of CDMATH

In order to download the approriate branch of CDMATH [22] (fork from the
original branch)

• either unzip the following file to a directory cdmath src

– https://github.com/ndjinga/CDMATH/archive/master.zip

• or

git clone https://github.com/ndjinga/CDMATH.git cdmath_src

In order to compile CDMATH [22] you will need the libraries cmake [28], and
hdf5 [26] plus swig [25] and numpy [30] if you intend to use CDMATH functions
in your python scripts. First create build and install repositories:

mkdir ~/workspace/cdmath

cd ~/workspace/cdmath

mkdir cdmath_build

mkdir cdmath_install

Go to the build directory

cd cdmath_build

Then run the commands

3

https://github.com/ndjinga/CDMATH/archive/master.zip

cmake ../cdmath_src/ -DCMAKE_INSTALL_PREFIX=../cdmath_install -DCMAKE_BUILD_TYPE=Release -DCDMATH_WITH_PYTHON=ON

make

make install

If PETSc is not detected in your system then a sequential version is auto-
matically installed. If you like to use your own version of PETSc, then set the
PETSC DIR and PETSC ARCH variables before running the cmake command.

3.3 Download and compilation of CoreFlows

In order to download CoreFlows source files, unzip the following file to a direc-
tory CoreFlows-master (not yet available)

• https://github.com/PROJECT-CoreFlows/CoreFlows/archive/master.

zip

The following steps assume that CDMATH [22] is installed on your com-
puter.

You need to set the following variables

• CDMATH INSTALL, the path to your CDMATH installation

• PETSC DIR, the path to your PETSC installation. By default it is CD-
MATH INSTALL/share/petsc-3.10.2

• PETSC ARCH, the type of installation used (usually arch-linux2-c-opt or
arch-linux2-c-debug)

In order to do so, type in you linux terminal

• export CDMATH DIR= /workspace/cdmath/cdmath install

• export PETSC DIR=/path/to/my/petsc/installation or simply

• export PETSC ARCH=my-petsc-arch

then create build and install repositories next to CoreFlows-master :

• mkdir CoreFlows build CoreFlows install

Go to the build directory

• cd CoreFlows build

Then run the command - ‘../CDMATH-CoreFlows-master/configure –prefix=../CDMATH-
CoreFlows install/ –with-cdmath-dir=$CDMATH DIR –with-python –with-doc‘
- ‘make install doc‘

You can add the following optional commands - ‘–with-petsc-dir=$PETSC DIR
–with-petsc-arch=$PETSC ARCH‘ if you would rather use a customised version
of PETSc - ‘–with-gui‘, if you want to use CDMATH-CoreFlows as a Salomé
module (you will need to use a Salomé shell) - ‘–with-debug‘, if you want to use
CDMATH-CoreFlows in debug mode instead of the default optimised mode

4

https://github.com/PROJECT-CoreFlows/CoreFlows/archive/master.zip
https://github.com/PROJECT-CoreFlows/CoreFlows/archive/master.zip

3.4 Use of CoreFlows

First load CoreFlows environment from the CoreFlows-master directory

source CoreFlows-master/CoreFlows.sh

• If you use C language: edit the file CoreFlows-master/CoreFlows src/main.cxx
then in a terminal type

cd CoreFlows-master/CoreFlows_build

make -j

make install -j

Then you can run the simulation in any directory with the command line

$CoreFlows

• If you use python language: edit your own python file my file.py following
for example the pattern of the file CoreFlows-master/CoreFlows src/main.py.
Then in a terminal type

python my_file.py

• If you use the graphic interface, you need to run a Salomé Unix shell and
type the command line

runSalome -mCOREFLOWS

then click on new study to open CoreFlows interface

4 The physical models

The physical models are presented in order of mathematical complexity: the
linear scalar problem (transport and diffusion equations) then the Navier-Stokes
model and then the two-phase flow models.

4.1 Scalar models

4.1.1 The transport equation

∂th+ ~u · ~∇h = Φ + λsf (Ts − T) (1)

where

• h the main unknown is the fluid enthalpy field

• ~u is the constant transport velocity, set by the user

• Φ is the heat source term if explicitely known

• Ts is the solid temperature field provided by the user if λsf 6= 0

• T = T0 + H−H0

cp
is the fluid temperature field

5

• λsf is the fluid-solid heat transfer coefficient provided by the user

• cp is the fluid specific heat, possibly provided by the user and assumed
constant

The class TransportEquation implements a scalar advection equation for the
enthalpy of a fluid. The fluid can be either steam or liquid water around 1 bar
or 155 bars.

4.1.2 The diffusion equation

∂tT = d4T +
Φ + λsf (Tf − T)

ρcp
(2)

where

• T the main unknown is the solid temperature field

• λ is the solid thermal conductivity, possibly set by the user

• ρ is the solid density assumed constant, possibly set by the user

• cp is the solid specific heat, possibly by the user and assumed constant

• d = λ
ρcp

is the solid diffusivity

• Φ is the heat source term if explicitely known

• Tf is the fluid temperature field provided by the user

The class DiffusionEquation implementing a scalar diffusion equation for the
temperature in a solid. The default values for ρ, cp, λ are those of Uranium
oxyde around 900K.

4.2 The Navier-Stokes equations

The model consists of the following three balance laws for the mass, the mo-
mentum and the energy:

∂φρ
∂t + ∇ · φ~q = 0

∂φ~q
∂t + ∇ ·

(
φ~q ⊗ ~q

ρ

)
+ φ~∇p − ν∇ · (φ~∇~u) = φρ~g − φKρ||~u||~u

∂(φρE)
∂t + ∇ ·

[
φ(ρE + p) ~qρ

]
− λ∇ · (φ~∇T) = Φ + φρ~g · ~u− φKρ||~u||3

(3)
where ρ is the density, ~u the velocity, ~q = ρ~u the momentum, p the pressure, ρe

the internal energy, ρE = ρe+ ||~q||
2

2ρ the total energy, T the absolute temperature,
Φ a heat source term, ν the viscosity and λ the thermal conductivity. We close
the system (3) by a stiffened gas law p = (γ − 1)ρe − γp0 and a linearised
internal energy law e(T) calibrated around the points (P = 1bar, T = 300K) or
(P = 155bars, T = 618K) depending on the enum pressureEstimate. For the
sake of simplicity, we consider constant viscosity and conductivity, and neglect
the contribution of viscous forces in the energy equation.
The parameters λ, ν,~g,K and Φ can be set by the user.

6

4.3 Two phase flow models

We present the homogeneised two phase flow models implemented in CoreFlows.
This models are obtained by averaging the balance equations for each separated
phase or for the mixture, using space, time or ensemble averaged quantities (see
[9] and [10]). The drift model is used in the thermal hydraulics software Flica 4
(see [5]), whilst the two-fluid models are used in Cathare [6], Neptune CFD [7],
Cobra-TF [2], Relap5 [1].

4.3.1 The Drift model

The model consists in the steam mass balance equation together with the mix-
ture mass conservation, the mixture momentum balance and mixture energy
balance equations. The main unknowns are the steam mass concentration cv,
the pressure P , the mixture velocity ~um, and the common temperature T . The
model uses stiffened gas laws pg(ρg, T) and pl(ρl, T) as well as linearised internal
energy law ek(T) calibrated around the saturation points (P = 1bar, T = 373K)
(P = 155bars, T = 345K) depending on the value of the enum pressureEsti-
mate.
The drift model is a system of four nonlinear equations taking the following
conservative form

∂tφ(αgρg + αlρl) +∇ · φ(αgρg
t~ug + αlρl

t~ul) = 0
∂tφ(αgρg) +∇ · φ(αgρg

t~ug) = φΓg(hm,Φ)

∂tφ(αgρg~ug + αlρl~ul) +∇ · φ(αgρg~ug ⊗ ~ug + αlρl~ul ⊗ ~ul) + φ~∇p = p~∇φ+ φρm~g − φKgαgρg||~ug||~ug
−φKlαlρl||~ul||~ul

∂tφ(αgρgEg + αlρlEl) +∇ · φ(αgρgHg
t~ug + αlρlHl

t~ul) = Φ + φρ~g · ~u− φKgαgρg||~ug||3
−φKlαlρl||~ul||3

,

where the total energy and total enthalpy are defined by

Ek = ek +
1

2
|~uk|2 , Hk = hk +

1

2
|~uk|2, k = v, l,

where ek is the internal energy, and hk = ek + p
ρk

the enthalpy associated to
phase k and

ρm = αgρg + αlρl

~um =
αgρg~ug + αlρl~ul
αgρg + αlρl

hm =
αgρghg + αlρlhl
αgρg + αlρl

.

We need a drift correlation for the relative velocity:

~ur = ~ug − ~ul = ~fr(cg, ~um, ρm).

The phase change is modeled using the formula

Γg =

{
Φ
L if hsatl ≤ h < hsatg and 0 < αg < 1

0 otherwise
. (4)

The parameters λk, νk, ~g,Kk and Φ can be set by the user.

7

4.3.2 The isothermal two-fluid model

The model consists in the phasic mass and momentum balance equations. The
main unknowns are α, P , ~ug, ~ul. The model uses stiffened gas laws pg(ρg) and
pl(ρl) calibratedd around the points (1bar, 300K) or (155bars, 618K) depending
on the value of the enum pressureEstimate.

The subscript k stands for l for the liquid phase and g for the gas phase. The
common averaged pressure of the two phases is denoted by p. In our model,
pressure equilibrium between the two phases is postulated, and the resulting
system to solve is:

∂mg

∂t + ∇ · ~qg = 0,

∂ml

∂t + ∇ · ~ql = 0,

∂~qg
∂t + ∇ · (~qg ⊗ ~qg

mg
) + αg ~∇p

+ ∆p∇αg − νg∆~ug = mg~g −Kgmg||~ug||~ug
∂~ql
∂t + ∇ · (~ql ⊗ ~ql

ml
) + αl~∇p

+ ∆p∇αl − νl∆~ul = ml~g −Klml||~ul||~ul,

(5)

where αg + αl = 1, mk = αkρk and ~qk = αkρk~uk. Here, νk is the viscosity of
phase k, and ∆p denotes the pressure default p− pk between the bulk average
pressure and the interfacial average pressure.
The parameters λk, νk, ~g,Kk and Φ can be set by the user.

4.3.3 The five equation two-fluid model

The model consists in the phasic mass and momentum balance equations and
one mixture total energy balance equation. The main unknowns are α,P ,~ug,~ul
and T = Tg = Tl. The model uses stiffened gas laws pg(ρg, T) and pl(ρl, T) as
well as linearised internal energy law ek(T) calibratedd around the saturation
points (P = 1bar, T = 373K) or (P = 155bars, T = 345K) depending on the
enum pressureEstimate.

∂mg

∂t + ∇ · ~qg = Γg(hg,Φ),

∂ml

∂t + ∇ · ~ql = Γl(hl,Φ),

∂~qg
∂t + ∇ · (~qg ⊗ ~qg

mg
) + αg∇p

+ ∆p∇αg − νg(∆ ~qg
mg

) = mg~g −Kgmg||~ug||~ug
∂~ql
∂t + ∇ · (~ql ⊗ ~ql

ml
) + αl∇p

+ ∆p∇αl − νl(∆ ~ql
ml

) = ml~g −Klml||~ul||~ul,

∂tρmEm + ∇ · (αgρgHg
t~ug + αlρlHl

t~ul) = Φ + ρ~g · ~u−Kgmg||~ug||3 −Klml||~ul||3
(6)

where

ρm = αgρg + αlρl

Em =
αgρgEg + αlρlEl
αgρg + αlρl

.

8

The phase change is modeled using the formula

Γg =

{
Φ
L if hsatl ≤ h < hsatg and 0 < αg < 1

0 otherwise
. (7)

The parameters λk, νk, ~g,Kk and Φ can be set by the user.

5 The numerical methods

CDMATH-CoreFlows proposes a variety of finite volume methods (see [17] for
an introduction). The time discretisation can be explicit or implicit, whereas
the space discretisation can be upwind or centred as in [16] or lowMach, pres-
sureCorreection, staggered for low Mach flows. The flux formulation for non
scalar fluid model is either the Roe formulation [11], the VFRoe formulation
[12] or the VFFC formulation [13]. It is also possible to add an entropic correc-
tion [15] and/or use source upwinding [14].
The finite volume discretisation allows an easy handling of general geometries
and meshes generated by Salomé.
Explicit schemes are used in general for fast dynamics solved with small time
steps while implicit schemes allow the use of large time step to quickly reach
the stationary regime. The implicit schemes result in nonlinear systems that
are solved using a Newton type method.
The upwind scheme is the basic scheme but options are available to use a cen-
tered scheme (second order in space) or entropic corrections.

Our models can be written in generic form as a nonlinear system of balance
laws:

∂U

∂t
+∇ � (Fconv(U)) +∇ �

(
Fdiff (U)

)
= S(U, x), (8)

where U is the vector of conservative unknowns, Fconv is the convective flux
and Fdiff the diffusive flux.

We decompose the computational domain into N disjoint cells Ci with vol-
ume vi. Two neighboring cells Ci and Cj have a common boundary ∂Cij with
area sij . We denote N(i) the set of neighbors of a given cell Ci and ~nij the
exterior unit normal vector of ∂Cij . Integrating the system (8) over Ci and
setting Ui(t) = 1

vi

∫
Ci
U(x, t)dx, the semi-discrete equations can be written:

dUi
dt

+
∑

j∈N(i)

sij
vi

(−→
Φ
conv

ij +
−→
Φ
diff

ij

)
= Si(U, x). (9)

with:
−→
Φ
con

ij = 1
sij

∫
∂Cij
Fconv(U).~nijds,

−→
Φ
diff

ij = 1
sij

∫
∂Cij
Fdiff (U).~nijds.

To approximate the convection numerical flux
−→
Φ
conv

ij we solve an approxi-
mate Riemann problem at the interface ∂Cij .

• Using the Roe local linearisation of the fluxes [11], we obtain the following
formula:

−→
Φ
conv

ij =
Fconv(Ui) + Fconv(Uj)

2
.~nij −D(Ui, Uj)

Uj − Ui
2

= Fconv(Ui)~nij +A−(Ui, Uj)(Uj − Ui), (10)

9

• Using the VFRoe [12] local linearisation of the fluxes the formula is:

−→
Φ
conv,V FRoe

ij = Fconv
(
Ui + Uj

2
−D(Ui, Uj)

Uj − Ui
2

)
~nij , (11)

• Using the VFFC [13] local linearisation of the fluxes, the formula is:

−→
Φ
conv,V FFC

ij =
Fconv(Ui) + Fconv(Uj)

2
~nij −D(Ui, Uj)

Fconv(Uj)−Fconv(Ui)
2

~nij ,(12)

where D is an upwinding matrix, A(Ui, Uj) the Roe matrix and A− = A−D
2 .

The choice D = 0 gives the centered scheme, whereas D = |A| gives the upwind
scheme.

The diffusion numerical flux
−→
Φ
diff

ij is approximated on structured meshes
using the formula:

−→
Φ
diff

ij = D(
Ui + Uj

2
, ~nij)(Uj − Ui), (13)

where D(U,~nij) = ∇Fdiff (U).~nij is the matrix of the diffusion tensor. (13)
is not accurate for highly non structured or non conforming meshes. However,
since we are mainly interested in convection driven flows, we do not ask for a
very precise scheme.

Finally, since
∑
j∈N(i) Fconv(Ui).~nij = 0, using (10) and (13) the equation

(9) of the semi-discrete scheme becomes:

dUi
dt

+
∑

j∈N(i)

sij
vi
{(A− +D)(Ui, Uj)}(Uj − Ui) = Si(U, x). (14)

The source term in (14) can be approximated using either a

Centered source (default)Si = S(Ui) (15)

or an

Upwind source (WellBalanced option) Si =
1

2
(Id− signe(ARoei,i+1))

S(Ui)) + S(Ui+1)

2
(16)

+
1

2
(Id+ signe(ARoei−1,i))

S(Ui−1)) + S(Ui)

2
.

5.1 Explicit schemes

In explicit schemes, in order to compute the values Un+1
i , the fluxes Φconvij , Φdiffij

and the source term S(U, x) in (9) are evaluated at time n :

Un+1
i − Uni

∆t
+

∑
j∈N(i)

sij
vi

(
1

2
(Fconv(Uni) + Fconv(Unj)).~nij −D(Uni , U

n
j , ~nij)

Unj − Uni
2

)

+
sij
vi
D(

Ui + Uj
2

, ~nij)(Uj − Ui) = S(Un, xi),

or equivalently using (10) and (13)

Un+1
i − Uni

∆t
+
∑

j∈N(i)

sij
vi
{(A− +D)(Uni , U

n
j , ~nij)}(Unj − Uni) = S(Un, xi). (17)

10

From the system (17) we can obtain Un+1
i easily using matrix-vector prod-

ucts and vector sum. However the time step of explicit methods is constrained
by the CFL condition for stability reasons.

5.2 Implicit schemes

In implicit schemes, in order to compute the values Un+1
i , the fluxes Φconvij ,

Φdiffij and the source term S(U, x) in (9) are evaluated at time n+ 1 :

Un+1
i − Uni

∆t
+

∑
j∈N(i)

sij
vi

(
1

2
(Fconv(Un+1

i) + Fconv(Un+1
j)).~nij −D(Un+1

i , Un+1
j , ~nij)

Un+1
j − Un+1

i

2

)

+
sij
vi
D(

Ui + Uj
2

, ~nij)(Uj − Ui) = S(Un+1, xi),

or equivalently using (10) and (13)

Un+1
i − Uni

∆t
+
∑

j∈N(i)

sij
vi
{(A− +D)(Un+1

i , Un+1
j , ~nij)}(Un+1

j − Un+1
i) = S(Un+1, xi).

(18)
The system (18) is nonlinear. The computation of Uni is more expensive but
we can expect to use larger time steps than would be allowed with the explicit
scheme.
We use the following Newton iterative method to obtain the required solutions:

δUk+1
i

∆t
+

∑
j∈N(i)

sij
vi

[
(A− +D)(Uki , U

k
j)
] (
δUk+1

j − δUk+1
i

)
= −U

k
i − Uni

∆t
−
∑

j∈N(i)

sij
vi

[
(A− +D)(Uki , U

k
j)
]

(Ukj − Uki),

where δUk+1
i = Uk+1

i −Uki is the variation of the k-th iterate that approximate
the solution at time n + 1. Defining the unknown vector U = (U1, . . . , UN)t,
each Newton iteration for the computation of U at time step n+ 1 requires the
numerical solution of the following linear system:

A(Uk)δUk+1 = b(Un,Uk). (19)

5.3 Numerical scheme for the Navier-Stokes equations

For the Navier-Stokes equations with constant porosity φ = 1, U = (ρ, ~q, ρE)t

and the fluxes in (3) write Fconv(U) =

 ~q

~q ⊗ ~q
ρ + pId

(ρE + p) ~qρ

 , Fdiff (U) =

 0

−ν ~∇(~qρ)

−λ~∇T

 .

For the Euler equations, we can build the Roe matrix A(Ui, Uj) explicitly

using the Roe averaged state URoe(Ui, Uj) = (ρ̃, ρ̃ũ, ρ̃Ẽ = ρ̃H̃ − p̃)t defined by

ρ̃ =
√
ρiρj

ũ =

√
ρiui +

√
ρjuj

√
ρi +

√
ρj

11

H̃ =

√
ρiHi +

√
ρjHj

√
ρi +

√
ρj

.

The Roe matrix writes (see [17])

ARoe(Ui, Uj) = ∇Fconv(URoe(Ui, Uj))~nij =

 0 1 0
χ̃+ (1

2 κ̃− 1)ũ2 (2− κ̃)ũ κ̃

(χ̃+ 1
2 κ̃ũ

2 − H̃)ũ H̃ − κ̃ũ2 (κ̃+ 1)ũ


The diffusion numerical flux

−→
Φ
diff

ij is approximated with the formula:

−→
Φ
diff

ij = D(
Ui + Uj

2
)(Uj − Ui) (20)

with the matrix D(U) =

 0 ~0 0
ν~q
ρ2

−ν
ρ Id 0

λ
cv

(
cvT
ρ −

||~q||2
2ρ3

)
~q tλ
ρ2cv

− λ
cvρ

, where cv is

the heat capacity at constant volume.

5.4 Boundary conditions

CoreFlows can manage four types of boundary conditions: Neumann, Wall, Inlet
and Outlet. Inlet and outlet boundary condition require some input parameters
from the user that depend on the model.
Boundary conditions are treated via a fictitious ghost cell located on the other
side of the boundary face. The conservative and primitive states Ub(U), Vb(V)
of the ghost cell can be determined from the corresponding values U, V in the
boundary cell located inside the domain. The functions Ub(U) and Vb(V) may
require data provided by the user (inlet and outlet boundary conditions). The
numerical flux can then be then obtainedat the boundary between the ghost cell
and the cell inside the domain.
If the scheme is implicit, we need to provide the jacobian matrix ∇Ub of the
function Ub. In order to determine the jacobian ∇Ub for Inlet and oulet bound-
ary conditions, we assume a stiffened gas equation of state p = (γ − 1)ρe− γp0

and a linear internal energy law depending only on the temperature : e(T) =
e0 + ck0(T − T0), k = g, l with a constant specific heat ck0 .

The boundary conditions are specific to each model (see for example 6.7).
In the following we describe we give specific detail of the treatment of the
convection part of each model.

5.4.1 Navier-Stokes

In this case the system consists in three balance laws (see section 4.2).

• Neumann :

Vb(V) = V , Ub(U) = U

∇Ub,Neumann =

 1 0 0
0 Id 0
0 0 1


12

• Wall : we assume that the wall has local unit normal ~n

Vb :


p

~um

T

→


p

~um − 2(~um · ~n)~n

T

 , Ub :


ρm

ρm~um

ρmEm

→


ρm

ρm(~um − 2(~um · ~n)~n)

ρmEm



∇Ub,Wall =


1 0 0

0 Id − 2~n⊗ ~n 0

0 0 1


• Inlet :

– First case: the velocity ~ue and temperature Te are imposed

Vb :

 p
~um
T

→
 p

~ue
Te

 , Ub :

 ρ
ρ~um
ρE

→
 ρe

ρe~ue
ρeEe


with

ρe = ρ(p, Te)

Ee = e(Te) +
1

2
|~ue|2

and

dρe =
1

(γ − 1)e(Te)
dp(ρ, ρE)

=
1

e(Te)
d

(
ρE − 1

2
ρ||~um||2

)
=
||~um||2

2e(Te)
dρ− ~um

e(Te)
· d~q +

1

e(Te)
d(ρE).

Hence

∇Ub,Inlet u =



||~um||2

2e(Te)
−

t~um
e(Te)

1

e(Te)

||~um||2

2e(Te)
~ue −~ue ⊗ ~um

e(Te)

1

e(Te)
~ue

Ee||~um||2

2e(Te)
−Ee

t~um
e(Te)

Ee
e(Te)


The final expression obtained for ∇Ub,Inlet u does not involve any
parameter of the stiffened gas law.

– Second case: the pressure pe and temperature Te are imposed

Vb :

 p
~um
T

→
 pe

~um
Te

 , Ub :

 ρ
ρ~um
ρE

→
 ρe

ρe~um
ρeEe


13

with

ρe = ρ(pe, Te)

Ee = e(Te) +
1

2
||~um||2

and

dρe~um = ρed
ρ~um
ρ

=
ρe
ρ

d(ρ~um)− ρe~um
ρ

dρ

d(ρeEe) = ρe~um · d~um

=
ρe~um
ρ
· d(ρ~um)− ρe||~um||2

ρ
dρ.

Hence

∇Ub,Inlet p =


0 0 0

−ρe
ρ
~um

ρe
ρ
Id 0

−ρe||~um||
2

ρ

ρe
ρ
t~um 0


The derivation of ∇Ub,Inlet p does not require the assumption of a
stiffened gas law.

• Outlet : pressure ps is imposed

Vb :

 p
~um
T

→
 ps

~um
T

 , Ub :

 ρ
ρ~um
ρE

→
 ρs

ρs~um
ρsE


with

ρs = ρ(ps, T).

and

dρs = d

(
ps + γp0

(γ − 1)e

)
=
ps + γp0

γ − 1
d
ρ

ρe

=
ps + γp0

γ − 1

(
1

ρe
dρ− 1

ρe2
d(ρe)

)
=

ps + γp0

(γ − 1)ρe

(
dρ− 1

e
d(ρE − 1

2
ρ||~um||2)

)
=

(γ − 1)ρse

(γ − 1)ρe

(
dρ− 1

e

(
||~um||2

2
dρ− ~um · d~q + d(ρE)

))
=

ρs(ps, T)

ρ(p, T)

(
dρ− ||~um||

2

2e
dρ+

~um
e
· d~q − 1

e
d(ρE)

)
.

14

Then from

dρs~um = ~umdρs + ρsd
~q

ρ
= ~umdρs +

ρs
ρ

d~q − ρs
ρ
~umdρ

dρsE = Edρs + ρsd
ρE

ρ
= Edρs +

ρs
ρ

d(ρE)− ρs
ρ
Edρ

we deduce

∇Ub,Outlet =



ρs
ρ

1− ||~um||2

2e

ρs
ρ

t~um
e

−ρs
ρ

1

e

ρs
ρ

||~um||2

2e
t~um

ρs
ρ

(
~um ⊗ ~um

e
− Id) −ρs

ρ

1

e
t~um

ρs
ρ

||~um||2

2e
E

ρs
ρ

t~um
e
E

ρs
ρ

(1− E

e
)


As was the case with the inlet boundary condition matrix ∇Ub,Inlet, we
observe that the final expression obtained for ∇Ub,Outlet does not involve
any parameter of the stiffened gas law.

5.4.2 The drift model

In this case the system consists in four balance laws (see section 4.3.1).

• Neumann :

Vb(V) = V , Ub(U) = U

∇Ub,Neumann =


1 0 0 0
0 1 0 0
0 0 Id 0
0 0 0 1


• Wall : we assume that the wall has local unit normal ~n

Vb :


cv
p
~um
T

→


cv
p

~um − 2(~um · ~n)~n
T

 , Ub :


ρm
ρmcv
ρm~um
ρmEm

→


ρm
ρmcv

ρm(~um − 2(~um · ~n)~n)
ρmEm



∇Ub,Wall =


1 0 0 0
0 1 0 0
0 0 Id − 2~n⊗ ~n 0
0 0 0 1


• Inlet :

– First case the concentration cve = 1− cle, velocity ~ue, and tempera-
ture Te are imposed

Vb :


cv
p
~um
T

→


cve
p
~ue
Te

 , Ub :


ρ
ρcv
ρ~um
ρE

→


ρe
ρecve
ρe~ue
ρeEe


15

with

ρe =
ρv(p, Te)ρl(p, Te)

ρv(p, Te)cle + ρl(p, Te)cve
=

1
cve

ρv(p,Te) + cle
ρl(p,Te)

Ee = cve(ev(Te) +
1

2
|~uve|2) + cle(el(Te) +

1

2
|~ule|2)

~uve = ~ue + cle~ur(cve, ~ue, ρe)

~ule = ~ue − cve~ur(cve, ~ue, ρe).

The pressure differential can be expressed as

dp = χdρ+ ξd(ρcv) + κd(ρe)

= (χ+ κ
||~um||2

2
)dρ+ ξd(ρcv)− κ~um · d~q + κd(ρE),

and setting

ω =

(
cve

(γv − 1)ρv(p, Te)2ev(Te)
+

cle
(γl − 1)ρl(p, Te)2el(Te)

)
.

we obtain the jacobian matrix as

∇Ub,Inlet u =


ρ2
eω(χ+ κ ||~um||2

2) ρ2
eξω −ρ2

eωκ
t~um ρ2

eωκ

ρ2
eω(χ+ κ ||~um||2

2)cve ρ2
eξωcve −ρ2

eωκ
t~umcve ρ2

eωκcve

ρ2
eω(χ+ κ ||~um||2

2)~ue ρ2
eξω~ue −ρ2

eωκ
t~ue ⊗ ~um ρ2

eωκ~ue

ρ2
eω(χ+ κ ||~um||2

2)Ee ρ2
eξωEe −ρ2

eωκEe
t~um ρ2

eωκEe


– Second case the concentration cve = 1 − cle, pressure pe, and tem-

perature Te are imposed

Vb :


cv
p
~um
T

→


cve
pe
~um
Te

 , Ub :


ρ
ρcv
ρ~um
ρE

→


ρe
ρecve
ρe~um
ρeEe


with

ρe =
ρv(pe, Te)ρl(pe, Te)

ρv(pe, Te)cle + ρl(pe, Te)cve

Ee = cve(ev(Te) +
1

2
|~um|2) + cle(el(Te) +

1

2
|~um|2)

= cveev(Te) + cleel(Te) +
1

2
|~um|2.

From

dρe~um = ρed
ρ~um
ρ

=
ρe
ρ

d(ρ~um)− ρe~um
ρ

dρ

d(ρeEe) = ρe~um · d~um = ρe~um · d
ρ~um
ρ

=
ρe
ρ
~um · d(ρ~um)− ρe

ρ
||~um||2dρ

16

we obtain the jacobian matrix as

∇Ub,Inlet p =


0 0 0 0
0 0 0 0

−ρe~um

ρ 0 ρe
ρ Id 0

−ρeρ ||~um||
2 0 ρe

ρ
t~um 0


• Outlet : pressure ps is imposed

Vb :


cv
p
~um
T

→


cv
ps
~um
T

 , Ub :


ρ
ρcv
ρ~um
ρE

→


ρs
ρscv
ρs~um
ρsE


with

ρs =
ρv(ps, T)ρl(ps, T)

ρv(ps, T)cl + ρl(ps, T)cv
=

1
cv

ρv(ps,T) + cl
ρl(ps,T)

.

The temperature differential can be expressed as

dT = χTdρ+ ξTd(ρcv) + κTd(ρe)

= (χT + κT
||~um||2

2
)dρ+ ξTd(ρcv)− κT~um · d~q + κTd(ρE),

and setting

ωT =

(
cvc

v
0

ρv(ps, T)ev(T)
+

clc
l
0

ρl(ps, T)el(T)

)
.

we obtain the jacobian matrix as ∇Ub,Outlet =
−ρ2

sωT (χT + κT
||~um||2

2) −ρ2
sξTωT ρ2

sωTκT
t~um −ρ2

sωTκT

−ρ2
sωT (χT + κT

||~um||2
2)cv − ρs

ρ cv −ρ2
sξTωT cv + ρs

ρ ρ2
sωTκcv

t~umcv −ρ2
sωTκcv

−ρ2
sωT (χT + κT

||~um||2
2)~um − ρs

ρ ~um −ρ2
sξTωT~um ρ2

sωTκT
t~um ⊗ ~um + ρs

ρ Id −ρ2
sωTκT~um

−ρ2
sωT (χT + κT

||~um||2
2)E − ρs

ρ E −ρ2
sξTωTE ρ2

sωTκTE
t~um −ρ2

sωTκE + ρs
ρ


6 Simulation options

6.1 First two parameters

The first two parameters are the one with a strong influence on the remaining
options:

• the space dimension Ndim: affects the size of boundary conditions, initial
data and gravity vectors

• the physical model: determines the size of the initial data size, boundary
condition size and available types and physical parameters.

17

6.2 Meshes

The mesh creation building requires depends on whether it is structured or
unstructured. An unstructured mesh implies that a med input file should be
provided containing the mesh and possibly the initial data. Structured mesh
implies that the mesh is a regular grid generated by CDMATH and the user
should provide the box sizes (xinf, xsup, yinf, ysup, zinf, zsup) and cell numbers
(nx, ny, nz) according to the dimension Ndim.

Therefore the mesh M is built either

• using the CDMATH structured mesh constructor Mesh M(xmin,xmax,nx)

• loading a med file generated by Salomé platform Mesh M(“filename”)

All the boundary faces of the mesh sould be gathered into groups of FACES
that will be used to set boundary conditions. These groups of faces can be set

• using the CDMATH face group generator M.setGroupAtPlan(value,direction,tolerance,groupName),
where direction is an integer with value 0 for the plane x = value, 1 for
the plane y = value and 1 for the plane z = value

• using Salome platform when generating the med file

For the numerical treatment of the boundaries, each boundary group should
be associated with one of the boundary condition types: “Wall”, “Neumann”,
“Inlet”, “Outlet” or “Dirichlet”.

6.3 Initial data or power fields

The initial field structure depends strongly on the model, space dimension and
whether the mesh is structured or unstructured. The initial data and power
fields can be defined on the mesh using the class Field of CDMATH either

• starting from a null field using the command Field(fieldname,ON CELLS,numberOfComponents),
then setting the values on cell i for each component j with the command
F (i, j) = fij

• loading a field stored in a med file using the command Field(filename,ON CELLS,
filename)

The initial data should in general be a vector field containing parameters that
are specific to each model

• SinglePhase : (p,~v, T), ie pressure, velocity, temperature

• DriftModel : (cg, p, ~v, T), ie phase number one concentration, pressure,
velocity, temperature

• IsothermalTwoFluid : (αg, p, ~vg, ~vl), ie phase number one void fraction,
pressure, phase number one velocity, phase number two velocity

• FiveEqsTwoFluid : (αg, p, ~vg, ~vl, T), ie phase number one void fraction,
pressure, phase number one velocity, phase number two velocity, common
temperature

• TransportEquation : h the fluid enthalpy

18

• DiffusionEquation : T the solid temperature

Whatever the model chosen, the initial data can be set with the function Prob-
lemCoreFlows::setInitialField(initialField), and the heat power field is set with
the function ProblemCoreFlows::setHeatSourceField(heatPowerField) (or Prob-
lemCoreFlows::setHeatSource(heatPower) for a constant power field).

6.4 Models

The model can be set as

• SinglePhase (fluidType, pressureEstimate, spaceDimension) where fluid-
Name is either ”Liquid” or ”Steam”, and pressureEstimate is ”around1bar”
or ”around155bars”

• DriftModel (pressureEstimate, spaceDimension) where pressureEstimate
is ”around1bar” or ”around155bars”

• IsothermalTwoFluid (pressureEstimate, spaceDimension) where pressureEs-
timate is ”around1bar” or ”around155bars”

• FiveEqsTwoFluid (pressureEstimate, spaceDimension) where pressureEs-
timate is ”around1bar” or ”around155bars”

• TransportEquation (fluidType, pressureEstimate, ~v)

• DiffusionEquation (spaceDim, ρ,cp,λ)

6.5 Physical options

• in order to set a constant heat source : myProblem.setHeatSource(heatSource)
where heat source is a double

• in order to set the viscosities : setViscosity(viscosity) where viscosity is a
vector < double > (default value 0)

• in order to set the conductivities : setConductivity(conductivity) where
conductivity is a vector < double > (default value 0)

• in order to set the gravity : myProblem.setGravity(gravity) (default value
0)

• in order to set the friction coefficients : myProblem.setDragCoeffs(dragCoeffs)
where dragCoeffs is a vector < double > (default value 0)

6.6 Numerical options

These options can be set independantly from the model, dimension and mesh
type (structured vs unstructured).

• The nonlinear formulation can be Roe [11], VFRoe [12] or VFFC [13] and
is set by the method setNonLinearFormulation

19

• The time discretisation can be Explicit or Implicit, and the space discreti-
sation can be upwind, lowMach, pressureCorrection, staggered or centered.
The numerical configuration can be set using the command setNumeri-
calScheme(upwind, Explicit); for instance.

• Advanced options can be set to enforce a well balanced scheme with
setWellBalanceCorrection or an entropic scheme with setEntropicCorrec-
tion.

• in order to set the cfl number: myProblem.setCFL(cfl);

• in order to set the tolerance number : myProblem.setPrecision(precision);

• in order to set the maximum number of time steps : myProblem.setMaxNbOfTimeStep(MaxNbOfTimeStep);

• in order to set the maximum time of the computation : myProblem.setTimeMax(maxTime);

• in order to set the linear solver and preconditioner : myProblem.setLinearSolver(”GMRES”,”ILU”)
The usual linear solver are GMRES and BICGSTAB, and the usual pre-
conditionners are ILU and LU.

6.7 Boundary conditions

The boundary conditions field structure depends strongly on the model, space
dimension.

Boundary conditions can be of type

• Wall

– simply set with the command myProblem.setWallBoundaryCondition(...)

– possible for all fluid models : SinglePhase, DriftModel, IsothermalT-
woFluid, FiveEqsTwoFluid

• Neumann

– simply set with the command myProblem.setNeumannBoundaryCondition(...)

– possible for all models

• Inlet

– simply set with the command myProblem.setInletBoundaryCondition(...)

– possible for TransportEquation, SinglePhase, DriftModel, Isother-
malTwoFluid, FiveEqsTwoFluid (not possible for DiffusionEquation)

• Outlet

– simply set with the command myProblem.setOutletBoundaryCondition(...)

– possible for fluid models : SinglePhase, DriftModel, IsothermalT-
woFluid, FiveEqsTwoFluid

• Dirichlet

– simply set with the command myProblem.setDirichletBoundaryCondition(...)

– possible for DiffusionEquation

20

The former way to set the boundary conditions was to create a C++ map map <
string, LimitF ield > boundaryF ields that associates the boundary name to a
field. Once the map is filled with the appropriate content, the boundary condi-
tions are set with the command ProblemCoreFlows::setBoundaryFields(boundaryFields).

The LimitField structure is specific to each model and each type of boundary
condition.

• for a Neumann boundary condition : LimitField limitNeumann; limitNeu-
mann.bcType=Neumann;

• for an Inlet boundary condition (not possible for DiffusionEquation): Lim-
itField limitInlet; limitInlet.bcType=Inlet; then

– For TransportEquation :
limitInlet.h=1.3e6

– For SinglePhase (3D case):
limitInlet.T = 600;
limitInlet.v x = vector < double > (1, 0);
limitInlet.v y = vector < double > (1, 0);
limitInlet.v z = vector < double > (1, 0);

– For DriftModel (3D case):
limitInlet.c=0;
limitInlet.T = 600;
limitInlet.v x = vector < double > (1, 0);
limitInlet.v y = vector < double > (1, 0);
limitInlet.v z = vector < double > (1, 0);

– For IsothermalTwoFluidModel (3D case):
limitInlet.alpha=0;
limitInlet.v x = vector < double > (2, 0);
limitInlet.v y = vector < double > (2, 0);
limitInlet.v z = vector < double > (2, 0);

– For FiveEqsTwoFluid (3D case):
limitInlet.alpha=0;
limitInlet.T = 600;
limitInlet.v x = vector < double > (2, 0);
limitInlet.v y = vector < double > (2, 0);
limitInlet.v z = vector < double > (2, 0);

– then boundaryFields[”Inlet“]= limitInlet;

• for an Outlet boundary condition (for all fluid models): LimitField lim-
itOutlet; limitOutlet.bcType=Outlet; then

– limitOutlet.p = 155e5;

– then boundaryFields[”Outlet“]= limitOutlet;

• for a Wall with friction and/or heat conduction : : LimitField limitWall;
limitWall.bcType=Wall; then

21

– For SinglePhase (3D case):
limitWall.T = 600;
limitWall.v x = vector < double > (1, 0);
limitWall.v y = vector < double > (1, 0);
limitWall.v z = vector < double > (1, 0);

– For DriftModel (3D case):
limitWall.T = 600;
limitWall.v x = vector < double > (1, 0);
limitWall.v y = vector < double > (1, 0);
limitWall.v z = vector < double > (1, 0);

– For IsothermalTwoFluidModel (3D case):
limitWall.v x = vector < double > (2, 0);
limitWall.v y = vector < double > (2, 0);
limitWall.v z = vector < double > (2, 0);

– For FiveEqsTwoFluid (3D case):
limitWall.T = 600;
limitWall.v x = vector < double > (2, 0);
limitWall.v y = vector < double > (2, 0);
limitWall.v z = vector < double > (2, 0);

– then boundaryFields[”Wall“]= limitWall;

• for a Dirichlet boundary condition (only for DiffusionEquation) : Limit-
Field limitDirichlet; limitDirichlet.bcType=Dirichlet; then

– limitDirichlet.T = 600;

– boundaryFields[”Dirichlet”]= limitDirichlet;

References

[1] A. S. Shieh, V. H. Ransom, R. Krishnamurthy, Validation of numerical tech-
niques in RELAP5/MOD3, RELAP5/MOD3 code manual volume 6, October
1994

[2] http://www.casl.gov/COBRA-TF.shtml

[3] http://www.ansys.com/Products/Simulation+Technology/Fluid+

Dynamics/Fluid+Dynamics+Products/ANSYS+CFX

[4] J. J. jeong, H. Y. Yoon, I. K. Park, H. K. Cho, J. Kim, A semi-implicit nu-
merical scheme for transient two-phase flows, Nuclear Engineering and Design
236 (2008) 3403-3412

[5] I. Toumi, A. Bergeron, D. Gallo, E. Royer, D. Caruge, ”FLICA-4: a three-
dimensional two-phase flow computer code with advanced numerical methods
for nuclear applications,” Nuclear Engineering and Design, Volume 200, Issues
1-2, August 2000, Pages 139-155.

[6] D. Bestion, ”The Physical Closure Laws in The CATHARE Code, Nuclear
Engineering and Design,” vol. 124, pp. 229-245, 1990.

22

http://www.casl.gov/COBRA-TF.shtml
http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics/Fluid+Dynamics+Products/ANSYS+CFX
http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics/Fluid+Dynamics+Products/ANSYS+CFX

[7] N. Méchitoua, M. Boucker, J. Laviéville, J.-M. Hérard, S. Pigny, and G.
Serre. An Unstructured Finite Volume Solver for Two-Phase Water/Vapour
Flows Modelling Based on an Elliptic Oriented Fractional Step Method. In
NURETH 10, International Meeting on Nuclear Reactor Thermal-Hydraulics,
Seoul, South Korea, 2003.

[8] Propriétés thermophysiques des systèmes fluides, http://webbook.nist.

gov/chemistry/fluid/

[9] M. Ishii, ”Thermo-Fluid Dynamic Theory of Two-Phase Flow,” Eyrolles,
Paris, 1975.

[10] D.A. Drew and S.L. Passman, ”Theory of Multicomponent Fluids,”
Springer-Verlag, New York, 1999.

[11] Ph. Roe, Approximate Riemann solvers, parameter vectors, and difference
schemes, J. Comput. Phys., 43, 357, 1981

[12] J. M. Masella, I. Faille and T. Gallouët, ”On an Approximate Godunov
Scheme”, Intl. J. Computational Fluid Dynamics, 1999, Vol. 12, pp. 133-149.

[13] J.M. Ghidaglia, A. Kumbaro, G. Le Coq, Une méthode volumes finis à flux
caractéristiques pour la résolution numérique des systèmes hyperboliques de
lois de conservation, Comptes Rendus de l’Acad. Sciences Paris, Série 1, vol
322, pp. 981 988, 1996.

[14] “Upwind methods for hyperbolic conservation laws with source terms”, A.
Bermudez, E. Vazquez, Comp. Fluids, vol 23, issue 8, pp. 1049-1071,1994

[15] M. Ndjinga, T.-P.-K. Nguyen, C. Chalons, Numerical simulation of an in-
compressible two-fluid model, Springer Proc. Math. & Stat., Vol. 78, Finite
Volumes for Complex Applications FVCA7, 2014

[16] T.-H. Dao, M. Ndjinga, F. Magoules, Comparaison of Upwind and Centered
Schemes for Low Mach Number Flows, Finite Volumes for Complex Applica-
tions VI - Problems & Perspectives, Springer Proceedings in Mathematics 4,
2011

[17] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cam-
bridge University Press, 2002

[18] The open-source integration platform for numerical simulation www.

salome-platform.org

[19] The open-source, parallel data analysis and visualization application www.

paraview.org

[20] The Visualization ToolKit www.vtk.org

[21] Parallel storage and manipulation of large sparse matrices www.mcs.anl.

gov/petsc

[22] Projet “Ce sont Des Mathématiques Appliquées à la THermohydraulique”:
http://cdmath.jimdo.com/

23

http://webbook.nist.gov/chemistry/fluid/
http://webbook.nist.gov/chemistry/fluid/
www.salome-platform.org
www.salome-platform.org
www.paraview.org
www.paraview.org
www.vtk.org
www.mcs.anl.gov/petsc
www.mcs.anl.gov/petsc
http://cdmath.jimdo.com/

[23] Toolbox du projet CDMATH : https://github.com/PROJECT-CDMATH/

CDMATH

[24] Salome-MEDCoupling library, http://docs.salome-
platform.org/latest/dev/MEDCoupling/index.html

[25] Simplified Wrapper and Interface Generator : http://www.swig.org

[26] HDF5 - Data model and file format of large volume : http://www.

hdfgroup.org/HDF5

[27] DOXYGEN - Generate documentation from source code : http://www.

doxygen.org

[28] CMAKE - Open-source build test and package software : http://www.

cmake.org

[29] MED - Modèle d’échange de données http://www.code-aster.org/

outils/med/html/introduction.html

[30] NUMPY - Package for scientific computing with Python http://www.

numpy.org/

24

https://github.com/PROJECT-CDMATH/CDMATH
https://github.com/PROJECT-CDMATH/CDMATH
http://www.swig.org
http://www.hdfgroup.org/HDF5
http://www.hdfgroup.org/HDF5
http://www.doxygen.org
http://www.doxygen.org
http://www.cmake.org
http://www.cmake.org
http://www.code-aster.org/outils/med/html/introduction.html
http://www.code-aster.org/outils/med/html/introduction.html
http://www.numpy.org/
http://www.numpy.org/

	Presentation of CDMATH-CoreFlows
	Software structure
	Installation and use of CDMATH-CoreFlows
	Download and compilation of Petsc (Optonal)
	Download and compilation of CDMATH
	Download and compilation of CoreFlows
	Use of CoreFlows

	The physical models
	Scalar models
	The transport equation
	The diffusion equation

	The Navier-Stokes equations
	Two phase flow models
	The Drift model
	The isothermal two-fluid model
	The five equation two-fluid model

	The numerical methods
	Explicit schemes
	Implicit schemes
	Numerical scheme for the Navier-Stokes equations
	Boundary conditions
	Navier-Stokes
	The drift model

	Simulation options
	First two parameters
	Meshes
	Initial data or power fields
	Models
	Physical options
	Numerical options
	Boundary conditions

