Salome HOME
bos #29171 Refactor testing procedure
[modules/smesh.git] / test / SMESH_Partition1_tetra.py
diff --git a/test/SMESH_Partition1_tetra.py b/test/SMESH_Partition1_tetra.py
new file mode 100644 (file)
index 0000000..3f45341
--- /dev/null
@@ -0,0 +1,187 @@
+#  -*- coding: iso-8859-1 -*-
+# Copyright (C) 2007-2022  CEA/DEN, EDF R&D, OPEN CASCADE
+#
+# Copyright (C) 2003-2007  OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
+# CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
+#
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License, or (at your option) any later version.
+#
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+# Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
+#
+# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+#
+
+# Tetrahedrization of the geometry generated by the Python script GEOM_Partition1.py
+# Hypothesis and algorithms for the mesh generation are global
+# -- Rayon de la bariere
+#
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New()
+
+import SMESH, SALOMEDS
+from salome.smesh import smeshBuilder
+smesh =  smeshBuilder.New()
+
+from math import sqrt
+
+
+#---------------------------------------------------------------
+
+barier_height = 7.0
+barier_radius = 5.6 / 2 # Rayon de la bariere
+colis_radius = 1.0 / 2  # Rayon du colis
+colis_step = 2.0        # Distance s�parant deux colis
+cc_width = 0.11         # Epaisseur du complement de colisage
+
+# --
+
+cc_radius = colis_radius + cc_width
+colis_center = sqrt(2.0)*colis_step/2
+
+# --
+
+boolean_common  = 1
+boolean_cut     = 2
+boolean_fuse    = 3
+boolean_section = 4
+
+# --
+
+p0 = geompy.MakeVertex(0.,0.,0.)
+vz = geompy.MakeVectorDXDYDZ(0.,0.,1.)
+
+# --
+
+barier = geompy.MakeCylinder(p0, vz, barier_radius, barier_height)
+
+# --
+
+colis = geompy.MakeCylinder(p0, vz, colis_radius, barier_height)
+cc    = geompy.MakeCylinder(p0, vz,    cc_radius, barier_height)
+
+colis_cc = geompy.MakeCompound([colis, cc])
+colis_cc = geompy.MakeTranslation(colis_cc, colis_center, 0.0, 0.0)
+
+colis_cc_multi = geompy.MultiRotate1D(colis_cc, vz, 4)
+
+# --
+
+Compound1 = geompy.MakeCompound([colis_cc_multi, barier])
+SubShape_theShape = geompy.SubShapeAll(Compound1,geompy.ShapeType["SOLID"])
+alveole = geompy.MakePartition(SubShape_theShape)
+
+print("Analysis of the geometry to mesh (right after the Partition) :")
+
+subShellList = geompy.SubShapeAll(alveole, geompy.ShapeType["SHELL"])
+subFaceList  = geompy.SubShapeAll(alveole, geompy.ShapeType["FACE"])
+subEdgeList  = geompy.SubShapeAll(alveole, geompy.ShapeType["EDGE"])
+
+print("number of Shells in alveole : ", len(subShellList))
+print("number of Faces  in alveole : ", len(subFaceList))
+print("number of Edges  in alveole : ", len(subEdgeList))
+
+subshapes = geompy.SubShapeAll(alveole, geompy.ShapeType["SHAPE"])
+
+## there are 9 sub-shapes
+
+comp1 = geompy.MakeCompound( [ subshapes[0], subshapes[1] ] )
+comp2 = geompy.MakeCompound( [ subshapes[2], subshapes[3] ] )
+comp3 = geompy.MakeCompound( [ subshapes[4], subshapes[5] ] )
+comp4 = geompy.MakeCompound( [ subshapes[6], subshapes[7] ] )
+
+compGOs = []
+compGOs.append( comp1 )
+compGOs.append( comp2 )
+compGOs.append( comp3 )
+compGOs.append( comp4 )
+comp = geompy.MakeCompound( compGOs )
+
+alveole = geompy.MakeCompound( [ comp, subshapes[8] ])
+
+idalveole = geompy.addToStudy(alveole, "alveole")
+
+print("Analysis of the geometry to mesh (right after the MakeCompound) :")
+
+subShellList = geompy.SubShapeAll(alveole, geompy.ShapeType["SHELL"])
+subFaceList  = geompy.SubShapeAll(alveole, geompy.ShapeType["FACE"])
+subEdgeList  = geompy.SubShapeAll(alveole, geompy.ShapeType["EDGE"])
+
+print("number of Shells in alveole : ", len(subShellList))
+print("number of Faces  in alveole : ", len(subFaceList))
+print("number of Edges  in alveole : ", len(subEdgeList))
+
+status = geompy.CheckShape(alveole)
+print(" check status ", status)
+
+
+# ---- init a Mesh with the alveole
+shape_mesh = salome.IDToObject( idalveole )
+
+mesh = smesh.Mesh(shape_mesh, "MeshAlveole")
+
+print("-------------------------- create Hypothesis (In this case global hypothesis are used)")
+
+print("-------------------------- NumberOfSegments")
+
+numberOfSegments = 10
+
+regular1D = mesh.Segment()
+hypNbSeg = regular1D.NumberOfSegments(numberOfSegments)
+print(hypNbSeg.GetName())
+print(hypNbSeg.GetId())
+print(hypNbSeg.GetNumberOfSegments())
+smesh.SetName(hypNbSeg, "NumberOfSegments_" + str(numberOfSegments))
+
+print("-------------------------- MaxElementArea")
+
+maxElementArea = 0.1
+
+mefisto2D = mesh.Triangle()
+hypArea = mefisto2D.MaxElementArea(maxElementArea)
+print(hypArea.GetName())
+print(hypArea.GetId())
+print(hypArea.GetMaxElementArea())
+smesh.SetName(hypArea, "MaxElementArea_" + str(maxElementArea))
+
+print("-------------------------- MaxElementVolume")
+
+maxElementVolume = 0.5
+
+netgen3D = mesh.Tetrahedron(smeshBuilder.NETGEN)
+hypVolume = netgen3D.MaxElementVolume(maxElementVolume)
+print(hypVolume.GetName())
+print(hypVolume.GetId())
+print(hypVolume.GetMaxElementVolume())
+smesh.SetName(hypVolume, "MaxElementVolume_" + str(maxElementVolume))
+
+print("-------------------------- compute the mesh of alveole ")
+ret = mesh.Compute()
+
+if ret != 0:
+    log=mesh.GetLog(0) # no erase trace
+    # for linelog in log:
+    #     print(linelog)
+    print("Information about the Mesh_mechanic:")
+    print("Number of nodes       : ", mesh.NbNodes())
+    print("Number of edges       : ", mesh.NbEdges())
+    print("Number of faces       : ", mesh.NbFaces())
+    print("Number of triangles   : ", mesh.NbTriangles())
+    print("Number of volumes     : ", mesh.NbVolumes())
+    print("Number of tetrahedrons: ", mesh.NbTetras())
+else:
+    print("problem when computing the mesh")
+
+salome.sg.updateObjBrowser()